WorldWideScience

Sample records for pine beetle dendroctonus

  1. Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae.

    Science.gov (United States)

    Six, Diana L; de Beer, Z Wilhelm; Duong, Tuan A; Carroll, Allan L; Wingfield, Michael J

    2011-08-01

    Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74-100% of all beetles) followed closely by Ophiostoma abietinum (29-75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0-13%), Ophiostoma ips (0-15%), Ophiostoma piliferum (0-11%), a Pesotum sp. (0-11%) and Ophiostoma floccosum (0-1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.

  2. Isolation and characterization of 16 microsatellite loci in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    C. S. Davis; K. E. Mock; B. J. Bentz; S. M. Bromilow; N. V. Bartell; B. W. Murray; A. D. Roe; J. E. K. Cooke

    2009-01-01

    We isolated 16 polymorphic microsatellite loci in the mountain pine beetle (Dendroctonus ponderosae Hopkins) and developed conditions for amplifying these markers in four multiplex reactions. Three to 14 alleles were detected per locus across two sampled populations. Observed and expected heterozygosities ranged from 0.000 to 0.902 and from 0.100 to 0.830, respectively...

  3. Attraction of the southern pine beetle, Dendroctonus frontalis, to pheromone components of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae: Scolytinae), in an allopatric zone

    Science.gov (United States)

    Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan

    2008-01-01

    Subtle differences in pheromone components of sympatric species should be attractive only to the producing species and unattractive or repellent to the nonproducing species, and thereby maintain reproductive isolation and reduce competition between species. Bark beetles Dendroctonus brevicomis and D. frontalis (Coleoptera: Curculionidae) are known to...

  4. Stand Characteristics and Downed Woody Debris Accumulations Associated with a Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) Outbreak in Colorado

    OpenAIRE

    Klutsch, Jennifer G; Negron, Jose F; Costello, Sheryl L; Rhoades, Charles C; West, Daniel R; Popp, John; Caissie, Rick

    2009-01-01

    Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, ...

  5. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, larvae

    Directory of Open Access Journals (Sweden)

    Jordie D. Fraser

    2017-06-01

    Full Text Available Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae. Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.

  6. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  7. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  8. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. Ex Laws.), to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA

    Science.gov (United States)

    Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow

    2008-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...

  9. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    Science.gov (United States)

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  10. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Erin L. Clark

    2014-02-01

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC, where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC and one population of jack pine (AB were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the

  11. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins.

    Science.gov (United States)

    Clark, E L; Huber, D P W; Carroll, A L

    2012-04-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just before (beginning of July) and substantially after (end of August) the mountain pine beetle dispersal period. The sampled trees then were observed the next spring for evidence of survival, and the levels of seven resin monoterpenes were compared between July and August samples. Trees that did not survive consistently had significantly higher phloem resin monoterpene levels at the end of August compared with levels in July. Trees that did survive mainly did not exhibit a significant difference between the two sample dates. The accumulation of copious defense-related secondary metabolites in the resin of mountain pine beetle-killed lodgepole pine has important implications for describing the environmental niche that the beetle offspring survive in as well as that of parasitoids, predators, and other associates.

  12. Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Y. Salinas-Moreno; A. Ager; C.F. Vargas; J.L. Hayes; G. Zuniga

    2010-01-01

    Bark beetles of the genus Dendroctonus are natural inhabitants of forests; under particular conditions some species of this genus can cause large-scale tree mortality. However, only in recent decades has priority been given to the comprehensive study of these insects in Mexico. Mexico possesses high ecological diversity in Dendroctonus-...

  13. Blue-stain Fungi Associated with Roots of Southern Pine Trees Attacked by the Southern Pine Beetle, Dendroctonus frontalis

    Science.gov (United States)

    William J. Otrosina; Nolan J. Hess; Stanley J. Zarnoch; Thelma J. Perry; John P. Jones

    1997-01-01

    Forty paired plots were established from eastern Texas to Alabama to study root-infecting, blue-stain fungi in southern pine stands undergoing southern pine beetle (SPB) attack. Woody roots were sampled in plots undergoing recent or current attack by the SPB. Comparisons were made between occurrence of Lcptogrqhiumspp. and related fungi and data on various...

  14. The Current Status of the Distribution Range of the Western Pine Beetle, Dendroctonus brevicomis (Curculionidae: Solytinae) in Northern Mexico.

    Science.gov (United States)

    Valerio-Mendoza, O; Armendáriz-Toledano, F; Cuéllar-Rodríguez, G; Negrón, José F; Zúñiga, G

    2017-09-01

    The distribution range of the western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) is supported only by scattered records in the northern parts of Mexico, suggesting that its populations may be marginal and rare in this region. In this study, we review the geographical distribution of D. brevicomis in northern Mexico and perform a geometric morphometric analysis of seminal rod shape to evaluate its reliability for identifying this species with respect to other members of the Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) complex. Our results provide 30 new records, with 26 distributed in the Sierra Madre Occidental and 4 in the Sierra Madre Oriental. These records extend the known distribution range of D. brevicomis to Durango and Tamaulipas states in northern Mexico. Furthermore, we find high geographic variation in size and shape of the seminal rod, with conspicous differences among individuals from different geographical regions, namely west and east of the Great Basin and between mountain systems in Mexico. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality.

    Science.gov (United States)

    Ott, Daniel S; Yanchuk, Alvin D; Huber, Dezene P W; Wallin, Kimberly F

    2011-09-01

    Plant secondary chemistry is determined by both genetic and environmental factors, and while large intraspecific variation in secondary chemistry has been reported frequently, the levels of genetic variation of many secondary metabolites in forest trees in the context of potential resistance against pests have been rarely investigated. We examined the effect of tree genotype and environment/site on the variation in defensive secondary chemistry of lodgepole pine, Pinus contorta var. latifolia, against the fungus, Grosmannia clavigera (formerly known as Ophiostoma clavigerum), associated with the mountain pine beetle, Dendroctonus ponderosae. Terpenoids were analyzed in phloem samples from 887, 20-yr-old trees originating from 45 half-sibling families planted at two sites. Samples were collected both pre- and post-inoculation with G. clavigera. Significant variation in constitutive and induced terpenoid compounds was attributed to differences among families. The response to the challenge inoculation with G. clavigera was strong for some individual compounds, but primarily for monoterpenoids. Environment (site) also had a significant effect on the accumulation of some compounds, whereas for others, no significant environmental effect occurred. However, for a few compounds significant family x environment interactions were found. These results suggest that P. c. latifolia secondary chemistry is under strong genetic control, but the effects depend on the individual compounds and whether or not they are expressed constitutively or following induction.

  16. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  17. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  19. Proteomics indicators of the rapidly shifting physiology from whole mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, adults during early host colonization.

    Directory of Open Access Journals (Sweden)

    Caitlin Pitt

    Full Text Available We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae. Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle, structure (cuticle, muscle, cytoskeleton, and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20, including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20, including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction.

  20. Density, heating value, and composition of pellets made from lodgepole pine (Pinus concorta Douglas) infested with mountain pine beetle (Dendroctonus ponderosae Hopkins)

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, P.; Kadla, J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Wood Science; Sokansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Oak Ridge National Laboratory, Oak Ridge, TN (United States). Environmental Sciences Div., Bioenergy Resource and Engineering Systems; Bi, X.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Mani, S. [Georgia Univ., Athens, GA (United States). Faculty of Engineering; Melin, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Delta Research Corp., Delta, BC (Canada)

    2008-07-01

    BC is currently experiencing the largest recorded mountain pine beetle (MPB) infestation in North America that has killed nearly 7 million hectares of pine. The dead trees gradually lose their suitability for dimension lumber and pulp chips due to excessive cracking and spoilage. The economic losses can be partly averted by recovering the killed wood and processing it into pellets for bioenergy and other applications. Currently, Canada exports roughly 750,000 tons of wood pellets to Europe as a fuel for heat and power. The most important physical properties of wood pellets are bulk and pellet density, heating value, moisture content, and durability. In light of the chemical and structural changes reported with MPB attack, it is important to develop engineering data on properties of MPB-affected pine for wood pellets. The objective of this study was to compare chemical composition, density, and heat value of pellets made from MPB-infested wood and to compare these properties with those measured for pellets made from uninfested wood. Chemical analysis showed minor decrease in lignin and sugar contents of pellets made from MPB wood. Pellets made from MPB-infested pine had a mean value for density larger than those made from uninfested pine but the difference was not statistically significant. Heating values of the pellets from MPB-infested wood were similar to those measured for pellets from uninfested wood. A preliminary observation of mold growth did not show any further staining or other decay fungi growth for the pellets made from MPB-infested wood. The pellets made from MPB-infested wood were found to be similar to pellets made from uninfested wood in density, heating value, and most chemical constituents. The overall conclusion was that MBP infested wood can be used to produce comparable pellets to non infested wood pellets. 37 refs., 6 tabs., 2 figs.

  1. Responses by Dendroctonus frontalis and Dendroctonus mesoamericanus (Coleoptera: Curculionidae) to Ssemiochemical lures in Chiapas, Mexico: possible roles of pheromones during joint host attacks

    Science.gov (United States)

    Alicia Nino-Dominguez; Brian T. Sullivan; Jose H. Lopez-Urbina; Jorge E. Macias-Samano

    2016-01-01

    In southern Mexico and Central America, the southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) commonly colonizes host trees simultaneously with Dendroctonus mesoamericanus Armend

  2. Pheromone-mediated mate location and discrimination by two syntopic sibling species of Dendroctonus bark beetles in Chiapas, Mexico

    Science.gov (United States)

    Alicia Nino-Dominguez; Brian T. Sullivan; Jose H. Lopez-Urbina; Jorge E. Macias-Samano

    2015-01-01

    Where their geographic and host ranges overlap, sibling species of tree-killing bark beetles may simultaneously attack and reproduce on the same hosts. However, sustainability of these potentially mutually beneficial associations demands effective prezygotic reproductive isolation mechanisms between the interacting species. The pine bark beetle, Dendroctonus...

  3. Assessing longleaf pine (Pinus palustris) restoration after southern pine beetle kill using a compact experimental design

    Science.gov (United States)

    J.-P. Berrill; C.M. Dagley

    2010-01-01

    A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...

  4. Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; J.L. Hayes

    1995-01-01

    The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.

  5. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  6. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  7. The Effect of Water Limitation on Volatile Emission, Tree Defense Response, and Brood Success of Dendroctonus ponderosae in Two Pine Hosts, Lodgepole, and Jack Pine

    OpenAIRE

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L.

    2016-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae) has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana) trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavig...

  8. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Science.gov (United States)

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  9. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Science.gov (United States)

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  10. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  11. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Science.gov (United States)

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  12. Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA

    Science.gov (United States)

    Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand

    2017-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...

  13. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage

    Science.gov (United States)

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2012-01-01

    During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...

  14. Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?

    Science.gov (United States)

    Sara A. Goeking; Greg C. Liknes

    2012-01-01

    Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...

  15. Dose-dependent pheromone responses of mountain pine beetle in stands of lodgepole pine

    Science.gov (United States)

    Daniel R. Miller; B. Staffan Lindgren; John H. Borden

    2005-01-01

    We conducted seven behavioral choice tests with Lindgren multiple-funnel traps in stands of mature lodgepole pine in British Columbia, from 1988 to 1994, to determine the dosedependent responses of the mountain pine beetle, Dendroctonus ponderosae Hopkins, to its pheromones. Amultifunctional dose-dependent response was exhibited by D. ...

  16. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  17. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Science.gov (United States)

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  18. Emergence of Buprestidae, Cerambycidae, and Scolytinae (Coleoptera) from mountain pine beetle-killed and fire-killed ponderosa pines in the Black Hills, South Dakota, USA

    Science.gov (United States)

    Sheryl L. Costello; William R. Jacobi; Jose F. Negron

    2013-01-01

    Wood borers (Coleoptera: Cerambycidae and Buprestidae) and bark beetles (Coleoptera: Curculionidae) infest ponderosa pines, Pinus ponderosa P. Lawson and C. Lawson, killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and fire. No data is available comparing wood borer and bark beetle densities or species guilds associated with MPB-killed or fire-...

  19. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  20. Applied chemical ecology of the mountain pine beetle

    Science.gov (United States)

    Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich

    2014-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...

  1. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  2. Southern pine beetle in loblolly pine: simulating within stand interactions using the process model SPBLOBTHIN

    Science.gov (United States)

    Brian Strom; J. R. Meeker; J. Bishir; James Roberds; X. Wan

    2016-01-01

    Pine stand density is a key determinant of damage resulting from attacks by the southern pine beetle (SPB, Dendroctonus frontalis Zimm.). High-density stands of maturing loblolly pine (Pinus taeda L.) are at high risk for losses to SPB, and reducing stand density is the primary tool available to forest managers for preventing and mitigating damage. Field studies are...

  3. Efficacy of “Verbenone Plus” for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California

    Science.gov (United States)

    Christopher J. Fettig; Stephen R. McKelvey; Christopher P. Dabney; Dezene P.W. Huber; Cameron C. Lait; Donald L Fowler; John H. Borden

    2012-01-01

    The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae, Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Douglas ex Lawson, mortality in much of western North America. We review several years of research that led to the identification of Verbenone Plus, a novel four-component...

  4. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  5. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Science.gov (United States)

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  6. Tree response and mountain pine beetle attack preference, reproduction, and emergence timing in mixed whitebark and lodgepole pines

    Science.gov (United States)

    Barbara J. Bentz; Celia Boone; Kenneth F. Raffa

    2015-01-01

    Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.

  7. Prescribed burning and mastication effects on surface fuels in southern pine beetle-killed loblolly pine plantations

    Science.gov (United States)

    Aaron D. Stottlemyer; Thomas A. Waldrop; G. Geoff Wang

    2015-01-01

    Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced...

  8. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  9. The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole and jack pine

    Directory of Open Access Journals (Sweden)

    Inka eLusebrink

    2016-02-01

    Full Text Available The mountain pine beetle (MPB; Dendroctonus ponderosae has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavigera and measured through monoterpene emission from tree boles and concentration of defensive compounds in phloem, needles, and necrotic tissues. Lodgepole pine generally emitted higher amounts of monoterpenes than jack pine; particularly from fungal-inoculated trees. Compared to non-inoculated trees, fungal inoculation increased monoterpene emission in both species, whereas water treatment had no effect on monoterpene emission. The phloem of both pine species contains (--α-pinene, the precursor of the beetle’s aggregation pheromone, however lodgepole pine contains two times as much as jack pine. The concentration of defensive compounds was 70-fold greater in the lesion tissue in jack pine, but only 10-fold in lodgepole pine compared to healthy phloem tissue in each species, respectively. Water-deficit treatment inhibited an increase of L-limonene as response to fungal inoculation in lodgepole pine phloem. The amount of myrcene in jack pine phloem was higher in water-deficit trees compared to ambient trees. Beetles reared in jack pine were not affected by either water or biological treatment, whereas beetles reared in lodgepole pine benefited from fungal inoculation by producing larger and heavier female offspring. Female beetles that emerged from jack pine bolts contained more fat than those that emerged from lodgepole pine, even though lodgepole pine phloem had a higher nitrogen content than jack pine phloem. These results suggest that jack pine chemistry

  10. Effects of salvage logging on fire risks after bark beetle outbreaks in Colorado lodgepole pine forests

    Science.gov (United States)

    Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard

    2012-01-01

    Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...

  11. Evaluation of general-use insecticides for preventing host colonization by New Jersey southern pine beetles.

    Science.gov (United States)

    Brian Strom; W.K. Oldland; J.R. Meeker; J. Dunn

    2015-01-01

    Four general-use insecticides (Astro, Onyx, Dominion Tree & Shrub, and Xytect 2F) were evaluated for their effectiveness at preventing attacks by the southern pine beetle (SPB) (Dendroctonus frontalis) and the small southern pine engraver (Ips avulsus) using a previously developed small-bolt method. Evaluations were conducted between 58 and 126 days post treatment...

  12. Documentation and user guides for SPBLOB: a computer simulation model of the join population dynamics for loblolly pine and the southern pine beetle

    Science.gov (United States)

    John Bishir; James Roberds; Brian Strom; Xiaohai Wan

    2009-01-01

    SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...

  13. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Science.gov (United States)

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  14. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Science.gov (United States)

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  15. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  16. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  17. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  18. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis

    Science.gov (United States)

    Erika L. Eidson; Karen E. Mock; Barbara J. Bentz

    2018-01-01

    The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully...

  19. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  20. Estimating aboveground tree biomass for beetle-killed lodgepole pine in the Rocky Mountains of northern Colorado

    Science.gov (United States)

    Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...

  1. Intra-annual variation in responses by flying southern pine beetles (Coleoptera: Curculionidae: Scolytinae) to pheromone component endo-brevicomin

    Science.gov (United States)

    Brian T. Sullivan; Cavell Brownie; JoAnne P. Barrett

    2016-01-01

    The southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) is attracted to an aggregation pheromone that includes the multifunctional pheromone component endobrevicomin. The effect of endo-brevicomin on attractive lures varies from strong enhancement to reduction of beetle attraction depending upon release rate, lure component...

  2. A methodology for assessing annual risk of southern pine beetle outbreaks across the southern region using pheromone traps

    Science.gov (United States)

    Ronald F Billings; William W. Upton

    2010-01-01

    An operational system to forecast infestation trends (increasing, static, declining) and relative population levels (high, moderate, low) of the southern pine beetle (SPB), Dendroctonus frontalis, has been implemented in the Southern and Eastern United States. Numbers of dispersing SPB and those of a major predator (the clerid beetle, ...

  3. A test of high-dose verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks

    Science.gov (United States)

    B. J. Bentz; S. Kegley; K. Gibson; R. Their

    2005-01-01

    The effcacy of verbenone as a stand-level protectant against mountain pine beetle, Dendroctonus ponderosae Hopkins, attacks was tested in lodgepole and whitebark pine stands at five geographically separated sites, including three consecutive years at one site. Forty and 20 high-dose pouches, with a verbenone emission rate up to 50 mg/d per pouch, were spaced in a grid...

  4. Post-harvest seedling recruitment following mountain pine beetle infestation of Colorado lodgepole pine stands: A comparison using historic survey records

    Science.gov (United States)

    Byron J. Collins; Charles C. Rhoades; Jeffrey Underhill; Robert M. Hubbard

    2010-01-01

    The extent and severity of overstory lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) mortality from mountain pine beetle (Dendroctonus ponderosae Hopkins) has created management concerns associated with forest regeneration, wildfire risk, human safety, and scenic, wildlife, and watershed resources in western North America. Owing to the unprecedented...

  5. Southern pine beetle infestation probability mapping using weights of evidence analysis

    Science.gov (United States)

    Jason B. Grogan; David L. Kulhavy; James C. Kroll

    2010-01-01

    Weights of Evidence (WofE) spatial analysis was used to predict probability of southern pine beetle (Dendroctonus frontalis) (SPB) infestation in Angelina, Nacogdoches, San Augustine and Shelby Co., TX. Thematic data derived from Landsat imagery (1974–2002 Landsat 1–7) were used. Data layers included: forest covertype, forest age, forest patch size...

  6. How to Distinguish Attacks by the Black Turpentine Beetle and Dioryctria Amatella on Southern Pines

    Science.gov (United States)

    Carl W. Fatzinger; Gary L. DeBarr

    1969-01-01

    Trunk attacks by the black turpentine beetle, Dendroctonus terebrans (Oh.), and the larvae of Dioryctria amatella (Hulst) on the southern pines results in a copious flow of pitch. This external pitch mass or pitch tube exhibits characteristics that can be used as symptoms to distinguish between attacks by these two insects.

  7. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Science.gov (United States)

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  8. Influence of mountain pine beetle epidemic on winter habitat conditions for Merriam's turkeys: Management implications for current and future condition

    Science.gov (United States)

    Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin

    2016-01-01

    Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriam’s wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...

  9. Tree regeneration and future stand development after bark beetle infestation and harvesting in Colorado lodgepole pine stands

    Science.gov (United States)

    Byron J. Collins; Charles C. Rhoades; Robert M. Hubbard; Michael A. Battaglia

    2011-01-01

    In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on...

  10. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  11. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  13. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  14. Red Turpentine Beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), Response to Host Semiochemicals in China

    Science.gov (United States)

    Jianghua Sun; Zhengwan Miao; Zhen Zhang; Zhongning Zhan; Nancy Gillette

    2004-01-01

    The response of the introduced red turpentine beetle, Dendroctonus valens LeConte, to host semiochemicals in Shanxi Province, China, was distinctly different from that reported in previous studies conducted in the western part of the native range of D. valens in the central Sierra Nevada, CA. This Þnding suggests either that...

  15. Multipartite Symbioses Among Fungi, Mites, Nematodes, and the Spruce Beetle, Dendroctonus rufipennis.

    Science.gov (United States)

    Yasmin Cardoza; John Moser; Kier Klepzizg; Raffa Kenneth

    2008-01-01

    The spruce beetle, Dendroctonus rufipennis, is an eruptive forest pest of signifcant economic and ecological importance. D. rufipennis has symbiotic associations with a number of microorganisms, especially the ophiostomatoid fungus Leptographium abietinum. The nature of this interaction is only partially understood. Additionally, mite and nematode associates can...

  16. Why Mountain Pine Beetle Exacerbates a Principal-agent Relationship: Exploring Strategic Policy Responses to Beetle Attack in a Mixed Species Forest

    NARCIS (Netherlands)

    Bogle, T.; Kooten, van G.C.

    2012-01-01

    The management of public forestland is often carried out by private forest companies, in which case the landowner needs to exercise care in dealing with catastrophic natural disturbance. We use the mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) damage in British Columbia to explore how

  17. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Science.gov (United States)

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  18. Verbenone Plus reduces levels of tree mortality attributed to mountain pine beetle infestations in whitebark pine, a tree species of concern

    Science.gov (United States)

    Christopher J. Fettig; Beverly M. Bulaon; Christopher P. Dabney; Christopher J. Hayes; Stepehen R. McKelvey

    2012-01-01

    In western North America, recent outbreaks of the mountain pine beetle, Dendroctonus ponderosae Hopkins, have been severe, long-lasting and well-documented. We review previous research that led to the identification of Verbenone Plus, a novel four-component semiochemical blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (–)-verbenone]...

  19. A comparison of outbreak dynamics of the spruce bark beetle in Sweden and the mountain pine beetle in Canada (Curculionidae: Scolytinae)

    OpenAIRE

    Kärvemo, Simon; Schroeder, Leif Martin

    2010-01-01

    The European spruce bark beetle (Ips typographus) and the North American mountain pine beetle (Dendroctonus ponderosae) may kill millions of trees during outbreak periods. Both species have also experienced large outbreaks in recent years. But the magnitude of the outbreaks of D. ponderosae is much larger. In this review we compare the outbreak history of I. typographus in Sweden with D. ponderosae in British Columbia in Canada. We also discuss some possible explanations for the difference in...

  20. Diversity and decay ability of basidiomycetes isolated from lodgepole pines killed by the mountain pine beetle.

    Science.gov (United States)

    Son, E; Kim, J-J; Lim, Y W; Au-Yeung, T T; Yang, C Y H; Breuil, C

    2011-01-01

    When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.

  1. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  2. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona

    Science.gov (United States)

    Kelly K. Williams; Joel D. McMillin; Tom E. DeGomez; Karen M. Clancy; Andy Miller

    2008-01-01

    We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation...

  3. Integrating models to investigate critical phenological overlaps in complex ecological interactions: The mountain pine beetle-fungus symbiosis

    Science.gov (United States)

    Audrey Addison; James A. Powell; Barbara J. Bentz; Diana L. Six

    2015-01-01

    The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of...

  4. Mountain pine beetles and emerging issues in the management of woodland caribou in Westcentral British Columbia

    Directory of Open Access Journals (Sweden)

    Deborah Cichowski

    2005-05-01

    Full Text Available The Tweedsmuir—Entiako caribou (Rangifer tarandus caribou herd summers in mountainous terrain in the North Tweedsmuir Park area and winters mainly in low elevation forests in the Entiako area of Westcentral British Columbia. During winter, caribou select mature lodgepole pine (Pinus contorta forests on poor sites and forage primarily by cratering through snow to obtain terrestrial lichens. These forests are subject to frequent large-scale natural disturbance by fire and forest insects. Fire suppression has been effective in reducing large-scale fires in the Entiako area for the last 40—50 years, resulting in a landscape consisting primarily of older lodgepole pine forests, which are susceptible to mountain pine beetle (Dendroctonus ponderosae attack. In 1994, mountain pine beetles were detected in northern Tweedsmuir Park and adjacent managed forests. To date, mountain pine beetles have attacked several hundred thousand hectares of caribou summer and winter range in the vicinity of Tweedsmuir Park, and Entiako Park and Protected Area. Because an attack of this scale is unprecedented on woodland caribou ranges, there is no information available on the effects of mountain pine beetles on caribou movements, habitat use or terrestrial forage lichen abundance. Implications of the mountain pine beetle epidemic to the Tweedsmuir—Entiako woodland caribou population include effects on terrestrial lichen abundance, effects on caribou movement (reduced snow interception, blowdown, and increased forest harvesting outside protected areas for mountain pine beetle salvage. In 2001 we initiated a study to investigate the effects of mountain pine beetles and forest harvesting on terrestrial caribou forage lichens. Preliminary results suggest that the abundance of Cladina spp. has decreased with a corresponding increase in kinnikinnick (Arctostaphylos uva-ursi and other herbaceous plants. Additional studies are required to determine caribou movement and

  5. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    Science.gov (United States)

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Efficacy of verbenone for protecting ponderosa pine stands from western pine beetle (Coleoptera: Curculionidae: Scolytinae) attack in California.

    Science.gov (United States)

    Fettig, Christopher J; McKelvey, Stephen R; Borys, Robert R; Dabney, Christopher P; Hamud, Shakeeb M; Nelson, Lori J; Seybold, Steven J

    2009-10-01

    The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae: Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Dougl. ex Laws., mortality in much of western North America. Currently, techniques for managing D. brevicomis infestations are limited. Verbenone (4,6,6-trimethylbicyclo [3.1.1] hept-3-en-2-one) is an antiaggregation pheromone of several Dendroctonus spp., including D. brevicomis, and it has been registered as a biopesticide for control of mountain pine beetle, Dendroctonus ponderosae Hopkins, and southern pine beetle, Dendroctonus frontalis Zimmermann. We evaluated the efficacy of a 5-g verbenone pouch [82%-(-); 50 mg/d] applied at 125 Ulha for protecting P. ponderosa stands (2 ha) from D. brevicomis attack over a 3-yr period. No significant differences in levels of D. brevicomis-caused tree mortality or the percentage of unsuccessfully attacked trees were found between verbenone-treated and untreated plots during each year or cumulatively over the 3-yr period. Laboratory analyses of release rates and chemical composition of volatiles emanating from verbenone pouches after field exposure found no deterioration of the active ingredient or physical malfunction of the release device. The mean release rate of pouches from all locations and exposure periods was 44.5 mg/d. In a trapping bioassay, the range of inhibition of the 5-g verbenone pouch was determined to be statistically constant 2 m from the release device. We discuss the implications of these and other results to the development of verbenone as a semiochemical-based tool for management of D. brevicomis infestations in P. ponderosa stands.

  7. Flight periodicity of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae: Scolytinae) in Colorado, U.S.A

    Science.gov (United States)

    Jose F. Negron; Willis C. Schaupp; Lee Pederson

    2011-01-01

    There are about 500 species of bark beetles (Coleoptera: Curculionidae: Scolytinae) in the United States (Wood 1982). A number of them are important disturbance agents in forested ecosystems, occasionally creating large tracts of dead trees. One eruptive species is the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, which utilizes Douglas-fir, Pseudotsuga...

  8. Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its Gut Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Letian Xu

    2016-11-01

    Full Text Available The exposure to plant defense chemicals has negative effects on insect feeding activity and modifies insect gut microbial community composition. Dendroctonus valens is a very destructive forest pest in China, and harbors a large diversity and abundance of gut microorganisms. Host pine defensive chemicals can protect the pines from attack by the holobiont. In this study, boring length of D. valens feeding on 0 mg/g α-pinene and 9 mg/g α-pinene concentration in phloem media for 6 and 48 h were recorded, and their gut bacterial communities were analyzed in parallel. Nine milligram per gram α-pinene concentration significantly inhibited boring length of D. valens and altered its gut microbial community structure after 6 h. The inhibition of boring length from 9 mg/g α-pinene in diets ceased after 48 h. No significant differences of the bacterial communities were observed between the beetles in 0 and 9 mg/g α-pinene concentration in phloem media after 48 h. Our results showed that the inhibition of the feeding behavior of D. valens and the disturbance to its gut bacterial communities in 9 mg/g α-pinene concentration in phloem media after 6 h were eliminated after 48 h. The resilience of gut bacterial community of D. valens may help the beetle catabolize pine defense chemical.

  9. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves.

    Science.gov (United States)

    Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir

    2018-02-01

    Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.

  10. Effects of a Severe Mountain Pine Beetle Epidemic in Western Alberta, Canada under Two Forest Management Scenarios

    Directory of Open Access Journals (Sweden)

    Richard R. Schneider

    2010-01-01

    Full Text Available We used a simulation model to investigate possible effects of a severe mountain pine beetle (Dendroctonus ponderosae Hopkins epidemic under two management scenarios in Alberta, Canada. Our simulated outbreak was based on the current epidemic in British Columbia, which may kill close to 80% of the province's pine volume. Our two management scenarios were conventional harvest and a pine-reduction strategy modeled on a component of Alberta's Mountain Pine Beetle Management Strategy. The pine strategy seeks to reduce the number of susceptible pine stands by 75% over the next 20 years through targeted harvesting by the forest industry. Our simulations showed that the pine strategy could not be effectively implemented, even if the onset of the beetle outbreak was delayed for 20 years. Even though we increased mill capacity by 20% and directed all harvesting to high volume pine stands during the pine strategy's surge cut, the amount of highly susceptible pine was reduced by only 43%. Additional pine volume remained within mixed stands that were not targeted by the pine strategy. When the outbreak occurred in each scenario, sufficient pine remained on the landscape for the beetle to cause the timber supply to collapse. Alternative management approaches and avenues for future research are discussed.

  11. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.

    Science.gov (United States)

    Arbellay, Estelle; Daniels, Lori D; Mansfield, Shawn D; Chang, Alice S

    2017-12-01

    Both mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins and fire leave scars with similar appearance on lodgepole pine Pinus contorta Dougl. ex Loud. var. latifolia Engelm. that have never been compared microscopically, despite the pressing need to determine the respective effects of MPB and fire injury on tree physiology. We analysed changes in wood formation in naturally caused scars on lodgepole pine, and tested the hypotheses that (i) MPB and fire injury elicit distinct anomalies in lodgepole pine wood and (ii) anomalies differ in magnitude and/or duration between MPB and fire. Mountain pine beetle and fire injury reduced radial growth in the first year post-injury. Otherwise, radial growth and wood density increased over more than 10 years in both MPB and fire scars. We found that the general increase in radial growth was of greater magnitude (up to 27%) and of longer duration (up to 5 years) in fire scars compared with MPB scars, as shown in earlywood width. We also observed that the increase in latewood density was of greater magnitude (by 12%) in MPB scars, but of longer duration (by 4 years) in fire scars. Crystallinity decreased following MPB and fire injury, while microfibril angle increased. These changes in fibre traits were of longer duration (up to 4 years) in MPB scars compared with fire scars, as shown in microfibril angle. We found no significant changes in carbon and nitrogen concentrations. In conclusion, we stress that reduced competition and resistance to cavitation play an important role alongside cambial injury in influencing the type and severity of changes. In addition, more research is needed to validate the thresholds introduced in this study. Our findings serve as a foundation for new protocols to distinguish between bark beetle and fire disturbance, which is essential for improving our knowledge of historical bark beetle and fire regimes, and their interactions. © The Author 2017. Published by Oxford University Press. All

  12. Host Defense Mechanisms against Bark Beetle Attack Differ between Ponderosa and Lodgepole Pines

    Directory of Open Access Journals (Sweden)

    Daniel R. West

    2016-10-01

    Full Text Available Conifer defenses against bark beetle attack include, but are not limited to, quantitative and qualitative defenses produced prior to attack. Our objective was to assess host defenses of lodgepole pine and ponderosa pine from ecotone stands. These stands provide a transition of host species for mountain pine beetle (Dendroctonus ponderosae; MPB. We asked two questions: (1 do the preformed quantitative host defenses (amount of resin and (2 the preformed qualitative host defenses (monoterpene constituents differ between lodgepole and ponderosa pines. We collected oleoresins at three locations in the Southern Rocky Mountains from 56 pairs of the pine species of similar size and growing conditions. The amount of preformed-ponderosa pine oleoresins exuded in 24 h (mg was almost four times that of lodgepole pine. Total qualitative preformed monoterpenes did not differ between the two hosts, though we found differences in all but three monoterpenes. No differences were detected in α-pinene, γ-terpinene, and bornyl acetate. We found greater concentrations of limonene, β-phellandrene, and cymene in lodgepole pines, whereas β-pinene, 3-carene, myrcene, and terpinolene were greater in ponderosa pine. Although we found differences both in quantitative and qualitative preformed oleoresin defenses, the ecological relevance of these differences to bark beetle susceptibility have not been fully tested.

  13. Identifying ponderosa pines infested with mountain pine beetles

    Science.gov (United States)

    William F. McCambridge

    1974-01-01

    Trees successfully and unsuccessfully attacked by mountain pine beetles have several symptoms in common, so that proper diagnosis is not always easy. Guidelines presented here enable the observer to correctly distinguish nearly all attacked trees.

  14. Risk Assessment for the Southern Pine Beetle

    Science.gov (United States)

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  15. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    Science.gov (United States)

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Using a GIS-based spot growth model and visual simulator to evaluate the effects of silvicultural treatments on southern pine beetle-infested stands

    Science.gov (United States)

    Chiao-Ying Chou; Roy L. Hedden; Bo Song; Thomas M. Williams

    2013-01-01

    Many models are available for simulating the probability of southern pine beetle (Dendroctonus frontalis Zimmermann) (SPB) infestation and outbreak dynamics. However, only a few models focused on the potential spatial SPB growth. Although the integrated pest management systems are currently adopted, SPB management is still challenging because of...

  17. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB, Dendroctonus valens.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gu

    Full Text Available The red turpentine beetle (RTB, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae, is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing.We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP, six chemosensory proteins (CSP, four sensory neuron membrane proteins (SNMP, 22 odorant receptors (OR, four gustatory receptors (GR, three ionotropic receptors (IR, and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis.The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary

  18. A Review of Dendroctonus frontalis Zimmermann Systematics

    Science.gov (United States)

    Anthony I. Cognato

    2011-01-01

    The systematic history of the southern pine beetle, Dendroctonus frontalis Zimmermann, is reviewed. Morphological, biological, karyological, and molecular data clearly define and diagnose the species limits of D. frontalis. More complete phylogenetic analysis and characterization of population genetic variation will further clarify the evolutionary history of the D....

  19. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona.

    Science.gov (United States)

    Gaylord, M L; Hofstetter, R W; Wagner, M R

    2010-10-01

    Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.

  20. A new species of bark beetle, Dendroctonus mesoamericanus sp nov. (Curculionidae: Scolytinae), in southern Mexico and Central America

    Science.gov (United States)

    Francisco Armendariz-Toledano; Alicia Nino; Brian T. Sullivan; Lawrence R. Kirkendall; Gerado Zunig

    2015-01-01

    The bark beetle Dendroctonus mesoamericanus sp. nov. is described from a population in Parque Nacional Lagunas de Montebello, La Trinitaria, Chiapas, Mexico. This species belongs to the D. frontalis complex, which includes D. adjunctus Blandford 1897, D. approximatus Dietz 1890, D....

  1. The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines.

    Science.gov (United States)

    Gillette, Nancy E; Mehmel, Constance J; Mori, Sylvia R; Webster, Jeffrey N; Wood, David L; Erbilgin, Nadir; Owen, Donald R

    2012-12-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (Dendroctonus ponderosae Hopkins) in two studies. The first was conducted on replicated 4.04-ha plots in lodgepole pine stands (California, 2008) and the second on 0.81-ha plots in whitebark pine stands (Washington, 2010). In both studies, D. ponderosae population levels were moderate to severe. The treatments were 1) push-only (D. ponderosae antiaggregant semiochemicals alone); 2) push-pull (D. ponderosae antiaggregants plus perimeter traps placed at regular intervals, baited with four-component D. ponderosae aggregation pheromone); and 3) untreated controls. We installed monitoring traps baited with two-component D. ponderosae lures inside each plot to assess effect of treatments on beetle flight. In California, fewer beetles were collected in push-pull treated plots than in control plots, but push-only did not have a significant effect on trap catch. Both treatments significantly reduced the rate of mass and strip attacks by D. ponderosae, but the difference in attack rates between push-pull and push-only was not significant. In Washington, both push-pull and push-only treatments significantly reduced numbers of beetles caught in traps. Differences between attack rates in treated and control plots in Washington were not significant, but the push-only treatment reduced attack rates by 30% compared with both the control and push-pull treatment. We conclude that, at these spatial scales and beetle densities, push-only may be preferable for mitigating D. ponderosae attack because it is much less expensive, simpler, and adding trap-out does not appear to improve efficacy.

  2. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  3. A Comment on “Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?”

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-04-01

    Full Text Available There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests, or a combination of these treatments. Indirect control is preventive, and designed to reduce the probability and severity of future infestations within treated areas by manipulating stand, forest and/or landscape conditions by reducing the number of susceptible host trees through thinning, prescribed burning, and/or alterations of age classes and species composition. We emphasize that “outbreak suppression” is not the intent or objective of management strategies implemented for mountain pine beetle in the western United States, and that the use of clear, descriptive language is important when assessing the merits of various treatment strategies.

  4. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  5. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  6. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Science.gov (United States)

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  7. Economic Impacts of the Southern Pine Beetle

    Science.gov (United States)

    John M. Pye; Thomas P. Holmes; Jeffrey P. Prestemon; David N. Wear

    2011-01-01

    This paper provides an overview of the timber economic impacts of the southern pine beetle (SPB). Although we anticipate that SPB outbreaks cause substantial economic losses to households that consume the nonmarket economic services provided by healthy forests, we have narrowly focused our attention here on changes in values to timber growers and wood-products...

  8. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  9. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  10. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Science.gov (United States)

    E. Matthew. Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  11. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  12. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    Science.gov (United States)

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus.

  13. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process.

    Science.gov (United States)

    Pan, Xuejun; Xie, Dan; Yu, Richard W; Saddler, Jack N

    2008-09-01

    Lodgepole pine (Pinus contorta) killed by mountain pine beetle (Dendroctonus ponderosae) (BLP) was compared with healthy lodgepole pine (HLP) for bioconversion to ethanol and high-value co-products. The BLP and HLP chips were pretreated using an ethanol organosolv process at a variety of severities. It was shown that the BLP was easier to pretreat and delignify than were the HLP chips. The resulting pretreated BLP substrate had a lower residual lignin, lower degree of polymerization of cellulose, lower cellulose crystallinity, smaller fiber size and thereby a better enzymatic hydrolysability than did the HLP substrates. However, under the same conditions, the BLP showed lower substrate yield and cellulose recovery than did the HLP, which likely resulted from the excessive hydrolysis and subsequent decomposition of the cellulose and hemicellulose during the pretreatment. The BLP wood yielded more ethanol organosolv lignin than was obtained with the HLP material. The HLP lignin had a lower molecular weight and narrower distribution than did the BLP lignin. It appears that the beetle killed LP is more receptive to organosolv pretreatment other than a slightly lower recovery of carbohydrates.

  14. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Science.gov (United States)

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  15. Survey of foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    Directory of Open Access Journals (Sweden)

    Spencer eTaft

    2015-05-01

    Full Text Available The secondary compounds of pines (Pinus can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana has a wide natural distribution range in North America (Canada and USA and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae, which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine’s distribution, (‒:(+-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine’s range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  16. Mapping pine mortality by aerial photography, Umstead State Park, North Carolina

    Science.gov (United States)

    Clarence J. DeMars; Garey W. Slaughter; Lnla E. Greene; John H. Ghent

    1982-01-01

    In 1975-1976, pine trees killed by the southern pine beetle Dendroctonus frontalis Zimm.) in a 2l70-hectare (5362-acre) area at the William B. Umstead State Park in central North Carolina, were monitored by sequential color infrared aerial photography. From 1973 through summer 1975, beetles in 350 infestation spots killed more than 20,500 pines on...

  17. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Science.gov (United States)

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  18. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  19. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  20. Evaluation of Compatibility between Beetle-Killed Lodgepole Pine (Pinus Contorta var. Latifolia) Wood with Portland Cement.

    Science.gov (United States)

    Pasca, Sorin A; Hartley, Ian D; Reid, Matthew E; Thring, Ronald W

    2010-12-17

    The compatibility of wood from mountain pine beetle (Dendroctonus ponderosa) killed lodgepole pine (Pinus contorta var. latifolia) with Portland cement was investigated based on time-since-death as a quantitative estimator, and the presence of blue-stained sapwood, brown rot, or white rot as qualitative indicators. The exothermic behavior of cement hydration, maximum heat rate, time to reach this maximum, and total heat released within a 3.5-24 h interval were used for defining a new wood-cement compatibility index (CX). CX was developed and accounted for large discrepancies in assessing wood-cement compatibility compared to the previous methods. Using CX, no significant differences were found between fresh or beetle-killed wood with respect to the suitability for cement; except for the white rot samples which reached or exceeded the levels of incompatibility. An outstanding physicochemical behavior was also found for blue-stained sapwood and cement, producing significantly higher compatibility indices.

  1. Evaluation of Compatibility between Beetle-Killed Lodgepole Pine (Pinus Contorta var. Latifolia Wood with Portland Cement

    Directory of Open Access Journals (Sweden)

    Ian D. Hartley

    2010-12-01

    Full Text Available The compatibility of wood from mountain pine beetle (Dendroctonus ponderosa killed lodgepole pine (Pinus contorta var. latifolia with Portland cement was investigated based on time-since-death as a quantitative estimator, and the presence of blue-stained sapwood, brown rot, or white rot as qualitative indicators. The exothermic behavior of cement hydration, maximum heat rate, time to reach this maximum, and total heat released within a 3.5–24 h interval were used for defining a new wood-cement compatibility index (CX. CX was developed and accounted for large discrepancies in assessing wood-cement compatibility compared to the previous methods. Using CX, no significant differences were found between fresh or beetle-killed wood with respect to the suitability for cement; except for the white rot samples which reached or exceeded the levels of incompatibility. An outstanding physicochemical behavior was also found for blue-stained sapwood and cement, producing significantly higher compatibility indices.

  2. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    Directory of Open Access Journals (Sweden)

    Hartwig Peemoeller

    2010-12-01

    Full Text Available In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  4. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    OpenAIRE

    Todoruk, Tara M.; Hartley, Ian D.; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-01-01

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as wel...

  5. Trapping Douglas-fir beetle (Dendroctonus pseudotsugae) with pheromone baited multiple-funnel traps does not reduce Douglas-fir (Pseudotsuga menziesii) mortality

    Science.gov (United States)

    R.A. Progar; N. Sturdevant; M.J. Rinella

    2010-01-01

    Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) (DFB) causes considerable mortality to Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in western North American forests. We evaluated the use of semiochemical-baited multiple-funnel traps for the protection of small, high-value stands of trees, such as those occurring...

  6. A Synopsis of the Taxonomic Revisions in the Genus Ceratocystis Including a Review of Blue-Staining Species Associated with Dendroctonus Bark Beetles

    Science.gov (United States)

    Thelma J. Perry

    1991-01-01

    Taxonomic revisions in both the teleomorphic (sexual) and anamorphic (asexual) forms of the genus Ceratocystis Ellis & Halstead are chronicled in this review. Recognized species associated with Dendroctonus Erichson bark beetles are summarized, and several species that have been published as recombinations, species that were...

  7. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    Science.gov (United States)

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  8. Monitoring white pine blister rust infection and mortality in whitebark pine in the Greater Yellowstone ecosystem

    Science.gov (United States)

    Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz

    2011-01-01

    There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...

  9. Selection for resistance to white pine blister rust affects the abiotic stress tolerances of limber pine

    Science.gov (United States)

    Patrick J. Vogan; Anna W. Schoettle

    2015-01-01

    Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...

  10. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    Science.gov (United States)

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  11. Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-01-01

    Full Text Available Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77–144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD and late-seral stage (high structural diversity; HiD. Following harvesting, half of each plot was treated with prescribed fire (B. A total of 16,473 trees (8.7% of all trees died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae (10,655 trees, specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say, and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19–29.2 and 29.3–39.3 cm at 1.37 m in height. Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7% than LoD (4.2%. The application of these and other results to the   management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees.

  12. Re-measurement of whitebark pine infection and mortality in the Canadian Rockies

    Science.gov (United States)

    Cyndi M. Smith; Brenda Shepherd; Cameron Gillies; Jon Stuart-Smith

    2011-01-01

    Whitebark pine (Pinus albicaulis) populations are under threat across the species' range from white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), fire exclusion and climate change (Tomback and Achuff 2010). Loss of whitebark pine is predicted to have cascading effects on the following ecological services: provision of...

  13. Phylogeographic analysis of the Douglas-fir beetle Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Enrico A. Ruíz; Jane L. Hayes; John E. Rinehart; G. Zúñiga

    2007-01-01

    Population genetic structure studies made in genus Dendroctonus have been conducted from the perspectives of allopatric and sympatric models. In the first case, host effect and historical contingency were not recognized as a source of variation, while the later considered the host itself as a source of reproductive isolation. Nevertheless, both...

  14. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Science.gov (United States)

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  15. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  16. The push–pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines

    Science.gov (United States)

    Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen

    2012-01-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...

  17. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Science.gov (United States)

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  18. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  19. Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood

    Science.gov (United States)

    Sung Phil Mun; Zhiyong Cai; Jilei Zhang

    2015-01-01

    The mountain pine beetle-killed lodgepole pine (Pinus contorta) wood treated with iron (III) nitrate solution was used for the preparation of Fe-cored carbon nanomaterials (Fe-CNs) under various carbonization temperatures. The carbonization yield of Fe-treated sample (5% as Fe) was always 1–3% higher (after ash compensation) than that of the non-...

  20. Mountain pine beetle-killed trees as snags in Black Hills ponderosa pine stands

    Science.gov (United States)

    J. M. Schmid; S. A. Mata; W. C. Schaupp

    2009-01-01

    Mountain pine beetle-killed ponderosa pine trees in three stands of different stocking levels near Bear Mountain in the Black Hills National Forest were surveyed over a 5-year period to determine how long they persisted as unbroken snags. Rate of breakage varied during the first 5 years after MPB infestation: only one tree broke during the first 2 years in the three...

  1. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.

    Science.gov (United States)

    Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A

    2008-08-01

    Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.

  2. Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China.  Journal of Chemical Ecology 33: 131-146.

    Science.gov (United States)

    N. Erbilgin; S.R. Mori; J.H. Sun; J.D. Stein; D.R. Owen; L.D. Merrill; R. Campos Bolande; os; K.F. Raffa; T. Mendez Montiel; D.L. Wood; N.E.  Gillette

    2007-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) have specialized feeding habits, and commonly colonize only one or a few closely related host genera in their geographical ranges. The red turpentine beetle, Dendroctonus valens LeConte, has a broad geographic distribution in North America and exploits volatile cues from a wide variety of pines...

  3. Impact of a Mountain Pine Beetle Outbreak on Young Lodgepole Pine Stands in Central British Columbia

    OpenAIRE

    Dhar, Amalesh; Balliet, Nicole; Runzer, Kyle; Hawkins, Christopher

    2015-01-01

    The current mountain pine beetle (MPB) (Dendroctonous ponderosae Hopkins) epidemic has severely affected pine forests of Western Canada and killed millions of hectares of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest. Generally, MPB attack larger and older (diameter > 20 cm or >60 years of age) trees, but the current epidemic extends this limit with attacks on even younger and smaller trees. The study’s aim was to investigate the extent of MPB attack in y...

  4. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

    Directory of Open Access Journals (Sweden)

    Jeanne A. Robert

    2016-07-01

    Full Text Available Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.

  5. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.

    Science.gov (United States)

    Keefover-Ring, Ken; Trowbridge, Amy; Mason, Charles J; Raffa, Kenneth F

    2016-01-01

    Ponderosa pine (Pinus ponderosa) is a major and widely distributed component of conifer biomes in western North America and provides substantial ecological and economic benefits. This tree is exposed to several tree-killing bark beetle-microbial complexes, including the mountain pine beetle (Dendroctonus ponderosae) and the phytopathogenic fungus Grosmannia clavigera that it vectors, which are among the most important. Induced responses play a crucial role in conifer defenses, yet these have not been reported in ponderosa pine. We compared concentrations of terpenes and a phenylpropanoid, two phytochemical classes with strong effects against bark beetles and their symbionts, in constitutive phloem tissue and in tissue following mechanical wounding or simulated D. ponderosae attack (mechanical wounding plus inoculation with G. clavigera). We also tested whether potential induced responses were localized or systemic. Ponderosa pines showed pronounced induced defenses to inoculation, increasing their total phloem concentrations of monoterpenes 22.3-fold, sesquiterpenes 56.7-fold, and diterpenes 34.8-fold within 17 days. In contrast, responses to mechanical wounding alone were only 5.2, 11.3, and 7.7-fold, respectively. Likewise, the phenylpropanoid estragole (4-allyanisole) rose to 19.1-fold constitutive levels after simulated attack but only 4.4-fold after mechanical wounding. Overall, we found no evidence of systemic induction after 17 days, which spans most of this herbivore's narrow peak attack period, as significant quantitative and compositional changes within and between terpenoid groups were localized to the wound site. Implications to the less frequent exploitation of ponderosa than lodgepole pine by D. ponderosae, and potential advantages of rapid localized over long-term systemic responses in this system, are discussed.

  6. Efficacy of "Verbenone Plus" for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California.

    Science.gov (United States)

    Fettig, Christopher J; McKelvey, Stephen R; Dabney, Christopher P; Huber, Dezene P W; Lait, Cameron G; Fowler, Donald L; Borden, John H

    2012-10-01

    The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae, Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Douglas ex Lawson, mortality in much of western North America. We review several years of research that led to the identification of Verbenone Plus, a novel four-component semiochemcial blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (-)-verbenone] that inhibits the response of D. brevicomis to attractant-baited traps, and examine the efficacy of Verbenone Plus for protecting individual trees and forest stands from D. brevicomis infestations in British Columbia and California. In all experiments, semiochemicals were stapled around the bole of treated trees at approximately equal to 2 m in height. (-)-Verbenone alone had no effect on the density of total attacks and successful attacks by D. brevicomis on attractant-baited P. ponderosa, but significantly increased the percentage of pitchouts (unsuccessful D. brevicomis attacks). Verbenone Plus significantly reduced the density of D. brevicomis total attacks and D. brevicomis successful attacks on individual trees. A significantly higher percentage of pitchouts occurred on Verbenone Plus-treated trees. The application of Verbenone Plus to attractant-baited P. ponderosa significantly reduced levels of tree mortality. In stand protection studies, Verbenone Plus significantly reduced the percentage of trees mass attacked by D. brevicomis in one study, but in a second study no significant treatment effect was observed. Future research should concentrate on determining optimal release rates and spacings of release devices in stand protection studies, and expansion of Verbenone Plus into other systems where verbenone alone has not provided adequate levels of tree protection.

  7. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  8. Xylem monoterpenes of pines: distribution, variation, genetics, function

    Science.gov (United States)

    Richard Smith

    2000-01-01

    The monoterpenes of about 16,000 xylem resin samples of pine (Pinus) speciesand hybrids—largely from the western United States—were analyzed in this long-term study of the resistance of pines to attack by bark beetles (Coleoptera:Scolytidae), with special emphasis on resistance to the western pine beetle(Dendroctonus brevicomis). The samples were analyzed by gas liquid...

  9. Threats to North American Forests from Southern Pine Beetle with Warming Winters

    Science.gov (United States)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley M.

    2016-01-01

    In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption oflocal ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.

  10. Social and Political Impact of the Southern Pine Beetle

    Science.gov (United States)

    Robert N. Coulson; James R. Meeker

    2011-01-01

    Impact is defined broadly to mean any effect on the forest environment resulting from the activities of the southern pine beetle (SPB). In this chapter we focus on social and political impact. Social impact deals with effects of the SPB on aesthetic, moral, and metaphysical values associated with forests. Two aspects of social impact are investigated: how the SPB...

  11. Effects of Grosmannia clavigera and Leptographium longiclavatum on Western White Pine seedlings and the fungicidal activity of Alamo®, Arbotect®, and TREE-age®

    Science.gov (United States)

    Stephen A. Wyka; Joseph J. Doccola; Brian L. Strom; Sheri L. Smith; Douglas W. McPherson; Srdan G. Acimovic; Kier D. Klepzig

    2016-01-01

    Bark beetles carry a number of associated organisms that are transferred to the host tree upon attack that are thought to play a role in tree decline. To assess the pathogenicity to western white pine (WWP; Pinus monticola) of fungi carried by the mountain pine beetle (MPB; Dendroctonus ponderosae), and to evaluate the...

  12. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  13. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  14. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    Science.gov (United States)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  15. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Science.gov (United States)

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  16. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Science.gov (United States)

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  17. ¹H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle.

    Science.gov (United States)

    Todoruk, Tara M; Hartley, Ian D; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-12-31

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  18. Visual and olfactory disruption of orientation by the western pine beetle to attractant-baited traps

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; P.J. Shea

    2001-01-01

    Olfactory deterrents have been proposed as tree protectants against attack by bark beetles, but their development has been hindered by a lack of knowledge of host selection behavior. Among the primary tree-killing (aggressive) Dendroctonus, vision appears to be an integral part of the host selection process. We evaluated the importance of vision in...

  19. Mapping Mountain Pine Beetle Mortality through Growth Trend Analysis of Time-Series Landsat Data

    Directory of Open Access Journals (Sweden)

    Lu Liang

    2014-06-01

    Full Text Available Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.

  20. Remedial treatment of lodgepole pine infested with mountain pine beetle: efficacy of three insecticides

    Science.gov (United States)

    Paul E. Tilden

    1985-01-01

    Lindane is registered for remedial control of bark beetles; however, forestry uses are controversial and alternative chemicals are needed. Chlorpyrifos (Dursban 4E), carbaryl (Sevimol 4), and fenitrothion (Sumithion 8E) at 1, 2, and 4 pct active ingredient, and lindane at the registered dosage of 0.6 pct were sprayed on lodgepole pine (Pinus contorta...

  1. The role of multimodal signals in species recognition between tree-killing bark beetles in a narrow sympatric zone.

    Science.gov (United States)

    Deepa S. Pureswaran; Richard W. Hofstetter; Brian Sullivan; Kristen A. Potter

    2016-01-01

    When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...

  2. Fire injury reduces inducible defenses of lodgepole pine against Mountain pine beetle.

    Science.gov (United States)

    Powell, Erinn N; Raffa, Kenneth F

    2011-11-01

    We examined the effect of wildfire injury on lodgepole pine chemical defenses against mountain pine beetle. We compared the constitutive phloem chemistry among uninjured, lightly-, moderately-, and severely-injured trees, and the induced chemistry elicited by simulated beetle attack, among these same categories. We also compared the entry rates of caged female beetles into trees of these categories. The volatiles we studied included thirteen monoterpene hydrocarbons, four allylic monoterpene alcohols, one ester, and one phenyl propanoid, of which the monoterpene hydrocarbons always comprised 96% or more of the total. Fire injury reduced the total concentration of these compounds in the induced but not constitutive phloem tissue of lodgepole pines. Fire injury also affected the relative composition of some volatiles in both induced and constitutive phloem. For example, increased fire injury reduced 4-allylanisole, a host compound that inhibits mountain pine beetle aggregation. Increased fire injury also increased (-) α-pinene, which can serve as precursor of pheromone communication. However, it also reduced myrcene and terpinolene, which can serve as stimulants and synergists of pheromone communication. Beetle entry did not show statistical differences among fire injury categories, although there was a trend to increased entry with fire injury. These results suggest that the reduced ability of trees to mobilize induced chemical defenses is an important mechanism behind the higher incidence of attack on fire-injured trees in the field. Future studies should concentrate on whether beetles that enter fire-injured trees are more likely to elicit aggregation, based on the differences we observed in volatile composition.

  3. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Science.gov (United States)

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  4. Contrasting geographic patterns of genetic differentiation in body size and development time with reproductive isolation in Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz

    2013-01-01

    Body size and development time are two critical phenotypic traits that can be highly adaptive in insects. Recent population genetic analyses and crossing experiments with the mountain pine beetle (Dendroctonus ponderosae Hopkins) have described substantial levels of neutral molecular genetic differentiation, genetic differences in phenotypic traits, and reproductive...

  5. Verbenone interrupts attraction to host volatiles and reduces attack on Pinus tabuliformis (Pinaceae) by Dendroctonus valens (Coleoptera: Scolytidae) in the People's Republic of China

    Science.gov (United States)

    Jianghua Sun; Nancy Gillette; Zhengwan Miao; Zhongning Zhang Le Kang; Donald R. Owen; John D Stein

    2003-01-01

    The introduced red turpentine beetle, Dendroctonus valens LeConte, is one of the most economically important forest pests in the People's Republic of China, having killed more than 6 million pines in recent years. There is an urgent need to develop effective behavioral chemicals to monitor and control D. valens in the People...

  6. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    E Reed, David; Ewers, Brent E; Pendall, Elise

    2014-01-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO 2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO 2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H 2 O m −2 s −1 . Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO 2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO 2 exchange. These results agree with an emerging consensus in the literature demonstrating CO 2 and H 2 O dynamics

  7. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Science.gov (United States)

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  8. A trial of direct control of pine engraver beetles on a small logging unit

    Science.gov (United States)

    W. L. Jackson

    1960-01-01

    Laboratory tests and small-scale field trials have shown the insecticide lindane to be highly toxic to pine engraver beetles. On the basis of that information, the insecticide was applied to fresh logging slash heavily infested with pine engraver beetles at Challenge Experimental Forest in 1959. Costs were reasonable and no insurmountable problems were encountered....

  9. Effects of available water on growth and competition of southern pine beetle associated fungi

    Science.gov (United States)

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  10. Spatial displacement of release point can enhance activity of an attractant pheromone synergist of a bark beetle.

    Science.gov (United States)

    Brian Sullivan; Kenji Mori

    2009-01-01

    Flight responses of the southern pine beetle, Dendroctonus frontalis Zimmermann, to widely-spaced (>130 m) traps baited with pine volatiles (in turpentine) and the female-produced pheromone component frontalin were enhanced when a bait containing the male pheromone component (+)-endo-brevicomin was attached...

  11. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate

    Science.gov (United States)

    Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron

    2016-01-01

    The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...

  12. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  13. Limonene: attractant kairomone for white pine cone beetles (Coleoptera: Scolytidae) in an Eastern white pine seed orchard in Western North Carolina

    Science.gov (United States)

    Daniel R. Miller

    2007-01-01

    I report on the attraction of the white pine cone beetle, Canophthorus coniperda (Schwarz) (Coleoptera: Scolytidae), to traps baited with the host monoterpene limonene in western North Carolina. Both (+)- and (-)-limonene attracted male and female cone beetles to Japenese beetle traps in an eastern white pine, Pinus strobus L. seed...

  14. An economic assessment of mountain pine beetle timber salvage in the west

    Science.gov (United States)

    Jeffrey P. Prestemon; Karen L. Abt; Kevin M. Potter; Frank H. Koch

    2013-01-01

    The mountain pine beetle has killed lodgepole pine and other species of pines in the western United States in an ongoing epidemic. The most heavily affected states are in the interior West: Colorado, Idaho, Montana, and Wyoming, with smaller losses elsewhere. Timber salvage is one response to the epidemic, which could generate revenues for affected landowners and...

  15. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  16. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  17. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  18. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Science.gov (United States)

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  19. Impact of pine needle leachates from a mountain pine beetle infested watershed on groundwater geochemistry

    Science.gov (United States)

    Pryhoda, M.; Sitchler, A.; Dickenson, E.

    2013-12-01

    The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.

  20. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles.

    Science.gov (United States)

    Raffa, Kenneth F; Mason, Charles J; Bonello, Pierluigi; Cook, Stephen; Erbilgin, Nadir; Keefover-Ring, Ken; Klutsch, Jennifer G; Villari, Caterina; Townsend, Philip A

    2017-09-01

    Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species. © 2017 John Wiley & Sons Ltd.

  1. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  2. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Science.gov (United States)

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  3. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA

    Science.gov (United States)

    Jose F. Negron; Joel D. McMillin; John A. Anhold; Dave Coulson

    2009-01-01

    Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine...

  4. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    Science.gov (United States)

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  5. Field and Laboratory Evaluations of Insecticides for Southern Pine Beetle Control

    Science.gov (United States)

    Felton L. Hastings; Jack E. Coster; [Editors

    1981-01-01

    Reports results of laboratory screenings and field studies of insecticides for use against the southern pine beetle. Preventive as webas remedial efficacywere observed, along with phytotoxicity to pine and understory hardwood species, effects of insecticides on soil microbial and mesofaunal populations, and degradation of insecticides by selected soil microbes.

  6. Development of an improved attractive lure for the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae)

    Science.gov (United States)

    Therese M. Poland; Peter de Groot; Stephen Burke; David Wakarchuk; Robert A. Haack; Reginald Nott; Taylor Scarr

    2003-01-01

    1) The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2) Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to...

  7. Evaluation of insecticides for protecting southwestern ponderosa pines from attack by engraver beetles (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Tom E. DeGomez; Christopher J. Hayes; John A. Anhold; Joel D. McMillin; Karen M. Clancy; Paul P. Bosu

    2006-01-01

    Insecticides that might protect pine trees from attack by engraver beetles (Ips spp.) have not been rigorously tested in the southwestern United States. We conducted two field experiments to evaluate the efficacy of several currently and potentially labeled preventative insecticides for protecting high-value ponderosa pine, Pinus ponderosa...

  8. Pest Fact Sheet 2007: Southern Pine Beetle prevention initiative: Working for healthier forests

    Science.gov (United States)

    R-8 and Southern Research Station U.S. Department of Agriculture Forest Service Forest Health Protection

    2007-01-01

    From 1999 to 2003, southern pine beetle (SPB) caused unprecedented damage to pine forests in southern Appalachian mountains. These losses severely impacted the natural resource base that supports the South's tourism and wood-based manufacturing industries and also destroyed the habitat of threatened and endangered species, such as the red-cockaded woodpecker....

  9. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    Science.gov (United States)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  10. Impact of a Mountain Pine Beetle Outbreak on Young Lodgepole Pine Stands in Central British Columbia

    Directory of Open Access Journals (Sweden)

    Amalesh Dhar

    2015-09-01

    Full Text Available The current mountain pine beetle (MPB (Dendroctonous ponderosae Hopkins epidemic has severely affected pine forests of Western Canada and killed millions of hectares of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. forest. Generally, MPB attack larger and older (diameter > 20 cm or >60 years of age trees, but the current epidemic extends this limit with attacks on even younger and smaller trees. The study’s aim was to investigate the extent of MPB attack in young pine stands and its possible impact on stand dynamics. Although MPB attacks were observed in trees as small as 7.5 cm diameter at breast height (DBH and as young as 13 years old, the degree of MPB attack (percent stems ha−1 increased with increasing tree diameter and age class (13–20, 21–40, 41–60, and 61–80 years old (6.4%, 49.4%, 62.6%, and 69.5% attack, respectively, by age class which is greater than that reported from previous epidemics for stands of this age. The mean density of surviving residual structure varied widely among age classes and ecological subzones. Depending on age class, 65% to 77% of the attacked stands could contribute to mid-term timber supply. The surviving residual structure of young stands offers an opportunity to mitigate the effects of MPB-attack on future timber supply, increase age class diversity, and enhance ecological resilience in younger stands.

  11. Douglas-Fir Tussock Moth- and Douglas-Fir Beetle-Caused Mortality in a Ponderosa Pine/Douglas-Fir Forest in the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    José F. Negrón

    2014-12-01

    Full Text Available An outbreak of the Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough, occurred in the South Platte River drainage on the Pike-San Isabel National Forest in the Colorado Front Range attacking Douglas-fir, Pseudotsuga menziesii (Mirb. Franco. Stocking levels, species composition, and tree size in heavily and lightly defoliated stands were similar. Douglas-fir tussock moth defoliation resulted in significant Douglas-fir mortality in the heavily defoliated stands, leading to a change in dominance to ponderosa pine, Pinus ponderosa Lawson. Douglas-fir beetle, Dendroctonus pseudotsuqae Hopkins, populations increased following the defoliation event but caused less mortality, and did not differ between heavily and lightly defoliated stands. Douglas-fir tussock moth-related mortality was greatest in trees less than 15 cm dbh (diameter at 1.4 m above the ground that grew in suppressed and intermediate canopy positions. Douglas-fir beetle-related mortality was greatest in trees larger than 15 cm dbh that grew in the dominant and co-dominant crown positions. Although both insects utilize Douglas-fir as its primary host, stand response to infestation is different. The extensive outbreak of the Douglas-fir tussock moth followed by Douglas-fir beetle activity may be associated with a legacy of increased host type growing in overstocked conditions as a result of fire exclusion.

  12. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Science.gov (United States)

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  13. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Science.gov (United States)

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  14. Drought stress leads to systemic induced susceptibility to a nectrotrophic fungus associated with mountain pine beetle in Pinus banksiana seedlings.

    Science.gov (United States)

    Klutsch, Jennifer G; Shamoun, Simon Francis; Erbilgin, Nadir

    2017-01-01

    Conifers have complex defense responses to initial attacks by insects and pathogens that can have cascading effects on success of subsequent colonizers. However, drought can affect a plant's ability to respond to biotic agents by potentially altering the resources needed for the energetically costly production of induced defense chemicals. We investigated the impact of reduced water on induced chemical defenses of jack pine (Pinus banksiana) seedlings from initial attack by biotic agents and resistance to subsequent challenge inoculation with a pathogenic fungal associate of mountain pine beetle (Dendroctonus ponderosae), Grosmannia clavigera. Applications of phytohormones (methyl salicylate and methyl jasmonate) and G. clavigera were used for initial induction of defenses. Monoterpene concentrations varied with initial induction from fungal and phytohormone application while watering treatment had no effect. Seedlings treated with G. clavigera and methyl jasmonate had the greatest monoterpene concentrations compared to the control and methyl salicylate-treated seedlings. However, the monoterpene response to the challenge inoculation varied with watering treatments, not with prior induction treatments, with lower monoterpene concentrations in fungal lesions on seedlings in the low to moderate watering treatments compared to normal watering treatment. Furthermore, prior induction from phytohormones resulted in systemic cross-induction of resistance to G. clavigera under normal watering treatment but susceptibility under low watering treatment. Seedlings stressed by low water conditions, which also had lower stomatal conductance than seedlings in the normal watering treatment, likely allocated resources to initial defense response but were left unable to acquire further resources for subsequent responses. Our results demonstrate that drought can affect interactions among tree-infesting organisms through systemic cross-induction of susceptibility.

  15. Impact of the Mountain Pine Beetle on the Forest Carbon Cycle in British Columbia from 1999 TO 2008 (Invited)

    Science.gov (United States)

    Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.

    2013-12-01

    The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.

  16. Verbenone: Dose-Dependent Interruption of Pheromone-Based Attraction of Three Sympatric Species of Pine Bark Beetles (Coleoptera: Scolytidae)

    Science.gov (United States)

    Daniel R. Miller; John H. Borden; B. Staffan Lindgren

    1995-01-01

    Verbenone significantly reduced catches of Ips latidens (LeConte), I. pini (Say), and Dendroctonus ponderosae Hopkins in multiple-funnel traps, baited with aggregation pheromones, in stands of lodgepole pine in southern British Columbia. Interruption of attraction was dose dependent for all three species. There...

  17. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  18. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages.

    Science.gov (United States)

    Briones-Roblero, Carlos Iván; Hernández-García, Juan Alfredo; Gonzalez-Escobedo, Roman; Soto-Robles, L Viridiana; Rivera-Orduña, Flor N; Zúñiga, Gerardo

    2017-01-01

    Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect's life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.

  19. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae across their life stages.

    Directory of Open Access Journals (Sweden)

    Carlos Iván Briones-Roblero

    Full Text Available Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect's life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.

  20. Effects of a Commercial Chitosan Formulation on Bark Beetle (Coleoptera: Curculionidae) Resistance Parameters in Loblolly Pine

    Science.gov (United States)

    K. D. Klepzig; B. L. Strom

    2011-01-01

    A commercially available chitosan product, Beyond™, was evaluated for its effects on loblolly pine, Pinus taeda L., responses believed related to bark beetle resistance. Treatments were applied 4 times at approx. 6-wk intervals between May and November 2008. Five treatments were evaluated: ground application (soil drench), foliar application, ground...

  1. Mitochondrial phylogeny of pine cone beetles (Scolytinae, Conophthorus) and their affiliation with geographic area and host

    Science.gov (United States)

    Anthony I. Cognato; Nancy E. Gillette; Rodolfo Campos Bolanos; Felix A.H. Sperling

    2005-01-01

    Pine cone beetles (Conophthorus spp.) feed and kill immature cones of Pinus species, thereby reducing seed production and seriously impairing reforestation of forest ecosystems. Population variation of Conophthorus reproductive behavior has hampered the development of semiochemical control of these pests. This diYculty is...

  2. Advances in the control and management of the southern pine bark beetles

    Science.gov (United States)

    T. Evan Nebeker

    2004-01-01

    Management of members of the southern pine bark beetle guild, which consists of five species, is a continually evolving process. A number of management strategies and tactics have remained fairly constant over time as new ones are being added. These basic practices include doing nothing, direct control, and indirect control. This chapter focuses primarily on the latter...

  3. Effects of bark beetle pheromones on the attraction of Monochamus alternatus to pine volatiles

    Science.gov (United States)

    Jian-Ting Fan; Daniel Miller; Long-Wa Zhang; Jiang-Hua Sun

    2010-01-01

    We evaluated the attraction of Monochamus alternatus Hope (Coleoptera: Cerambycidae), Dryocoetes luteus Blandford and Orthotomicus erosusWollaston (Coleoptera: Curculionidae: Scolytinae) to multiple-funnel traps baited with the pine volatiles, ethanol and (+)-α-pinene and the bark beetle pheromones, ipsenol and ipsdienol. M. alternatus were attracted to traps baited...

  4. Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect

    Science.gov (United States)

    James A. Powell; Barbara J. Bentz

    2009-01-01

    It is expected that a significant impact of global warming will be disruption of phenology as environmental cues become disassociated from their selective impacts. However there are few, if any, models directly connecting phenology with population growth rates. In this paper we discuss connecting a distributional model describing mountain pine beetle phenology with a...

  5. Long-distance dispersal of non-native pine bark beetles from host resources

    Science.gov (United States)

    Kevin Chase; Dave Kelly; Andrew M. Liebhold; Martin K.-F. Bader; Eckehard G. Brockerhoff

    2017-01-01

    Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. The aim of the present study was to determine the long distance dispersal capabilities of two non-native pine bark beetles (Hylurgus...

  6. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado

    Science.gov (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.

    2016-12-01

    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  7. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    Science.gov (United States)

    Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan

    2013-01-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  8. Book review of advances in insect physiology: pine bark beetles

    Science.gov (United States)

    If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...

  9. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  10. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  11. Leptographium tereforme, sp. nov. and other Ophiostomatales isolated from the redhaired pine bark beetle, Hylurgus ligniperda, in California

    Science.gov (United States)

    S. Kim; T.C. Harrington; J. C. Lee; S. J. Seybold

    2011-01-01

    The redhaired pine bark beetle Hylurgus ligniperda (F.) is native to Europe but was discovered in Los Angeles, California, in 2003. This root- and stump-feeding beetle is a common vector of Ophiostomatales, which are potential tree pathogens or causes of blue stain of conifer sapwood. In this study Ophiostomatales were isolated on a...

  12. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon

    Science.gov (United States)

    Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes

    2012-01-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...

  13. Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence

    Science.gov (United States)

    Assal, Timothy J.; Sibold, Jason; Reich, Robin M.

    2014-01-01

    Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the

  14. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  15. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    OpenAIRE

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate tempo...

  16. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    Science.gov (United States)

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  17. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    Science.gov (United States)

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  18. Responses of Ips pini (Say), Pityogenes knechteli Swaine and Associated Beetles (Coleoptera) to Host Monoterpenes in Stands of Lodgepole Pine

    Science.gov (United States)

    Daniel R. Miller; John H. Borden

    2003-01-01

    We conducted seven experiments in stands of mature lodgepole pine in southern British Columbia to elucidate the role of host volatiles in the semiochemical ecology of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), with particular reference to the behavioral responses of predators and competing species of bark beetles. Our results demonstrated that the...

  19. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...

  20. Conducting a Southern Pine Beetle Survey Using Digital Aerial Sketchmapping (DASM) - An Overview

    Science.gov (United States)

    Chris A. Steiner

    2011-01-01

    This is an overview on conducting a southern pine beetle (SPB) survey using Digital Aerial Sketchmapping (DASM); for a detailed treatment of DASM visit the following Web site: http://www.fs.fed.us/foresthealth/ technology/dasm.shtml. Sketchmapping – “A remote sensing technique of observing forest change events from an aircraft and documenting them manually on a map” (...

  1. Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine

    Directory of Open Access Journals (Sweden)

    Xuexian Qin

    2018-03-01

    Full Text Available To meet the growing need for raw materials to produce pellets and wood-based biofuels, trees killed by natural disturbances have increasingly been considered as potential feedstock in bioenergy development scenarios in the Western U.S. and Canada. While much research has focused on utilization of beetle-killed and fire-salvaged timber from federal lands in this region, small private landowners make up a large portion of land holdings in the Rocky Mountain Region and may also provide an important potential supply of uniform feedstock pellets in decentralized energy supply systems in the future. In this paper, we evaluated the quality of pellets produced from green, beetle-killed, and burned lodgepole pine with and without bark using a chipper, hammer mill, and pellet mill intended for use by small landowners. Results show that green, beetle-killed, and fire-salvaged lodgepole pine produced by small landowners, including material with bark, are suitable as feedstock for pellet production. Further, pellet quality can be varied through the blending of source lodgepole pine products when needed to meet pellet quality standards.

  2. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  3. Adaptation to a landscape-scale mountain pine beetle epidemic in the era of networked governance: the enduring importance of bureaucratic institutions

    Directory of Open Access Journals (Sweden)

    Jesse B. Abrams

    2017-12-01

    Full Text Available Landscape-scale forest disturbance events have become increasingly common worldwide under the combined influences of climate change and ecosystem modification. The mountain pine beetle (Dendroctonus ponderosae epidemic that swept through North American forests from the late 1990s through the early 2010s was one of the largest such disturbance events on record and triggered shocks to ecological and economic systems. We analyze the policy and governance responses to this event by focusing on three national forests in the state of Colorado and on the agency responsible for their management, the U.S. Forest Service. We found that the event triggered the formation of new hybrid agency/nonagency organizations that contributed both legitimacy and capacity to address the most immediate threats to human safety and infrastructure. Despite the use of a highly networked governance structure, longstanding U.S. Forest Service institutions continued to heavily influence the scope of the response and the means for implementing management activities. We detected relatively limited institutional response at the level of the agency as a whole, even as regional- and local-scale institutions within Colorado showed greater dynamism. Indeed, the changes to agency institutions that were detected were largely consistent with institutional change trajectories already in place prior to the epidemic. Our study points to the importance of institutional persistence and path dependence in limiting the latitude for adaptation to social and environmental shocks.

  4. Mountain Pine Beetles, Salvage Logging, and Hydrologic Change: Predicting Wet Ground Areas

    Directory of Open Access Journals (Sweden)

    John Rex

    2013-04-01

    Full Text Available The mountain pine beetle epidemic in British Columbia has covered 18.1 million hectares of forest land showing the potential for exceptionally large-scale disturbance to influence watershed hydrology. Pine stands killed by the epidemic can experience reduced levels of evapotranspiration and precipitation interception, which can translate into an increase in soil moisture as observed by some forest practitioners during salvage logging in the epicenter of the outbreak. They reported the replacement of summer ground, dry firm soil areas, with winter ground areas identified by having wetter, less firm soils upon which forestry equipment operation is difficult or impossible before winter freeze-up. To decrease the likelihood of soil disturbance from harvesting, a set of hazard indicators was developed to predict wet ground areas in areas heavily infested by the mountain pine beetle. Hazard indicators were based on available GIS data, aerial photographs, and local knowledge. Indicators were selected by an iterative process that began with office-based selection of potential indicators, model development and prediction, field verification, and model refinement to select those indicators that explained most field data variability. Findings indicate that the most effective indicators were lodgepole pine content, understory, drainage density, soil texture, and the topographic index.

  5. Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?

    Directory of Open Access Journals (Sweden)

    Diana L. Six

    2014-01-01

    Full Text Available While the use of timber harvests is generally accepted as an effective approach to controlling bark beetles during outbreaks, in reality there has been a dearth of monitoring to assess outcomes, and failures are often not reported. Additionally, few studies have focused on how these treatments affect forest structure and function over the long term, or our forests’ ability to adapt to climate change. Despite this, there is a widespread belief in the policy arena that timber harvesting is an effective and necessary tool to address beetle infestations. That belief has led to numerous proposals for, and enactment of, significant changes in federal environmental laws to encourage more timber harvests for beetle control. In this review, we use mountain pine beetle as an exemplar to critically evaluate the state of science behind the use of timber harvest treatments for bark beetle suppression during outbreaks. It is our hope that this review will stimulate research to fill important gaps and to help guide the development of policy and management firmly based in science, and thus, more likely to aid in forest conservation, reduce financial waste, and bolster public trust in public agency decision-making and practice.

  6. Alternative timing of carbaryl treatments for protecting lodgepole pine from mortality attributed to mountain pine beetle

    Science.gov (United States)

    Christopher J. Fettig; A.Steve Munson; Kenneth E. Gibson

    2015-01-01

    Carbaryl is regarded among the most effective, economically viable, and ecologically-compatible insecticides available for protecting conifers from bark beetle attack in the western United States. Treatments are typically applied in spring prior to initiation of bark beetle flight for that year. We evaluated the efficacy of spring and fall applications for protecting...

  7. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.

    Science.gov (United States)

    Arango-Velez, Adriana; González, Leonardo M Galindo; Meents, Miranda J; El Kayal, Walid; Cooke, Barry J; Linsky, Jean; Lusebrink, Inka; Cooke, Janice E K

    2014-11-01

    Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-β-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate

  8. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.

    Science.gov (United States)

    DiGuistini, Scott; Wang, Ye; Liao, Nancy Y; Taylor, Greg; Tanguay, Philippe; Feau, Nicolas; Henrissat, Bernard; Chan, Simon K; Hesse-Orce, Uljana; Alamouti, Sepideh Massoumi; Tsui, Clement K M; Docking, Roderick T; Levasseur, Anthony; Haridas, Sajeet; Robertson, Gordon; Birol, Inanc; Holt, Robert A; Marra, Marco A; Hamelin, Richard C; Hirst, Martin; Jones, Steven J M; Bohlmann, Jörg; Breuil, Colette

    2011-02-08

    In western North America, the current outbreak of the mountain pine beetle (MPB) and its microbial associates has destroyed wide areas of lodgepole pine forest, including more than 16 million hectares in British Columbia. Grosmannia clavigera (Gc), a critical component of the outbreak, is a symbiont of the MPB and a pathogen of pine trees. To better understand the interactions between Gc, MPB, and lodgepole pine hosts, we sequenced the ∼30-Mb Gc genome and assembled it into 18 supercontigs. We predict 8,314 protein-coding genes, and support the gene models with proteome, expressed sequence tag, and RNA-seq data. We establish that Gc is heterothallic, and report evidence for repeat-induced point mutation. We report insights, from genome and transcriptome analyses, into how Gc tolerates conifer-defense chemicals, including oleoresin terpenoids, as they colonize a host tree. RNA-seq data indicate that terpenoids induce a substantial antimicrobial stress in Gc, and suggest that the fungus may detoxify these chemicals by using them as a carbon source. Terpenoid treatment strongly activated a ∼100-kb region of the Gc genome that contains a set of genes that may be important for detoxification of these host-defense chemicals. This work is a major step toward understanding the biological interactions between the tripartite MPB/fungus/forest system.

  9. Overlapping Bark Beetle Outbreaks, Salvage Logging and Wildfire Restructure a Lodgepole Pine Ecosystem

    Directory of Open Access Journals (Sweden)

    Charles C. Rhoades

    2018-02-01

    Full Text Available The 2010 Church’s Park Fire burned beetle-killed lodgepole pine stands in Colorado, including recently salvage-logged areas, creating a fortuitous opportunity to compare the effects of salvage logging, wildfire and the combination of logging followed by wildfire. Here, we examine tree regeneration, surface fuels, understory plants, inorganic soil nitrogen and water infiltration in uncut and logged stands, outside and inside the fire perimeter. Subalpine fir recruitment was abundant in uncut, unburned, beetle-killed stands, whereas lodgepole pine recruitment was abundant in cut stands. Logging roughly doubled woody fuel cover and halved forb and shrub cover. Wildfire consumed all conifer seedlings in uncut and cut stands and did not stimulate new conifer regeneration within four years of the fire. Aspen regeneration, in contrast, was relatively unaffected by logging or burning, alone or combined. Wildfire also drastically reduced cover of soil organic horizons, fine woody fuels, graminoids and shrubs relative to unburned, uncut areas; moreover, the compound effect of logging and wildfire was generally similar to wildfire alone. This case study documents scarce conifer regeneration but ample aspen regeneration after a wildfire that occurred in the later stage of a severe beetle outbreak. Salvage logging had mixed effects on tree regeneration, understory plant and surface cover and soil nitrogen, but neither exacerbated nor ameliorated wildfire effects on those resources.

  10. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack.

    Science.gov (United States)

    Kane, Jeffrey M; Kolb, Thomas E

    2010-11-01

    The relative importance of growth and defense to tree mortality during drought and bark beetle attacks is poorly understood. We addressed this issue by comparing growth and defense characteristics between 25 pairs of ponderosa pine (Pinus ponderosa) trees that survived and trees that died from drought-associated bark beetle attacks in forests of northern Arizona, USA. The three major findings of our research were: (1) xylem resin ducts in live trees were >10% larger (diameter), >25% denser (no. of resin ducts mm(-2)), and composed >50% more area per unit ring growth than dead trees; (2) measures of defense, such as resin duct production (no. of resin ducts year(-1)) and the proportion of xylem ring area to resin ducts, not growth, were the best model parameters of ponderosa pine mortality; and (3) most correlations between annual variation in growth and resin duct characteristics were positive suggesting that conditions conducive to growth also increase resin duct production. Our results suggest that trees that survive drought and subsequent bark beetle attacks invest more carbon in resin defense than trees that die, and that carbon allocation to resin ducts is a more important determinant of tree mortality than allocation to radial growth.

  11. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae).

    Science.gov (United States)

    Morales-Jiménez, Jesús; Vera-Ponce de León, Arturo; García-Domínguez, Aidé; Martínez-Romero, Esperanza; Zúñiga, Gerardo; Hernández-Rodríguez, César

    2013-07-01

    The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D. valens, exhibited high acetylene reduction activity in vitro with different carbon sources, and its nifH and nifD genes were sequenced. Bacteria able to recycle uric acid were Pseudomonas fluorescens DVL3A that used it as carbon and nitrogen source, Serratia proteomaculans 2A CDF and Rahnella aquatilis 6-DR that used uric acid as sole nitrogen source. Also, this is the first report about the uric acid content in whole eggs, larvae, and adults (male and female) samples of the red turpentine beetle (Dendroctonus valens). Our results suggest that the gut bacteria of these bark beetles could contribute to insect N balance.

  12. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Science.gov (United States)

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  13. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  14. Effects of Small-Scale Dead Wood Additions on Beetles in Southeastern U.S. Pine Forests

    Directory of Open Access Journals (Sweden)

    Chris E. Carlton

    2012-08-01

    Full Text Available Pitfall traps were used to sample beetles (Coleoptera in plots with or without inputs of dead loblolly pine (Pinus taeda L. wood at four locations (Louisiana, Mississippi, North Carolina and Texas on the coastal plain of the southeastern United States. The plots were established in 1998 and sampling took place in 1998, 1999, and 2002 (only 1998 for North Carolina. Overall, beetles were more species rich, abundant and diverse in dead wood addition plots than in reference plots. While these differences were greatest in 1998 and lessened thereafter, they were not found to be significant in 1998 due largely to interactions between location and treatment. Specifically, the results from North Carolina were inconsistent with those from the other three locations. When these data were excluded from the analyses, the differences in overall beetle richness for 1998 became statistically significant. Beetle diversity was significantly higher in the dead wood plots in 1999 but by 2002 there were no differences between dead wood added and control plots. The positive influence of dead wood additions on the beetle community can be largely attributed to the saproxylic fauna (species dependent on dead wood, which, when analyzed separately, were significantly more species rich and diverse in dead wood plots in 1998 and 1999. Ground beetles (Carabidae and other species, by contrast, were not significantly affected. These results suggest manipulations of dead wood in pine forests have variable effects on beetles according to life history characteristics.

  15. Dose-Dependent and Species-Specific Responses of Pine Bark Beetles (Coeoptera: Scolytidae) to Monoterpenes in Association with Phermones

    Science.gov (United States)

    Daniel R. Miller; John H. Borden

    2000-01-01

    Monoterpenes affected the attraction of three sympatric species of bark beetles (Coleoptera: Scolytidae) to pheromone-baited multiple-funnel traps in stands of lodgepole pine. Catches of Ips pini(Say) in traps baited with its pheromone, ipsdienol, were directly related to the release rates of 3-carene, ß-pphellandrene, and ß-pinene. Catches of

  16. Developing and validating a method for monitoring and tracking changes in southern pine beetle hazard at the landscape level

    Science.gov (United States)

    Ronald Billings; L. Allen Smith; Jin Zhu; Shailu Verma; Nick Kouchoukos; Joon Heo

    2010-01-01

    The objective of this research project is to develop and validate a method for using satellite images and digital geospatial data to map the distribution of southern pine beetle (SPB) habitats across the pinelands of east Texas. Our approach builds on a work that used photo interpretation and discriminant analysis to identify and evaluate environmental conditions...

  17. Future Forests Webinar Series, Webinar Proceedings and Summary: Ongoing Research and Management Responses to the Mountain Pine Beetle Outbreak

    Science.gov (United States)

    M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan

    2014-01-01

    The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...

  18. Detection and mapping of mountain pine beetle red attack: Matching information needs with appropriate remotely sensed data

    Science.gov (United States)

    M. A. Wulder; J. C. White; B. J. Bentz

    2005-01-01

    Estimates of the location and extent of the red attack stage of mountain pine beetle (Dentroctonus ponderosae Hopkins) infestations are critical for forest management. The degree of spatial and temporal precision required for these estimates varies according to the management objectives and the nature of the infestation. This paper outlines a hierarchy of information...

  19. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T; Negron, José F; Smith, Jeremy M

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  20. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  1. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    Science.gov (United States)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  2. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  3. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    Science.gov (United States)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  4. Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without detoxification

    Science.gov (United States)

    Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron

    2013-01-01

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...

  5. Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin co-product, and high solids fermentation without detoxification

    Science.gov (United States)

    Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from rea...

  6. Thirty year change in lodgepole and lodgepole/mixed conifer forest structure following 1980s mountain pine beetle outbreak in western Colorado, USA

    Science.gov (United States)

    Kristen A. Pelz; Frederick W. Smith

    2012-01-01

    Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...

  7. Science You Can Use Bulletin: From death comes life: Recovery and revolution in the wake of epidemic outbreaks of mountain pine beetle

    Science.gov (United States)

    Karl Malcolm; Chuck Rhoades; Michael Battaglia; Paula Fornwalt; Rob Hubbard; Kelly Elder; Byron Collins

    2012-01-01

    Changing climatic conditions and an abundance of dense, mature pine forests have helped to spur an epidemic of mountain pine beetles larger than any in recorded history. Millions of forested acres have been heavily impacted and have experienced extreme rates of tree mortality. This has raised concerns among many people that the death, desiccation, and decomposition of...

  8. Geographical variation in seasonality and life history of pine sawyer beetles Monochamus spp: its relationship with phoresy by the pinewood nematode Bursaphelenchus xylophilus.

    Science.gov (United States)

    Carla S. Pimentel; Matthew P. Ayres; Vallery Erich; Chris Young; Douglas Streett

    2014-01-01

    Bursaphelenchus xylophilus (Steiner & Buhrer) (Nematoda: Aphelenchoididae), the pinewood nematode and the causal agent of the pine wilt disease, is a globally important invasive pathogen of pine forests. It is phoretic in woodborer beetles of the genus Monochamus (Megerle) (Coleoptera, Cerambycidae) and has been able to exploit novel indigenous species of...

  9. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Tania Schoennagel

    Full Text Available In Colorado and southern Wyoming, mountain pine beetle (MPB has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]. MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr, active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  10. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    Directory of Open Access Journals (Sweden)

    Jonathan A Cale

    Full Text Available Mountain pine beetle (Dendroctonus ponderosae has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success.

  11. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Directory of Open Access Journals (Sweden)

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  12. Impacts of climate change on range expansion by the mountain pine beetle

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.L.; Taylor, S.W. [Canadian Forest Service, Victoria, BC (Canada). Pacific Forestry Centre; Regniere, J. [Canadian Forest Service, Quebec, PQ (Canada). Laurentian Forestry Centre; Logan, J.A.; Bentz, B.J. [United States Dept. of Agriculture, Logan, UT (United States). Logan Forestry Sciences Laboratory; Powell, J.A. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    2006-07-01

    The elevational and latitudinal range of mountain pine beetle (MPB) has been limited by climatic conditions that are currently unfavorable for brood development. This study examined the impact of climatic conditions on the establishment and persistence of MPB using a spatially explicit, climate-driven simulation tool. Historic weather records were also used to create maps of past habitats for MPB in British Columbia. Map overlays were then created to determine if MPB has expanded its range due to changes in the province's climate. The distribution of climatically suitable habitats was examined in 10-year increments. Results of the study showed an increase in benign habitats. MPB populations have expanded into new areas as a result of changes in climate. Additional range expansion for MPB was then assessed using a global circulation model along with a conservative forcing scenario that forecast a doubling of carbon dioxide (CO{sub 2}) by 2050. Weather conditions were then combined with a climatic suitability model in order to examine areas of climatically suitable habitats. It was concluded that continued eastward expansion by MPB is probable. 44 refs., 4 tabs., 7 figs.

  13. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and

  14. Attractant and disruptant semiochemicals for Dendroctonus jeffreyi (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Brian Strom; Smith S.L.; Brownie C.

    2013-01-01

    Jeffrey pine, Pinus jeffreyi Greville and Balfour, is a dominant yellow pine and important overstory component of forests growing on diverse sites from southwestern Oregon to Baja California to western Nevada. The Jeffrey pine beetle, Dedroctonus jeffreyi Hopkins (Coleoptera: Curculionidae: Scolytinae), is monophagous on Jeffrey...

  15. Morphology of the Male Reproductive System and Spermiogenesis of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae).

    Science.gov (United States)

    Wu, Yi-Fei; Wei, Lu-Sha; Anthony Torres, Mark; Zhang, Xu; Wu, Shao-Ping; Chen, Hui

    2017-01-01

    Studying the reproductive attributes of pests is central to understanding their life cycle history and in crafting management strategies to regulate, if not bring down, their population below threshold levels. In this article, the morphology of the male reproductive tract, topology of the spermatozoa, and salient features of spermiogenesis in the Chinese white pine beetle, Dendroctonus armandi Tsai and Li was studied to provide baseline information for further pest management studies. Results showed that male reproductive tract of this species differs from those documented in other Coleopterans by having 20 testicular tubules in each testis and the presence of two types of accessory glands. The spermatozoon is seen having peculiar characteristics such as an "h"-shaped acrosomal vesicle with a "puff"-like expansion, one centriole, one large spongy body, and two accessory bodies. Despite with some morphological differences of the male reproductive organ, spermatogenesis in this organism is similar to other Coleopterans. Overall, detailed studies regarding the components of the primary male reproductive organ of this beetle species would expand the knowledge on the less-understood biology of Coleopteran pests and would help in designing regulatory measures to conserve endemic and indigenous pine trees in China. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the Black Hills, South Dakota

    Science.gov (United States)

    Christopher T. Rota; Joshua J. Millspaugh; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler

    2014-01-01

    Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic...

  17. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones

    Science.gov (United States)

    William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig

    2005-01-01

    We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...

  18. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    M. L. Gaylord; K. K. Williams; R. W. Hofstetter; J. D. McMillin; T. E. Degomez; M. R. Wagner

    2008-01-01

    Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles...

  19. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle.

    Science.gov (United States)

    Tsui, Clement K M; Roe, Amanda D; El-Kassaby, Yousry A; Rice, Adrianne V; Alamouti, Sepideh M; Sperling, Felix A H; Cooke, Janice E K; Bohlmann, Jörg; Hamelin, Richard C

    2012-01-01

    We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and

  20. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine.

    Science.gov (United States)

    Del Rio, Luis F; Chandra, Richard P; Saddler, Jack N

    2010-05-01

    Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate's physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity.

  1. Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungus Ophiostoma clavigerum, a Mountain Pine Beetle-associated pathogen.

    Science.gov (United States)

    DiGuistini, Scott; Ralph, Steven G; Lim, Young W; Holt, Robert; Jones, Steven; Bohlmann, Jörg; Breuil, Colette

    2007-02-01

    Ophiostoma clavigerum is a destructive pathogen of lodgepole pine (Pinus contorta) forests in western North America. It is therefore a relevant system for a genomics analysis of fungi vectored by bark beetles. To begin characterizing molecular interactions between the pathogen and its conifer host, we created an expressed sequence tag (EST) collection for O. clavigerum. Lodgepole pine sawdust and oleoresin media were selected to stimulate gene expression that would be specific to this host interaction. Over 6500 cDNA clones, derived from four normalized cDNA libraries, were single-pass sequenced from the 3' end. After quality screening, we identified 5975 high-quality reads with an average PHRED 20 of greater than 750 bp. Clustering and assembly of this high-quality EST set resulted in the identification of 2620 unique putative transcripts. BLASTX analysis revealed that only 67% of these unique transcripts could be matched to known or predicted protein sequences in public databases. Functional classification of these sequences provided initial insights into the transcriptome of O. clavigerum. Of particular interest, our ESTs represent an extensive collection of cytochrome P450 s, ATP-binding-cassette-type transporters and genes involved in 1,8-dihydroxynaphthalene-melanin biosynthesis. These results are discussed in the context of detoxification of conifer oleoresins and fungal pathogenesis.

  2. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.

    Science.gov (United States)

    Etxebeste, Iñaki; Lencina, José L; Pajares, Juan

    2013-10-01

    Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I. sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I. sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

  3. The red-cockaded woodpecker's role in the southern pine ecosystem, population trends and relationships with southern pine beetles

    Science.gov (United States)

    Richard N. Conner; D. Craig Rudolph; Daniel Saenz; Robert N. Coulson

    1997-01-01

    This study reviews the overall ecological role of the Red-cockaded Woodpecker (Picoides borealis)in the southern pine ecosystem. It is the only North American woodpecker species to become well adapted to a landscape that was relatively devoid of the substrate typically used by woodpeckers for cavity excavation (i.e. snags and decayed, living hardwoods). Its adaptation...

  4. Assessment of species diversity of plants and carabid beetles at sample plots in Korean pine-broad-leaved stands of postfire origin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2018-06-01

    Full Text Available For natural pine forests in the southern part of the Primorsky Krai, an assessment of biological diversity has been performed based on the results of descriptions of valuable tree species, living ground cover and carabid beetles Carabus. Field work was carried out on the trial plots laid in the forest plantations of the pine and broad-leaved forest with the domination of Korean pine Pinus koraiensis Siebold & Zucc. Model sites contained a chronological sequence of development of forest plantations of fresh small-grass and different-bush type on the interval of age 50–200 years. In the process of reforestation, a decrease in the total projective coverage of living ground cover was observed, while the number of species characteristic for natural pine forests, as well as their leveling, increased at the same time. By the age of 200 years species richness and leveling of the number of ground beetle species have reached a maximum. Statistically significant difference was found between the total number of caught insects in the plantations of 50 and 200, 80 and 200 years. The most valuable in terms of biological diversity are the old-growth pine forests. A conclusion was made about the value of this group of forests for the protection of valuable communities and habitats of species. Among ground beetle species Carabus schrencki Motschulsky, Carabus maacki Morawitz and Carabus macleayi Dejean can serve as an indicator of forest value. With a minimum total projective coverage (8.3 %, 200-year-old pine forests are favorable for the growth of such characteristic species as the mountain peony Paeonia oreogeton S. Moore, pale-mountain Dryopteris crassirhizoma Nakai, and the Pale Indian Plantain Cacalia auriculata H. Rob. & Brettell. On this site the Shannon index of species of living ground cover was 3.6, the Carabus species is 1.4.

  5. CONTRIBUTION FOR THE DIAGNOSIS AND CONTROL OF THE BARK BEETLES OF GENUS IPS (COLEOPTERA: SCOLYTIDAE) IN THE PINE FOREST OF CUBA

    OpenAIRE

    René Alberto López Castilla; Fidel Góngora Rojas; Celia Guerra Rivero; Enrique de Zayas Izaguirre; Antonio Fernández Vera; Natividad Triguero Isasi

    2009-01-01

    There are four pines species endemic from Cuba with width importance, from the Conservation of the Forest Genetic Resources at regional level to the mitigation of the climatic change. Their economical importance is due to forming pure forest stand of fast growth and of straight trunk. The bark beetle of the genus Ips De Geer (Coleoptera: Scolytidae) and the associate mushrooms from the complex Ophiostomatoid (Ceratocystidaceae: Microascales Phylum Ascomycotina) are those that cause the bigge...

  6. 76 FR 48120 - Black Hills National Forest, Custer, SD-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2011-08-08

    ... species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus ponderosae). Since 1997 the... rated as having high wildfire hazard. Since 1980, due to several factors including drought the Forest...

  7. 77 FR 10717 - Black Hills National Forest, Custer, South Dakota-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2012-02-23

    .... The predominant tree species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus... drought the Forest has seen a dramatic increase in acreage burned by wildfires. In that period over 250...

  8. Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland

    Czech Academy of Sciences Publication Activity Database

    Jankowiak, R.; Kolařík, Miroslav; Bilanski,, P.

    2014-01-01

    Roč. 11, OCT 2014 (2014), s. 71-79 ISSN 1754-5048 R&D Projects: GA ČR(CZ) GAP506/11/2302 Institutional support: RVO:61388971 Keywords : Insect-fungus interactions * Bark beetles * Ectosymbiosis Subject RIV: EE - Microbiology, Virology Impact factor: 2.929, year: 2014

  9. Retention of external and internal markers by southern pine beetles (Coleoptera: Scolytidae) during gallery

    Science.gov (United States)

    Douglas J. Rhodes; Jane Leslie Hayes; Chris Steiner

    1998-01-01

    If retained, markers used in mark-release-recapture studies of bark beetle dispersal could provide valuable tools in the determination of post-dispersal fate. Retention of the internal marker rubidium (Rb) and of the external marker fluorescent powder during egg gallery construction, oviposition, and feeding were quantified at intervals from 0 to 96 hours by allowing...

  10. Carbon Cycling Dynamics in Response to Pine Beetle Infection and Climate Variation

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Russell K.

    2015-01-26

    We originally proposed to study and discover the changes that have occurred in soil carbon pools, as a result of tree mortality due to beetle infection, and the ease by which those pools release CO2 to the atmosphere in mountain forests in the Western US. We studied forest plots at two sites – the Niwot Ridge AmeriFlux site and the Fraser Experimental Forest site, both in Colorado.

  11. The response of Dendroctonus valens (Coleoptera: Scolytidae) and Temnochila chlorodia (Coleoptera: Trogossitidae) to Ips paraconfusus (Coleoptera: Scolytidae) pheromone components and verbenone

    Science.gov (United States)

    Christopher J. Fettig; Stepehen R. McKelvey; Christopher P. Dabney; Robert R. Borys

    2007-01-01

    The red turpentine beetle, Dendroctonus valens LeConte, 1860 (Coleoptera: Curculionidae, Scolytinae), is a common bark beetle species found throughout much of North America and China. In 2004, we observed that California fivespined ips, Ips paraconfusus Lanier, 1970 (Coleoptera: Curculionidae, Scolytinae), attack densities in logging debris were inversely related to D...

  12. Using the Mountain Pine Beetle Infestation of the Rocky Mountain West to Develop a Collaborative, Experiential Course on Science Communication

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.

    2016-12-01

    An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.

  13. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types.

    Science.gov (United States)

    Griffin, Jacob M; Turner, Monica G

    2012-10-01

    Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4-5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30-50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (mineralization; litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N-foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host-beetle systems.

  14. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships.

    Science.gov (United States)

    Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa

    2005-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...

  15. Biochemical evidence that Dendroctonus frontalis consists of two sibling species in Belize and Chiapas, Mexico

    Science.gov (United States)

    Brian T. Sullivan; Alicia Nino; Benjamin Moreno; Cavell Brownie; Jorge Macias-Samano; Stephen R. Clarke; Lawrence R. Kirkendall; Gerardo. and Zuniga

    2012-01-01

    Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) is a major economic pest of pines in the United States, Mexico, and Central America. We report biochemical investigations relevant to the taxonomic status and semiochemistry of two distinct morphotypes of D. frontalis recently detected in the Central American...

  16. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  17. The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South Dakota.

    Directory of Open Access Journals (Sweden)

    Christopher T Rota

    Full Text Available Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.

  18. The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South Dakota.

    Science.gov (United States)

    Rota, Christopher T; Millspaugh, Joshua J; Rumble, Mark A; Lehman, Chad P; Kesler, Dylan C

    2014-01-01

    Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.

  19. Trace gas emissions from a chronosequence of bark beetle-infested lodgepole pine (Pinus contorta) forest stands

    Science.gov (United States)

    Norton, U.; Pendall, E.; Ewers, B. E.; Borkhuu, B.

    2011-12-01

    Severe outbreak of mountain pine beetle (MPB) and associated blue stain fungi have killed millions of hectares of coniferous forests in Western North America. This unprecedented disturbance has critically impacted ecosystem biogeochemistry and net carbon (C) and nitrogen (N) fluxes. However, the effects on greenhouse gas (GHG) emissions and drivers of biogeochemical processes that trigger GHG emissions following MPB infestations are not well understood. Such information can help assess regional-level changes in ecosystem C and N budgets and large-scale disturbance impacts on gas exchange between the atmosphere and terrestrial ecosystem. The overall objective of this research was to assess the immediate responses of GHG fluxes and soil C and N mineralization rates along a chronosequence of recently infested (1-yr, 3-yr and 4-yr ago) and uninfested (150-yr, 20-yr and 15-yr old) lodgepole pine stands in Medicine Bow National Forest in southeastern Wyoming. We hypothesize that MPB-induced tree mortality significantly changes stand-level hydrology, soil organic matter quality and chemistry of aboveground and belowground plant inputs. Consequently, these modifications influence nitrous oxide (N2O) emissions and methane (CH4) assimilation. Biweekly GHG measurements using static chambers were carried out during three consecutive snow-free growing seasons. Our results suggest that a stand infested within a year already shows a 20% increase in spring N2O production and a small decline in summer CH4 assimilation when compared to uninfested stands. Stands infested three and four years prior to our measurements produce over three times more N2O and assimilate three to five times less CH4 when compared to uninfested stands. In addition, a notable increase in soil moisture content and soil mineral N concentrations following early onset of the MPB infestation was also observed. An overall increase in N2O production and decline in CH4 assimilation following MPB infestation may

  20. Response of Lutz, Sitka, and white spruce to attack by Dendroctonus rufipennis (Coleoptera: Scolytidae) and blue stain fungi

    Science.gov (United States)

    Richard A. Werner; Barbara L. Illman

    1994-01-01

    Mechanical wounding and wounding plus inoculation with a blue-stain fungus, Leptographium abietinum (Peck), associated with the spruce beetle, Dendroctonus rufipennis (Kirby), caused an induced reaction zone or lesion around the wound sites in Lutz spruce, Picea lutzii Little, Sitka spruce, P. sitchensis (Bong.) Carr., and white spruce, P. glauca (Moench) Voss, in...

  1. Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed

    Science.gov (United States)

    Penn, Colin A.; Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.

    2016-01-01

    The effects of mountain pine beetle (MPB)-induced tree mortality on a headwater hydrologic system were investigated using an integrated physical modeling framework with a high-resolution computational grid. Simulations of MPB-affected and unaffected conditions, each with identical atmospheric forcing for a normal water year, were compared at multiple scales to evaluate the effects of scale on MPB-affected hydrologic systems. Individual locations within the larger model were shown to maintain hillslope-scale processes affecting snowpack dynamics, total evapotranspiration, and soil moisture that are comparable to several field-based studies and previous modeling work. Hillslope-scale analyses also highlight the influence of compensating changes in evapotranspiration and snow processes. Reduced transpiration in the Grey Phase of MPB-induced tree mortality was offset by increased late-summer evaporation, while overall snowpack dynamics were more dependent on elevation effects than MPB-induced tree mortality. At the watershed scale, unaffected areas obscured the magnitude of MPB effects. Annual water yield from the watershed increased during Grey Phase simulations by 11 percent; a difference that would be difficult to diagnose with long-term gage observations that are complicated by inter-annual climate variability. The effects on hydrology observed and simulated at the hillslope scale can be further damped at the watershed scale, which spans more life zones and a broader range of landscape properties. These scaling effects may change under extreme conditions, e.g., increased total MPB-affected area or a water year with above average snowpack.

  2. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    Science.gov (United States)

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  3. Efficacy of abamectin and tebuconazole injections to protect of lodgepole pine from mortality attributed to mountain pine beetle attack and progression of blue stain fungi

    Science.gov (United States)

    Christopher J. Fettig; Donald M. Grosman; A. Steven. Munson

    2013-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers have examined the effectiveness of...

  4. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality

    Science.gov (United States)

    Chad M. Hoffman; Penelope Morgan; William Mell; Russell Parsons; Eva Strand; Steve. Cook

    2013-01-01

    Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes. We...

  5. Waste fatty acid addition to black liquor to decrease tall oil soap solubility and increase skimming efficiency in kraft mills pulping mountain pine beetle-infested wood

    Energy Technology Data Exchange (ETDEWEB)

    Uloth, V.; Guy, E. [FPInnovations, Prince George, BC (Canada). PAPRICAN Div.; Shewchuk, D. [Cariboo Pulp and Paper, Quesnel, BC (Canada); Van Heek, R. [Aker Kvaerner, Vancouver, BC (Canada)

    2009-07-01

    This paper presented the results of tests conducted to determine if the addition of waste fatty acids from vegetable oil processing might decrease tall oil soap solubility in pine-beetle impacted wood from British Columbia (BC). The soap recovery and tall oil production at BC mills has fallen by 30 to 40 percent in recent years due to the pulping of high proportions of grey-stage beetle-impacted wood. Full-scale mill tests were conducted over a 4-day period. The study showed that the addition of tall oil fatty acids or waste fatty acids from vegetable oil processing could decrease tall oil soap solubility and increase the soup skimming efficiency in mills pulping a large percentage of grey stage beetle-infested wood. The addition of fatty acids increased tall oil soap skimming efficiency from 50.2 percent in the baseline tests to 71.8 percent based on the total soap available, and from 76.7 percent in the baseline tests to 87.5 percent based on insoluble soap only. The economic analyses indicated that waste fatty acid addition could be economical when natural gas and oil prices are high. 4 tabs., 9 figs.

  6. Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Gary O. Fiddler; Sylvia R. Mori; David L. Wood

    2006-01-01

    In a study site in interior northern California, twenty individual lodgepole pines Pinus contorta were sprayed with a suspension of DISRUPT Micro-Flake ® Verbenone (4,6,6-trimethylbicyclo(3.1)hept-3-en-2-one) Bark Beetle Anti-Aggregant flakes (Hercon Environmental, Emigsville, Pennsylvania) in water, with sticker and...

  7. Respuesta kairomonal de coleópteros asociados a Dendroctonus frontalis y dos especies de Ips (Coleoptera: Curculionidae en bosques de Chiapas, México Kairomonal response of coleopterans associated with Dendroctonus frontalis and two Ips species (Coleoptera: Curculionidae in forest of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Bernardo Domínguez-Sánchez

    2008-06-01

    Full Text Available Se evaluó la diversidad de escarabajos descortezadores y la respuesta diferencial de sus coleópteros asociados a feromonas comerciales de agregación, en bosques de pino del estado de Chiapas, México. Durante los meses de junio a octubre del 2006, se colocaron 40 trampas multiembudo tipo Lindgren cebadas con las feromonas racémicas frontalina, ipsenol e ipsdienol y un testigo (sin feromona. La captura fue más abundante para los escarabajos descortezadores Dendroctonus frontalis (Zimmermann con frontalina, y de Ips spp. con ipsenol e ipsdienol. Se registró respuesta kairomonal específica de los depredadores Temnochila chlorodia (Mannerheim, Enoclerus ablusus (Barr y Elacatis sp. hacia las feromonas de agregación. Tanto para descortezadores como para depredadores, las mayores abundancias fueron registradas durante el verano y a comienzos del otoño. Temmnochila chlorodia exhibió una atracción diferencial hacia los semioquímicos evaluados, mientras que E. ablusus, Elacatis sp. y Leptostylus sp. fueron atraídos principalmente por las feromonas ipsenol e ipsdienol. Además, por primera vez para México se determinó la respuesta kairomonal del fitófago Leptostylus sp. (Cerambycidae. Estos resultados indican que hay una comunicación intra e inter específica entre los escarabajos descortezadores y sus especies asociadas que promueven interacciones de competencia y depredación.We assessed the bark beetle diversity and the response of associated predators to aggregation pheromones in pine forests in Chiapas, Mexico. From June to October 2006, 40 Lindgren funnel traps were established with different baits that included frontalin, ipsenol and ipsdienol pheromones and a control (without pheromone. We registered the attractiveness of frontalin to the bark beetle Dendroctonus frontalis (Zimmermann, and ipsenol and ipsdienol to Ips spp. Kairomonal specific response of the predators Temnochila chlorodia (Mannerheim, Enoclerus ablusus (Barr and

  8. A dynamical model for bark beetle outbreaks

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Lewis, M.; Bentz, B. J.; Bewick, S.; Lenhart, S. M.; Liebhold, A.

    2016-01-01

    Roč. 407, OCT 21 (2016), s. 25-37 ISSN 0022-5193 Institutional support: RVO:60077344 Keywords : bistability * bark beetle * Dendroctonus ponderosae Subject RIV: EH - Ecology, Behaviour Impact factor: 2.113, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022519316301928

  9. Summary of preliminary step-trend analysis from the Interagency Whitebark Pine Long-termMonitoring Program—2004-2013

    Science.gov (United States)

    Legg, Kristin; Shanahan, Erin; Daley, Rob; Irvine, Kathryn M.

    2014-01-01

    In mixed and dominant stands, whitebark pine (Pinus albicaulis) occurs in over two million acres within the six national forests and two national parks that comprise the Greater Yellowstone Ecosystem (GYE). Currently, whitebark pine, an ecologically important species, is impacted by multiple ecological disturbances; white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), wildfire, and climate change all pose significant threats to the persistence of whitebark pine populations. Substantial declines in whitebark pine populations have been documented throughout its range.Under the auspices of the Greater Yellowstone Coordinating Committee (GYCC), several agencies began a collaborative, long-term monitoring program to track and document the status of whitebark pine across the GYE. This alliance resulted in the formation of the Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG), which consists of representatives from the U.S. Forest Service (USFS), National Park Service (NPS), U.S. Geological Survey (USGS), and Montana State University (MSU). This groundbased monitoring program was initiated in 2004 and follows a peer-reviewed protocol (GYWPMWG 2011). The program is led by the Greater Yellowstone Inventory and Monitoring Network (GRYN) of the National Park Service in coordination with multiple agencies. More information about this monitoring effort is available at: http://science. nature.nps.gov/im/units/gryn/monitor/whitebark_pine.cfm. The purpose of this report is to provide a draft summary of the first step-trend analysis for the interagency, long-term monitoring of whitebark pine health to the Interagency Grizzly Bear Study Team (IGBST) as part of a synthesis of the state of whitebark pine in the GYE. Due to the various stages of the analyses and reporting, this is the most efficient way to provide these results to the IGBST.

  10. The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis)

    Science.gov (United States)

    Jules, Erik S; Jackson, Jenell I.; van Mantgem, Phillip J.; Beck, Jennifer S.; Murray, Michael P.; Sahara, E. April

    2016-01-01

    Pathogens and insect pests have become increasingly important drivers of tree mortality in forested ecosystems. Unfortunately, understanding the relative contributions of multiple mortality agents to the population decline of trees is difficult, because it requires frequent measures of tree survival, growth, and recruitment, as well as the incidence of mortality agents. We present a population model of whitebark pine (Pinus albicaulis), a high-elevation tree undergoing rapid decline in western North America. The loss of whitebark pine is thought to be primarily due to an invasive pathogen (white pine blister rust; Cronartium ribicola) and a native insect (mountain pine beetle; Dendroctonus ponderosae). We utilized seven plots in Crater Lake National Park (Oregon, USA) where 1220 trees were surveyed for health and the presence of blister rust and beetle activity annually from 2003–2014, except 2008. We constructed size-based projection matrices for nine years and calculated the deterministic growth rate (λ) using an average matrix and the stochastic growth rate (λs) by simulation for whitebark pine in our study population. We then assessed the roles of blister rust and beetles by calculating λ and λsusing matrices in which we removed trees with blister rust and, separately, trees with beetles. We also conducted life-table response experiments (LTRE) to determine which demographic changes contributed most to differences in λ between ambient conditions and the two other scenarios. The model suggests that whitebark pine in our plots are currently declining 1.1% per year (λ = 0.9888, λs = 0.9899). Removing blister rust from the models resulted in almost no increase in growth (λ = 0.9916, λs = 0.9930), while removing beetles resulted in a larger increase in growth (λ = 1.0028, λs = 1.0045). The LTRE demonstrated that reductions in stasis of the three largest size classes due to beetles contributed most to the smaller λ in the ambient condition

  11. Evaluations of emamectin benzoate and propiconazole for protecting individual Pinus contorta from mortality attributed to colonization by Dendroctonus ponderosae and associated fungi.

    Science.gov (United States)

    Fettig, Christopher J; Munson, A Steven; Grosman, Donald M; Bush, Parshall B

    2014-05-01

    Protection of conifers from bark beetle colonization typically involves applications of liquid formulations of contact insecticides to the tree bole. An evaluation was made of the efficacy of bole injections of emamectin benzoate alone and combined with the fungicide propiconazole for protecting individual lodgepole pine, Pinus contorta Dougl. ex Loud., from mortality attributed to colonization by mountain pine beetle, Dendroctonus ponderosae Hopkins, and progression of associated blue stain fungi. Injections of emamectin benzoate applied in mid-June did not provide adequate levels of tree protection; however, injections of emamectin benzoate + propiconazole applied at the same time were effective for two field seasons. Injections of emamectin benzoate and emamectin benzoate + propiconazole in mid-September provided tree protection the following field season, but unfortunately efficacy could not be determined during a second field season owing to insufficient levels of tree mortality observed in the untreated control, indicative of low D. ponderosae populations. Previous evaluations of emamectin benzoate for protecting P. contorta from mortality attributed to D. ponderosae have failed to demonstrate efficacy, which was later attributed to inadequate distribution of emamectin benzoate following injections applied several weeks before D. ponderosae colonization. The present data indicate that injections of emamectin benzoate applied in late summer or early fall will provide adequate levels of tree protection the following summer, and that, when emamectin benzoate is combined with propiconazole, tree protection is afforded the year that injections are implemented. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  12. Pines

    Science.gov (United States)

    C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi

    2007-01-01

    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....

  13. Evaluation of the antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), to protect live spruce from spruce beetle (Coleoptera: Scolytidae) infestation in sourthern Utah.

    Science.gov (United States)

    Darrell W. Ross; Gary E. Daterman; A. Steven Munson

    2004-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), produces the antiaggregation pheromone 3-methylcyclohex-2-en- 1-one (MCH) (Rudinsky et al. 1974). MCH has reduced the numbers of spruce beetles attracted to infested logs and synthetic semiochemical lures or reduced colonization rates throughout the beetles range (Kline

  14. Does overshoot in leaf development of ponderosa pine in wet years leads to bark beetle outbreaks on fine-textured soils in drier years?

    Directory of Open Access Journals (Sweden)

    Wendy Peterman

    2014-12-01

    Full Text Available Background Frequent outbreaks of insects and diseases have been recorded in the native forests of western North America during the last few decades, but the distribution of these outbreaks has been far from uniform. In some cases, recent climatic variations may explain some of this spatial variation along with the presence of expansive forests composed of dense, older trees. Forest managers and policy makers would benefit if areas especially prone to disturbance could be recognized so that mitigating actions could be taken. Methods We use two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modeling approach that couples information acquired via remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. Although there was a general downward trend in precipitation for both sites over the period between 1998 and 2010 (slope = −1.3, R2 = 0.08, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier (circa 2000 to 2001 and more severely on one site than on the other. The initial canopy density of the two sites was also similar, with leaf area indices ranging between 1.7-2.0 m2·m−2. We wondered if the difference in bark beetle activity was related to soils that were higher in clay content at site I than at site II. To assess this possibility, we applied a process-based stand growth model (3-PG to analyze the data and evaluate the hypotheses. Results We found that when wet years were followed by drier years, the simulated annual wood production per unit of leaf area, a measure of tree vigor, dropped below a critical threshold on site I but not on site II. Conclusion We concluded that the difference in vulnerability of the two stands to beetle outbreaks can be explained largely by differences in gross photosynthesis

  15. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    Science.gov (United States)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  16. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.

    Science.gov (United States)

    Fettig, Christopher J; Munson, A Steven; McKelvey, Stephen R; Bush, Parshall B; Borys, Robert R

    2008-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) are recognized as the most important tree mortality agent in western coniferous forests. A common method of protecting trees from bark beetle attack is to saturate the tree bole with carbaryl (1-naphthyl methylcarbamate) using a hydraulic sprayer. In this study, we evaluate the amount of carbaryl drift (ground deposition) occurring at four distances from the tree bole (7.6, 15.2, 22.9, and 38.1 m) during conventional spray applications for protecting individual lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and Engelmann spruce (Picea engelmannii Parry ex Engelm.) from spruce beetle (D. rufipennis [Kirby]) attack. Mean deposition (carbaryl + alpha-naphthol) did not differ significantly among treatments (nozzle orifices) at any distance from the tree bole. Values ranged from 0.04 +/- 0.02 mg carbaryl m(-2) at 38.1 m to 13.30 +/- 2.54 mg carbaryl m(-2) at 7.6 m. Overall, distance from the tree bole significantly affected the amount of deposition. Deposition was greatest 7.6 m from the tree bole and quickly declined as distance from the tree bole increased. Approximately 97% of total spray deposition occurred within 15.2 m of the tree bole. Application efficiency (i.e., percentage of insecticide applied that is retained on trees) ranged from 80.9 to 87.2%. Based on review of the literature, this amount of drift poses little threat to adjacent aquatic environments. No-spray buffers of 7.6 m should be sufficient to protect freshwater fish, amphibians, crustaceans, bivalves, and most aquatic insects. Buffers >22.9 m appear sufficient to protect the most sensitive aquatic insects (Plecoptera).

  17. Carbon balance of a partially harvested mixed conifer forest following mountain pine beetle attack and its comparison to a clear-cut

    Directory of Open Access Journals (Sweden)

    A. Mathys

    2013-08-01

    Full Text Available The recent mountain pine beetle (MPB outbreak has had an impact on the carbon (C cycling of lodgepole pine forests in British Columbia. This study examines how partial harvesting as a forest management response to MPB infestation affects the net ecosystem production (NEP of a mixed conifer forest (MPB-09 in Interior BC. MPB-09 is a 70-year-old stand that was partially harvested in 2009 after it had been attacked by MPB. Using the eddy-covariance technique, the C dynamics of the stand were studied over two years and compared to an adjacent clear-cut (MPB-09C over the summertime. The annual NEP at MPB-09 increased from −108 g C m−2 in 2010 to −57 g C m−2 in 2011. The increase of NEP was due to the associated increase in annual gross ecosystem photosynthesis (GEP from 812 g C m−2 in 2010 to 954 g C m−2 in 2011, exceeding the increase in annual respiration (Re from 920 g C m−2 to 1011 g C m−2 during the two years. During the four month period between June and September 2010, NEP at MPB-09C was −103 g C m−2, indicating high C losses in the clear-cut. MPB-09 was a C sink during the growing season of both years, increasing from 9 g C m−2 in 2010 to 47 g C m−2 in 2011. The increase of NEP in the partially harvested stand amounted to a recovery corresponding to a 26% increase in the maximum assimilation rate in the second year. This study shows that retaining the healthy residual forest can result in higher C sequestration of MPB-attacked stands compared to clear-cut harvesting.

  18. Impacts of beetle-induced forest mortality on carbon, water and nutrient cycling in the Rocky Mountains

    Science.gov (United States)

    Elise Pendall; Brent Ewers; Urszula Norton; Paul Brooks; W. J. Massman; Holly Barnard; David Reed; Tim Aston; John Frank

    2010-01-01

    Conifer forests across western North America are undergoing a widespread mortality event mediated by an epidemic outbreak of bark beetles of the genus Dendroctonus and their associated bluestain fungi (Ophiostoma spp.). As of late 2009, beetles have impacted over 600,000 hectares in northern Colorado and southern Wyoming (US Forest Service aerial survey estimates),...

  19. Changes in a Primary Resistance Parameter of Lodgepole Pine to Bark Beetle Attack One Year Following Fertilization and Thinning

    Directory of Open Access Journals (Sweden)

    Stephen P. Cook

    2015-01-01

    Full Text Available Many of the forest soils in the Intermountain West are deficient in several nutrients, including nitrogen (N, potassium (K, sulfur (S and boron (B and these deficiencies may impact tree resistance to insect attack. Two potential techniques for manipulating tree resistance are fertilization and thinning. We examined fertilization (both alone and in conjunction with stand thinning. Conifer resistance to bark beetles involves a three-step response, the first stage of which is resin flow. Rapid resin flow can prevent the colonization of bark beetles within a tree. Fertilization with low levels of N resulted in an increase in resin flow while high levels of N did not significantly increase resin flow in treated trees. Thinning did not result in higher concentrations of foliar K or B but did result in higher concentrations of foliar N and S. The highest concentrations of foliar N and S consistently occurred in the trees from thinned treatments, regardless of fertilization. There was a negative correlation between tree growth and resin flow one year following treatments. Increasing available nutrient levels to trees (either through fertilization or stand density management may result in modified resistance parameters that must be considered when making management decisions.

  20. Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing.

    Science.gov (United States)

    Ojeda, Dario I; Dhillon, Braham; Tsui, Clement K M; Hamelin, Richard C

    2014-03-01

    Single-nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost-effective approaches to uncover genome-wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole-genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17,266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina(®) Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species. © 2013 John Wiley & Sons Ltd.

  1. Biological pest control in beetle agriculture

    NARCIS (Netherlands)

    Aanen, D.K.; Slippers, B.; Wingfield, M.J.

    2009-01-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics

  2. Bark beetles and dwarf mistletoe interact to alter downed woody material, canopy structure, and stand characteristics in northern Colorado ponderosa pine

    Science.gov (United States)

    Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron

    2014-01-01

    Due to the recent outbreaks of bark beetles in western U.S.A., research has focused on the effects of tree mortality on forest conditions, such as fuel complexes and stand structure. However, most studies have addressed outbreak populations of bark beetles only and there is a lack of information on the effect of multiple endemic, low level populations of biotic...

  3. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  4. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Science.gov (United States)

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook. Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  5. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis

    Science.gov (United States)

    D. L. Six; B. J. Bentz

    2007-01-01

    In this study, we report evidence that temperature plays a key role in determining the relative abundance of two mutualistic fungi associated with an economically and ecologically important bark beetle, Dendroctonus ponderosae. The symbiotic fungi possess different optimal temperature ranges. These differences determine which fungus is vectored by...

  6. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae)

    Science.gov (United States)

    Aaron S. Adams; Sandye M. Adams; Cameron R. Currie; Nancy E. Gillette; Kenneth F. Raffa

    2010-01-01

    Bacterial communities are known to play important roles in insect life histories, yet their consistency or variation across populations is poorly understood. Bacteria associated with the bark beetle Dendroctonus valens LeConte from eight populations, ranging from Wisconsin to Oregon, were evaluated and compared. We used the culture-independent technique of denaturing...

  7. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Hodgson, Erin W.; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  8. Analytical Modelling of Canopy Interception Loss from a Juvenile Lodgepole Pine (Pinus contorta var. latifolia) Stand

    Science.gov (United States)

    Carlyle-Moses, D. E.; Lishman, C. E.

    2015-12-01

    In the central interior of British Columbia (BC), Canada, the mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) has severely affected the majority of pine species in the region, especially lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). The loss of mature lodgepole pine stands, including those lost to salvage logging, has resulted in an increase in the number of juvenile pine stands in the interior of BC through planting and natural regrowth. With this change from mature forests to juvenile forests at such a large spatial scale, the water balance of impacted areas may be altered, although the magnitude of such change is uncertain. Previous studies of rainfall partitioning by lodgepole pine and lodgepole pine dominated canopies have focused on mature stands. Thus, rainfall, throughfall and stemflow were measured and canopy interception loss was derived during the growing season of 2010 in a juvenile lodgepole pine dominated stand located approximately 60 km NNW of Kamloops, BC at 51°12'49" N 120°23'43" W, 1290 m above mean sea level. Scaling up from measurements for nine trees, throughfall, stemflow and canopy interception loss accounted for 87.7, 1.8 and 10.5 percent of the 252.9 mm of rain that fell over 38 events during the study period, respectively. The reformulated versions of the Gash and Liu analytical interception loss models estimated cumulative canopy interception loss at 24.7 and 24.6 mm, respectively, compared with the observed 26.5 mm; an underestimate of 1.8 and 1.9 mm or 6.8 and 7.2% of the observed value, respectively. Our results suggest that canopy interception loss is reduced in juvenile stands compared to their mature counterparts and that this reduction is due to the decreased storage capacity offered by these younger canopies. Evaporation during rainfall from juvenile canopies is still appreciable and may be a consequence of the increased proportion of the canopy exposed to wind during events.

  9. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground bark beetle species

    DEFF Research Database (Denmark)

    Zhu, Jun; Rasmussen, Jakob Gulddahl; Møller, Jesper

    2008-01-01

    red turpentine beetle colonization, pine engraver bark beetle colonization, and mortality of red pine trees while accounting for correlation across space and over time. We extend traditional Markov random-field models to include temporal terms and multiple-response variables aimed at developing...... as well as posterior predictive distributions. In particular, we implement path sampling combined with perfect simulation for autologistic models while formally addressing the posterior propriety under an improper uniform prior. Our data analysis results suggest that red turpentine beetle colonization...... is associated with a higher likelihood of pine engraver bark beetle colonization and that pine engraver bark beetle colonization is associated with higher likelihood of red pine tree mortality, whereas there is no direct association between red turpentine beetle colonization and red pine tree mortality...

  10. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa.

    Science.gov (United States)

    Huber, D P W; Erickson, M L; Leutenegger, C M; Bohlmann, J; Seybold, S J

    2007-06-01

    We have identified cDNAs and characterized the expression of 13 novel cytochrome P450 genes of potential importance in host colonization and reproduction by the California fivespined ips, Ips paraconfusus. Twelve are of the Cyp4 family and one is of the Cyp9 family. Following feeding on host Pinus ponderosa phloem, bark beetle transcript levels of several of the Cyp4 genes increased or decreased in males only or in both sexes. In one instance (IparaCyp4A5) transcript accumulated significantly in females, but declined significantly in males. The Cyp9 gene (Cyp9T1) transcript levels in males were > 85 000 x higher at 8 h and > 25 000 x higher at 24 h after feeding compared with nonfed controls. Transcript levels in females were approximately 150 x higher at 24 h compared with nonfed controls. Cyp4G27 transcript was present constitutively regardless of sex or feeding and served as a better housekeeping gene than beta-actin or 18S rRNA for the real-time TaqMan polymerase chain reaction analysis. The expression patterns of Cyp4AY1, Cyp4BG1, and, especially, Cyp9T1 in males suggest roles for these genes in male-specific aggregation pheromone production. The differential transcript accumulation patterns of these bark beetle P450s provide insight into ecological interactions of I. paraconfusus with its host pines.

  11. Effectiveness of permethrin plus-C (Masterline®) and carbaryl (Sevin SL®) for protecting individual, high-value pines from bark beetle attack

    Science.gov (United States)

    Christopher J. Fettig; Thomas E. DeGomez; Kenneth E. Gibson; Christopher J. Dabney; Robert R. Borys

    2006-01-01

    Bark beetles (Coleoptera: Scolytidae) are commonly recognized as the most important mortality agent in western coniferous forests. High value trees, such as those located in residential, recreational, or administrative sites, are particularly susceptible to attack. Regardless of landowner objectives, tree losses in these unique environments generally have a...

  12. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates

    Science.gov (United States)

    Charles J. Mason; Kier D. Klepzig; Brian J. Kopper; Philip J. Kersten; Barbara L. Illman; Kenneth F. Raffa

    2015-01-01

    Conifers possess a suite of physiochemical defenses that protect their subcortical tissues from bark beetle -fungal complexes. These defenses include rapid induction of terpenoids and phenolics at the site of attack. Studies of the distribution, induction, and bioactivity of conifer terpenoids have focused heavily on monoterpenes. We assessed induction of diterpene...

  13. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    Science.gov (United States)

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  14. Assessing the threat posed by indigenous exotics: A case study of two North American bark beetle species

    Science.gov (United States)

    K. J. Dodds; D. W. Gilmore; S. J. Seybold

    2010-01-01

    The Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, was detected in 2001 in northern Minnesota outside its natural range and the range of its native hosts, Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco, and western larch, Larix occidentalis Nutt. Consecutive years of...

  15. Log bioassay of residual effectiveness of insecticides against bark beetles

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  16. Enhancing Stand Structure through Snag Creation in Northeastern U.S. Forests: Using Ethanol Injections and Bark Beetle Pheromones to Artificially Stress Red Maple and White Pine

    Directory of Open Access Journals (Sweden)

    Kevin J. Dodds

    2016-06-01

    Full Text Available We investigated two methods to create white pine and red maple snags in a forested setting. The first involved injecting trees with ethanol at two times (single Ethanol (ETOH and double ETOH injections to increase attractiveness to insects and elicit attacks on trees. The second method was unique to white pines and involved both injection treatments in combination with baiting trees with Ips-specific pheromones. Three of five white pines from the double ETOH treatment died in the second year. Species including Ips pini (Say, Ips grandicollis Eichhoff, Orthotomicus caelatus Eichhoff, Crypturgus borealis Swaine and Monochamus notatus (Drury responded more strongly to at least one of the treatments over control trees. However, there were no differences found in individual Scolytinae or Cerambycidae species response to treatments in red maple. Fitness (FV/FM and vitality (PIabs were both significantly reduced in both ETOH treatments compared to controls in white pine. In red maple, fitness was reduced in the double ETOH treated trees but the final mean FV/FM values were within the approximate optimal of health. Ethanol injections, in combination with Ips-specific semiochemicals, show promise for creating standing coarse woody debris (CWD in white pine. Injecting ethanol was not effective for stressing red maple.

  17. Restoring fire in lodgepole pine forests of the Intermountain west

    Science.gov (United States)

    Colin C. Hardy; Ward W. McCaughey

    1997-01-01

    We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...

  18. Limber pine seed and seedling planting experiment in Waterton Lakes National Park, Canada

    Science.gov (United States)

    Cyndi M. Smith; Graeme Poll; Cameron Gillies; Celina Praymak; Eileen Miranda; Justin Hill

    2011-01-01

    Limber pine plays an important role in the harsh environments in which it lives, providing numerous ecological services, especially because its large, wingless seeds serve as a high energy food source for many animals. Limber pine populations are declining due to a combination of white pine blister rust, mountain pine beetle, drought, and fire suppression. Outplanting...

  19. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  20. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  1. Effect of Oxygen on Verbenone Conversion From cis-Verbenol by Gut Facultative Anaerobes of Dendroctonus valens

    Directory of Open Access Journals (Sweden)

    Qingjie Cao

    2018-03-01

    Full Text Available Since its introduction from North America, Dendroctonus valens LeConte has become a destructive forest pest in China. Although gut aerobic bacteria have been investigated and some are implicated in beetle pheromone production, little is known about the abundance and significance of facultative anaerobic bacteria in beetle gut, especially with regards to effects of oxygen on their role in pheromone production. In this study, we isolated and identified gut bacteria of D. valens adults in an anaerobic environment, and further compared their ability to convert cis-verbenol into verbenone (a multi-functional pheromone of D. valens under different O2 concentrations. Pantoea conspicua, Enterobacter xiangfangensis, Staphylococcus warneri were the most frequently isolated species among the total of 10 species identified from beetle gut in anaerobic conditions. Among all isolated species, nine were capable of cis-verbenol to verbenone conversion, and the conversion efficiency increased with increased oxygen concentration. This O2-mediated conversion of cis-verbenol to verbenone suggests that gut facultative anaerobes of D. valens might play an important role in the frass, where there is higher exposure to oxygen, hence the higher verbenone production. This claim is further supported by distinctly differential oxygen concentrations between gut and frass of D. valens females.

  2. 3-Methylcyclohex-2-en-1-one for area and individual tree protection against spruce beetle (Coleoptera: Curculionidae: Scolytinae) attack in the southern Rocky Mountains

    Science.gov (United States)

    E. Matthew Hansen; A. Steven Munson; Darren C. Blackford; Andrew D. Graves; Tom W. Coleman; L. Scott. Baggett

    2017-01-01

    We tested 3-methylcyclohex-2-en-1-one (MCH) and an Acer kairomone blend (AKB) as repellent semiochemicals for area and single tree protection to prevent spruce beetle (Dendroctonus rufipennis Kirby) attacks at locations in Utah and New Mexico. In the area protection study, we compared host infestation rates of MCH applications at three densities (20, 40, and 80 g MCH...

  3. Assessment of loblolly pine decline and site conditions on Fort Benning Military Reservation, GA

    Science.gov (United States)

    Roger D. Menard; Lori G. Eckhardt; Nolan J. Hess

    2010-01-01

    A decline of loblolly pine (Pinus taeda L.), characterized by expanding areas of declining and dead trees, has become prevalent at Fort Benning, GA. A 3-year study was conducted to determine the kinds of fungi, insects, and site disturbances associated with this problem. The insects Dendroctonus terebrans, Hylastes salebrosus, H. tenuis, Pachylobius picivorus...

  4. A 20-year reassessment of the health and status of whitebark pine forests in the Bob Marshall Wilderness Complex, Montana

    Science.gov (United States)

    Molly L. Retzlaff; Signe B. Leirfallom; Robert E. Keane

    2016-01-01

    Whitebark pine plays a prominent role in high elevation ecosystems of the northern Rocky Mountains. It is an important food source for many birds and mammals as well as an essential component of watershed stabilization. Whitebark pine is vanishing from the landscape due to three main factors: white pine blister rust, mountain pine beetle outbreaks, and successional...

  5. Effectiveness of Cedar Oil Products for Preventing Host Use by Ips avulsus (Eichhoff) (Coleoptera: Curculionidae) in a Modified Small-Bolt Assay

    Science.gov (United States)

    B. L. Strom; L. M. Roton

    2011-01-01

    Insecticide products based on cedar oil are readily available, but evaluations against pine bark beetles (Coleoptera: Curculionidae: Scolytinae) are lacking. In the southeastern U.S., the southern pine beetle, Dendroctonus frontalis Zimm, is the major bark beetle pest for which tree protectants are applied. However, Ips avulsus (Eichhoff) are more consistently...

  6. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  7. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact.

    Science.gov (United States)

    Skłodowski, Jarosław; Garbalińska, Paulina

    2011-01-01

    Ground beetle assemblages were studied during 2003-08 in the Pisz Forest by comparing stands disturbed by a tornado to undisturbed control stands. The following exploratory questions were put forward. (1) How do the carabid assemblages change during six years following the tornado impact? (2) Does the carabid assemblage recovery begin during the six first post-tornado years? To assess the state of carabid assemblages we used two indices: the MIB (Mean Individual Biomass) and the SPC (Sum of Progressive Characteristics). Carabid assemblages in the disturbed and in the control stands, as expressed by these two indices, were compared using the length of a regression distance (sample distance in a MIB:SPC coordinate system). A cluster analysis revealed that the assemblages of the disturbed and the control stands were different. The tornado-impacted stands produced lower carabid catch rates, but species richness was significantly higher there than in the control stands. They hosted lower proportions of individuals of European species, of large zoophages, and of forest and brachypterous species, than the control stands. The observed reduction in SPC and MIB, and an increase in the regression distances may indicate that the carabid assemblages had not started to recover from the tornado-caused disturbance. Carabid assemblages apparently responded to the tornado in two steps. Firstly, the first three years were characterized by moderate decreases of index values. Secondly, from the fourth to the sixth year after the tornado, many observed changes became magnified. We did not observe clear signals of the recovery of forest carabid assemblages during the six follow-up years.

  8. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  9. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Costello, Cecily M.; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L.; Gunther, Kerry A.; Bjornlie, Daniel D.

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  10. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Science.gov (United States)

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  11. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Science.gov (United States)

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  12. Health, reproduction, and fuels in whitebark pine in the Frank Church River of No Return Wilderness Area in central Idaho (Project INT-F-05-02)

    Science.gov (United States)

    Lauren Fins; Ben Hoppus

    2013-01-01

    Whitebark pine (Pinus albicaulis Engelm.) is in serious decline across its range, largely due to the combined effects of Cronartium ribicola J. C. Fisch (an introduced fungal pathogen that causes white pine blister rust), replacement by late successional species, and widespread infestation of mountain pine beetle (...

  13. Pheromone biosynthesis in bark beetles.

    Science.gov (United States)

    Tittiger, Claus; Blomquist, Gary J

    2017-12-01

    Pine bark beetles rely on aggregation pheromones to coordinate mass attacks and thus reproduce in host trees. The structural similarity between many pheromone components and those of defensive tree resin led to early suggestions that pheromone components are metabolic derivatives of ingested precursors. This model has given way to our current understanding that most pheromone components are synthesized de novo. Their synthesis involves enzymes that modify products from endogenous metabolic pathways; some of these enzymes have been identified and characterized. Pheromone production is regulated in a complex way involving multiple signals, including JH III. This brief review summarizes progress in our understanding of this highly specialized metabolic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  15. Variable-retention harvesting as a silvicultural option for lodgepole pine

    Science.gov (United States)

    Christopher R. Keyes; Thomas E. Perry; Elaine K. Sutherland; David K. Wright; Joel M. Egan

    2014-01-01

    Bark beetle-induced mortality in forested landscapes of structurally uniform, even-aged lodgepole pine stands has inspired a growing interest in the potential of silvicultural treatments to enhance resilience by increasing spatial and vertical complexity. Silvicultural treatments can simulate mixed-severity disturbances that create multiaged lodgepole pine stands,...

  16. Can early thinning and pruning lessen the impact of pine plantations ...

    African Journals Online (AJOL)

    dwelling insects found in pine tree plantations in Patagonia. We compared the abundance, species richness and composition of the beetle and ant assemblages within 16-year-old pine stands (n = 10) subjected to early pruning and thinning (i.e. ...

  17. Presence of carbaryl in the smoke of treated lodgepole and ponderosa pine bark

    Science.gov (United States)

    Chris J. Peterson; Sheryl L. Costello

    2013-01-01

    Lodgepole and ponderosa pine trees were treated with a 2% carbaryl solution at recreational areas near Fort Collins, CO, in June 2010 as a prophylactic bole spray against the mountain pine beetle. Bark samples from treated and untreated trees were collected one day following application and at 4-month intervals for one year. The residual amount of carbaryl was...

  18. Plant defenses and climate change: doom or destiny for the lodgepole pine?

    Science.gov (United States)

    Lodgepole pine is a species of great importance to the forestry industry of British Columbia. However, recent climate-change associated outbreaks of insect pests (i.e. the mountain pine beetle) and diseases (Dothistroma needle blight) have limited productivity of stands throughout its northern range...

  19. Sex Pheromone of Conophthorus ponderosae (Coleoptera: Scolytidae) in a Coastal Stand of Western White Pine (Pinaceae)

    Science.gov (United States)

    Daniel R. Miller; Harold D. Pierce; Peter de Groot; Nicole Jeans-Williams; Robb Bennett; John H. Borden

    2000-01-01

    An isolated stand of western white pine, Pinus monticola Dougl. ex D. Don, on Texada Island (49°40'N, 124°10'W), British Columbia, is extremely valuable as a seed-production area for progeny resistant to white pine blister rust, Cronartium ribicola J.C. Fisch. (Cronartiaceae). During the past 5 years, cone beetles, ...

  20. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    Science.gov (United States)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  1. Model-based time-series analysis of FIA panel data absent re-measurements

    Science.gov (United States)

    Raymond L. Czaplewski; Mike T. Thompson

    2013-01-01

    An epidemic of lodgepole pine (Pinus contorta) mortality from the mountain pine beetle (Dendroctonus ponderosae) has swept across the Interior West. Aerial surveys monitor the areal extent of the epidemic, but only Forest Inventory and Analysis (FIA) field data support a detailed assessment at the tree level. Dynamics of the lodgepole pine population occur at a more...

  2. Habitat preferences of ground beetle (Coleoptera: Carabidae) species in the northern Black Hills of South Dakota.

    Science.gov (United States)

    Bergmann, David J; Brandenburg, Dylan; Petit, Samantha; Gabel, Mark

    2012-10-01

    Ground beetles (Coleoptera: Carabidae) are a major component of terrestrial invertebrate communities and have been used as bioindicators of habitat change and disturbance. The Black Hills of South Dakota is a small area with a high biodiversity, but the ground beetles of this region are little studied. The habitat preferences of ground beetles in the Black Hills are unknown, and baseline data must be collected if these beetles are to be used in the future as bioindicators. Ground beetles (Coleoptera: Carabidae) were collected from pitfall traps at two sites in each of five kinds of habitats (grassland, bur oak-ironwood forests, ponderosa pine-common juniper forests, aspen-pine forests, and a spruce forest) from which habitat structure characteristics and plant abundance data also were collected. In total, 27 species of ground beetles were identified. Although some species, such as Dicaelus sculptilis Say were found in most habitats, other species showed distinct habitat preferences: Poecilus lucublandus (Say) preferred oak forests, Pasimachus elongatus LeConte preferred grasslands, and Calathus ingratus Dejean preferred high-elevation aspen-pine forests. Pterostichus adstrictus Escholtz was found only in woodlands, and Carabus taedatus Say strictly in higher elevation (over 1,500 m) aspen or coniferous woods, and may represent relict populations of boreal species. Elevation, exposure to sunlight, and cover of woody plants strongly influence the structure of carabid communities in the Black Hills.

  3. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coloptera) colonizing red pine

    Science.gov (United States)

    Italo Jr. Delalibera; Archana Vasanthakumar; Benjamin J. Burwitz; Patrick D. Schloss; Kier D. Klepzig; Jo Handelsman; Kenneth F. Raffa

    2007-01-01

    The gut bacterial community of a bark beetle, the pine engraver Ips pini (Say), was characterized using culture-dependent and culture-independent methods. Bacteria from individual guts of larvae, pupae and adults were cultured and DNA was extracted from samples of pooled larval guts. Analysis of 16S rRNA gene sequences amplified directly from the gut...

  4. Limited response of ponderosa pine bole defenses to wounding and fungi.

    Science.gov (United States)

    Gaylord, Monica L; Hofstetter, Richard W; Kolb, Thomas E; Wagner, Michael R

    2011-04-01

    Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.

  5. Attraction of Tomicus yunnanensis (Coleoptera: Scolytidae to Yunnan Pine Logs with and without Periderm or Phloem: An Effective Monitoring Bait

    Directory of Open Access Journals (Sweden)

    Rong Chun Lu

    2012-01-01

    Full Text Available The Yunnan pine shoot beetle, Tomicus yunnanensis Kirkendall and Faccoli (Coleoptera: Scolytinae is an important pest of Yunnan pine (Pinus yunnanensis Franch in China. Experiments with host log baits were done to develop a pest monitoring system using host tree kairomone. Five Yunnan pine logs (each 10–15 cm diam. × 30-cm long in a trap-log bundle were treated by peeling periderm (outer bark off to expose the phloem, and half of each log was covered with sticky adhesive to capture any attracted adult beetles. Significantly, more beetles were attracted and caught on the periderm-peeled logs (ca 30 beetles/m2 log surface/day than on untreated control logs with adhesive (ca 2.5/m2/day. No significant differences were observed between catches on logs taken from lower or upper halves of Yunnan pines. T. yunnanensis flies mostly during the afternoon according to trap catches throughout the day. Attraction to the periderm-peeled logs decreased considerably when they were peeled further to remove the phloem, indicating phloem volatiles play a role in selection of the host by the beetle. The readily-available log baits appear useful for monitoring pine shoot beetle populations in integrated pest management programs.

  6. Response of Dendroctonus mexicanus (Hopkins) to two optical isomers of verbenone

    Science.gov (United States)

    Vicente Diaz-Nunez; Guillermo Sanchez-Martinez; Nancy E. Gillette

    2006-01-01

    Given the need for diminishing the use of pesticides in natural environments, in this research we investigated the efficacy of two optical isomers of verbenone (4, 6, 6-trimethylbicyclo[3.1.1] hepto-3-en-e-1) as controls of the attack of Dendroctonus mexicanus (Hopkins) (Coleoptera: Curculionidae: Scolytinae).Two experiments were established in the...

  7. Area-wide efficacy of a localized forest pest management practice

    Science.gov (United States)

    J.T. Cronin; P. Turchin; J.L. Hayes; C.A. Steiner

    1999-01-01

    Few experimental studies have examined the movement of forest pest populations, particularly in response to management tactics that disrupt the growth of pest infestations.We quantified the interinfestation patterns of dispersal of the southern pine beetle, Dendroctonus frontalis, by monitoring the fates of marked beetles after emergence from small natural infestations...

  8. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility

    Science.gov (United States)

    K.A. Novick; G.G. Katul; H.R. McCarthy; R. Oren

    2012-01-01

    Warmer climates induced by elevated atmospheric CO2 (eCO2) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO2 on resin production—the tree’s primary defense against beetle attack—remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO2 are not consumed by respiration...

  9. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  10. Development of a satellite-based hazard rating system for Dendrctonus frontallis (Coleoptera: Scolytidae) in the Ouachita Mountains of Arkansas

    Science.gov (United States)

    Stephen Cook; Shane Cherry; Karen Humes; James Guldin; Christopher Williams

    2007-01-01

    The southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), is the most damaging forest insect pest of pines (Pinus spp.) throughout the southeastern United States. Hazard rating schemes have been developed for D. frontalis, but for these schemes to be accurate and effective, they...

  11. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression.

    Science.gov (United States)

    Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W

    2012-12-01

    Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined.

  12. Pre-visual detection of stress in pine forests

    Science.gov (United States)

    Olson, C. E., Jr.

    1977-01-01

    Pre-visual, or early, detection of forest stress with particular reference to detection of attacks by pine bark beetles is discussed. Preliminary efforts to obtain early detection of attacks by pine bark beetles, using MSS data from the ERIM M-7 scanner, were not sufficiently successful to demonstrate an operational capability, but indicate that joint processing of the 0.71 to 0.73, 2.00 to 2.60, and 9.3 to 11.7 micrometer bands holds some promise. Ratio processing of transformed data from the 0.45 to 0.52, 1.55 to 2.60, and 4.5 to 5.5 or 9.3 to 11.7 micrometer regions appears even more promising.

  13. Bark beetles, pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking

    Science.gov (United States)

    Previous studies have provided evidence that monoterpene odors from healthy host Scotch pine (Pinus sylvestris) and non-host Norway spruce (Picea abies) significantly reduce the attraction of flying bark beetles, Pityogenes bidentatus, to their aggregation pheromone components (grandisol and cis-ver...

  14. Nonmarket benefits of reducing environmental effects of potential wildfires in beetle-killed trees: A contingent valuation study

    Science.gov (United States)

    Maryam Tabatabaei; John B. Loomis; Daniel W. McCollum

    2015-01-01

    We estimated Colorado households’ nonmarket values for two forest management options for reducing intensity of future wildfires and associated nonmarket environmental effects wildfires. The first policy is the traditional harvesting of pine beetle-killed trees and burning of the slash piles of residual materials on-site. The second involves harvesting but moving the...

  15. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Directory of Open Access Journals (Sweden)

    A. R. Berg

    2013-03-01

    Full Text Available Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect and increased emissions in trees under attack (attack effect. We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR Community Earth System Model (CESM to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response. Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia and 2008 (US. Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness

  16. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  17. Resinosis Inhibits Monochamus spp. (Coleoptera: Cerambycidae) Colonization of Healthy Shortleaf Pines in Southeastern United States.

    Science.gov (United States)

    Ethington, Matthew W; Galligan, Larry D; Stephen, Fred M

    2018-05-14

    The genus Monochamus Dejean (Coleoptera: Cerambycidae) includes large, woodboring, longhorned beetles, which colonize pine trees in North America. Many authors have classified the genus as saprophagous, but one recent study reported successful colonization of standing jack pine trees (Pinus banksiana Lamb.) (Pinales: Pinaceae) following severe wind disturbance in Minnesota. We tested whether two Monochamus species native to the southeastern United States (M. titillator (Fabricius) and M. carolinensis (Olivier)) could successfully colonize healthy shortleaf pines (Pinus echinata Mill.) (Pinales: Pinaceae) in recently harvested stands without coincident abiotic or biotic stressors, such as lightning strikes or bark beetle attacks. We attached commercially available semiochemical lures, including monochamol, ethanol, and ipsenol, to healthy shortleaf pine trees and observed Monochamus spp. oviposition response. Egg development was monitored following oviposition by harvesting attacked trees and dissecting oviposition pits. High numbers of oviposition pits were observed on trees treated with lures containing the bark beetle pheromone ipsenol and pits were highly concentrated on the tree bole near lures. Although egg deposition occurred, pit dissection revealed large amounts of resin present in almost all dissected pits and that egg hatch and subsequent larval development were rare. Our results demonstrate that southeastern Monochamus spp. are unlikely to be primary pests of healthy shortleaf pines due to resinosis. To better understand the host finding behavior of these two Monochamus species, we also conducted trapping trials with several semiochemical combinations. Both species and sexes demonstrated similar attraction to compounds, and the most attractive lure combined host volatiles, pheromone, and sympatric insect kairomone.

  18. Ponderosa pine resin defenses and growth: metrics matter.

    Science.gov (United States)

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  19. Feeding response of Ips paraconfusus to phloem and phloem metabolites of Heterobasidion annosum-inoculated ponderosa pine, Pinus ponderosa.

    Science.gov (United States)

    McNee, William R; Bonello, Pierluigi; Storer, Andrew J; Wood, David L; Gordon, Thomas R

    2003-05-01

    In studies of feeding by the bark beetle, Ips paraconfusus, two pine stilbenes (pinosylvin and pinosylvin methyl ether), ferulic acid glucoside, and enantiomers of the four most common sugars present in ponderosa pine phloem (sucrose, glucose, fructose, and raffinose) did not stimulate or reduce male feeding when assayed on wet alpha-cellulose with or without stimulatory phloem extractives present. When allowed to feed on wet alpha-cellulose containing sequential extracts (hexane, methanol, and water) of ponderosa pine phloem, methanol and water extractives stimulated feeding, but hexane extractives did not. Males confined in wet alpha-cellulose containing aqueous or organic extracts of culture broths derived from phloem tissue and containing the root pathogen. Heterobasidion annosum, ingested less substrate than beetles confined to control preparations. In an assay using logs from uninoculated ponderosa pines, the mean lengths of phloem in the digestive tracts increased as time spent feeding increased. Males confined to the phloem of basal logs cut from ponderosa pines artificially inoculated with H. annosum ingested significantly less phloem than beetles in logs cut from trees that were (combined) mock-inoculated or uninoculated and did not contain the pathogen. However, individual pathogen-containing treatments were not significantly different from uninoculated controls. It was concluded that altered feeding rates are not a major factor which may explain why diseased ponderosa pines are colonized by I. paraconfusus.

  20. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    International Nuclear Information System (INIS)

    Hicke, Jeffrey A; Meddens, Arjan J H; Kolden, Crystal A; Allen, Craig D

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984–2010, fires killed trees that contained 5–11 Tg C year −1 and during 1997–2010, beetles killed trees that contained 2–24 Tg C year −1 , with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5–10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States. (letter)

  1. Host-Tree Monoterpenes and Biosynthesis of Aggregation Pheromones in the Bark Beetle Ips paraconfusus

    Directory of Open Access Journals (Sweden)

    John A. Byers

    2012-01-01

    Full Text Available A paradigm developed in the 1970s that Ips bark beetles biosynthesize their aggregation pheromone components ipsenol and ipsdienol by hydroxylating myrcene, a host tree monoterpene. Similarly, host α-pinene was hydroxylated to a third pheromone component cis-verbenol. In 1990, however, we reported that amounts of ipsenol and ipsdienol produced by male Ips paraconfusus (Coleoptera: Scolytinae feeding in five host pine species were nearly the same, even though no detectable myrcene precursor was detected in one of these pines (Pinus sabiniana. Subsequent research showed ipsenol and ipsdienol are also biosynthesized from smaller precursors such as acetate and mevalonate, and this de novo pathway is the major one, while host tree myrcene conversion by the beetle is the minor one. We report concentrations of myrcene, α-pinene and other major monoterpenes in five pine hosts (Pinus ponderosa, P. lambertiana, P. jeffreyi, P. sabiniana, and P. contorta of I. paraconfusus. A scheme for biosynthesis of ipsdienol and ipsenol from myrcene and possible metabolites such as ipsenone is presented. Mass spectra and quantities of ipsenone are reported and its possible role in biosynthesis of aggregation pheromone. Coevolution of bark beetles and host trees is discussed in relation to pheromone biosynthesis, host plant selection/suitability, and plant resistance.

  2. Ponderosa pine ecosystems

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  3. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  4. Single and combination insecticides evaluated as regulatory immersion treatments to eliminate third-instar Japanese beetle (Coleoptera: Scarabaeidae) from small diameter field-grown and containerized nursery plants

    Science.gov (United States)

    Japanese beetles, Popillia japonica Newman, are a nursery regulatory pest. Immersion of field-grown plants harvested as balled and burlapped (B&B) or container plants grown in pine bark substrates in a solution of chlorpyrifos or bifenthrin is allowed for certification in the Domestic Japanese Beet...

  5. Walking response of the Mediterranean pine engraver, Orthotomicus erosus, to novel plant odors host in a laboratory olfactometer

    Science.gov (United States)

    A. J. Walter; R. C. Venette; S. A. Kells; S. J. Seybold

    2010-01-01

    When an herbivorous insect enters a new geographic area, it will select host plants based on short and long distance cues. A conifer-feeding bark beetle that has been recently introduced to North America, the Mediterranean pine engraver, Orthotomicus erosus (Wollaston), has a potentially wide host range, especially among members of the Pinaceae....

  6. Inter- and Intrapopulation Variation of the Pheromone, Ipsdienol Produced by Male Pine Engravers Ips pini (Say) (Coleoptera: Scolytidae)

    Science.gov (United States)

    D.R. Miller; J.H. Borden; K.N. Slessor

    1989-01-01

    We determined the chirality of ipsdienol in individual male pine engravers, Ips pini (Say), from New York, California, and two localities in British Columbia (BC). Both quantity and chirality of ipsdienol varied significantly between and within populations of I. pini . Beetles from California and southeastern BC produced...

  7. Integrated Pest Management of the Southern Pine Beetle

    Science.gov (United States)

    Robert N. Coulson; Hannu Saarenmaa

    2011-01-01

    Integrated pest management (IPM) is the maintenance of destructive agents, including insects, at tolerable levels by the planned use of a variety of preventive, suppressive, or regulatory tactics and strategies that are ecologically and economically efficient and socially and politically acceptable. It is explicit that the actions taken are fully integrated into the...

  8. 76 FR 1339 - Pine Shoot Beetle; Additions to Quarantined Areas

    Science.gov (United States)

    2011-01-10

    ... Domestic Programs, PPQ, APHIS, 4700 River Road Unit 26, Riverdale, MD 20737-1231; (301) 734-5705... distorted growth in host trees. Large infestations of PSB typically kill most of the lateral shoots near the...

  9. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  10. Metal fate and partitioning in soils under bark beetle-killed trees.

    Science.gov (United States)

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  11. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests

    Science.gov (United States)

    David J. P. Moore; Nicole A. Trahan; Phil Wilkes; Tristan Quaife; Britton B. Stephens; Kelly Elder; Ankur R. Desai; Jose Negron; Russell K. Monson

    2013-01-01

    Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no...

  12. Distinguishing Bark Beetle-infested Vegetation by Tree Species Types and Stress Levels using Landsat Data

    Science.gov (United States)

    Sivanpillai, R.; Ewers, B. E.; Speckman, H. N.; Miller, S. N.

    2015-12-01

    In the Western United States, more than 3 million hectares of lodgepole pine forests have been impacted by the Mountain pine beetle outbreak, while another 166,000 hectares of spruce-fir forests have been attacked by Spruce beetle. Following the beetle attack, the trees lose their hydraulic conductivity thus altering their carbon and water fluxes. These trees go through various stages of stress until mortality, described by color changes in their needles prior to losing them. Modeling the impact of these vegetation types require thematically precise land cover data that distinguishes lodgepole pine and spruce-fir forests along with the stage of impact since the ecosystem fluxes are different for these two systems. However, the national and regional-scale land cover datasets derived from remotely sensed data do not have this required thematic precision. We evaluated the feasibility of multispectral data collected by Landsat 8 to distinguish lodgepole pine and spruce fir, and subsequently model the different stages of attack using field data collected in Medicine Bow National Forest (Wyoming, USA). Operational Land Imager, onboard Landsat 8 has more spectral bands and higher radiometric resolution (12 bit) in comparison to sensors onboard earlier Landsat missions which could improve the ability to distinguish these vegetation types and their stress conditions. In addition to these characteristics, its repeat coverage, rigorous radiometric calibration, wide swath width, and no-cost data provide unique advantages to Landsat data for mapping large geographic areas. Initial results from this study highlight the importance of SWIR bands for distinguishing different levels of stress, and the need for ancillary data for distinguishing species types. Insights gained from this study could lead to the generation of land cover maps with higher thematic precision, and improve the ability to model various ecosystem processes as a result of these infestations.

  13. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.

    Science.gov (United States)

    Kulakowski, Dominik; Veblen, Thomas T; Bebi, Peter

    2016-01-01

    The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis) in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand-replacing fires were

  14. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Dominik Kulakowski

    Full Text Available The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand

  15. Approaches to studying environmental effects on resistance of Pinus taeda L. to Dendroctonus frontalis Zimmermann

    Science.gov (United States)

    Peter L. Lorio

    1996-01-01

    There are a number of ways to approach the problem of assessing the effects of environmental conditions, such as water regime, on tree physiological responses and resistance to bark beetle attack.It helps to keep in mind that environmental factors operate throught physiological processes (Fig. 1, and Kramer 1986), and that there are concepts, such as plant growth-...

  16. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations

    DEFF Research Database (Denmark)

    Aukema, Brian H.; Zhu, Jun; Møller, Jesper

    2010-01-01

    , however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed...... within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts......, and elevated temperature slightly accentuates this effect. New gaps can arise from such trees as they subsequently become epicenters for the full complex of organisms associated with this decline, but this is not common. As Ips populations rise, there is some element of positive feedback...

  17. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  18. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  19. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    Science.gov (United States)

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  20. Ground beetle populations near a kraft mill

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, R.; Hastings, L.; Mercer, W.R.; Smith, A.

    1973-02-01

    Twenty species of ground beetles (Family Carabidae) and one species of carrion beetle (Family Silphidae) were collected in six stations east of a kraft paper mill in Thunder Bay, Ontario, from May to August, 1971. The beetle population decreased markedly towards the mill. There was no apparent statistical difference in size variation of specimens near the mill and those further away.

  1. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  2. Densities of breeding birds and changes in vegetation in an alaskan boreal forest following a massive disturbance by spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.

    2001-01-01

    We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.

  3. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors

    Science.gov (United States)

    Byers, John A.; Zhang, Qing-He; Birgersson, Göran

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine (Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and ``green-leaf'' alcohols, several of which (e.g., 1-octene-3-ol and β-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  4. Stability Analysis and Optimal Control Strategy for Prevention of Pine Wilt Disease

    Directory of Open Access Journals (Sweden)

    Kwang Sung Lee

    2014-01-01

    Full Text Available We propose a mathematical model of pine wilt disease (PWD which is caused by pine sawyer beetles carrying the pinewood nematode (PWN. We calculate the basic reproduction number R0 and investigate the stability of a disease-free and endemic equilibrium in a given mathematical model. We show that the stability of the equilibrium in the proposed model can be controlled through the basic reproduction number R0. We then discuss effective optimal control strategies for the proposed PWD mathematical model. We demonstrate the existence of a control problem, and then we apply both analytical and numerical techniques to demonstrate effective control methods to prevent the transmission of the PWD. In order to do this, we apply two control strategies: tree-injection of nematicide and the eradication of adult beetles through aerial pesticide spraying. Optimal prevention strategies can be determined by solving the corresponding optimality system. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that reducing the number of pine sawyer beetles is more effective than the tree-injection strategy for controlling the spread of PWD.

  5. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta).

    Science.gov (United States)

    Bratt, K; Sunnerheim, K; Nordenhem, H; Nordlander, G; Langström, B

    2001-11-01

    Pine weevils (Hylobius abietis) fed less on bark of lodgepole pine (Pinus contorta) than on bark of Scots pine (P. sylvestris). Two pine weevil antifeedants, ethyl trans-cinnamate and ethyl 2,3-dibromo-3-phenyl-propanoate, were isolated from bark of lodgepole pine. These two compounds significantly reduced pine weevil feeding in a laboratory bioassay. In field assays, the second compound significantly decreased pine weevil damage on planted seedlings. Ethyl 2,3-dibromo-3-phenylpropanoate has not previously been reported as a natural product.

  6. Importance of log size on host selection and reproductive success of Ips pini (Coleoptera: Scolytidae) in ponderosa pine slash of northern Arizona and western Montana

    Science.gov (United States)

    Brytten E. Steed; Michael R. Wagner

    2004-01-01

    Pine engraver, Ips pini (Say), often use thinning slash, and their populations are known to be influenced by the condition of this material. In our study, we evaluated the importance of three log diameters (5, 10, and 20 cm) and three lengths (60, 120, and 240 cm) on various parameters of bark beetle host attack, development, and emergence....

  7. Whitebark pine planting guidelines

    Science.gov (United States)

    Ward McCaughey; Glenda L. Scott; Kay L. Izlar

    2009-01-01

    This article incorporates new information into previous whitebark pine guidelines for planting prescriptions. Earlier 2006 guidelines were developed based on review of general literature, research studies, field observations, and standard US Forest Service survival surveys of high-elevation whitebark pine plantations. A recent study of biotic and abiotic factors...

  8. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Cullingham, Catherine I; Cooke, Janice E K; Coltman, David W

    2013-10-01

    Forest trees exhibit a remarkable range of adaptations to their environment, but as a result of frequent and long-distance gene flow, populations are often only weakly differentiated. Lodgepole and jack pine hybridize in western Canada, which adds the opportunity for introgression through hybridization to contribute to population structure and (or) adaptive variation. Access to large sample size, high density SNP datasets for these species would improve our ability to resolve population structure, parameterize introgression, and separate the influence of demography from adaptation. To accomplish this, 454 transcriptome reads for lodgepole and jack pine were assembled using Newbler and MIRA, the assemblies mined for SNPs, and 1536 SNPs were selected for typing on lodgepole pine, jack pine, and their hybrids (N = 536). We identified population structure using both Bayesian clustering and discriminate analysis of principle components. Introgressed SNP loci were identified and their influence on observed population structure was assessed. We found that introgressed loci resulted in increased differentiation both within lodgepole and jack pine populations. These findings are timely given the recent mountain pine beetle population expansion in the hybrid zone, and will facilitate future studies of adaptive traits in these ecologically important species.

  9. Sugar pine and its hybrids

    Science.gov (United States)

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  10. Tree physiology and bark beetles

    Science.gov (United States)

    Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood

    2015-01-01

    Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...

  11. Radiosensitivity of red flour beetle tribolium castaneum

    International Nuclear Information System (INIS)

    Sattar, A.; Khattak, S.; Hamed, M.

    1992-07-01

    In this report radiosensitivity of red beetle has been discussed. Red flour beetle is the most injurious pest causing great losses to stored grain. Radiation is one of the best tools of insect control. Different radiation doses (50 to 200 krads) were employed for different age groups from 1 to 60 days. It is concluded from these results that 200 krad radiation dose caused 100% mortality in red beetle in all age group. (A.B.)

  12. Siberian Pine Decline and Mortality in Southern Siberian Mountains

    Science.gov (United States)

    Kharuk, V. I.; Im, S. T.; Oskorbin, P. A.; Petrov, I. A.; Ranson, K. J.

    2013-01-01

    The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650 m, and extended up to 900 m by the year 2012. Mortality was accompanied by a decrease in MODIS derived vegetation index (EVI).. The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7 deg - 20 deg range with greatest mortality occurring on convex terrain. Tree radial incrementmeasurements correlate and were synchronous with SPEI (r sq = 0.37, r(sub s) = 80). Increasing synchrony between tree ring growth and SPEI indicates that drought has reduced the ecological niche of Siberian pine. The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC, within the southern part of its range may be replaced by drought-resistant Pinus silvestris and Larix sibirica.

  13. Should ponderosa pine be planted on lodgepole pine sites?

    Science.gov (United States)

    P.H. Cochran

    1984-01-01

    Repeated radiation frosts caused no apparent harm to the majority of lodgepole pine (Pinus contorta Dougl.) seedlings planted on a pumice flat in south-central Oregon. For most but not all of the ponderosa pine (Pinus ponderosa Dougl.) seedlings planted with the lodgepole pine, however, damage from radiation frost resulted in...

  14. What do dung beetles eat?

    DEFF Research Database (Denmark)

    Holter, Peter; Scholtz, Clarke H.

    2007-01-01

    Most adult coprophagous beetles feed on fresh dung of mammalian herbivores, confining ingestion to small particles with measured maximum diameters from 2-5 to 130 µm, according to body size and kind of beetle. This study explores benefits and costs of selective feeding in a ‘typical' dung beetle...... that of elephant and rhino (40-58%) was available to selective feeders. 3. Nitrogen concentrations were high - and C/N ratios low - in most types of bulk dung compared with the average food of terrestrial detritivores or herbivores. Exceptions were elephant and rhino dung with low nitrogen concentrations and high...... C/N ratios. 4. Estimated C/N ratios of 13-39 in bulk dung (sheep-elephant) were decreased by selective feeding to 7.3-12.6 in the ingested material. In assimilated food, ratios are probably only 5-7, as most assimilable nitrogen and carbon may be of microbial origin. If so, the assimilable food...

  15. Responses of arthropods to large-scale manipulations of dead wood in loblolly pine stands of the southeastern United States.

    Science.gov (United States)

    Ulyshen, Michael D; Hanula, James L

    2009-08-01

    Large-scale experimental manipulations of dead wood are needed to better understand its importance to animal communities in managed forests. In this experiment, we compared the abundance, species richness, diversity, and composition of arthropods in 9.3-ha plots in which either (1) all coarse woody debris was removed, (2) a large number of logs were added, (3) a large number of snags were added, or (4) no coarse woody debris was added or removed. The target taxa were ground-dwelling arthropods, sampled by pitfall traps, and saproxylic beetles (i.e., dependent on dead wood), sampled by flight intercept traps and emergence traps. There were no differences in total ground-dwelling arthropod abundance, richness, diversity, or composition among treatments. Only the results for ground beetles (Carabidae), which were more species rich and diverse in log input plots, supported our prediction that ground-dwelling arthropods would benefit from additions of dead wood. There were also no differences in saproxylic beetle abundance, richness, diversity, or composition among treatments. The findings from this study are encouraging in that arthropods seem less sensitive than expected to manipulations of dead wood in managed pine forests of the southeastern United States. Based on our results, we cannot recommend inputting large amounts of dead wood for conservation purposes, given the expense of such measures. However, the persistence of saproxylic beetles requires that an adequate amount of dead wood is available in the landscape, and we recommend that dead wood be retained whenever possible in managed pine forests.

  16. Some ecological, economic, and social consequences of bark beetle infestations

    Science.gov (United States)

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  17. Monitoring Asian longhorned beetles in Massachusetts

    Science.gov (United States)

    Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover

    2011-01-01

    An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...

  18. Acoustic characteristics of rhinoceros beetle stridulations

    Science.gov (United States)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  19. Biology of Pityophthorus pulchellus tuberculatus (Coleoptera: Curculionidae: Scolytinae) in Lodgepole Pine in Northern Idaho.

    Science.gov (United States)

    Furniss, Malcolm M; Kegley, Sandra J

    2018-04-19

    The twig beetle, Pityophthorus pulchellus tuberculatus Eichhoff, infests dead branches of pines in western United States and Canada, including lodgepole pine, Pinus contorta Douglas, in northern Idaho. Adult broods overwintered in their host and emerged and colonized new hosts in late April. Males initiated galleries and were joined by up to seven females, each of which constructed an egg gallery radiating from a central chamber. Galleries had an average of 4.7 egg niches each with an egg that was large relative to the mother beetle. Two larval instars were recognized. Dentition of larval mandibles differed in shape from that in literature. Mature larvae pupated either in a cell excavated on the wood surface or in a cell below the wood surface. First-generation adults mined extensively in the inner bark and wood before emerging to infest new trees in late June. Their progeny became adults beginning in early August and likewise mined and fed on the inner bark and wood before overwintering. Predacious beetles present as larvae in the galleries included Enoclerus lecontei (Wolcott) (Coleoptera: Cleridae) and Lasconotus sp. (Coleoptera: Zopheridae). Parasitoid Hymenoptera reared from infested trees were Cosmophorus pityophthori Rohwer (Braconidae), Phasmidiasta n. sp. (Braconidae), Spathius sp. (Braconidae), Acerocephala n. sp. (Pteromalidae), Metacolus fasciatus Girault (Pteromalidae), Rhaphitelus maculatus Walker (Pteromalidae), Rhopalicus sp. (Pteromalidae), and an unidentified pteromalid.

  20. Coexistence and Competition between Tomicus yunnanensis and T. minor (Coleoptera: Scolytinae in Yunnan Pine

    Directory of Open Access Journals (Sweden)

    Rong Chun Lu

    2012-01-01

    Full Text Available Competition and cooperation between bark beetles, Tomicus yunnanensis Kirkendall and Faccoli and Tomicus minor (Hartig (Coleoptera: Scolytinae were examined when they coexisted together in living Yunnan pine trees (Pinus yunnanensis Franchet in Yunnan province in Southwest China. T. yunnanensis bark beetles were observed to initiate dispersal from pine shoots to trunks in November, while the majority of T. minor begins to transfer in December. T. yunnanensis mainly attacks the top and middle parts of the trunk, whereas T. minor mainly resides in the lower and middle parts of the trunk. The patterns of attack densities of these two species were similar, but with T. yunnanensis colonizing the upper section of the trunk and T. minor the lower trunk. The highest attack density of T. Yunnanensis was 297 egg galleries/m2, and the highest attack density of T. minor was 305 egg galleries/m2. Although there was significant overlap for the same bark areas, the two species generally colonize different areas of the tree, which reduces the intensity of competition for the relatively thin layer of phloem-cambium tissues where the beetles feed and reside.

  1. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    Science.gov (United States)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  2. Metal fate and partitioning in soils under bark beetle-killed trees

    Energy Technology Data Exchange (ETDEWEB)

    Bearup, Lindsay A., E-mail: lbearup@mines.edu [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Mikkelson, Kristin M. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Wiley, Joseph F. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Navarre-Sitchler, Alexis K.; Maxwell, Reed M. [Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Sharp, Jonathan O.; McCray, John E. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid–liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of

  3. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  4. Ground beetles as indicators of past management of old-growth forests

    Directory of Open Access Journals (Sweden)

    Mazzei A

    2017-06-01

    Full Text Available Old-growth forests are terrestrial ecosystems with the highest level of biodiversity and the main environments for the study of conservation and dynamics of the forest system. In Mediterranean Europe, two millennia of human exploitation deeply altered the structural complexity of the native forests. Some animal groups, including insects, may be used as a proxy of such changes. In this paper we explored the possible effects of forest management on the functional diversity (species traits of carabid beetle communities. Three old-growth forests of the Sila National Park were sampled by pitfall traps set up in pure beech, beech-silver fir and Calabrian black pine forests. In each forest, five managed vs. five unmanaged stands were considered. Managed sites were exploited until the sixties of the past century and then left unmanaged. More than 6000 carabid specimens belonging to 23 species were collected. The functional diversity in carabid groups is influenced by forest management especially in beech and beech-silver fir stands. Body size, specialized predators, endemic species and forest species were negatively affected by stand management. On the contrary, omnivorous ground beetles populations (or species with a high dispersal power (macropterous and large geographic distribution were positively influenced by stand management. In pine forests the old-growth community seems less sensitive to past management and more affected by soil evolution. Soil erosion and disturbance may reduce species diversity of ground beetles. Anyway, the composition of the carabid community shows that 50-60 years of forest restoration are enough for the reconstruction of a fairly diverse assemblage reflecting a “subclimax” situation.

  5. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera

    Directory of Open Access Journals (Sweden)

    Robertson Gordon

    2010-10-01

    Full Text Available Abstract Background Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics. Results We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture conditions, and Sanger sequenced the 5' and 3' ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs. The assembled dataset of unique transcripts (unigenes consists of 6,265 contigs and 2,459 singletons that mapped to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes. Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination, and genes involved in response to treatment with lodgepole pine phloem extract (LPPE. Conclusions We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies in de novo assembled EST collections caused by gene overlap on the genome.

  6. Does bristlecone pine senesce?

    Science.gov (United States)

    R.M Lanner; Kristina F. Connor

    2001-01-01

    We evaluated hypotheses of senscence in old trees by comparing putative biomarkers of aging in great basin bristlecone pine ( Pinus longaeva) ranging in age from 23 to 4713 years. To teast a hypothesis that water and nutrient conduction is impaired in old trees we examined cambial products in the xylem and phloem. We found no statiscally significant...

  7. Diseases of lodgepole pine

    Science.gov (United States)

    Frank G. Hawksworth

    1964-01-01

    Diseases are a major concern to forest managers throughout the lodgepole pine type. In many areas, diseases constitute the primary management problem. As might be expected for a tree that has a distribution from Baja California, Mexico to the Yukon and from the Pacific to the Dakotas, the diseases of chief concern vary in different parts of the tree's range. For...

  8. Smoke hardiness of pines

    Energy Technology Data Exchange (ETDEWEB)

    Pelz, E

    1958-01-01

    It has been determined in East Germany that some species of pines are more susceptible to the damaging effects of sulfates than others. On sites that are deficient in nutrients, the trees were found to be more susceptible to injuries. Pinus nigra was the most resistant, then Pinus strobus was next, and Pinus sylvestris was the most sensitive.

  9. Landscape Biology of Western White Pine: Implications for Conservation of a Widely-Distributed Five-Needle Pine at Its Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Patricia E. Maloney

    2016-04-01

    Full Text Available Throughout much of the range of western white pine, Pinus monticola Dougl., timber harvesting, fire exclusion and the presence of Cronartium ribicola J. C. Fisch., the white pine blister rust (WPBR pathogen, have led to negative population and genetic consequences. To address these interactions, we examined population dynamics and genetic diversity in 10 populations of western white pine in upper montane forests of the Lake Tahoe Basin. We documented negative population trends for three of the 10 populations. These populations exhibited low estimated growth rates (λ, moderate to high incidences of WPBR and mountain pine beetle (MPB, and high levels of mortality. In contrast, seven populations appear to be stable (λ ≥ 1.0, with low to moderate disease and insect incidence, and evidence for genetic resistance to WPBR. Genetic diversity (HE for a set of 160 single nucleotide polymorphisms was in the range of 0.245–0.272 across populations, and population-specific estimates of FST ranged from 0.0062 to 0.0244. Allele frequency of the Cr2 gene, which confers complete resistance to C. ribicola in western white pine, was low, averaging 0.009 for all populations sampled. However, a low frequency of pollen receptors (i.e., susceptible maternal parents pollinated by a local resistant parent was found in nine of 10 populations. A moderate and negative relationship was found between the frequency of pollen receptors in a population and the incidence of WPBR (r2 = 0.32. In the context of an introduced pathogen, climate driven outbreaks of MPB, fire exclusion, and prolonged drought, conservation and management strategies are warranted for this species in the Lake Tahoe Basin and likely other locations in California. These strategies include gene conservation of western white pine, WPBR resistance screening, and forest restoration treatments.

  10. Asian longhorned beetle complicates the relationship ...

    Science.gov (United States)

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb

  11. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Science.gov (United States)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  12. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    Science.gov (United States)

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in

  13. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  14. Perry Pinyon Pines Protection Project

    Science.gov (United States)

    Daniel McCarthy

    2012-01-01

    Fuel reduction treatments around pinyon pine trees began as a simple project but ended in something more complex, enjoyable, and rewarding. The project eventually led to pinyon species (Pinus monophylla and P. quadrifolia) reforestation efforts, something that has been tried in the past with disappointing results. The Perry Pinyon Pines Protection Project and current...

  15. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  16. The ground-beetles (Coleoptera, Carabidae) of Nukatlinskiy watershed

    OpenAIRE

    G. M. Nahibasheva; Sh. M. Imanaliev

    2008-01-01

    The article is devoted to studying of ground-beetles fauna of Nukatlinskiy watershed of Republic Dagestan. For the first time the specific structure of ground-beetles this area, the numbering 109 kinds concerning 31 sort is resulted. The analysis of sexual structure of populations and seasonal dynamics of activity ground-beetles is lead.

  17. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  18. The Austrian x red pine hybrid

    Science.gov (United States)

    W. B. Critchfield

    1963-01-01

    The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...

  19. Carbon sequestration and natural longleaf pine ecosystems

    Science.gov (United States)

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  20. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory.

    Science.gov (United States)

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.

  1. Long-horned Beetles (Coleoptera: Cerambycidae and Tortoise Beetles (Chrysomelidae: Cassidinae of Tripura, northeastern India with some new additions

    Directory of Open Access Journals (Sweden)

    B.K. Agarwala

    2012-10-01

    Full Text Available This paper reports the occurrence of nineteen species of Long-horned Beetles (Cerambycidae and eleven species of Tortoise Beetles (Cassidinae from Tripura state, northeastern India. These include 11 species of Cerambycidae and seven species of Cassidinae, respectively, as new records from the state. Distribution of these beetles in different parts of the state are provided.

  2. Mechanical properties of timber deteriorated by beetles in ancient buildings: an experimental analysis

    Directory of Open Access Journals (Sweden)

    Sandra Mendes

    2018-01-01

    Full Text Available The purpose of this study is to analyse the loss of physical-mechanical properties of pine wood from old buildings (100 to 200 years old deteriorated by wood boring beetle (Anobium punctatum, De Geer and aims to contribute to the safety assessment of structural elements in buildings. The effect of degradation can be considered by assuming the reduction of cross-section properties in case of Anobium punctatum degradation, since the galleries formed within the wood are usually surrounded by a considerable amount of sound wood. In this study, a new methodology was developed for qualitative estimation of degradation levels, which was promising. They were then correlated with results of compression tests parallel to the fibers in specimens with 30×30×90 mm: compressive strength, modulus of elasticity and plastic extension. It has been found that, even at relatively important levels of degradation, the loss of properties is small to moderate.

  3. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...

  4. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    Science.gov (United States)

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  5. Ground beetles of the Ukraine (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Alexander Putchkov

    2011-05-01

    Full Text Available A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species of the lowlands of southern Ukraine (sandy biotopes, situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  6. Studies on tiger beetles : 84. Additions to the tiger beetle fauna of Sulawesi, Indonesia (Coleoptera: Cicindelidae)

    NARCIS (Netherlands)

    Cassola, F.

    1996-01-01

    Distributional new data are provided for several interesting or poorly known tiger beetle species from Sulawesi, Indonesia. The generic attribution of Wallacedela brendelli Cassola, 1991, is confirmed, and moreover two new species, Wallacedela? problematica spec. nov. and Wallacedela butonensis

  7. Pine weevil feeding in Scots pine and Norway spruce regenerations

    OpenAIRE

    Wallertz, Kristina

    2009-01-01

    Damage caused by the pine weevil, Hylobius abietis (L) feeding on conifer seedlings is a major problem in reforested areas in many parts of Europe. The adult weevil feeds on the stem-bark of young seedlings, frequently killing a large proportion of newly planted seedlings. The aims of the studies underlying this thesis were to investigate whether additional food supplies could decrease the damage caused by pine weevil to seedlings, and to determine whether access to extra food might explain w...

  8. Utilization of the southern pines

    Energy Technology Data Exchange (ETDEWEB)

    Koch, P

    1972-01-01

    After several years out of print, this book is again available. The two-volume reference characterizes the southern pine tree as raw material and describes the process by which it is converted to use. All 10 species are considered. The book is addressed primarily to the incoming generation of researchers and industrial managers in the southern pine industry. Foremen, superintendents, quality control personnel, wood procurement men, forest managers, extension workers, professors, and students of wood technology should find the handbook of value.

  9. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    Science.gov (United States)

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  10. BEETLE - A modular electronics family for robotics

    CSIR Research Space (South Africa)

    Dickens, J

    2015-11-01

    Full Text Available of applications. A family of modular electronic elements is proposed to address this need. The Beautiful Embedded Electronic Logic Element (BEETLE) family of boards is designed to be compact, low cost, robust, reusable and easy to program. This allows the boards...

  11. Feeding stimulants for the colorado beetle

    NARCIS (Netherlands)

    Ritter, F.J.

    1967-01-01

    Potato leaf extract was fractionated and the fractions obtained were tested for their activity as feeding stimulants for Colorado beetle larvae. Also leaves and leaf extracts of different kinds of plants, as well as a number of known pure compounds and mixtures of them, were tested for this

  12. Bark beetle responses to vegetation management practices

    Science.gov (United States)

    Joel D. McMillin; Christopher J. Fettig

    2009-01-01

    Native tree-killing bark beetles (Coleoptera: Curculionidae, Scolytinae) are a natural component of forest ecosystems. Eradication is neither possible nor desirable and periodic outbreaks will occur as long as susceptible forests and favorable climatic conditions co-exist. Recent changes in forest structure and tree composition by natural processes and management...

  13. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  14. A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.

    Science.gov (United States)

    K.W. Seidel

    1989-01-01

    The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...

  15. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Science.gov (United States)

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  16. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    Science.gov (United States)

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  17. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  18. Nantucket Pine Tip Moth Control and Loblolly Pine Growth in Intensive Pine Culture: Two-Year Results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2004-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L. on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), and effects on pine growth over 2 years. Treatments were combinations of Velpar, Oust, and Arsenal...

  19. Prescribed Burn at Pine Bluff Arsenal

    National Research Council Canada - National Science Library

    Peacock, Lance

    2000-01-01

    .... Abandoned fields grew up in pine or in some cases were planted in pine during the 1930's. The burning of farm stubble and woodlands was a common practice in Arkansas throughout this time period...

  20. Southern Pine Based on Biorefinery Center

    Energy Technology Data Exchange (ETDEWEB)

    Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Singh, Preet [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  1. Spectral information as an orientation cue in dung beetles

    OpenAIRE

    el Jundi, Basil; Foster, James J.; Byrne, Marcus J.; Baird, Emily; Dacke, Marie

    2015-01-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue...

  2. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  3. Cloning and characterization of chitinases from interior spruce and lodgepole pine.

    Science.gov (United States)

    Kolosova, N; Breuil, C; Bohlmann, J

    2014-05-01

    Chitinases have been implicated in the defence of conifers against insects and pathogens. cDNA for six chitinases were cloned from interior spruce (Picea glauca x engelmannii) and four from lodgepole pine (Pinus contorta). The cloned interior spruce chitinases were annotated class I PgeChia1-1 and PgeChia1-2, class II PgeChia2-1, class IV PgeChia4-1, and class VII PgeChia7-1 and PgeChia7-2; lodgepole pine chitinases were annotated class I PcChia1-1, class IV PcChia4-1, and class VII PcChia7-1 and PcChia7-2. Chitinases were expressed in Escherichia coli with maltose-binding-protein tags and soluble proteins purified. Functional characterization demonstrated chitinolytic activity for the three class I chitinases PgeChia1-1, PgeChia1-2 and PcChia1-1. Transcript analysis established strong induction of most of the tested chitinases, including all three class I chitinases, in interior spruce and lodgepole pine in response to inoculation with bark beetle associated fungi (Leptographium abietinum and Grosmannia clavigera) and in interior spruce in response to weevil (Pissodes strobi) feeding. Evidence of chitinolytic activity and inducibility by fungal and insect attack support the involvement of these chitinases in conifer defense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Are we over-managing longleaf pine?

    Science.gov (United States)

    John S. Kush; Rebecca J. Barlow; John C. Gilbert

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is not loblolly (Pinus taeda L.) or slash pine (Pinus elliottii L.). There is the need for a paradigmatic shift in our thinking about longleaf pine. All too often we think of longleaf as an intolerant species, slow-grower, difficult to regenerate, and yet it dominated the pre...

  5. Guidelines for whitebark pine planting prescriptions

    Science.gov (United States)

    Glenda L. Scott; Ward W. McCaughey; Kay Izlar

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a keystone species in high-elevation ecosystems of the western United States. Unfortunately many fragile subalpine ecosystems are losing whitebark pine as a functional community component due to the combined effects of an introduced disease, insects and succession. Planting whitebark pine is one part of a multifaceted restoration...

  6. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The Mexican bean beetle (Epilachna varivestis regurgitome and insights into beetle-borne virus specificity.

    Directory of Open Access Journals (Sweden)

    Cassidy R Gedling

    Full Text Available For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant's defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle "regurgitome" and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions.

  8. Response of high elevation rocky mountain (Wyoming, USA) forest carbon dioxide and water vapor fluxes to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.

    2010-12-01

    The GLEES-AmeriFlux site is located in the Snowy Range Mountains, Medicine Bow National Forest, southeastern Wyoming [41o21’52” N, 106o14’22” W; 3190 m MSL]. Since November 1999, measurements of surface energy balance, momentum, CO2, and water vapor eddy-covariance fluxes have been made at the subalpine site which is dominated by an Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forest. An ongoing spruce beetle (Dendroctonus rufipennis) outbreak has caused significant tree mortality in the forest over the past few years. In this study we investigate the impact of this bark beetle epidemic on the net ecosystem exchange of carbon (NEE) and evapotranspiration (ET); to achieve this goal we quantify the impact of significant eddy-covariance measurement issues. From 2006 to 2009 the magnitude of NEE decreased steadily by an average of 0.8 MgC ha-1 yr-1, which resulted in the reduction of the annual C sink from 2.9 to 0.6 MgC ha-1 yr-1. Over this time ET decreased steadily from 72.2 to 58.3 cm yr-1. The importance of the Webb-Pearman-Leuning (WPL) correction due to self-heating associated with open-path CO2/H2O analyzers was quantified by applying a thermodynamic model based on (1) a generalized model for instrument surface temperatures and (2) measured and site-specific modeled surface temperatures. The increase in measured NEE (towards being a net C source) due to the generalized model (1) was 2.2 MgC ha-1 yr-1, while the site specific corrections (2) accounted for an increase of 2.8 MgC ha-1 yr-1. The self-heating correction was much less important with ET measurements, increasing the measured flux by 0.5 cm yr-1, regardless of which method of determining surface temperature was used.

  9. Atlas of Iberian water beetles (ESACIB database).

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format.

  10. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  11. Tenebrio beetles use magnetic inclination compass

    Science.gov (United States)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  12. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  13. Pine creek geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Ewers, G.R.; Ferguson, J.

    1988-01-01

    The Pine Creek Geosyncline is a 66,000 km 2 inlier of Early Proterozoic metasediments, mafic and felsic intrusives and minor extrusives, surrounding small late Archaean granitic domes. Economic uranium occurrences cluster into three fields, with the Alligator Rivers field being the most significant. The metasediments are alluvial and reduced shallow-water pelites and psammites. Evaporitic carbonate developed on shallow shelves around Archaean islands. Basin development and sedimentation (c. 2000-1870 Ma) were related to gradual subsidence induced by crustal extension. Facies variations and volcanism were in places controlled by the extensional faults. The rocks were metamorphosed to lower the high grade, complexly folded, and intruded by numerous granitoids from c. 1870 to 1730 Ma. Late orogenic felsic volcanics accumulated in local rift systems. Middle Proterozoic sandstone was deposited on a peneplaned and deeply weathered surface from about 1650 Ma. Uranium is enriched in some Archaean and Proterozoic igneous rocks, but there is no local or regional enrichment of the metasedimentary hosts or of the unconformably overlying sandstone. There is no regional gravity, magnetic or radiometric character attributable to the region's significance as a uranium province; contrasts with surrounding sedimentary basins reflect expected differences in rock properties between a heterogeneous igneous/metamorphic region and relatively homogeneous undeformed and unmineralized sediments. Uranium-enriched Archaean and Proterozoic granitoids and felsic volcanics with labile U are likely though not exclusive source rocks. U was probably transported in oxidized low temperature solutions as uranyl complexes and precipitated in reduced, structurally controlled, low-pressure traps. All uranium occurrences are broadly classified as 'Proterozoic unconformity related'. Greatest potential for further discovery is offered in the Alligator Rivers field, where perhaps at least 3 to 5.5 times the

  14. Pine needle abortion biomarker detected in bovine fetal fluids

    Science.gov (United States)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  15. Asteraceae - an evaluation of hutchinsons beetle-daisy hypothesis

    CSIR Research Space (South Africa)

    Midgley, JJ

    1993-05-01

    Full Text Available repel the beetles. However in this review of plant mimicry worldwide, it is considered an exceptionally intriguing example of Batesian mimicry. Despite the fact there still appears to be a dearth of information on the interaction between beetle...

  16. Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus

    NARCIS (Netherlands)

    Boeke, S.J.; Barnaud, B.; Loon, van J.J.A.; Kossou, D.K.; Huis, van A.; Dicke, M.

    2004-01-01

    Traditionally used African plant powders, with a known effect against the cowpea beetle Callosobruchus maculatus in stored cowpea, were extracted with water. The extracts, 13 volatile oils, 2 non-volatile oils and 8 slurries, were evaluated for their toxic and repellent effects against the beetle.

  17. Ecological interactions of bark beetles with host trees

    Science.gov (United States)

    Certain species of bark beetles in the insect order Coleoptera, family Curculionidae (formerly Scolytidae) are keystone species in forest ecosystems. However, the tree-killing and woodboring bark and ambrosia beetles are also among the most damaging insects of forest products including lumber, paper...

  18. Bark beetle outbreaks in western North America: Causes and consequences

    Science.gov (United States)

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff; Wood, David J. A.

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  19. 78 FR 27853 - Asian Longhorned Beetle; Quarantined Areas in Ohio

    Science.gov (United States)

    2013-05-13

    ...-0004] Asian Longhorned Beetle; Quarantined Areas in Ohio AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the Asian... to prevent the artificial spread of the Asian longhorned beetle to noninfested areas of the United...

  20. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  1. Influence of predators and parisitoids on bark beetle productivity

    Science.gov (United States)

    Jan Weslien

    1991-01-01

    In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....

  2. Chemical ecology and lure development for redbay ambrosia beetle

    Science.gov (United States)

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  3. Endocrine control of exaggerated traits in rhinoceros beetles

    Science.gov (United States)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  4. Complex interactions among host pines and fungi vectored by an invasive bark beetle

    Science.gov (United States)

    Min Lu; Michael J. Wingfield; Nancy E. Gillette; Sylvia R. Mori; Jian-Hua Sun

    2010-01-01

    Recent studies have investigated the relationships between pairs or groups of exotic species to illustrate invasive mechanisms, but most have focused on interactions at a single trophic level.Here, we conducted pathogenicity tests, analyses of host volatiles and fungal growth tests to elucidate an intricate network of interactions between the host...

  5. Environmental effects on pine tree carbon budgets and resistance to bark beetles

    Science.gov (United States)

    Richard T. Wilkens; Matthew P. Ayres; Peter L. Lorio; John D. Hodges

    1998-01-01

    Our results indicate that increased nutrient availability leads to an increase in growth and a reduction in resin-based defenses.Because of this, we recommend that foresters and planners consider the effect of fertilization and site fertility on both tree growth and SPB risk.Unfortunately, increased tree growth may frequently be associated with increased SPB risk.The...

  6. Longleaf Pine: An Updated Bibliography

    Science.gov (United States)

    John S. Kush; Ralph S. Meldahl; William D. Boyer; Charles K. McMahon

    1996-01-01

    The longleaf pine (Pinus palustris Mill.) forest figured prominently in the cultural and economic development of the South. What was once one of the most extensive forest ecosystems in North America has now become critically endangered (6). At the time of European settlement, this ecosystem dominated as much as 92 million acres throughout the...

  7. Fusiform Rust of Southern Pines

    Science.gov (United States)

    W. R. Phelps; F. L. Czabator

    1978-01-01

    Fusiform rust, caused by the fungus Cronartium fusiforme Hedg. & Hunt ex Cumm., is distributed in the Southern United States from Maryland to Florida and west to Texas and southern Arkansas. Infections by the fungus, which develops at or near the point of infection, result in tapered, spindle-shaped swells, called galls, on branches and stems of pines. (see photo...

  8. Nutrient Management in Pine Forests

    Science.gov (United States)

    Allan E. Tiarks

    1999-01-01

    Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...

  9. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    Directory of Open Access Journals (Sweden)

    Kristin M. Mikkelson

    2017-12-01

    Full Text Available Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions.

  10. Attraction of Cerambycid Beetles to Their Aggregation-Sex Pheromones Is Influenced by Volatiles From Host Plants of Their Larvae.

    Science.gov (United States)

    Wong, J C H; Zou, Y; Millar, J G; Hanks, L M

    2017-06-01

    Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Niche separation of pollen beetle parasitoids

    Directory of Open Access Journals (Sweden)

    Josef eBerger

    2015-05-01

    Full Text Available Species with similar resource requirements are commonly assumed to competitively exclude each other, unless they differentiate their ecological niches. Hence, parasitoid wasps that use the same host species need to find some way to avoid competition. The aim of this study was to identify the role of volatile cues from oilseed rape plants and the larval host in niche separation between three coexisting parasitoid species. We examined how Phradis interstitialis, Phradis morionellus and Tersilochus heterocerus, sympatric parasitoids of Brassicogethes aeneus, differ in their abundances, distribution on buds and flowers, and oviposition behavior in the field. Furthermore, we tested their preferences for odours from uninfested and infested oilseed rape plants in the bud and flowering stage, and their preferences for odours from three developmental stages of pollen beetle larvae in a two-choice olfactometer bioassay.P. interstitialis was active in the field early in the season, preferred odours of infested buds versus uninfested, and oviposited into buds which contained only pollen beetle eggs, while P. morionellus was active late in the season, preferred odours of infested buds as well as odours of infested flowers over uninfested, and oviposited into buds which contained only larvae. T. heterocerus was active throughout the season, and preferred odours of infested flowers over uninfested. Neither Phradis species were attracted to larval odours, whereas T. heterocerus was attracted to odours from first-instar pollen beetle larvae both in the absence of plant odours, and when presented simultaneously with uninfested plant odour.This suggests that the two Phradis species are separated on a temporal scale and that they parasitize different host stages, while the larval parasitoids P. morionellus and T. heterocerus are separated by choice of microhabitat. The former oviposits into larvae in buds, and the latter in flowers.

  12. Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)

    Science.gov (United States)

    2017-02-01

    longleaf pine forests (Figure 1) for the diverse values they provide. These forests afford abundant recreational opportunities like hiking , bird...combined herbicide-fertilizer treatments that might benefit planted longleaf pine seedlings after planting. In addition to measuring longleaf pine

  13. Tip moth control and loblolly pine growth in intensive pine culture: four year results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2006-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...

  14. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  15. Bio-composites made from pine straw

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  16. Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.

    Science.gov (United States)

    Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E

    2018-07-01

    Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  18. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  19. Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2005-01-01

    Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.

  20. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    International Nuclear Information System (INIS)

    Biro, L.P.

    2010-01-01

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  1. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  2. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel

  3. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  4. Patterns of movement of radioactive carabid beetles

    International Nuclear Information System (INIS)

    Baars, M.A.

    1980-01-01

    Tracking of individual 192 Ir-labelled ground beetles released in the field revealed that both the day-active and night-active species studied showed periods of small distances covered per day in random directions, alternating with periods of directed movement with large distances covered per day. This pattern occurred not only in the reproductive period but outside the breeding season as well in juvenile Pterostichus versicolor and spent Calathus melanocephalus. Although mean locomotory activity increased with temperature, great daily differences occurred between individuals, pointing to asynchronous behaviour. In an unfavorable habitat directed movement occurred both more frequently and more extremely, sometimes resulting in escape to more favorable areas. Most of the radioactive beetles died within 7 weeks due to radiation effects, but independent field experiments and simulations showed that the recorded patterns were valid. Simulated individuals of P. versicolor living on 1 ha spread over 49 ha, whereas simulated C. melanocephalus covered only 9 ha after one activity season. Normal locomotory activities lead to both exchange of individuals between subpopulations and dispersal out of the habitat. The significance of these phenomena for population stability and for the survival of the species is discussed. (orig.) [de

  5. Atlas of Iberian water beetles (ESACIB database)

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A.; Ribera, Ignacio

    2015-01-01

    Abstract The ESACIB (‘EScarabajos ACuáticos IBéricos’) database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the “Atlas de los Coleópteros Acuáticos de España Peninsular”. In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  6. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Takaku, Gen; Katakura, Haruo; Yoshida, Nobuyo

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i.e., ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus carab...

  7. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Gen, Takaku; Haruo, Katakura; Nobuyo, Yoshida; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Tohoku Agricultural Experiment Station

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i. e. , ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus car...

  8. The artificial beetle, or a brief manifesto for engineered biomimicry

    Science.gov (United States)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  9. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  10. Effect of food factor on microevolution of Colorado beetle

    Directory of Open Access Journals (Sweden)

    N. А. Ryabchenko

    2005-12-01

    Full Text Available Many-sided research of interaction of Colorado beetle and fodder plant (potato, nightshade sweetly-bitter defines the role of the plants as guiding factor of microevolutional processes in pest population.

  11. A new soldier beetle from Eocene Baltic amber

    Directory of Open Access Journals (Sweden)

    Fabrizio Fanti

    2017-11-01

    Full Text Available The family Cantharidae is a worldwide distributed group of flattened and soft-bodied beetles displaying aposematic colouration. These beetles, commonly known as soldier beetles, have an extensive fossil record dating back to the Lower Cretaceous. The majority of fossil material, referred to Cantharidae, is known from amber inclusions. In this paper we describe and illustrate a new soldier beetle Kuskaella macroptera gen. et sp. nov. from the Baltic amber. It is characterised by pronotum of the male parallel-sided in basal third and abruptly narrowed towards apex, and of the female gradually and steadily narrowing from the basal margin to the apex; globular head; unequal maxillary palpomeres with the last segment elongated-globular and pointed; long elytra slightly surpassing the last abdominal segment. This finding is the first described species of both sexes preserved in a single amber piece.

  12. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  13. Dynamics of whlte pine in New England

    Science.gov (United States)

    William B. Leak; J.B. Cullen; Thomas S. Frieswyk

    1995-01-01

    Analysis of growth, regeneration, and quality changes for white pine between the 1970's and 1980's in the six-state New England region. Growth rates seemed comparable among ail states except Rhode Island, where the percentage of growth (1.71%) seemed low. Over all states, the proportion of acreage in seedling/sapling white pine stands averaged too low (8%) to...

  14. Diprionidae sawflies on lodgepole and ponderosa pines

    Science.gov (United States)

    Eight species of Diprionidae feed on lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) in western United States: Neodiprion burkei Middleton, N. annulus contortae Ross, N. autumnalis Smith, N. fulviceps (Cresson), N. gillettei (Rohwer), N. mundus Rohwer, N. ventralis Ross, and Zadi...

  15. High elevation white pines educational website

    Science.gov (United States)

    Anna W. Schoettle; Michele Laskowski

    2011-01-01

    The high elevation five-needle white pines are facing numerous challenges ranging from climate change to invasion by a non-native pathogen to escalation of pest outbreaks. This website (http://www.fs.fed.us/rm/highelevationwhitepines/) serves as a primer for managers and the public on the high elevation North American five-needle pines. It presents information on each...

  16. Survey of microsatellite DNA in pine

    Science.gov (United States)

    Craig S. Echt; P. May-Marquardt

    1997-01-01

    A large insert genomic library from eastern white pine (Pinus strobus) was probed for the microsatellite motifs (AC)n and (AG)n, all 10 trinucleotide motifs, and 22 of the 33 possible tetranucleotide motifs. For comparison with a species from a different subgenus, a loblolly pine (Pinus taeda) genomic...

  17. Grading sugar pine saw logs in trees.

    Science.gov (United States)

    John W. Henley

    1972-01-01

    Small limbs and small overgrown limbs cause problems when grading saw logs in sugar pine trees. Surface characteristics and lumber recovery information for 426 logs from 64 sugar pine trees were examined. Resulting modifications in the grading specification that allow a grader to ignore small limbs and small limb indicators do not appear to decrease the performance of...

  18. Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes

    Science.gov (United States)

    R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel

    2005-01-01

    Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...

  19. State of pine decline in the southeastern United States

    Science.gov (United States)

    Lori Eckhardt; Mary Anne Sword Sayer; Don Imm

    2010-01-01

    Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...

  20. The health of loblolly pine stands at Fort Benning, GA

    Science.gov (United States)

    Soung-Ryoul Ryu; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Approximately two-thirds of the red-cockaded woodpecker (Picoides borealis) (RCW) groups at Fort Benning, GA, depend on loblolly pine (Pinus taeda) stands for nesting or foraging. However, loblolly pine stands are suspected to decline. Forest managers want to replace loblolly pine with longleaf pine (P. palustris...