WorldWideScience

Sample records for pinched flow fractionation

  1. Acoustic bubble enhanced pinched flow fractionation for microparticle separation

    International Nuclear Information System (INIS)

    Zhou, Ran; Wang, Cheng

    2015-01-01

    Pinched flow fractionation is a simple method for separating micron-sized particles by size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar to particle size and limited separation distance. In this paper, we developed an acoustic bubble enhanced pinched flow fractionation (PFF) method for microparticle separation. The proposed technique utilized microbubble streaming flows to overcome the limitations of conventional PFF. Our device has demonstrated separation of different sized microparticles (diameters 10 and 2 μm) with a larger pinched segment (60 μm) and at different buffer/particle solution flow rate ratios (5–25). The separation distances between particles are larger (as much as twice as large) than those achieved with conventional PFF. In addition, the separation position and distance can be adjusted by changing the driving voltage. The robust performance is due to the unique features of the flow field inside the pinched segment. We investigated several factors, including flow rate ratio, total flow rate and driving voltage, that affect the separation performance. (paper)

  2. Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment

    Science.gov (United States)

    Versluis, Michel; Kok, Maarten; Segers, Tim

    2014-11-01

    An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  3. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  4. IB-LBM study on cell sorting by pinched flow fractionation.

    Science.gov (United States)

    Ma, Jingtao; Xu, Yuanqing; Tian, Fangbao; Tang, Xiaoying

    2014-01-01

    Separation of two categories of cells in pinched flow fractionation(PFF) device is simulated by employing IB-LBM. The separation performances at low Reynolds number (about 1) under different pinched segment widths, flow ratios, cell features, and distances between neighboring cells are studied and the results are compared with those predicted by the empirical formula. The simulation indicates that the diluent flow rate should approximate to or more than the flow rate of particle solution in order to get a relatively ideal separation performance. The discrepancy of outflow position between numerical simulation and the empirical prediction enlarges, when the cells become more flexible. Too short distance between two neighboring cells could lead to cell banding which would result in incomplete separation, and the relative position of two neighboring cells influences the banding of cells. The present study will probably provide some new applications of PFF, and make some suggestions on the design of PFF devices.

  5. A Pressure Controlled Pinched Flow Fractionation Device for Continuous Particle Separation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Trosborg, Jacqueline; Tanzi, Simone

    2012-01-01

    In this work the problem of separating small particles of di↵erent sizes is solved by developing a simple microfluidic device using pinched flow fractionation (PFF), a technique originally presented by Yamada et al. in 2004 [1]. The present work takes the concept of PFF to the next level by makin...... Polymers GmbH) using a micro machined silicon master. The functionality of the device was confirmed using polymer beads, and by adjusting the pressure accordingly a complete separation of 2 μm and 4.5 μm beads was demonstrated....

  6. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  7. The ZaP Flow Z-Pinch Project

    International Nuclear Information System (INIS)

    Shumlak, U.; Nelson, B. A.

    2005-01-01

    The results from the ZaP experiment are consistent with the theoretical predictions of sheared flow stabilization. Z pinches with a sheared flow are generated in the ZaP experiment using a coaxial accelerator coupled to an assembly region. The current sheet in the accelerator initially acts as a snowplow. As the Z pinch forms, plasma formation in the accelerator transits to a deflagration process. The plasma exits the accelerator and maintains the flow in the Z pinch. During the quiescent period in the magnetic mode activity at z=0 cm, a stable Z pinch is seen on the axis of the assembly region. The evolution of the axial velocity profile shows a large velocity shear is measured at the edge of the Z pinch during the quiescent period. The velocity shear is above the theoretical threshold. As the velocity shear decreases towards 0.1kV A , the predicted stability threshold, the quiescent period ends. The present understanding of the ZaP experiment shows that it may be possible for the Z pinch to operate in a steady state if the deflagration process can be maintained by constantly supplying neutral gas or plasma to the accelerator

  8. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  9. Flow effects on the stability of z-pinches

    International Nuclear Information System (INIS)

    Shumlak, U.; Hartman, C.W.

    1996-01-01

    The effect of an axial flow on the m = 1 kink instability in z-pinches is studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. The derivation of the displacement equation for equilibria with axial flows will be presented. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principle result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. Fast z-pinches such as liner implosions are plagued by the Rayleigh-Taylor instability which destroys the liner and disrupts the current path before the liner arrives on axis. A sheared axial flow in a liner may quench the Rayleigh-Taylor instability in the same way that it quenches MHD instabilities in a diffuse z-pinch. Simulation results will be presented showing the effect of a sheared axial flow on the Rayleigh-Taylor instability in a fast liner implosion

  10. The ZaP Flow Z-Pinch Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, Uri [Univ. of Washington, Seattle, WA (United States); Nelson, Brian A. [Univ. of Washington, Seattle, WA (United States)

    2013-12-31

    The ZaP Flow Z-Pinch Project is a project to extend the performance of the flow Z-pinch experiment at the University of Washington to investigate and isolate the relevant physics of the stabilizing effect of plasma flow. Experimental plasmas have exhibited an enhanced stability under certain operating parameters which generate a flow state (axial flows in Z-pinches and VH mode in tokamaks). Flow has also been suggested as the stabilizing mechanism in astrophysical jets.

  11. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  12. The stability of Z-pinches with equilibrium flows

    International Nuclear Information System (INIS)

    Howell, D.F.

    1999-01-01

    According to Ideal Magnetohydrodynamic (MHD) theory the Z-pinch is an inherently unstable magnetic configuration. However it is possible that there exist regimes of operation whereby the predicted instabilities may be reduced or even eliminated. We must look to effects normally ignored in the Ideal MHD model in order to predict such regimes. In this thesis various non-ideal effects will be studied, namely the inclusion of equilibrium flow and finite Larmor radius effects. Astrophysical jets, for example those seen to be emitted from active galactic nuclei, are seen to persist for a greater time than suggested by Ideal MHD before the onset of instabilities. It is postulated that one of the contributing factors to this enhanced stability is the presence of a sheared axial flow. In this thesis we study the stability properties of the Z-pinch where flow is present in the equilibrium. It is found that a sheared axial flow generally has a stabilising effect, the degree of which is determined by the equilibrium and flow profiles, but that absolute stability cannot be achieved due to the onset of the Kelvin-Helmholtz instability. The effect of adding rotation has also been studied. It is found that adding rotation changes the equilibrium density profiles from the static case, and that it always has a destabilising effect. Another postulated method of stabilising the Z-pinch is by increasing the ratio of the ion Larmor radius to the pinch radius, and it is seen to have a stabilising effect for some equilibria in the collisionless regime. In this thesis we study the effects of increasing the Larmor radius in the collisional regime using the Hall fluid model. It is found that for free boundary modes the stability properties are unchanged for experimentally realistic values of the Larmor radius, but for fixed boundary modes a small stabilising effect is noted for some equilibria. (author)

  13. Bubble Pinch-Off in a Rotating Flow

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Andersen, Anders Peter; van der Meer, Devaraj

    2009-01-01

    We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases...... bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch...

  14. Pinch instabilities in Taylor-Couette flow.

    Science.gov (United States)

    Shalybkov, Dima

    2006-01-01

    The linear stability of the dissipative Taylor-Couette flow with an azimuthal magnetic field is considered. Unlike ideal flows, the magnetic field is a fixed function of a radius with two parameters only: a ratio of inner to outer cylinder radii, eta, and a ratio of the magnetic field values on outer and inner cylinders, muB. The magnetic field with 0rotation. The unstable modes are located into some interval of the axial wave numbers for the flow stable without magnetic field. The interval length is zero for a critical Hartmann number and increases with an increasing Hartmann number. The critical Hartmann numbers and length of the unstable axial wave number intervals are the same for every rotation law. There are the critical Hartmann numbers for m=0 sausage and m=1 kink modes only. The sausage mode is the most unstable mode close to Ha=0 point and the kink mode is the most unstable mode close to the critical Hartmann number. The transition from the sausage instability to the kink instability depends on the Prandtl number Pm and this happens close to one-half of the critical Hartmann number for Pm=1 and close to the critical Hartmann number for Pm=10(-5). The critical Hartmann numbers are smaller for kink modes. The flow stability does not depend on magnetic Prandtl numbers for m=0 mode. The same is true for critical Hartmann numbers for both m=0 and m=1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is approximately 10(2) G.

  15. A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch

    Science.gov (United States)

    McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.

    2017-10-01

    We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.

  16. Evidence of flow stabilization in the ZaP Z pinch experiment

    International Nuclear Information System (INIS)

    Shumlak, U.; Crawford, E.; Golingo, R.P.; Nelson, B.A.; Zyrmpas, A.; Den Hartog, D.J.; Holly, D.J.

    2001-01-01

    The stabilizing effect of an axial flow on the m = 1 kink instability in Z pinches has been studied numerically with a linearized ideal MHD model to reveal that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold. The sheared flow stabilizing effect is investigated with the flow-through Z pinch experiment, ZaP. An azimuthal array of surface mounted magnetic probes located at the midplane of the 50 cm long pinch plasma measures the fluctuation levels of the azimuthal modes m=1, 2, and 3. After pinch formation a quiescent period is found where the mode activity is reduced to a few percent of the average field. Optical images from a fast framing camera and a HeNe interferometer also indicate a stable pinch plasma during this time. Doppler shift measurements of a C-III line correspond to an axial flow velocity of 9.6x10 4 m/s internal to the pinch. During the time when the axial plasma flow is high, the plasma experiences a quiescent period which lasts approximately 800 exponential growth times predicted by linear theory for a static plasma. (author)

  17. Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches

    International Nuclear Information System (INIS)

    Peterson, D.L.; Bowers, R.L.; McLenithan, K.D.; Deeney, C.; Chandler, G.A.; Spielman, R.B.; Matzen, M.K.; Roderick, N.F.

    1998-01-01

    A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the total radiated energy and overpredict power) are due to the radially extended nature of the plasma shell, an effect which arises from the presence of magnetically driven Rayleigh endash Taylor instabilities. The magnetic Rayleigh endash Taylor instabilities differ substantially from hydrodynamically driven instabilities and typical measures of instability development such as e-folding times and mixing layer thickness are inapplicable or of limited value. A new measure of global instability development is introduced, tied to the imploding plasma mass, termed open-quotes fractional involved mass.close quotes Examples of this quantity are shown for the three experiments along with a discussion of the applicability of this measure. copyright 1998 American Institute of Physics

  18. Edge topology and flows in the reversed-field pinch

    International Nuclear Information System (INIS)

    Spizzo, G.; Agostini, M.; Scarin, P.; Vianello, N.; Cappello, S.; Puiatti, M. E.; Valisa, M.; White, R. B.

    2012-01-01

    Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices, playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010 Plasma Phys. Control. Fusion 52 095011). A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct the potential in the form Φ(ψ p , θ, ζ) (ψ p radial coordinate, θ, ζ angles), by means of the Hamiltonian guiding-centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more uniform over the toroidal angle. The final spatial distribution of Φ(ψ p , θ, ζ) results in a complex 3D pattern, with convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs and tokamaks. (paper)

  19. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    Science.gov (United States)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  20. The effects of shoulder load and pinch force on electromyographic activity and blood flow in the forearm during a pinch task

    DEFF Research Database (Denmark)

    Visser, Bart; Kofoed Nielsen, Pernille; de Kraker, Heleen

    2006-01-01

    loaded with 4.95 kg each) were combined with intermittent pinch forces at 0, 10 and 25% of the maximum voluntary contraction (MVC). Blood flow to the forearm was measured with Doppler ultrasound. Myoelectric activity of the forearm and neck-shoulder muscles was recorded to check for the workload levels....... Across all levels of shoulder load, blood flow increased significantly with increasing pinch force (21% at 10% MVC and by 44% at 25% MVC). Blood flow was significantly affected by shoulder load, with the lowest blood flow at the highest shoulder load. Interactions of pinch force and shoulder load were....... The results of this study indicate that shoulder load might influence blood flow to the forearm....

  1. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    Science.gov (United States)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Non-laminar flow model for the impedance of a rod-pinch diode

    International Nuclear Information System (INIS)

    Ottinger, Paul F.; Schumer, Joseph W.; Strasburg, Sean D.; Swanekamp, Stephen B.; Oliver, Bryan V.

    2002-01-01

    A previous laminar flow model for the rod-pinch diode is extended to include a transverse pressure term to study the effects of non-laminar flow. The non-laminar nature of the flow has a significant impact on the diode impedance. Results show that the introduction of the transverse pressure decreases the diode impedance predicted by the model bringing it into better agreement with experimental data

  3. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, M. C., E-mail: mchugs@uw.edu; Shumlak, U., E-mail: mchugs@uw.edu; Golingo, R. P., E-mail: mchugs@uw.edu; Nelson, B. A., E-mail: mchugs@uw.edu; Ross, M. P., E-mail: mchugs@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, WA 98195 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator’s neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  4. Preliminary results from the flow-through z-pinch experiments: ZaP

    International Nuclear Information System (INIS)

    Shumlak, U.; Nelson, B.A.; Goilingo, R.P.; Tang, D.; Crawford, E.; Hartog, D.J.D.; Holly, D.J.

    1999-01-01

    The stabilizing effect of an axial flow on the m = 1 kink instability in z-pinches has been studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principal result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value which is inversely proportional to the wavelength of the mode. This threshold value can be satisfied with a peak flow which is less than the Alfven speed for certain wavelengths. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. The flow stabilization agrees with experimental observations. The details of the theoretical development will be presented

  5. Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel

    2002-01-01

    The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes

  6. Pinched flow fractionation devices for detection of single nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Larsen, Asger Vig; Poulsen, Lena; Birgens, Henrik

    2008-01-01

    and 5.6 mu m were functionalized with biotin-labeled oligonucleotides for the detection of a mutant (Mt) or wild-type (Wt) DNA sequence in the HBB gene, respectively. Hybridization to functionalized beads was performed with fluorescent targets comprising synthetic DNA oligonucleotides or amplified RNA...

  7. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  8. Flow-through Z-pinch study for radiation generation and fusion energy production

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.L.; Moir, R.; Shumlak, U.

    1994-01-01

    We discuss a high-density fusion reactor which utilizes a flow-through Z pinch magnetic confinement configuration. Assessment of this reactor system is motivated by simplicity and small unit size (few hundred MWe) and immunity to plasma contamination made possible at high density. The type reactor discussed here would employ a liquid Li vortex as the first wall/blanket to capture fusion neutrons with minimum induced radioactivity and to achieve high wall loading and a power density of 200 w/cm 3

  9. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    Science.gov (United States)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  10. The effect of sheared axial flow on nonlinear Z-pinch dynamics

    International Nuclear Information System (INIS)

    Kassapakis, N.

    2000-01-01

    A two dimensional Eulerian fluid code has been used to study three problems related to Z-pinch and laser produced plasmas. a) The nonlinear evolution of a localised m=0 MHD mode neck is studied in order to extract some scaling laws for the size and form of the artificial neck. We examine whether the ubiquitous m=0 instability could be beneficially used to assist in the formation of a transient localised dense plasma. The results obtained were in satisfactory agreement with experiments and other theoretical work where available. b) The development of the m=0 instability on a Z-pinch although beneficial in the previous case, is detrimental from a stability point of view and thus to the utilisation of the device as a fusion reactor by itself. This is because the timescales of the instability development are faster than the confinement time needed for fusion to occur. Sheared axial flow is a proposed mechanism for the non-linear saturation of this particular instability. Indeed the linear growth rate also can be substantially reduced. It is hoped that it can inhibit the growth of the instabilities or at least delay their development sufficiently for fusion to take place. The numerical study of the effect of sheared axial flow on the nonlinear dynamics of the Z-pinch carried out, demonstrates that sheared flow with velocity u z z >4 Alfven speed other modes, of the Kelvin-Helmholtz type, are excited which take over from the fastest growing mode in the static case. c) The expansion of the ablated plasma in laser-solid interactions is an important phenomenon for a plethora of reasons one of which is ICF. The simulations were in direct agreement with previous experimental work regarding the bulk properties of the ablation surface. They also provided justification for some assumptions made during the analysis of the observations and helped to confirm the calibration of the diagnostics timewise. The most striking feature of the experiments, namely the density dip on the

  11. The Effect of Uniform Background Flow on Vortex Ring Formation and Pinch-off

    Science.gov (United States)

    Krueger, Paul S.; Dabiri, John O.; Gharib, Morteza

    2002-11-01

    Experimental investigations of vortex ring formation are extended to include the effects of a uniform background flow, in a manner relevant to the locomotion of aquatic animals utilizing jet propulsion. Gharib et. al. [J. Fluid Mech. 360, 121 (1998)] generated vortex rings using a piston/cylinder apparatus with relatively large discharge times to demonstrate that the vortex ring at the leading edge of the jet attains its maximum circulation at a piston stroke-to-diameter ratio L/D of 4. This "formation number" is robust over a range of piston motions and cylinder boundary conditions, and can be explained in terms of the Kelvin-Benjamin variational principle. To determine the effect of background flow on formation number and pinch-off of the leading vortex ring, uniform co-flow is established in a large annulus surrounding the vortex generator. The ratio of co-flow velocity to piston velocity is varied between 0 and 1. In addition, the co-flow is initiated at times both before and after the start of vortex ring formation. We present results for stroke ratios L/D = 2 and L/D = 8, in order to discern effects of the co-flow on the leading vortex ring in isolation and in the presence of a trailing jet.

  12. Study of flow and loss processes at the ends of a linear theta pinch. Progress report, June 1, 1978--May 31, 1979

    International Nuclear Information System (INIS)

    York, T.M.; Klevans, E.H.

    1979-02-01

    Experimental and analytical studies of end loss from a linear theta pinch have been carried out. Analysis of reduced data on loss from a 25 cm long theta pinch has indicated: rotation at the end of pinch collapse, which appears to persist; ejection of the plasma in two modes, the first of which includes reversed, trapped fields; unique patterns of radial and axial variation of electron density in the end loss flow; substantial inaccuracies in plasma properties indicated by spectroscopy as compared to Thomson scattering. Studies of loss in a 50 cm long pinch with 50 eV, 2 x 10 16 cm -3 plasma are underway

  13. Pinched Nerve

    Science.gov (United States)

    ... You are here Home » Disorders » All Disorders Pinched Nerve Information Page Pinched Nerve Information Page What research is being done? Within the NINDS research programs, pinched nerves are addressed primarily through studies associated with pain ...

  14. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  15. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  16. Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch

    Science.gov (United States)

    Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark

    2017-10-01

    In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  17. Coronary CT Angiography Derived Fractional Flow Reserve

    DEFF Research Database (Denmark)

    Nørgaard, Bjarne Linde; Jensen, Jesper Møller; Blanke, Philipp

    2017-01-01

    Purpose of Review: To summarize the scientific basis of CT derived fractional flow reserve (FFRCT) and present an updated review on the evidence from clinical trials and real-world observational data Recent Findings: In prospective multicenter studies of patients with stable coronary artery disea...... of patients with stable CAD. The optimal FFRCT testing interpretation strategy, as well as the relative cost-efficiency of FFRCT against standard noninvasive functional testing, need further investigation....

  18. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    OpenAIRE

    M. L. Kavvas; T. Tu; A. Ercan; J. Polsinelli

    2017-01-01

    Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally...

  19. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    Directory of Open Access Journals (Sweden)

    M. L. Kavvas

    2017-10-01

    Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.

  20. Linear and nonlinear development of m=0 instability in a diffuse Bennett Z-pinch equilibrium with sheared axial flow

    International Nuclear Information System (INIS)

    Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.

    2010-01-01

    The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.

  1. Study of flow and loss processes at the ends of a linear theta pinch. Progress report for the period June 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    York, T.M.; Klevans, E.H.

    1977-02-01

    Experimental and analytical studies initiating and supporting research on flow and energy losses at the ends of a linear theta pinch have been carried out. A 25 cm linear pinch coil has been driven by a 515,000 A discharge with 10 μsec half-cycle time supplied by a 100 μF, 18 kV energy storage system. With reliable preionization generated up to 400 mT He, current sheath behavior has been identified with magnetic loop probes and double loop probes. Spectroscopic determination of preionization has been made. A ruby laser Thomson scattering diagnostic has been designed and is being procured. A study of transient plasma behavior in a 10 cm theta pinch has been carried out with a Twyman-Green interferometer using a 7 mW He--Ne CW laser. Pressure, electric field, and velocity probe diagnostics have received preliminary testing. Design work has been completed for the doubling of pinch length and energy storage system. Studies of particle loss scaling and reactor scaling of linear theta pinch devices have been reported. Detailed calculations of plasma properties at the end of the pinch coil following expansion from the central coil have been carried out. A O--D, time dependent computer code that includes conduction, convection, and magnetic field diffusion has been developed. Predicted plasma behavior is in good agreement with experimental data

  2. Start-up assist by magnetized plasma flow injection in TPE-RX reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Nagata, M. [Graduate School of Engineering, University of Hyogo, Himeji (Japan); Koguchi, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Hirano, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Sakakita, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Yambe, K. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kiyama, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)

    2006-11-15

    A reversed-field pinch (RFP) start-up assisted by a magnetized plasma flow injection was demonstrated for the first time on a TPE-RX machine. This sequence of experiments aimed to establish a new method of ionization, gas-fill and helicity injection in the start-up phase of an RFP. In this start-up method, magnetized and well-ionized plasma is formed by a magnetized coaxial plasma gun and injected into the torus chamber as an initial pre-ionized plasma for RFP formation. In the initial experiments, attenuated density pump-out and comparatively slow decay of the toroidal flux and plasma current were observed as evidence of its being an effective start-up method.

  3. ExB flow shear and enhanced confinement in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.; Almagri, A.F.; Anderson, J.K.; Chiang, C.; Craig, D.; Fiksel, G.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Stoneking, M.R.; Terry, P.W.

    1998-01-01

    Strong ExB flow shear occurs in the edge of three types of enhanced confinement discharge in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch. Measurements in standard (low confinement) discharges indicate that global magnetic fluctuations drive particle and energy transport in the plasma core, while electrostatic fluctuations drive particle transport in the plasma edge. This paper explores possible contributions of ExB flow shear to the reduction of both the magnetic and electrostatic fluctuations and, thus, the improved confinement. In one case, shear in the ExB flow occurs when the edge plasma is biased. Biased discharges exhibit changes in the edge electrostatic fluctuations and improved particle confinement. In two other cases, the flow shear emerges (1) when auxiliary current is driven in the edge and (2) spontaneously, following sawtooth crashes. Both edge electrostatic and global magnetic fluctuations are reduced in these discharges, and both particle and energy confinement improve. copyright 1998 American Institute of Physics

  4. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  5. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  6. Correlation between coronary computed tomographic angiography and fractional flow reserve

    DEFF Research Database (Denmark)

    Kristensen, Thomas Skaarup; Engstrøm, Thomas; Kelbæk, Henning

    2010-01-01

    Coronary CT angiography (CCTA) has become an important modality to evaluate the presence of coronary artery disease. Coronary artery stenosis of intermediate severity remains a therapeutic dilemma. Measurement of fractional flow reserve (FFR) during coronary angiography is the most established...

  7. Granular flow through an aperture: Influence of the packing fraction

    Science.gov (United States)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  8. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    Science.gov (United States)

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  9. Evidence of fractional transport in point vortex flow

    International Nuclear Information System (INIS)

    Leoncini, Xavier; Kuznetsov, Leonid; Zaslavsky, George M.

    2004-01-01

    Advection properties of passive particles in flows generated by point vortices are considered. Transport properties are anomalous with characteristic transport exponent μ∼1.5. This behavior is linked back to the presence of coherent fractal structures within the flow. A fractional kinetic analysis allows to link the characteristic transport exponent μ to the trapping time exponent γ=1+μ. The quantitative agreement is found for different systems of vortices investigated and a clear signature is obtained of the fractional nature of transport in these flows

  10. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  11. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  12. Model for radial gas fraction profiles in vertical pipe flow

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2001-01-01

    A one-dimensional model is presented, which predicts the radial volume fraction profiles from a given bubble size distribution. It bases on the assumption of an equilibrium of the forces acting on a bubble perpendicularly to the flow path (non drag forces). For the prediction of the flow pattern this model could be used within an procedure together with appropriate models for local bubble coalescence and break-up. (orig.)

  13. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  14. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  15. Factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    colloidal material is illustrated through the evaluation of thermal diffusion coefficient of PS ... Field-flow fractionation (FFF) is a separation method introduced by Giddings in 1966 [1]. It is a ... no stationary phase is used in FFF. .... that the inversion diameter (diameter at which order of retention changes) can be shifted up or.

  16. factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    In this paper, we report a range of factors which affect the retention of colloidal particles in thermal field-flow fractionation (ThFFF). These results are observed among different sizes of polystyrene (PS) latex particles suspended in both aqueous and nonaqueous liquid carriers and very low density lipoproteins in a phosphate ...

  17. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Tonino, Pim A L; De Bruyne, Bernard; Pijls, Nico H J

    2009-01-01

    of maximal blood flow in a stenotic artery to normal maximal flow), in addition to angiography, improves outcomes. METHODS: In 20 medical centers in the United States and Europe, we randomly assigned 1005 patients with multivessel coronary artery disease to undergo PCI with implantation of drug......BACKGROUND: In patients with multivessel coronary artery disease who are undergoing percutaneous coronary intervention (PCI), coronary angiography is the standard method for guiding the placement of the stent. It is unclear whether routine measurement of fractional flow reserve (FFR; the ratio...

  18. Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve

    DEFF Research Database (Denmark)

    Chu, Miao; von Birgelen, Clemens; Li, Yingguang

    2018-01-01

    BACKGROUND AND AIMS: The relation between FFR and local coronary flow patterns is incompletely understood. We aimed at developing a novel hemodynamic index to quantify disturbed coronary flow, and to investigate its relationship with lesion-associated pressure-drop, and fractional flow reserve (F...

  19. Principles of transverse flow fractionation of microparticles in superhydrophobic channels.

    Science.gov (United States)

    Asmolov, Evgeny S; Dubov, Alexander L; Nizkaya, Tatiana V; Kuehne, Alexander J C; Vinogradova, Olga I

    2015-07-07

    We propose a concept of fractionation of micron-sized particles in a microfluidic device with a bottom wall decorated by superhydrophobic stripes. The stripes are oriented at an angle α to the direction of a driving force, G, which generally includes an applied pressure gradient and gravity. Separation relies on the initial sedimentation of particles under gravity in the main forward flow, and their subsequent lateral deflection near a superhydrophobic wall due to generation of a secondary flow transverse to G. We provide some theoretical arguments allowing us to quantify the transverse displacement of particles in the microfluidic channel, and confirm the validity of theoretical predictions in test experiments with monodisperse fractions of microparticles. Our results can guide the design of superhydrophobic microfluidic devices for efficient sorting of microparticles with a relatively small difference in size and density.

  20. Reactor advantages of the belt pinch and liquid metal walls

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Manickam, J.; Menard, J.; Rappaport, H.; Zheng Linjin; Dorland, B.; Miller, R.; Turnbull, A.

    2001-01-01

    MHD stability of highly elongated tokamaks (termed a belt pinch) are considered for high bootstrap fraction cases. By employing high triangularity or indentation, and invoking wall stabilization, and β can be increased by a factor of roughly 3 by increasing κ from 2 to 4. Axisymmetric stability up to κ=4 tolerable by employing a shell which conforms more closely to the boundary than in present experiments. Engineering difficulties with a close fitting shell in a reactor environment may be overcome by employing a liquid lithium alloy shell. Rapid metal flows can lead to potentially deleterious plasma shifts and damping of the flow. (author)

  1. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  2. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  3. On the Heating of Ions in Noncylindrical Z-Pinches

    Science.gov (United States)

    Svirsky, E. B.

    2018-01-01

    The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.

  4. CT Determination of Fractional Flow Reserve in Coronary Lesions

    Directory of Open Access Journals (Sweden)

    Mester András

    2016-12-01

    Full Text Available Invasively determined fractional flow reserve (FFR represents the gold-standard method for the functional evaluation of coronary lesions. Coronary computed tomography angiography (CCTA provides characterization of the coronary anatomy, with important morphological information on the atherosclerotic plaques, but does not offer a hemodynamic evaluation of coronary artery lesions. CT evaluation of FFR (FFRCT is a new noninvasive diagnostic method, which provides anatomical and functional assessment of the whole coronary tree, based on computational techniques, with no more radiation or hyperemic agent administration compared with routine CCTA. Recent studies demonstrated the safety and accuracy of FFRCT and its therapeutic use and cost benefits in real-world clinical use.

  5. Void fraction measurement system for high temperature flows

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  6. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  7. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  8. Analysis of pinching in deterministic particle separation

    Science.gov (United States)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  9. Compact and tunable size-based dielectrophoretic flow fractionation

    International Nuclear Information System (INIS)

    Chuang, Han-Sheng; Chung, Tien-Yu; Li, Yun

    2014-01-01

    A compact and tunable size-based flow fractionation microchip using negative dielectrophoresis (DEP) is presented in this paper. In the microchip, a sample containing a mixture of particles is hydrodynamically focused in a contraction section and then sorted by size after flowing over planar interdigitated electrodes. The electrodes and flow chamber were aligned at an angle of 45° to produce effective sorting. 1, 2.5 and 4.8 µm polystyrene (PS) particles were successfully separated into three distinct streams in a short distance (1 mm) and collected in different outlet channels. The sorting was subjected to flow rates and electric potential. The experimental sorting efficiencies of 1, 2.5 and 4.8 µm particles reached 97.2%, 79.6% and 99.8%, respectively. With the same device, lipid vesicle sorting was demonstrated. 86.9% of vesicles larger than 10 µm were effectively extracted from the sample stream. Likewise, sorting of other biological particles can be achieved in the same fashion. (paper)

  10. Particle Based Modeling of Electrical Field Flow Fractionation Systems

    Directory of Open Access Journals (Sweden)

    Tonguc O. Tasci

    2015-10-01

    Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.

  11. Technical aspects and limitations of fractional flow reserve measurement.

    Science.gov (United States)

    Jerabek, Stepan; Kovarnik, Tomas

    2018-02-27

    The only indication for coronary revascularization is elimination of ischaemia. Invasive hemodynamic methods (fractional flow reserve - FFR and instantaneous wave-free ratio (iFR) are superior to coronary angiography in detection of lesions causing myocardial ischaemia. Current European guidelines for myocardial revascularization recommend using of FFR for detection of functional assessment of lesions severity in category IA and number of these procedures increases. However, routine usage of these methods requires knowledge of technical requirements and limitations. The aim of the study is to summarise good clinical practice for FFR and iFR measurements with explanation of possible technical challenges, that are necessary for increasing of measurement accuracy. Authors describe frequent technical mistakes and malpractice during invasive assessment of lesion severity in coronary arteries.

  12. Fractional flow reserve in acute coronary syndromes: A review

    Directory of Open Access Journals (Sweden)

    Nikunj R. Shah

    2014-12-01

    Full Text Available Fractional flow reserve (FFR assessment provides anatomical and physiological information that is often used to tailor treatment strategies in coronary artery disease. Whilst robust data validates FFR use in stable ischaemic heart disease, its use in acute coronary syndromes (ACS is less well investigated. We critically review the current data surrounding FFR use across the spectrum of ACS including culprit and non-culprit artery analysis. With adenosine being conventionally used to induce maximal hyperaemia during FFR assessment, co-existent clinical conditions may preclude its use during acute myocardial infarction. Therefore, we include a current review of instantaneous wave free ratio as a novel vasodilator independent method of assessing lesion severity as an alternative strategy to guide revascularisation in ACS.

  13. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  14. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  15. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    International Nuclear Information System (INIS)

    Chittenden, J.P.; Vincent, P.; Jennings, C.A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057

  16. Fractional flow reserve: lessons from PLATFORM and future perspectives.

    Science.gov (United States)

    Pontone, Gianluca; Carità, Patrizia; Verdecchia, Massimo; Buccheri, Dario; Andreini, Daniele; Guaricci, Andrea I; Rabbat, Mark; Pepi, Mauro

    2017-06-01

    In the treatment of stable coronary artery disease (CAD) the identification of patients who may gain the highest benefit from further invasive treatments is of pivotal importance for the healthcare system. In this setting, it has been established that an ischemia-guided revascularization strategy yields improved clinical outcomes in a cost-effective fashion compared with anatomy-guided revascularization alone. Invasive fractional flow reserve (FFR) is considered the gold standard, especially in the intermediate-range atherosclerotic lesions, for assessing lesion specific ischemia at the time of invasive coronary angiography and has now become the standard of reference for studies assessing the diagnostic performance of the various non-invasive stress tests. Coronary computed tomography angiography (cCTA) is an increasingly utilized non-invasive test that enables direct anatomical visualization of CAD in the epicardial coronary arteries with excellent sensitivity and negative predictive value. However, cCTA alone has poor specificity with FFR. With advances in computational fluid dynamics, it is possible to derive FFR from cCTA datasets improving its positive predictive value and specificity. The aim of this review is to summarize the technical aspects of FFR-CT, clinical evidence and limitations behind the novel technology, with a special focus on the recent PLATFORM Trial analyzing the effectiveness, clinical outcomes and resource utilization of FFR-CT. Finally, the future perspective of FFR-CT will be presented.

  17. Coronary angiographic characteristics that influence fractional flow reserve.

    Science.gov (United States)

    Natsumeda, Makoto; Nakazawa, Gaku; Murakami, Tsutomu; Torii, Sho; Ijichi, Takeshi; Ohno, Yohei; Masuda, Naoki; Shinozaki, Norihiko; Ogata, Nobuhiko; Yoshimachi, Fuminobu; Ikari, Yuji

    2015-01-01

    Percutaneous coronary intervention (PCI) guided with fractional flow reserve (FFR) has been shown to improve clinical outcome. Although coronary angiography is the standard method for PCI guidance, the visual severity of stenosis is not always correlated with functional severity, suggesting that there are additional angiographic factors that affect functional ischemia. To evaluate angiographic predictors of positive FFR in stenotic lesions, angiographic characteristics of 260 consecutive patients (362 lesions) who underwent FFR testing from April 2009 to September 2012 were analyzed. A scoring system (STABLED score) using these predictors was developed and compared with quantitative coronary angiography (QCA). %Diameter stenosis >50% (OR, 8.43; P20 mm (OR, 5.40; P=0.0002), and distance from ostium <20 mm (OR, 1.94; P=0.028) were determined as independent predictors of positive FFR. Area under the ROC curve for probability of positive FFR using the STABLED score (Stenosis 2 points, TAndem lesion 1 point, Bifurcation 1 point, LEsion length 1 point, Distance from ostium 1 point) was 0.85, higher than that for QCA stenosis alone (0.76). STABLED score ≥3 had 72.3% sensitivity and 83.6% specificity for predicting positive FFR, and PPV was 76.7%. Specific angiographic features are applicable for predicting functional ischemia. STABLED score correlates well with FFR.

  18. Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: A tutorial

    International Nuclear Information System (INIS)

    Gigault, Julien; Pettibone, John M.; Schmitt, Charlène; Hackley, Vincent A.

    2014-01-01

    Graphical abstract: -- Highlights: •Underlying theory and critical parameters are introduced. •A rational workflow is proposed to optimize and refine A4F methods. •Specific optimization steps and validation parameters are delineated. •Pedagogical examples are provided to demonstrate the process. •Use and relevance of different detection modalities is addressed. -- Abstract: This tutorial proposes a comprehensive and rational measurement strategy that provides specific guidance for the application of asymmetric-flow field flow fractionation (A4F) to the size-dependent separation and characterization of nanoscale particles (NPs) dispersed in aqueous media. A range of fractionation conditions are considered, and challenging applications, including industrially relevant materials (e.g., metal NPs, asymmetric NPs), are utilized in order to validate and illustrate this approach. We demonstrate that optimization is material dependent and that polystyrene NPs, widely used as a reference standard for retention calibration in A4F, in fact represent a class of materials with unique selectivity, recovery and optimal conditions for fractionation; thus use of these standards to calibrate retention for other materials must be validated a posteriori. We discuss the use and relevance of different detection modalities that can potentially yield multi-dimensional and complementary information on NP systems. We illustrate the fractionation of atomically precise nanoclusters, which are the lower limit of the nanoscale regime. Conversely, we address the upper size limit for normal mode elution in A4F. The protocol for A4F fractionation, including the methods described in the present work is proposed as a standardized strategy to realize interlaboratory comparability and to facilitate the selection and validation of material-specific measurement parameters and conditions. It is intended for both novice and advanced users of this measurement technology

  19. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    Science.gov (United States)

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  1. Hybrid Instantaneous Wave-Free Ratio–Fractional Flow Reserve versus Fractional Flow Reserve in the Real World

    Directory of Open Access Journals (Sweden)

    Kara Shuttleworth

    2017-05-01

    Full Text Available BackgroundThe instantaneous wave-free ratio (iFR is a novel method to assess the ischemic potential of coronary artery stenoses. Clinical trial data have shown that iFR has acceptable diagnostic agreement with fractional flow reserve (FFR, the reference standard for the functional assessment of coronary stenoses. This study compares iFR measurements with FFR measurements in a real world, single-center setting.Methods and resultsInstantaneous wave-free ratio and FFR were measured in 50 coronary artery lesions in 42 patients, with FFR ≤ 0.8 classified as functionally significant. An iFR-only technique, using a treatment cut-off value, iFR ≤ 0.89, provided a classification agreement of 84% with FFR ≤ 0.80. Use of a hybrid iFR–FFR technique, incorporating FFR measurement for lesions within the iFR gray zone of 0.86–0.93, would improve classification agreement with FFR to 94%, with diagnosis achieved without the need for hyperemia in 57% patients.ConclusionThis study in a real-world setting demonstrated good classification agreement between iFR and FFR. Use of a hybrid iFR–FFR technique would achieve high diagnostic accuracy while minimizing adenosine use, compared with routine FFR.

  2. Assessment of stent edge dissections by fractional flow reserve.

    Science.gov (United States)

    Chung, Ju-Hyun; Ann, Soe Hee; Koo, Bon-Kwon; Nam, Chang-Wook; Doh, Joon-Hyung; Singh, Gillian Balbir; Kim, Hyung Il; Shin, Eun-Seok

    2015-04-15

    Edge dissections after intervention have been studied with imaging techniques, however, functional assessment has not been studied yet. We investigated the relationship between fractional flow reserve (FFR) and the angiographic type of stent edge dissections and tried to assess the use of FFR-guided management for edge dissection. 51 edge dissections assessed by FFR were included in this prospective observational study. FFR was measured for each type of edge dissection and compared with quantitative coronary angiographic findings. Clinical outcomes were evaluated based on FFR measurements. Edge dissections were classified as type A (47.1%; 24/51), type B (41.2%; 21/51), type C (2.0%; 1/51) and type D (9.8%; 5/51). Mean FFR in type A dissection was 0.87 ± 0.09, in type B 0.86 ± 0.07, in type C 0.72 and in type D 0.57 ± 0.08. All type C and D dissections (6/51) had FFR ≤ 0.8 and were treated with additional stents. Among the 45 type A and B dissections, 8 had a FFR ≤ 0.8 (17.8%), and 50% received additional stenting. All dissections with FFR >0.8 were left untreated except one long dissection case. There was no death, myocardial infarction or target lesion revascularization during hospitalization or the follow-up period (median 152 days; IQR 42-352 days). FFR correlates well with an angiographic type of edge dissection. Angiographic findings are sufficient for deciding the treatment of severe dissections such as types C and D, while FFR-guided management may be safe and effective for mild edge dissections such as types A and B. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    Science.gov (United States)

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. An effect of downcomer feedwater fraction on steam generator performance with an axial flow economizer

    International Nuclear Information System (INIS)

    Jung, Byung Ryul; Park, Hu Shin; Chung, Duk Muk; Baik, Se Jin

    2000-01-01

    The effects of feedwater flow fraction introduced into the downcomer region have been evaluated in terms of steam generator performance based on the same steam generator thermal output for the Korea Standard Nuclear Power Plant (KSNP) steam generator. The KSNP steam generator design has an integral axial flow economizer which is designed such that most of the feedwater is introduced through the economizer region and only a portion of feedwater through the downcomer region. The feedwater flow introduced into the downcomer region is not normally controlled during the power operation. However, the actual feedwater fraction into the downcomer region may differ from the design flow depending on the as-built system and component characteristics. Investigated in this paper were the downcomer feedwater flow effects on the steam pressure, circulation ratio, internal void fraction and velocity distribution in the tube bundle region at the steady state operation using SAFE and ATHOS3 codes. The results show that the steam pressure increases and the resultant total feedwater flow increases with reducing the downcomer feedwater flow fraction for the same steam generator thermal output. The slight off-design condition of downcomer feedwater flow fraction renders no significant effect on the steam generator performance such as circulation ratios, steam qualities, void fractions and internal velocity distributions. The evaluation shows that the slight off-design downcomer feedwater flow fraction deviation up to ± 5% is acceptable for the steam generator performance

  5. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew

    2015-07-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.

  6. Granular flow through an aperture: influence of the packing fraction

    OpenAIRE

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  7. Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

    Directory of Open Access Journals (Sweden)

    Martha J. M. Wells

    2015-09-01

    Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.

  8. Frontier in nanoscale flows fractional calculus and analytical methods

    CERN Document Server

    Lewis, Roland; Liu, Hong-yan

    2014-01-01

    This ebook covers the basic properties of nanoscale flows, and various analytical and numerical methods for nanoscale flows and environmental flows. This ebook is a good reference not only for audience of the journal, but also for various communities in mathematics, nanotechnology and environmental science.

  9. Introduction to Pinch Technology

    DEFF Research Database (Denmark)

    Rokni, Masoud

    ? How to put energy efficiency and other targets like reducing emissions, increasing plant capacities, improve product qualities etc, into a one coherent strategic plan for the overall site? All these questions and more can be answered with a full understanding of Pinch Technology and an awareness...... of the available tools for applying it in a practical way. The aim here is to provide the basic knowledge of pinch technology concept and how it can be applied across a wide range of process industries. The pinch technology was proposed firstly for optimization of heat exchangers and therefore it is introduced...

  10. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  11. Z-pinches

    International Nuclear Information System (INIS)

    Yan'kov, V.V.

    1991-01-01

    Although pinches, unlike tokamaks, have not occupied a central position in fusion research, their structural simplicity and the wealth of physical processes associated with plasma foci have maintained a steady interest. The development of Z-pinches, including plasma foci, micropinches, and dense Z-pinches, is reviewed. Attention is focused on theoretical as opposed to experimental questions, and on recent work rather than the basic results now found in textbooks. Finally, Soviet work is discussed more fully than work done abroad, and applications to controlled fusion are emphasized

  12. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  13. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  14. Z-pinches

    International Nuclear Information System (INIS)

    Yan'kov, V.V.

    1991-01-01

    The development of Z-pinches, including plasma foci, micropinches and dense Z-pinches are reviewed. A special attention is paid to the physics of sausage instability development. Theoretical questions are discussed in more detail that the experimental ones, recent works - to a fuller extent than the fundamental pioneer ones which are included in the textbooks. The Soviet works are given a greater coverage as compared to the foreign ones. An emphasis is made on the problem of controlled thermonuclear fusion

  15. Study of flow and loss processes at the ends of a linear theta pinch. Progress report, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    York, T.M.; Klevans, E.H.

    1978-02-01

    Experimental and analytical studies of end loss from a theta pinch have been carried out. Detailed diagnostic studies of a 25 cm long theta pinch operating with reversed trapped fields have been completed; spectroscopic studies, magnetic probe, pressure probe, double diamagnetic loop, luminosity studies and Thomson scattering studies of the plasma have been carried out over the 8 μsec duration of the transient loss. Two new diagnostic techniques have been developed based on the available Thomson scattering laser source. A study of plasma loss from a 10.5 long theta pinch with an axial Twyman-Green interferometer has been completed and reported. The basic studies needed for subsequent experimental work on heat conduction loss being diagnosed by Thomson scattering data in the end region, with and without mirror coil, has been completed as a part of the mirror field studies

  16. Experimental study of average void fraction in low-flow subcooled boiling

    International Nuclear Information System (INIS)

    Sun Qi; Wang Xiaojun; Xi Zhao; Zhao Hua; Yang Ruichang

    2005-01-01

    Low-flow subcooled void fraction in medium pressure was investigated using high-temperature high-pressure single-sensor optical probe in this paper. And then average void fraction was obtained through the integral calculation of local void fraction in the cross-section. The experimental data were compared with the void fraction model proposed in advance. The results show that the predictions of this model agree with the data quite well. The comparisons of Saha and Levy models with low-flow subcooled data show that Saha model overestimates the experimental data distinctively, and Levy model also gets relatively higher predictions although it is better than Saha model. (author)

  17. Dense Z-pinch plasmas

    International Nuclear Information System (INIS)

    Shlachter, J.S.; Hammel, J.E.; Scudder, D.W.

    1985-01-01

    Early researchers recogniZed the desirable features of the linear Z-pinch configuration as a magnetic fusion scheme. In particular, a Z-pinch reactor might not require auxiliary heating or external field coils, and could constitute an uncomplicated, high plasma β geometry. The simple Z pinch, however, exhibited gross MHD instabilities that disrupted the plasma, and the linear Z pinch was abandoned in favor of more stable configurations. Recent advances in pulsed-power technology and an appreciation of the dynamic behavior of an ohmically heated Z pinch have led to a reexamination of the Z pinch as a workable fusion concept

  18. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  19. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  20. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  1. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2016-01-01

    Full Text Available In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.

  2. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  3. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  4. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  5. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  6. Prediction of void fraction in subcooled flow boiling

    International Nuclear Information System (INIS)

    Petelin, S.; Koncar, B.

    1998-01-01

    The information on heat transfer and especially on the void fraction in the reactor core under subcooled conditions is very important for the water-cooled nuclear reactors, because of its influence upon the reactivity of the systems. This paper gives a short overview of subcooled boiling phenomenon and indicates the simplifications made by the RELAP5 model of subcooled boiling. RELAP5/MOD3.2 calculations were compared with simple one-dimensional models and with high-pressure Bartolomey experiments.(author)

  7. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  8. Fractional Flow Theory Applicable to Non-Newtonian Behavior in EOR Processes

    NARCIS (Netherlands)

    Rossen, W.R.; Venkatraman, A.; Johns, R.T.; Kibodeaux, K.R.; Lai, H.; Moradi Tehrani, N.

    2011-01-01

    The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with

  9. Void fraction and flow regime determination by optical probe for boiling two-phase flow in a tube subchannel

    International Nuclear Information System (INIS)

    Cheng Huiping; Wu Hongtao; Ba Changxi; Yan Xiaoming; Huang Suyi

    1995-12-01

    In view of the need to determine void fraction and flow regime of vapor-liquid two-phase flow in the steam generator test model, domestic made optical probe was applied on a small-scale freon two-phase flow test rig. Optical probe signals were collected at a sampling rate up to 500 Hz and converted into digital form. Both the time signal, and the amplitude probability density function and FFT spectrum function calculated thereof were analysed in the time and frequency domains respectively. The threshold characterizing vapor or liquid contact with the probe tip was determined from the air-water two-phase flow pressure drop test results. Then, the boiling freon two-phase flow void fraction was determined by single threshold method, and compared with numerical heat transfer computation. Typical patterns which were revealed by the above-mentioned time signal and the functions were found corresponding to distinct flow regimes, as corroborated by visual observation. The experiment shows that the optical probe was a promising technique for two-phase flow void fraction measurement and flow regime identification (3 refs., 15 figs., 1 tab.)

  10. The static pinch

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, Conrad L [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)

    1958-07-01

    In a pinch, the outward diffusion of plasma due to collisions can be balanced by the inward drift resulting from ExB, where E is the applied electric field and B the magnetic field. From the equation expressing the balance of these two effects, together with the pressure balance equation, one obtains the perpendicular conductivity, which is about one-half of the classical parallel conductivity. This result has been applied to the problem of a static pinch under the assumptions: 1) there is an applied longitudinal (B{sub z}) magnetic field; 2) the plasma is isothermal; 3) the solution depends only on the radial coordinate.

  11. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection

    International Nuclear Information System (INIS)

    Claveranne-Lamolere, C.; Lespes, G.; Dubascoux, St.; Potin-Gautier, M.; Claveranne-Lamolere, C.; Aupiais, J.; Pointurier, F.

    2009-01-01

    The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase. In the case of the site studied, two populations are highlighted. The first population corresponds to humic-like substances with a molar mass of (1500 ± 300) g mol -1 and a hydrodynamic diameter of (2. 0 ± 0. 2) nm. The second one has been identified as a mix of carbonated nano-particles or clays with organic particles (aggregates and/or coating of the inorganic particles) with a size range hydrodynamic diameter between 30 and 450 nm. Each population is implied in the colloidal transport of uranium: maximum 1% of the uranium content in soil leachate is transported by the colloids in the site studied, according to the depth in the soil. Indeed, humic substances are the main responsible of this transport in sub-surface conditions whereas nano-particles drive the phenomenon in depth conditions. (authors)

  12. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Farhad, E-mail: farhadaliecomaths@yahoo.com [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan); Sheikh, Nadeem Ahmad [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan); Khan, Ilyas [Basic Engineering Sciences Department, College of Engineering Majmaah University, Majmaah 11952 (Saudi Arabia); Saqib, Muhammad [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan)

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  13. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    International Nuclear Information System (INIS)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-01-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  14. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  15. Stability of phospholipid vesicles studied by asymmetrical flow field-flow fractionation and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Yohannes, Gebrenegus [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Pystynen, Kati-Henna [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Wiedmer, Susanne K. [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)]. E-mail: susanne.wiedmer@helsinki.fi

    2006-02-23

    The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 deg. C were used. Phospholipid vesicles (liposomes) were stored at +4 and -18 deg. C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 {+-} 3 nm and 122 {+-} 5 nm, respectively. No significant change in diameter was observed after storage at +4 deg. C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at -18 deg. C, large particles with diameters of 700-800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250-350 nm appeared during storage at +4 and -18 deg. C for more than 1 day. The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and -18 deg. C, were studied at 25 deg. C. The performances of the coatings were further evaluated with three uncharged compounds

  16. Trends in Polymer and Particle Characterization by Microfluidic Field-Flow Fractionation Methods: Science or Business?

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef; Sobota, Jaroslav

    2014-01-01

    Roč. 19, 16 May (2014), s. 296-308 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Asymmetrical flow FFF * Electrical FFF * Field-flow fractionation * Flow FFF * Microelectrical FFF * Microfluidic channels * Microthermal FFF * Miniaturization and resolution * Polymers and particles separation * Sedimentation FFF * Technical benefits of microchannels * Thermal FFF Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.264, year: 2014

  17. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  18. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  19. Stage theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1975-01-01

    The Staged Theta Pinch program is designed to study the technological and physics problems associated with producing fat plasmas and separating the implosion heating from the adiabatic compression. Several methods of implosion heating are discussed. Circuit diagrams and theoretical magnetic field behavior are described for the STP and resonant heating experiments. (MOW)

  20. Fluctuation of void fraction and pressure drop during vertical two-phase flow with contraction

    International Nuclear Information System (INIS)

    Morimoto, Yuichiro; Madarame, Haruki; Okamoto, Koji

    2003-01-01

    Flow pattern and fluctuation of void fraction of two-phase flow through a vertical channel with contraction were examined experimentally. The two-phase fluid consisted of water and nitrogen gas. The pipe diameters were 0.1 [m] and 0.05 [m], which were before and after the contraction, respectively. Superficial gas and liquid velocity were changed form 0.42 to 2.55 [m/s] and from 2.26 to 4.53 [m/s]. Time series data of void fraction were measured using a single-needle void probe and flow pattern at downstream from the contraction was visualized using a high-speed video camera. Intermittent flow was observed at downstream of the contraction. The pulsation can be seen to be caused by wave of bubbles thick and thin. Frequency of fluctuation of the void fraction was almost constant when flow pattern before the contraction was bubble flow. In the case where flow pattern before the contraction was churn flow, the frequency increased with superficial liquid velocity. The frequency was also confirmed with the result of image processing using the movies captured by the high speed video camera. (author)

  1. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  2. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  3. Experimental study on void fraction of two-phase flow inside a micro-fin tube

    OpenAIRE

    Koyama, Shigeru; Chen, Yongchang; Kitano, Ryuji; Kuwahara, Ken

    2001-01-01

    In this paper the void fraction and flow pattern of the two-phase flow in a micro-fin tube were investigated experimentally for a pure refrigerant HFC134a. The experiment was carried out at a pressure range of 0.6 and 1.2MPa with mass velocities of 90 and 180kg/m^2 s, in which the vapor quality varied from 0 to 1. The void fraction was measured by means of simultaneously closing valves of both sides of the test tube at adiabatic condition. Experimental results for the micro-fin tube were comp...

  4. Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress

    DEFF Research Database (Denmark)

    Nørgaard, Bjarne Linde; Leipsic, Jonathon; Koo, Bon-Kwon

    2016-01-01

    Fractional flow reserve (FFR) measured during invasive coronary angiography is an independent prognosticator in patients with coronary artery disease and the gold standard for decision making in coronary revascularization. The integration of computational fluid dynamics and quantitative anatomic...... and physiologic modeling now enables simulation of patient-specific hemodynamic parameters including blood velocity, pressure, pressure gradients, and FFR from standard acquired coronary computed tomography (CT) datasets. In this review article, we describe the potential impact on clinical practice...... and the science behind noninvasive coronary computed tomography (CT) angiography derived fractional flow reserve (FFRCT) as well as future applications of this technology in treatment planning and quantifying forces on atherosclerotic plaques....

  5. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  6. Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study.

    Science.gov (United States)

    Kolli, Kranthi K; Min, James K; Ha, Seongmin; Soohoo, Hilary; Xiong, Guanglei

    2016-06-30

    The aim of this study was to investigate the impact of varying hemodynamic conditions on fractional flow reserve (ratio of pressure distal [Pd] and proximal [Pa] to stenosis under hyperemia) in an in vitro setting. Failure to achieve maximal hyperemia and the choice of hyperemic agents may have differential effects on coronary hemodynamics and, consequently, on the determination of fractional flow reserve. An in vitro flow system was developed to experimentally model the physiological coronary circulation as flow-dependent stenosis resistance in series with variable downstream resistance. Five idealized models with 30% to 70% diameter stenosis severity were fabricated using VeroClear rigid material in an Objet260 Connex printer. Mean aortic pressure was maintained at 7 levels (60-140 mm Hg) from hypotension to hypertension using a needle valve that mimicked adjustable microcirculatory resistance. A range of physiological flow rates was applied by a steady flow pump and titrated by a flow sensor. The pressure drop and the pressure ratio (Pd/Pa) were assessed for the 7 levels of aortic pressure and differing flow rates. The in vitro experimental data were coupled with pressure-flow relationships from clinical data for populations with and without myocardial infarction, respectively, to evaluate fractional flow reserve. The curve for pressure ratio and flow rate demonstrated a quadratic relationship with a decreasing slope. The absolute decrease in fractional flow reserve in the group without myocardial infarction (with myocardial infarction) was on the order of 0.03 (0.02), 0.05 (0.02), 0.07 (0.05), 0.17 (0.13) and 0.20 (0.24), respectively, for 30%, 40%, 50%, 60%, and 70% diameter stenosis, for an increase in aortic pressure from 60 to 140 mm Hg. The fractional flow reserve value, an index of physiological stenosis significance, was observed to decrease with increasing aortic pressure for a given stenosis in this idealized in vitro experiment for vascular

  7. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  8. Pinching Solutions of Slender Cylindrical Jets

    Science.gov (United States)

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  9. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments

    Science.gov (United States)

    Berry, Colin; Corcoran, David; Hennigan, Barry; Watkins, Stuart; Layland, Jamie; Oldroyd, Keith G.

    2015-01-01

    Coronary artery disease (CAD) is a leading global cause of morbidity and mortality, and improvements in the diagnosis and treatment of CAD can reduce the health and economic burden of this condition. Fractional flow reserve (FFR) is an evidence-based diagnostic test of the physiological significance of a coronary artery stenosis. Fractional flow reserve is a pressure-derived index of the maximal achievable myocardial blood flow in the presence of an epicardial coronary stenosis as a ratio to maximum achievable flow if that artery were normal. When compared with standard angiography-guided management, FFR disclosure is impactful on the decision for revascularization and clinical outcomes. In this article, we review recent developments with FFR in patients with stable CAD and recent myocardial infarction. Specifically, we review novel developments in our understanding of CAD pathophysiology, diagnostic applications, prognostic studies, clinical trials, and clinical guidelines. PMID:26038588

  10. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  11. Numerical studies of the linear theta pinch

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.

    1975-01-01

    Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)

  12. Staged theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1976-01-01

    Two implosion heating circuits are being experimentally tested. The principal experiment in the program is the 4.5-m-long Staged Theta Pinch (STP). It uses two relatively low energy (50kJ and 100 kJ), high voltage (125 kV) capacitor banks to produce the theta pinch plasma inside the 20 cm i.d. quartz discharge tube. A lower voltage (50 kV), higher energy (750 kJ) capacitor bank is used to contain the plasma and provide a variable amount of adiabatic compression. Because the experiment produces a higher ratio of implosion heating to compressional heating than conventional theta pinches, it should be capable of producing high temperature plasmas with a much larger ratio of plasma radius to discharge tube radius than has been possible in the past. The Resonant Heating Experiment (RHX) in its initial configuration is the same as a 0.9-m-long section of the high voltage part of the STP experiment and all the plasma results here were obtained with the experiment in that configuration. Part of the implosion bank will be removed and a low inductance crowbar added to convert it to the resonant heating configuration. (U.K.)

  13. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  14. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    are studied. Moreover, the interfacial area concentration and the bubble coalescence and breakup mechanisms are shown to vary in the axial direction as well as with flow rate, flow area and pressure drop. The liquid velocity field, bubble shape and shear stress are studied for a stationary slug bubble with downward liquid flow. Furthermore, the relationship between the plug and foam flow shape profiles, relative velocity, void fraction and gas slug velocity at an elevated pressure of 0.2 MPa studied by Sekoguchi et al. (1996) are also analyzed, together with the five plug flow sub-regime groups located in the low slip and high slip velocity regions. For the annular flow, the relationship between liquid film thickness, entrainment mechanisms, film velocity and shear stress are studied as well. Alike to plug flow, five sub-regimes in the annular flow are also examined along with the bubble and droplet entrainment mechanisms. The paper also discusses the pressure drop for bubbly, slug, foam, falling film and annular flow regimes, with a particular focus on the most accurate interfacial friction factor correlation for annular flow and its applicability for a wide range of pipe diameters. The flow instability of a system such as static and dynamic instability in the presence of a downcomer, for both single and parallel heated channels are examined too. Finally, the most accurate and versatile drift-flux correlation applicable to all downward flow regimes is highlighted and compared to drift-flux type correlations as it will be a stepping stone to attain a more accurate co-current downward flow transition model. Further experimental effort is essential to achieve a strong foothold in the understanding of co-current downward two-phase flow, as it is vital for nuclear engineering applications.

  15. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  16. Fusion with Z-pinches

    International Nuclear Information System (INIS)

    Cook, D.

    1998-06-01

    In the past thirty-six months, great progress has been made in x-ray production using high-current z-pinches. Today, the x-ray energy and power output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. In this paper, the recent technical progress with Z-pinches will be described, and a technical strategy for achieving high-yield ICF with z-pinches will be presented

  17. Determining the resistance of X-pinch plasma

    International Nuclear Information System (INIS)

    Zhao Shen; Zhu Xin-Lei; Zhang Ran; Luo Hai-Yun; Zou Xiao-Bing; Wang Xin-Xin; Xue Chuang; Ning Cheng; Ding Ning; Shu Xiao-Jian

    2013-01-01

    The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot—Savart's Law. The voltage of the inductance was calculated with L · di/dt and subtracted from the measured voltage of the X-pinch. Then, the resistance of the X-pinch was determined and the following results were obtained. At the start of the current flow the resistance of the exploding wires is several tens of Ohms, one order of magnitude, higher than the metallic resistance of the wires at room temperature, and then it falls quickly to about 1 Ω, which reflects the physical processes occurring in the electrically exploding wires, i.e., a current transition from the highly resistive wire core to the highly conductive plasma. It was shown that the inductive contribution to the voltage of the X-pinch is less than the resistive contribution. For the wires we used, the wires' material and diameter have no strong influence on the resistance of the X-pinch, which may be explained by the fact that the current flows through the plasma rather than through the metallic wire itself. As a result, the current is almost equally divided between two parallel X-pinches even though the diameter and material of the wires used for these two X-pinches are significantly different. (physics of gases, plasmas, and electric discharges)

  18. Computed tomography derived fractional flow reserve testing in stable patients with typical angina pectoris

    DEFF Research Database (Denmark)

    Møller Jensen, Jesper; Erik Bøtker, Hans; Norling Mathiassen, Ole

    2017-01-01

    Aims: To assess the use of downstream coronary angiography (ICA) and short-term safety of frontline coronary CT angiography (CTA) with selective CT-derived fractional flow reserve (FFRCT) testing in stable patients with typical angina pectoris. Methods and results: Between 1 January 2016 and 30 J...... of safe cancellation of planned ICAs....

  19. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  20. Characterization of Diamond Nanoparticles by High-Speed Micro-Thermal Field-Flow Fractionation

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef

    2015-01-01

    Roč. 20, č. 8 (2015), s. 671-680 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : diamond nanoparticles * high-speed microfluidic separation * micro-thermal field-flow fractionation, * article size distribution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.515, year: 2015

  1. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement

    NARCIS (Netherlands)

    Lockie, Tim; Rolandi, M. Cristina; Piek, Jan J.

    2013-01-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping

  2. Does the instantaneous wave-free ratio approximate the fractional flow reserve?

    NARCIS (Netherlands)

    Johnson, Nils P.; Kirkeeide, Richard L.; Asrress, Kaleab N.; Fearon, William F.; Lockie, Timothy; Marques, Koen M. J.; Pyxaras, Stylianos A.; Rolandi, M. Cristina; van 't Veer, Marcel; de Bruyne, Bernard; Piek, Jan J.; Pijls, Nico H. J.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; Gould, K. Lance

    2013-01-01

    This study sought to examine the clinical performance of and theoretical basis for the instantaneous wave-free ratio (iFR) approximation to the fractional flow reserve (FFR). Recent work has proposed iFR as a vasodilation-free alternative to FFR for making mechanical revascularization decisions. Its

  3. Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics

    NARCIS (Netherlands)

    Johnson, N.P.; Johnson, D.T.; Kirkeeide, R.L.; Berry, C.; de Bruyne, B.; Fearon, W.F.; Oldroyd, K.G.; Pijls, N.H.J.; Gould, K. Lance

    2015-01-01

    Objectives This study classified and quantified the variation in fractional flow reserve (FFR) due to fluctuations in systemic and coronary hemodynamics during intravenous adenosine infusion. Background Although FFR has become a key invasive tool to guide treatment, questions remain regarding its

  4. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  6. A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.

  7. Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles

    DEFF Research Database (Denmark)

    Dutz, Silvio; Kuntsche, Judith; Eberbeck, Dietmar

    2012-01-01

    Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation....... The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad...... size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids....

  8. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  9. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  10. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  11. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  12. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  13. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study

    DEFF Research Database (Denmark)

    Pijls, Nico H J; Fearon, William F; Tonino, Pim A L

    2010-01-01

    The purpose of this study was to investigate the 2-year outcome of percutaneous coronary intervention (PCI) guided by fractional flow reserve (FFR) in patients with multivessel coronary artery disease (CAD).......The purpose of this study was to investigate the 2-year outcome of percutaneous coronary intervention (PCI) guided by fractional flow reserve (FFR) in patients with multivessel coronary artery disease (CAD)....

  14. Investigation of plasma turbulence in a theta-pinch-discharge

    International Nuclear Information System (INIS)

    Lins, G.

    1980-01-01

    This thesis is concerned with investigations of plasma turbulence in a 3 KJ Theta-Pinch during implosion by high-frequency Stark-effect and Thomson scattering. The next points are modifications of electron-distribution function by ionization in low preionizized turbulent plasma and energy losses by particle flow and heat flow at the ends. (HT)

  15. An assessment of void fraction correlations for vertical upward steam-water flow

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Maruthi Ramesh, N.; Pilkhwal, D.S.; Saha, D.

    1997-01-01

    An assessment of sixteen void fraction correlations have been carried out using experimental void fraction data compiled from open literature for vertical upward steam-water flow. Nearly 80% of all the data pertained to natural circulation flow. This assessment showed that best prediction is obtained by Chexal et al. (1996) correlation followed by Hughmark (1965) and the Mochizuki and Ishii (1992) correlations. The Mochizuki-Ishii correlation is found to satisfy all the three limiting conditions whereas Chexal et al. (1996) correlation satisfies all the limiting conditions at moderately high mass fluxes (greater than 140 kg/m 2 s) while Hughmark correlation satisfies only one of the three limiting conditions. The available void fraction data in the open literature for steam-water two-phase flow lies predominantly in the low quality region. This is the reason why correlations like Hughmark which do not satisfy the upper limiting condition (i.e. at x=1, α=1) perform rather well in assessments. Additional work is required for the generation of high quality (greater than 40%) void fraction data. (author)

  16. Magnetostatic Analysis of a Pinch Mode Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Gołdasz Janusz

    2017-09-01

    Full Text Available The study deals with the pinch mode of magnetorheological (MR fluids’ operation and its application in MR valves. By applying the principle in MR valves a highly non-uniform magnetic field can be generated in flow channels in such a way to solidify the portion of the material that is the nearest to the flow channel’s walls. This is in contrary to well-known MR flow mode valves. The authors investigate a basic pinch mode valve in several fundamental configurations, and then examine their magnetic circuits through magnetostatic finite-element (FE analysis. Flux density contour maps are revealed and basic performance figures calculated and analysed. The FE analysis results yield confidence in that the performance of MR pinch mode devices can be effectively controlled through electromagnetic means.

  17. Fractional flow reserve-guided percutaneous coronary intervention: where to after FAME 2?

    Directory of Open Access Journals (Sweden)

    van de Hoef TP

    2015-12-01

    Full Text Available Tim P van de Hoef,1 Martijn Meuwissen,2 Jan J Piek1 1AMC Heartcentre, Academic Medical Center, University of Amsterdam, Amsterdam, 2Amphia Hospital, Breda, the Netherlands Abstract: Fractional flow reserve (FFR is a well-validated clinical coronary physiological parameter derived from the measurement of coronary pressures and has drastically changed revascularization decision-making in clinical practice. Nonetheless, it is important to realize that FFR is a coronary pressure-derived estimate of coronary blood flow impairment. It is thereby not the same as direct measures of coronary flow impairment that determine the occurrence of signs and symptoms of myocardial ischemia. This consideration is important, since the FAME 2 study documented a limited discriminatory power of FFR to identify stenoses that require revascularization to prevent adverse events. The physiological difference between FFR and direct measures of coronary flow impairment may well explain the findings in FAME 2. This review aims to address the physiological background of FFR, its ambiguities, and its consequences for the application of FFR in clinical practice, as well as to reinterpret the diagnostic and prognostic characteristics of FFR in the light of the recent FAME 2 trial outcomes. Keywords: fractional flow reserve, coronary flow, stable ischemic heart disease

  18. Measurements of void fraction in transparent two-phase flows by light extinction

    International Nuclear Information System (INIS)

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  19. Experimental study of the neck formation in an X pinch

    International Nuclear Information System (INIS)

    Artyomov, A P; Chaikovsky, S A; Fedunin, A V; Labetskaya, N A; Rousskikh, A G; Zhigalin, A S; Oreshkin, V I

    2014-01-01

    X-pinch experiments have been performed on a compact 250 kA, 180 ns pulsed power generator specially designed for this purpose at the Institute of High Current Electronics (Tomsk, Russia). The X pinches were composed of two molybdenum wires of diameter 25 μm making an angle of 36° with the z-axis. The X-pinch dynamics was recorded with a 3 ns exposure time using an HSFC Pro four-frame camera. Axial plasma jets propagating toward both the anode and the cathode were observed. The jets became noticeable within 10 ns after the onset of current flow, which approximately corresponded to the time at which the electrical explosion of the X-pinch wires occurred. The velocity of the anode-directed jet reached 10 7 cm/s, which was about 1.5 times the velocity of the cathode-directed jet. These high jet velocities are inconsistent with the plasma temperature resulting from the wire explosion. Hence, these jets seem to develop due to implosion of the light plasma layer stripped by magnetic forces from the wire surface, and the increase in their velocities is perhaps due to cumulative effects taking place at the X-pinch axis. The X-pinch neck formed as a rule above the initial wire cross point (closer to the anode). In this region, the plasma diameter gradually increased with time and then drastically decreased 10-15 ns prior to the x-ray pulse. Immediately before the x-ray pulse, in the (250-300 μm long) plasma neck, a lower scale constriction developed, forming a h ot spot . It has been confirmed that the anode-directed plasma jet could take some part of the X-pinch wire current because of the evident jet pinching in the anode region. This process seems to determine the neck length

  20. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  1. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  2. Analytical scale purification of zirconia colloidal suspension using field programmed sedimentation field flow fractionation.

    Science.gov (United States)

    Van-Quynh, Alexandra; Blanchart, Philippe; Battu, Serge; Clédat, Dominique; Cardot, Philippe

    2006-03-03

    Sedimentation field flow fractionation was used to obtain purified fractions from a polydispersed zirconia colloidal suspension in the potential purpose of optical material hybrid coating. The zirconia particle size ranged from 50/70 nm to 1000 nm. It exhibited a log-Gaussian particle size distribution (in mass or volume) and a 115% polydispersity index (P.I.). Time dependent eluted fractions of the original zirconia colloidal suspension were collected. The particle size distribution of each fraction was determined with scanning electron microscopy and Coulter sub-micron particle sizer (CSPS). These orthogonal techniques generated similar data. From fraction average elution times and granulometry measurements, it was shown that zirconia colloids are eluted according to the Brownian elution mode. The four collected fractions have a Gaussian like distribution and respective average size and polydispersity index of 153 nm (P.I. = 34.7%); 188 nm (P.I. = 27.9%); 228 nm (P.I. = 22.6%), and 276 nm (P.I. = 22.3%). These data demonstrate the strong size selectivity of SdFFF operated with programmed field of exponential profile for sorting particles in the sub-micron range. Using this technique, the analytical production of zirconia of given average size and reduced polydispersity is possible.

  3. Natural Convection Flow of Fractional Nanofluids Over an Isothermal Vertical Plate with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2017-03-01

    Full Text Available The studies of classical nanofluids are restricted to models described by partial differential equations of integer order, and the memory effects are ignored. Fractional nanofluids, modeled by differential equations with Caputo time derivatives, are able to describe the influence of memory on the nanofluid behavior. In the present paper, heat and mass transfer characteristics of two water-based fractional nanofluids, containing nanoparticles of CuO and Ag, over an infinite vertical plate with a uniform temperature and thermal radiation, are analytically and graphically studied. Closed form solutions are determined for the dimensionless temperature and velocity fields, and the corresponding Nusselt number and skin friction coefficient. These solutions, presented in equivalent forms in terms of the Wright function or its fractional derivatives, have also been reduced to the known solutions of ordinary nanofluids. The influence of the fractional parameter on the temperature, velocity, Nusselt number, and skin friction coefficient, is graphically underlined and discussed. The enhancement of heat transfer in the natural convection flows is lower for fractional nanofluids, in comparison to ordinary nanofluids. In both cases, the fluid temperature increases for increasing values of the nanoparticle volume fraction.

  4. Effects of boundary conditions on temperature and density in an EXTRAP Z-pinch

    International Nuclear Information System (INIS)

    Drake, J.R.; Karlsson, P.

    1985-08-01

    Using the fluid equations, we examine transport in an Extrap configuration by carrying out calculations incorporating model profiles for the density and temperature. The goal of this analysis is to examine the scaling of the pinch equilibrium plasma density, temperature and radius with parameters that are characteristic for Extrap Z-pinches. These parameters include the discharge current, the neutral hydrogen filling density, an oxygen impurity fractional concentration and the condition at the pinch boundary. An Extrap Z-pinch is a pinch discharge where the current channel has a characteristic non-circular cross-section achieved by bounding the discharge by a magnetic separatrix produced when a vacuum octupole magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The pinch boundary is changed from a plasma-vacuum boundary to an interface between a high-beta pinch plasma and a low-beta plasma contained in the vacuum magnetic field. The energy that is lost from the pinch region sustains this boundary layer. The introduction of a separatrix boundary around the pinch with four X-point nulls deteriorates the containment of the pinch somewhat. However the presence of the warm, low-beta plasma scrape-off layer, which provides a boundary condition on the pinch, tends to counteract the negative effects of the poorer confinement. Thus the equilibrium parameters that characterize the pinch may not be severely deteriorated by the introduction of the separatrix when the entire configuration, including the scrape-off layer, is considered. (author)

  5. Coronary physiological assessment combining fractional flow reserve and index of microcirculatory resistance in patients undergoing elective percutaneous coronary intervention with grey zone fractional flow reserve.

    Science.gov (United States)

    Niida, Takayuki; Murai, Tadashi; Yonetsu, Taishi; Kanaji, Yoshihisa; Usui, Eisuke; Matsuda, Junji; Hoshino, Masahiro; Araki, Makoto; Yamaguchi, Masao; Hada, Masahiro; Ichijyo, Sadamitsu; Hamaya, Rikuta; Kanno, Yoshinori; Isobe, Mitsuaki; Kakuta, Tsunekazu

    2018-03-08

    The aim of this study is to investigate the association between fractional flow reserve (FFR) values and change in coronary physiological indices after elective percutaneous coronary intervention (PCI). Decision making for revascularization when FFR is 0.75-0.80 is controversial. A retrospective analysis was performed of 296 patients with stable angina pectoris who underwent physiological examinations before and after PCI. To investigate the differences of coronary flow improvement between territories with low-FFR (zone FFR (0.75-0.80), serial changes in physiological indices including mean transit time (Tmn), coronary flow reserve (CFR), and index of microcirculatory resistance (IMR) were compared between these two groups. Compared to low-FFR territories, grey-zone FFR territories showed significantly lower prevalence of Tmn shortening, CFR improvement, and decrease in IMR (Tmn shorting, 63.9% vs. 87.0%, P 51.3% vs. 63.3%, P = .040) and lower extent of their absolute changes (Tmn shorting, 0.06 (-0.03 to 0.16) vs. 0.22 (0.07-0.45), P zone FFR. Physiological assessment combining FFR and IMR may help identify patients who may benefit by PCI, particularly those in the grey zone. © 2018 Wiley Periodicals, Inc.

  6. Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4 Channels for Nanoparticle Separations

    Directory of Open Access Journals (Sweden)

    Zengchao You

    2017-03-01

    Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.

  7. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  8. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Banerjee, S.

    1981-01-01

    Design procedure for a single-beam gamma densitometer operated in the count mode is described. The design is simple, compact and is particularly suited for small scale two-phase flow experiments with thin-metal walled or non-metallic test sections. The choice of gamma sources, scintillators and signal processing systems is discussed. The procedure has been applied by the authors in the design of densitometers for two transient experiments: refilling and rewetting experiments and flow boiling experiments. Good average void measurements were obtained for relatively fast transients. It has also been shown that some useful flow parameters other than void fractions can be obtained if two or more densitometers are used, eg, the average rewetting and entrained liquid velocities in the refilling and rewetting experiments, and the average void velocity in the flow boiling experiments. (orig.)

  9. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study

    International Nuclear Information System (INIS)

    Wong, Jerry T; Molloi, Sabee

    2008-01-01

    Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising

  10. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    Science.gov (United States)

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Free Flow Zonal Electrophoresis for Fractionation of Plant Membrane Compartments Prior to Proteomic Analysis.

    Science.gov (United States)

    Barkla, Bronwyn J

    2018-01-01

    Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.

  12. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    Science.gov (United States)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  13. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    International Nuclear Information System (INIS)

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  14. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus

    Science.gov (United States)

    Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia

    2018-04-01

    In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.

  15. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Paul D. Morris, PhD

    2017-08-01

    Full Text Available Fractional flow reserve (FFR-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel “pseudotransient” analysis protocol for computing virtual fractional flow reserve (vFFR based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33% and more by microvascular physiology (59%. If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  16. Fractional Flow Reserve-guided Percutaneous Coronary Intervention: Standing the Test of Time

    Directory of Open Access Journals (Sweden)

    Frederik M. Zimmermann, MD

    2016-05-01

    Full Text Available Percutaneous coronary intervention (PCI improves symptoms and prognosis in ischemia-inducing, functionally significant, coronary lesions. Use of fractional flow reserve allows physicians to investigate the ischemia-inducing potential of a specific lesion and can be used to guide coronary revascularization, especially in multivessel coronary artery disease. Fractional flow reserve-guided PCI has been extensively investigated. Results show that deferral of stenting in non-significant lesions is safe, whereas deferral of stenting in functionally significant lesions worsens outcome. FFR-guided PCI improves outcome in multivessel disease over angiography-guided PCI. Until recently, there was little known about the long-term outcome of FFR-guided revascularization and its validity in acute coronary syndromes. This review aims to address the new evidence regarding long-term appropriateness of FFR-guided PCI, the need for hyperemia to evaluate functional severity, and the use of FFR in acute coronary syndromes.

  17. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids

    Science.gov (United States)

    Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying

    2017-09-01

    This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.

  18. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  19. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  20. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  1. Study of pressure drop, void fraction and relative permeabilities of two phase flow through porous media

    International Nuclear Information System (INIS)

    Chu, W.; Dhir, V.K.; Marshall, J.

    1983-01-01

    An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined

  2. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Legros, Samuel

    2013-01-01

    flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses...... especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross...... obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs...

  3. Development of an effective pinch bar

    CSIR Research Space (South Africa)

    Ottermann, RW

    2003-02-01

    Full Text Available . ....................................10 Figure 3-3: Layout of lightweight pinch bar extruded fibreglass tube. ..................................11 Figure 3-4: XDM lightweight pinch bar with manufactured glass fibre bar. ..........................12 Figure 3-5: XDM lightweight pinch... bar with extruded glass fibre tube. ................................12 Figure 3-6: Stiffness of a 2.8m lightweight pinch bar with an extruded glass fibre tube and a 25mm steel pinch bar...

  4. Overview of the Fusion Z-Pinch Experiment FuZE

    Science.gov (United States)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  5. Study of flow and loss processes at the ends of a linear theta pinch. Progress report, June 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    York, T.M.; Klevans, E.H.

    1980-05-01

    Experimental and analytical studies of particle and energy loss at the ends of a linear theta pinch have been carried out. A study of transients occurring in the formation of reversed trapped fields within the coil, and of transients in the end region of a 25 cm long device was completed. A 1-D code has proven to be highly accurate in describing loss events and defining transport mechanisms in different experiments and is described here. A study of loss along field lines in a 50 cm long device has generated new information on loss velocity, axial and radial temperature gradients, and has established an initial effort in understanding thermal loss to the walls. Rotation and parallel trapped fields have been added to the existing 0-D code. A new technique crowbar switch and magnetic field prediction code have been developed. Direct measurment of electron velocity with Thomson scattering was accomplished experimentally. A Nd-glass laser system, frequency doubled, is being developed for low density diagnostics. Theoretical results that accurately predict confinement in FRX devices are described

  6. Plasma dynamics in a staged pinch device

    International Nuclear Information System (INIS)

    Khattak, N.A.D.; Ahmed, Z.; Mirza, A.M.; Murtaza, G.

    1998-01-01

    Plasma parameters in fiber initiated fast and dense theta-pinch plasma driven by an annular finite-thickness gas-puff Z-pinch are studied. The imploding gas-puff Z-pinch plasma traps an axial magnetic field B/sub z/, compressing it to large values (of the order of several megagauss) in an extremely short time. The rapidly changing magnetic flux of this field induces an azimuthal current on the surface of the coaxially placed fiber, with a rise time an order of magnitude shorter than the applied Z-pinch current. The shorter rise time of the current stabilizes the pinch against sausage mode of MHD instabilities. Our numerical results demonstrate that for a relatively thick gas-puff layer, the compression occurs before the current saturates. At the peak compression the fuel densities of the order of 10/sup 25/ cm/sup -3/ and temperature above 10 keV can be achieved on a time scale of 0.1 nanoseconds, yielding the Lawson Criterion parameters n tau is approximately equal to 10/sup 14/ sec cm/sup -3/ for D-T fuel. The snow-plow effect incorporated in our model exercise a strong influence on the onset and growth rate of sausage and Rayleigh-Taylor (R-T) modes of instabilities. Imposing a rotational velocity on the outer thin gas-puff plasma can control the Rayleigh-Taylor instability. Numerical results indicate that the choice of the spin velocity is critical. Large values of the spin velocity, though provide stabilization against the R-T instability at the final stage of compression, however, it adversely reduce the plasma parameters so essential to achieve controlled fusion. Our analysis, therefore, suggests that a judicious choice of the spin velocity is necessary to obtain the desired temperature and density, especially when we seed D-T fiber plasma with a small fraction of high-Z Kr impurity to initiate the radiative collapse. (author)

  7. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis.

    Science.gov (United States)

    Li, S; Tang, X; Peng, L; Luo, Y; Dong, R; Liu, J

    2015-05-01

    To review the literature on the diagnostic accuracy of CT-derived fractional flow reserve (FFRCT) for the evaluation of myocardial ischaemia in patients with suspected or known coronary artery disease, with invasive fractional flow reserve (FFR) as the reference standard. A PubMed, EMBASE, and Cochrane cross-search was performed. The pooled diagnostic accuracy of FFRCT, with FFR as the reference standard, was primarily analysed, and then compared with that of CT angiography (CTA). The thresholds to diagnose ischaemia were FFR ≤0.80 or CTA ≥50% stenosis. Data extraction, synthesis, and statistical analysis were performed by standard meta-analysis methods. Three multicentre studies (NXT Trial, DISCOVER-FLOW study and DeFACTO study) were included, examining 609 patients and 1050 vessels. The pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) for FFRCT were 89% (85-93%), 71% (65-75%), 70% (65-75%), 90% (85-93%), 3.31 (1.79-6.14), 0.16 (0.11-0.23), and 21.21 (9.15-49.15) at the patient-level, and 83% (78-63%), 78% (75-81%), 61% (56-65%), 92% (89-90%), 4.02 (1.84-8.80), 0.22 (0.13-0.35), and 19.15 (5.73-63.93) at the vessel-level. At per-patient analysis, FFRCT has similar sensitivity but improved specificity, PPV, NPV, LR+, LR-, and DOR versus those of CTA. At per-vessel analysis, FFRCT had a slightly lower sensitivity, similar NPV, but improved specificity, PPV, LR+, LR-, and DOR compared with those of CTA. The area under the summary receiver operating characteristic curves for FFRCT was 0.8909 at patient-level and 0.8865 at vessel-level, versus 0.7402 for CTA at patient-level. FFRCT, which was associated with improved diagnostic accuracy versus CTA, is a viable alternative to FFR for detecting coronary ischaemic lesions. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis

    International Nuclear Information System (INIS)

    Li, S.; Tang, X.; Peng, L.; Luo, Y.; Dong, R.; Liu, J.

    2015-01-01

    Aim: To review the literature on the diagnostic accuracy of CT-derived fractional flow reserve (FFR CT ) for the evaluation of myocardial ischaemia in patients with suspected or known coronary artery disease, with invasive fractional flow reserve (FFR) as the reference standard. Materials and methods: A PubMed, EMBASE, and Cochrane cross-search was performed. The pooled diagnostic accuracy of FFR CT , with FFR as the reference standard, was primarily analysed, and then compared with that of CT angiography (CTA). The thresholds to diagnose ischaemia were FFR ≤0.80 or CTA ≥50% stenosis. Data extraction, synthesis, and statistical analysis were performed by standard meta-analysis methods. Results: Three multicentre studies (NXT Trial, DISCOVER-FLOW study and DeFACTO study) were included, examining 609 patients and 1050 vessels. The pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−), and diagnostic odds ratio (DOR) for FFR CT were 89% (85–93%), 71% (65–75%), 70% (65–75%), 90% (85–93%), 3.31 (1.79–6.14), 0.16 (0.11–0.23), and 21.21 (9.15–49.15) at the patient-level, and 83% (78–63%), 78% (75–81%), 61% (56–65%), 92% (89–90%), 4.02 (1.84–8.80), 0.22 (0.13–0.35), and 19.15 (5.73–63.93) at the vessel-level. At per-patient analysis, FFR CT has similar sensitivity but improved specificity, PPV, NPV, LR+, LR−, and DOR versus those of CTA. At per-vessel analysis, FFR CT had a slightly lower sensitivity, similar NPV, but improved specificity, PPV, LR+, LR−, and DOR compared with those of CTA. The area under the summary receiver operating characteristic curves for FFR CT was 0.8909 at patient-level and 0.8865 at vessel-level, versus 0.7402 for CTA at patient-level. Conclusions: FFR CT , which was associated with improved diagnostic accuracy versus CTA, is a viable alternative to FFR for detecting coronary ischaemic lesions

  9. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    Science.gov (United States)

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Slip effects on a generalized Burgers’ fluid flow between two side walls with fractional derivative

    Directory of Open Access Journals (Sweden)

    Shihao Han

    2016-01-01

    Full Text Available This paper presents a research for the 3D flow of a generalized Burgers’ fluid between two side walls generated by an exponential accelerating plate and a constant pressure gradient, where the no-slip assumption between the exponential accelerating plate and the Burgers’ fluid is no longer valid. The governing equations of the generalized Burgers’ fluid flow are established by using the fractional calculus approach. Exact analytic solutions for the 3D flow are established by employing the Laplace transform and the finite Fourier sine transform. Furthermore, some 3D and 2D figures for the fluid velocity and shear stress are plotted to analyze and discuss the effects of various parameters.

  11. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  12. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study

    DEFF Research Database (Denmark)

    Hinna, A.; Steiniger, F.; Hupfeld, S.

    2014-01-01

    Knowledge about drug retention within colloidal carriers is of uppermost importance particularly if drug targeting is anticipated. The aim of the present study was to evaluate asymmetrical flow field-flow fractionation (AF4) with on-line UV/VIS drug quantification for its suitability to determine...... both release and transfer of drug from liposomal carriers to a model acceptor phase consisting of large liposomes. The hydrophobic porphyrin 5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine (p-THPP), a fluorescent dye with an absorbance maximum in the visible range and structural similarity...... channel geometries. Drug quantification by on-line absorbance measurements was established by comprehensive evaluation of the size-dependent turbidity contribution in on-line UV/VIS detection and by comparison with off-line results obtained for the respective dye-loaded donor formulations (dissolved...

  13. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  14. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    Science.gov (United States)

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  15. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  16. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  17. Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow

    Science.gov (United States)

    Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad

    2018-06-01

    In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.

  18. Pooled comparison of regadenoson versus adenosine for measuring fractional flow reserve and coronary flow in the catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stolker, Joshua M., E-mail: jstolker@yahoo.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Lim, Michael J., E-mail: limmj@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Shavelle, David M., E-mail: david.shavelle@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Morris, D. Lynn, E-mail: morrisdl@einstein.edu [Albert Einstein Medical Center, 5501 Old York Rd, Philadelphia, PA 19141 (United States); Angiolillo, Dominick J., E-mail: dominick.angiolillo@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Guzman, Luis A., E-mail: luis.guzman@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Kennedy, Kevin F., E-mail: kfkennedy@saint-lukes.org [Saint Luke' s Mid America Heart Institute, 4401 Wornall Road, Kansas City, MO 64111 (United States); Weber, Elizabeth, E-mail: eweber1@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zareh, Meena, E-mail: meena.zareh@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Neumayr, Robert H., E-mail: robneumayr@gmail.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zenni, Martin M., E-mail: martin.zenni@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States)

    2015-07-15

    Background: Adenosine is the gold standard for augmenting coronary flow during fractional flow reserve (FFR) testing of intermediate coronary stenoses. However, intravenous infusion is time-consuming and intracoronary injection is subject to variability. Regadenoson is a newer adenosine alternative administered as a single intravenous bolus during nuclear stress testing, but its efficacy and safety during FFR testing have been evaluated only in small, single-center studies. Methods: We pooled data from 5 academic hospitals, in which patients undergoing clinically-indicated FFR prospectively underwent comparison of intravenous adenosine infusion (140–175 mcg/kg/min) versus regadenoson bolus (400 mcg). Hemodynamics and symptoms with adenosine were recorded until maximal hyperemia occurred, and after returning to baseline hemodynamics, regadenoson was administered and monitoring was repeated. In a subset of patients with coronary flow data, average peak velocity (APV) at the distal flow sensor was recorded. Results: Of 149 patients enrolled, mean age was 59 ± 9 years, 76% were male, and 54% underwent testing of the left anterior descending artery. Mean adenosine-FFR and regadenoson-FFR were identical (0.82 ± 0.10) with excellent correlation of individual values (r = 0.96, p < 0.001) and no difference in patient-reported symptoms. Four patients (2.6%) had discrepancies between the 2 drugs for the clinical decision-making cutoff of FFR ≤ 0.80. Coronary flow responses to adenosine and regadenoson were similar (APV at maximal hyperemia 36 cm/s for both, p = 0.81). Conclusions: Regadenoson single-bolus administration has comparable FFR, symptoms, and coronary flow augmentation when compared with standard intravenous adenosine infusion. With its greater ease of administration, regadenoson may be a more “user-friendly” option for invasive ischemic testing.

  19. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study

    DEFF Research Database (Denmark)

    Pijls, Nico H J; Fearon, William F; Tonino, Pim A L

    2010-01-01

    The purpose of this study was to investigate the 2-year outcome of percutaneous coronary intervention (PCI) guided by fractional flow reserve (FFR) in patients with multivessel coronary artery disease (CAD)....

  20. An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.

    Science.gov (United States)

    Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee

    2013-03-01

    Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.

  1. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  2. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  3. Preparation of rat islet B-cell-enriched fractions by light-scatter flow cytometry

    International Nuclear Information System (INIS)

    Rabinovitch, A.; Russell, T.; Shienvold, F.; Noel, J.; Files, N.; Patel, Y.; Ingram, M.

    1982-01-01

    Flow cytometry has been examined as a method to separate islet cells into homogeneous subpopulations. Collagenase-isolated rat islets were dissociated into single cells and these were analyzed and sorted according to their low forward angle light scattering properties by using automated flow cytometry. Light scatter histograms showed two peaks of viable cells. Radioimmunoassay of hormone content in cell fractions collected across the the two peaks showed that glucagon-containing cells were concentrated towards the left side of the left peak and somatostatin-containing cells were concentrated towards the right side of the left peak, whereas insulin-containing cells were clearly enriched in the right peak. The B-cell-enriched fraction (90% B cells, 3% A cells, 2% D cells) exhibited significant insulin secretory responses to glucose (16.7 mM), and 3-isobutyl-1-methylxanthine (0.1 mM), during a 24-h culture period, and these responses were slightly greater than those observed in the original mixed islet cell preparation (66% B cells, 14% A cells, and 4% D cells). These results indicate that flow cytometry can be applied to sort pancreatic islet cells into populations enriched in specific endocrine cell types for further study of the functions of individual cell types

  4. Steady state theta pinch concept for slow formation of FRC

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-05-01

    A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)

  5. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  6. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  7. The effect of magnetic field configuration on particle pinch velocity in compact helical system (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Ida, K.; Yamada, H.

    1994-01-01

    Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)

  8. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  9. Fractional Flow Reserve Assessment of a Significant Coronary Stenosis Masked by a Downstream Serial Lesion

    Directory of Open Access Journals (Sweden)

    Lawrence Yu-Min Liu

    2016-01-01

    Full Text Available Fractional flow reserve (FFR has been recognized as an effective tool to determine functional significance in intermediate coronary lesions and FFR-guided percutaneous coronary intervention (PCI improves clinical outcomes. However, hemodynamic interaction between serial stenoses within one coronary artery complicates the assessment of functional severity of each individual lesion. We present a case in which FFR measurement by intracoronary bolus injection of adenosine helps to make appropriate revascularization decision in serial stenoses when the procedures are performed systemically and properly.

  10. Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements - initial experience with a novel physician-driven algorithm

    International Nuclear Information System (INIS)

    Baumann, Stefan; Wang, Rui; Schoepf, U.J.; Steinberg, Daniel H.; Spearman, James V.; Bayer, Richard R.; Hamm, Christian W.; Renker, Matthias

    2015-01-01

    The present study aimed to determine the feasibility of a novel fractional flow reserve (FFR) algorithm based on coronary CT angiography (cCTA) that permits point-of-care assessment, without data transfer to core laboratories, for the evaluation of potentially ischemia-causing stenoses. To obtain CT-based FFR, anatomical coronary information and ventricular mass extracted from cCTA datasets were integrated with haemodynamic parameters. CT-based FFR was assessed for 36 coronary artery stenoses in 28 patients in a blinded fashion and compared to catheter-based FFR. Haemodynamically relevant stenoses were defined by an invasive FFR ≤0.80. Time was measured for the processing of each cCTA dataset and CT-based FFR computation. Assessment of cCTA image quality was performed using a 5-point scale. Mean total time for CT-based FFR determination was 51.9 ± 9.0 min. Per-vessel analysis for the identification of lesion-specific myocardial ischemia demonstrated good correlation (Pearson's product-moment r = 0.74, p < 0.0001) between the prototype CT-based FFR algorithm and invasive FFR. Subjective image quality analysis resulted in a median score of 4 (interquartile ranges, 3-4). Our initial data suggest that the CT-based FFR method for the detection of haemodynamically significant stenoses evaluated in the selected population correlates well with invasive FFR and renders time-efficient point-of-care assessment possible. (orig.)

  11. Void fraction measurement in two-phase flow with X-rays

    International Nuclear Information System (INIS)

    Hufschmidt, W.; Clercq, E. de.

    1984-01-01

    The exact knowledge of the void fraction in two-phase flow systems with water and vapour is of great importance for water-reactors. A mesurement method not disturbing the fluid flow is the absorption technique X-rays. This method has been tested for the present case of small absorption lengths (about 16mm). In collaboration with the 'Lehrstuhl fuer elektronische Schaltungen' of the Ruhruniversitaet, Bochum (FRG), a rapid measurement device has been developed using ionization chambers. At present steady-state fluid in vertical tubes with homogeneous distribution of the two-phases water-vapour are tested at pressures in the range from 70 to 150 bars and rather good agreements with calculated values are found

  12. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

  13. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  14. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  15. Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water

    International Nuclear Information System (INIS)

    Unal, H.C.

    1977-01-01

    Void fraction has been determined with high-speed photography for subcooled nucleate flow boiling of water. The data obtained and the data of various investigators for adiabatic flow of stream-water mixtures and saturated bulk boiling of water have yielded a correlation which covers the following conditions: geometry: vertically orientated circular tubes, rectangular channels and annuli; pressure: 2 to 15.9 MN/m 2 ; mass velocity: 388 to 3500 kg/m 2 s; void fraction: 0 to 99%; hydraulic diameter: 0.0047 to 0.0343 m; heat flux: adiabatic and 0.01 to 2.0 MW/m 2 . The accuracy of the correlation is estimated to be 12.5%. The value of the so-called distribution (or flow) parameter has been experimentally determined and found to be equal to 1 for a vertical small-diameter circular tube. The incipient point of boiling for subcooled nucleate flow boiling of water has been determined with high-speed photography. The data obtained and the data available in the literature have yielded a correlation which covers the following conditions: geometry: plate, circular tube and inner tube-heated, outer tube-heated and inner - and outer tube heated annulus; pressure: 0.15 to 15.9 MN/m 2 ; mass velocity: 470 to 17355 kg/m 2 s; hydraulic diameter: 0.00239 to 0.032 m; heat flux: 0.13 to 9.8 MW/m 2 ; subcooling: 2.6 to 108 K; material of heating surface: stainless steel and nickel. The accuracy of the correlation is estimated to be 27.5%. Maximum bubble diameters have been measured at the incipient point of boiling. These data and the data from literature have been correlated for the pressure range of 0.1 to 15.9 MN/m 2 . (author)

  16. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  17. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries

    Science.gov (United States)

    Shoaib Anwar, Muhammad; Rasheed, Amer

    2017-07-01

    Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.

  18. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Science.gov (United States)

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  19. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  20. Association of coronary ischemia estimated by fractional flow reserve and psychological characteristics of patients

    Directory of Open Access Journals (Sweden)

    Miodrag Jovan Sreckovic

    2017-05-01

    Full Text Available Introduction : Psychological characteristics of patients, depression, stress and anxiety are recognized as important confounding risk factors for ischemic heart disease. However, the impact of psychological characteristics on coronary ischemia and vice versa remain poorly understood. Aim: To demonstrate the interplay of psychological characteristics, depression, stress and anxiety with coronary ischemia estimated with fractional flow reserve (FFR. Material and methods : From 2014 to 2016, 147 patients who were planned for FFR measurement were included in this study. Psychological characteristics of patients were evaluated using the Depression, Anxiety and Stress Scale 21 items (DASS 21 self-report questionnaire. Results : Comparing the FFR ischemic vs. FFR non-ischemic groups, a significant difference was observed regarding results achieved for the depression, anxiety and stress scales. Multivariate logistic regression analysis was used to model the correlation between FFR and the DAS scale. It was clear, when controlling for previous myocardial infarction, that FFR was significant in all analyses. However, when the Canadian Cardiovascular Society grading of angina pectoris (CCS class was entered in the model, FFR was not a significant predictor of anxiety, but was significant in other analysis. Conclusions : Higher degrees of the psychological characteristics depression, stress and anxiety were observed in the group of patients with coronary ischemia, corresponding to lower fractional flow values.

  1. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    Science.gov (United States)

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  3. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  4. Performance improvement of centrifugal compressor stage with pinched geometry or vaned diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen, A.

    2009-07-01

    Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finfo, which is a Navier-Stokes solver. All the cases are modeled Chien's k-epsilon turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements k-omega SST turbulence model. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher effciency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller effciency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency

  5. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    Science.gov (United States)

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  6. Virtual Resting Pd/Pa From Coronary Angiography and Blood Flow Modelling: Diagnostic Performance Against Fractional Flow Reserve.

    Science.gov (United States)

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Bourantas, Christos V; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Serruys, Patrick W; Michalis, Lampros K

    2018-03-01

    Fractional flow reserve (FFR) has been established as a useful diagnostic tool. The distal coronary pressure to aortic pressure (Pd/Pa) ratio at rest is a simpler physiologic index but also requires the use of the pressure wire, whereas recently proposed virtual functional indices derived from coronary imaging require complex blood flow modelling and/or are time-consuming. Our aim was to test the diagnostic performance of virtual resting Pd/Pa using routine angiographic images and a simple flow model. Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by FFR. The resting Pd/Pa for each lesion was assessed by computational fluid dynamics. The discriminatory power of virtual resting Pd/Pa against FFR (reference: ≤0.80) was high (area under the receiver operator characteristic curve [AUC]: 90.5% [95% CI: 85.4-95.6%]). Diagnostic accuracy, sensitivity and specificity for the optimal virtual resting Pd/Pa cut-off (≤0.94) were 84.9%, 90.4% and 81.6%, respectively. Virtual resting Pd/Pa demonstrated superior performance (pvirtual resting Pd/Pa and FFR (r=0.69, pVirtual resting Pd/Pa using routine angiographic data and a simple flow model provides fast functional assessment of coronary lesions without requiring the pressure-wire and hyperaemia induction. The high diagnostic performance of virtual resting Pd/Pa for predicting FFR shows promise for using this simple/fast virtual index in clinical practice. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4.

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    Full Text Available The development of methods to monitor manufactured nanomaterials in the environment is one of the crucial areas for the assessment of their risk. More specifically, particle size analysis is a key element, because many properties of nanomaterial are size dependent. The sizing of nanomaterials in real environments is challenging due to their heterogeneity and reactivity with other environmental components. In this study, the fractionation and characterization of a mixture of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs of three different sizes were investigated using asymmetrical flow field-flow fractionation (AF4 coupled with UV-Vis spectrophotometry. In particular, the effects of electrolyte composition and natural organic matter (NOM on the particle size and stability were evaluated. The fractogram peaks (i.e., stability of three different AgNPs decreased in the presence of both 10 mM NaCl and 10 mM CaCl2, while increased with increasing concentration of humic acid (HA. In addition, the hydrodynamic diameters of AgNPs in both electrolytes slightly increased with an increase of HA concentration, suggesting the adsorption (coating of HA onto the particle surface. It is also interesting to note that an increase in the particle size depended on the types of electrolyte, which could be explained by the conformational characteristics of the adsorbed HA layers. Consistent these results, AgNPs suspended in lake water containing relatively high concentration of organic carbon (TOC showed higher particle stability and larger particle size (i.e., by approximately 4 nm than those in river water. In conclusion, the application of AF4 coupled with highly sensitive detectors could be a powerful method to characterize nanoparticles in natural waters.

  8. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4)

    Science.gov (United States)

    Jang, Min-Hee; Lee, Seungho; Hwang, Yu Sik

    2015-01-01

    The development of methods to monitor manufactured nanomaterials in the environment is one of the crucial areas for the assessment of their risk. More specifically, particle size analysis is a key element, because many properties of nanomaterial are size dependent. The sizing of nanomaterials in real environments is challenging due to their heterogeneity and reactivity with other environmental components. In this study, the fractionation and characterization of a mixture of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) of three different sizes were investigated using asymmetrical flow field-flow fractionation (AF4) coupled with UV-Vis spectrophotometry. In particular, the effects of electrolyte composition and natural organic matter (NOM) on the particle size and stability were evaluated. The fractogram peaks (i.e., stability) of three different AgNPs decreased in the presence of both 10 mM NaCl and 10mM CaCl2, while increased with increasing concentration of humic acid (HA). In addition, the hydrodynamic diameters of AgNPs in both electrolytes slightly increased with an increase of HA concentration, suggesting the adsorption (coating) of HA onto the particle surface. It is also interesting to note that an increase in the particle size depended on the types of electrolyte, which could be explained by the conformational characteristics of the adsorbed HA layers. Consistent these results, AgNPs suspended in lake water containing relatively high concentration of organic carbon (TOC) showed higher particle stability and larger particle size (i.e., by approximately 4nm) than those in river water. In conclusion, the application of AF4 coupled with highly sensitive detectors could be a powerful method to characterize nanoparticles in natural waters. PMID:26575993

  9. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson; Schirru, Roberto; Silva, Ademir X.

    2007-01-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  10. Study of volume fractions for stratified and annular regime in multiphase flows using gamma-rays and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: otero@ien.gov.br; brandao@ien.gov.br; cmnap@ien.gov.br; robson@ien.gov.br; Schirru, Roberto; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Energia Nuclear (PEN)]. E-mails: ademir@con.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)

  11. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  12. Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanford, T W L; Nash, T J; Olson, R E; Bliss, D E; Lemke, R W; Olson, C L; Ruiz, C L; Mock, R C; Bailey, J E; Chandler, G A; Cuneo, M E; Leeper, R J; Matzen, M K; Mehlhorn, T A; Slutz, S A; Stygar, W A; Peterson, D L; Chrien, R E; Watt, R G; Roderick, N F; Cooper, G W; Apruzese, J P; Sarkisov, G S; Chittenden, J P; Haines, M G

    2004-01-01

    Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions

  13. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass

  14. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  15. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2001-01-01

    Roč. 918, č. 2 (2001), s. 361-370 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : field-flow fractionation * field programming * flow-rate gradients Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001

  16. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  17. Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation

    Science.gov (United States)

    Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

    2009-01-01

    We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662

  18. Quantitative assessment of myocardial blood flow by measurement of fractional myocardial uptake of 201Tl

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Ishii, Yasushi; Torizuka, Kanji; Kadota, Kazunori; Kambara, Hirofumi

    1980-01-01

    Fractional Myocardial uptake of 201 Tl was measured for the quantitative assessment of myocardial blood flow in coronary artery disease (CAD). 10 normals and 28 CAD, 7 of which have less than 50% stenosis (CAD I) and 21 of which have more than 50% stenosis (CAD II) in the proximal portion of coronary arteries, were studied at rest and with submaximal exercise loading by bicycle ergometer. After intravenous injection of 201 Tl, its rapid transport process was recorded during the initial 5 minutes by a scintillation camera and a minicomputer. Total injected dosage (T) was obtained from the counts of the entire chest region during the initial passage of the tracer through the heart and lung. Myocardial uptake (M) was counted with the same geometry from the subsequent accumulation within the myocardial region with subtraction of the background activities in the upper mediastinal region (B). The fractional myocardial uptake of 201 Tl ((M-B)/T) is assumed to be proportional to the fractional myocardial blood flow to cardiac output (MBF/CO) according to the indicator fractionation principle. The average value of MBF/CO at rest in CAD (4.11 +- 1.12%) was significantly greater than in normals (3.36 +- 0.49%), which may be caused by an increased left ventricular mass in CAD. Change rate of MBF/CO on the exercise loading was significantly less in CAD I (1.36 +- 0.14) and in CAD II (1.11 +- 0.21) than in normals (1.75 +- 0.11). MBF/CO increased proportionally to the increment of the double product of heart rate and systolic blood pressure by exercise loading in normals, whereas it didn't in CAD. The sensitivity of this method was superior to the stress electrocardiogram and the stress myocardial perfusion imaging, not only in CAD II but also in CAD I. This result indicated that this type of global assessment of the myocardial reserve capacity is valuable in addition to the simple stress myocardial perfusion imaging. (author)

  19. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  20. Flow map and measurement of void fraction and heat transfer coefficient using an image analysis technique for flow boiling of water in a silicon microchannel

    International Nuclear Information System (INIS)

    Singh, S G; Duttagupta, S P; Jain, A; Sridharan, A; Agrawal, Amit

    2009-01-01

    The present work focuses on the generation of the flow regime map for two-phase water flow in microchannels of a hydraulic diameter of 140 µm. An image analysis algorithm has been developed and utilized to obtain the local void fraction. The image processing technique is also employed to identify and estimate the percentage of different flow regimes and heat transfer coefficient, as a function of position, heat flux and mass flow rate. Both void fraction and heat transfer coefficient are found to increase monotonically along the length of the microchannel. At low heat flux and low flow rates, bubbly, slug and annular flow regimes are apparent. However, the flow is predominately annular at high heat flux and high flow rate. A breakup of the flow frequency suggests that the flow is bistable in the annular regime, in that at a fixed location, the flow periodically switches from single-phase liquid to annular and vice versa. Otherwise, the occurrence of three regimes—single-phase liquid, bubbly and slug are observed. These results provide several useful insights about two-phase flow in microchannels besides being of fundamental interest

  1. BATCH PROCESS INTEGRATION OF APPLYING TECHNOLOGY OF ACID CARMINIC PINCH

    OpenAIRE

    Erazo E., Raymundo; Cárdenas R., Jorge L.; Woolcott H., Juan C.

    2014-01-01

    This work was developed in order to implement the PINCH technology integration batch process for carminic acid. The method used consisted of the application of the concepts of bottle necks total process (OPB) together with part-time models (TAM) and time fractionated! (TSM). The drying operation is identified as the rate limiting step of the process identifying it as an OPB plant capacity. The extraction yield was 95% w / p carminic acid with an energy savings of approximately 60% of the...

  2. A predictor-corrector algorithm to estimate the fractional flow in oil-water models

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Berdaguer, Elena M Fernandez

    2008-01-01

    We introduce a predictor-corrector algorithm to estimate parameters in a nonlinear hyperbolic problem. It can be used to estimate the oil-fractional flow function from the Buckley-Leverett equation. The forward model is non-linear: the sought- for parameter is a function of the solution of the equation. Traditionally, the estimation of functions requires the selection of a fitting parametric model. The algorithm that we develop does not require a predetermined parameter model. Therefore, the estimation problem is carried out over a set of parameters which are functions. The algorithm is based on the linearization of the parameter-to-output mapping. This technique is new in the field of nonlinear estimation. It has the advantage of laying aside parametric models. The algorithm is iterative and is of predictor-corrector type. We present theoretical results on the inverse problem. We use synthetic data to test the new algorithm.

  3. Physiologic assessment of coronary artery disease: Focus on fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Yeon; Koo, Bon Kwon [Dept. of Radiology, Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, Joo Myung [Dept. of Internal Medicine and Cardiovascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    The presence of myocardial ischemia is the most important prognostic factor in patients with ischemic heart disease. Fractional flow reserve (FFR) is a gold standard invasive method used to detect the stenosis-specific myocardial ischemia. FFR-guided revascularization strategy is superior to angiography-guided strategy. The recently developed hyperemia-free index, instantaneous wave free ratio is being actively investigated. A non-invasive FFR derived from coronary CT angiography is now used in clinical practice. Due to rapid expansion of invasive and non-invasive physiologic assessment, comprehensive understanding of the role and potential pitfalls of each modality are required for its application. In this review, we focus on the basic and clinical aspects of physiologic assessment in ischemic heart disease.

  4. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  5. Physiologic assessment of coronary artery disease: Focus on fractional flow reserve

    International Nuclear Information System (INIS)

    Hwang, Do Yeon; Koo, Bon Kwon; Lee, Joo Myung

    2016-01-01

    The presence of myocardial ischemia is the most important prognostic factor in patients with ischemic heart disease. Fractional flow reserve (FFR) is a gold standard invasive method used to detect the stenosis-specific myocardial ischemia. FFR-guided revascularization strategy is superior to angiography-guided strategy. The recently developed hyperemia-free index, instantaneous wave free ratio is being actively investigated. A non-invasive FFR derived from coronary CT angiography is now used in clinical practice. Due to rapid expansion of invasive and non-invasive physiologic assessment, comprehensive understanding of the role and potential pitfalls of each modality are required for its application. In this review, we focus on the basic and clinical aspects of physiologic assessment in ischemic heart disease

  6. Fractional Flow Reserve Measurement by Coronary Computed Tomography Angiography: A Review with Future Directions

    Directory of Open Access Journals (Sweden)

    Asim Rizvi

    2016-12-01

    Full Text Available Invasive fractional flow reserve (FFR measurement is currently the gold standard for coronary intervention. FFR measurement by coronary computed tomography angiography (FFRCT is a novel and promising imaging technology that permits noninvasive assessment of physiologically significant coronary lesions. FFRCT is capable of combining the anatomic information provided by coronary computed tomography angiography with computational fluid dynamics to compute FFR. To date, several studies have reported the diagnostic performance of FFRCT compared with invasive FFR measurement as the reference standard. Further studies are now being implemented to determine the clinical feasibility and economic implications of FFRCT techniques. This article provides an overview and discusses the available evidence as well as potential future directions of FFRCT.

  7. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making.

    Science.gov (United States)

    Tesche, Christian; Vliegenthart, Rozemarijn; Duguay, Taylor M; De Cecco, Carlo N; Albrecht, Moritz H; De Santis, Domenico; Langenbach, Marcel C; Varga-Szemes, Akos; Jacobs, Brian E; Jochheim, David; Baquet, Moritz; Bayer, Richard R; Litwin, Sheldon E; Hoffmann, Ellen; Steinberg, Daniel H; Schoepf, U Joseph

    2017-12-15

    This study investigated the performance of coronary computed tomography angiography (cCTA) with cCTA-derived fractional flow reserve (CT-FFR) compared with invasive coronary angiography (ICA) with fractional flow reserve (FFR) for therapeutic decision making in patients with suspected coronary artery disease (CAD). Seventy-four patients (62 ± 11 years, 62% men) with at least 1 coronary stenosis of ≥50% on clinically indicated dual-source cCTA, who had subsequently undergone ICA with FFR measurement, were retrospectively evaluated. CT-FFR values were computed using an on-site machine-learning algorithm to assess the functional significance of CAD. The therapeutic strategy (optimal medical therapy alone vs revascularization) and the appropriate revascularization procedure (percutaneous coronary intervention vs coronary artery bypass grafting) were selected using cCTA-CT-FFR. Thirty-six patients (49%) had a functionally significant CAD based on ICA-FFR. cCTA-CT-FFR correctly identified a functionally significant CAD and the need of revascularization in 35 of 36 patients (97%). When revascularization was deemed indicated, the same revascularization procedure (32 percutaneous coronary interventions and 3 coronary artery bypass grafting) was chosen in 35 of 35 patients (100%). Overall, identical management strategies were selected in 73 of the 74 patients (99%). cCTA-CT-FFR shows excellent performance to identify patients with and without the need for revascularization and to select the appropriate revascularization strategy. cCTA-CT-FFR as a noninvasive "one-stop shop" has the potential to change diagnostic workflows and to directly inform therapeutic decision making in patients with suspected CAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    Science.gov (United States)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.

    Science.gov (United States)

    Pellegrino, J; Wright, S; Ranvill, J; Amy, G

    2005-01-01

    Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer

  10. Rotational instability in a linear theta pinch

    International Nuclear Information System (INIS)

    Ekdahl, C.; Bartsch, R.R.; Commisso, R.J.; Gribble, R.F.; McKenna, K.F.; Miller, G.; Siemon, R.E.

    1980-01-01

    The m=1 ''wobble'' instability of the plasma column in a 5-m linear theta pinch has been studied using an axial array of orthogonally viewing position detectors to resolve the wavelength and frequency of the column motion. The experimental results are compared with recent theoretical predictions that include finite Larmor orbit effects. The frequency and wavelength characteristics at saturation agree with the predicted dispersion relation for a plasma rotating faster than the diamagnetic drift speed. Measurements of the magnetic fields at the ends of the pinch establish the existence of currents flowing in such a way that they short out the radial electric fields in the plasma column. The magnitude of rotation, the observed delay in the onset of m=1 motion, and the magnitude of end-shorting currents can all be understood in terms of the torsional Alfven waves that communicate to the central plasma column the information that the ends have been shorted. The same waves are responsible for the torque which rotates the plasma and leads to the observed m=1 instability. Observations of the plasma in the presence of solid end plugs indicate a stabilization of high-m number modes and a reduction of the m=1 amplitude

  11. Relationship between instantaneous wave-free ratio and fractional flow reserve in patients receiving hemodialysis.

    Science.gov (United States)

    Morioka, Yuta; Arashi, Hiroyuki; Otsuki, Hisao; Yamaguchi, Junichi; Hagiwara, Nobuhisa

    2017-06-22

    Instantaneous wave-free ratio (iFR) is a vasodilator-free index and is reported to have a good correlation with fractional flow reserve (FFR). Hemodialysis patients exhibit left ventricular hypertrophy, reduced arterial compliance, and impaired microcirculation. Such a coronary flow condition in these patients may influence the relationship between iFR and FFR. This study assessed the impact of hemodialysis on the relationship between iFR and FFR. The study enrolled 196 patients with 265 stenoses who underwent assessment via iFR, FFR assessment, and right heart catheterization. A good correlation between iFR and FFR was observed in hemodialysis patients. iFR in the hemodialysis group was significantly lower than in the non-hemodialysis group (0.81 ± 0.13 vs. 0.86 ± 0.13, p = 0.005), although no significant difference was found in FFR and percentage diameter stenosis. An iFR value of 0.84 was found to be equivalent to an FFR value of 0.8 in hemodialysis patients, which was lower than the standard predictive iFR range for ischemia. Vasodilator-free assessment by iFR could be beneficial in evaluating intermediate coronary stenosis in patients receiving hemodialysis. However, the threshold for iFR abnormality needs adjustment in hemodialysis patients, and larger clinical trials are required to confirm the results in this specific subset.

  12. Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions

    DEFF Research Database (Denmark)

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin

    2017-01-01

    In this study, rheological properties of cress seed gum (CSG) and its fractions (F1, F2, F3; fractionated using stepwise extraction with water) were investigated. Cress seed gum and its fractions revealed random coil conformation in dilute regimes; chain flexibility and intrinsic viscosity...... indicated that CSG and the fractions exhibited significantly different rheological properties....

  13. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  14. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  15. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Købler, Carsten

    2013-01-01

    of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF(4)) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two...... smaller peaks eluting close to the void volume. The recovery of silver contained in the large AgNP peak was around 80 %. Size determination of AgNPs in the meat matrix, based on external size calibration of the AF(4) channel, was hampered by non-ideal (early elution) behavior of the AgNPs. Single particle...

  16. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    Science.gov (United States)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  17. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    International Nuclear Information System (INIS)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-01-01

    Graphical abstract: -- Highlights: •Four types of SiO 2 particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO 2 samples. •A method was set up to extract SiO 2 particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO 2 particles extracted from foodstuffs. -- Abstract: Four types of SiO 2 , available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w −1 ) a nearly silica-free instant barley coffee powder with a known SiO 2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO 2 particles and verify the new particle size distribution. The SiO 2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w −1 ). The protocol to isolate the silica particles was so applied to the most SiO 2 -rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification

  18. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions

    DEFF Research Database (Denmark)

    Gaur, Sara; Øvrehus, Kristian Altern; Dey, Damini

    2016-01-01

    AIMS: Coronary plaque characteristics are associated with ischaemia. Differences in plaque volumes and composition may explain the discordance between coronary stenosis severity and ischaemia. We evaluated the association between coronary stenosis severity, plaque characteristics, coronary computed...... tomography angiography (CTA)-derived fractional flow reserve (FFRCT), and lesion-specific ischaemia identified by FFR in a substudy of the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). METHODS AND RESULTS: Coronary CTA stenosis, plaque volumes, FFRCT, and FFR were assessed...

  19. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    Science.gov (United States)

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  20. Diagnostic performance of a Lattice Boltzmann-based method for CT-based fractional flow reserve.

    Science.gov (United States)

    Giannopoulos, Andreas A; Tang, Anji; Ge, Yin; Cheezum, Michael K; Steigner, Michael L; Fujimoto, Shinichiro; Kumamaru, Kanako K; Chiappino, Dante; Della Latta, Daniele; Berti, Sergio; Chiappino, Sara; Rybicki, Frank J; Melchionna, Simone; Mitsouras, Dimitrios

    2018-02-20

    Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischaemia. We aimed to develop and validate a fast CT-FFR algorithm utilising the Lattice Boltzmann method for blood flow simulation (LBM CT-FFR). Sixty-four patients with clinically indicated CTA and invasive FFR measurement from three institutions were retrospectively analysed. CT-FFR was performed using an onsite tool interfacing with a commercial Lattice Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR ≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR ≤0.8 were compared using area under the receiver operating characteristic curve (AUC). Sixty patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR ≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792-0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR ≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, and accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischaemia (FFR ≤0.8) and can be performed in less than one hour.

  1. Physiological assessment of coronary lesion severity: fractional flow reserve versus nonhyperaemic indices.

    Science.gov (United States)

    Robertson, Keith E; Hennigan, Barry; Berry, Colin; Oldroyd, Keith G

    2015-08-01

    Coronary angiography alone cannot accurately identify the haemodynamic impact of a coronary artery stenosis. Current international guidelines for myocardial revascularization recommend that inducible ischaemia should be demonstrated before the consideration of percutaneous coronary intervention. Invasive physiological assessment of coronary stenosis severity has increasingly been utilized for this purpose and use of the best validated technique, fractional flow reserve (FFR), has been shown to improve clinical outcomes in patients with stable and unstable coronary artery disease. This has led to the use of FFR being recommended in international revascularization guidelines, despite which, clinical uptake has been limited. One potential reason for slow adoption has been the requirement for maximal hyperaemia at the time of FFR measurement, usually achieved by the administration of pharmacological vasodilators such as adenosine. In some healthcare systems, adenosine is expensive and, in addition, its use can be associated with significant, albeit transient, adverse effects that patients (and some operators) find uncomfortable. Consequently, several methods of nonhyperaemic lesion assessment and their potential role in decision making have been reported. In this review we will review and discuss the current evidence for hyperaemic and nonhyperaemic methods of lesion assessment. We will also look at hybrid strategies that utilize both hyperaemic and nonhyperaemic methods as a means of potentially maintaining diagnostic accuracy while minimizing the requirement for adenosine administration and discuss whether or not they represent viable clinical alternatives.

  2. Differences between automatically detected and steady-state fractional flow reserve.

    Science.gov (United States)

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  3. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  4. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  5. Qualitative Resting Coronary Pressure Wave Form Analysis to Predict Fractional Flow Reserve.

    Science.gov (United States)

    Matsumura, Mitsuaki; Maehara, Akiko; Johnson, Nils P; Fearon, William F; De Bruyne, Bernard; Oldroyd, Keith G; Pijls, Nico H J; Jenkins, Paul; Ali, Ziad A; Mintz, Gary S; Stone, Gregg W; Jeremias, Allen

    2018-03-27

    To evaluate the predictability of resting distal coronary pressure wave forms for fractional flow reserve (FFR). Resting coronary wave forms were qualitatively evaluated for the presence of (i) dicrotic notch; (ii) diastolic dipping; and (iii) ventricularization. In a development cohort (n=88) a scoring system was developed that was then applied to a validation cohort (n=428) using a multivariable linear regression model to predict FFR and receiver operating characteristics (ROC) to predict FFR ≤0.8. In the development cohort, all 3 qualitative parameters were independent predictors of FFR. However, in a multivariable linear regression model in the validation cohort, qualitative wave form analysis did not further improve the ability of resting distal coronary to aortic pressure ratio (Pd/Pa) (p=0.80) or instantaneous wave-free ratio (iFR) (p=0.26) to predict FFR. Using ROC, the area under the curve of resting Pd/Pa (0.86 versus 0.86, P=0.08) and iFR (0.86 versus 0.86, P=0.26) did not improve by adding qualitative analysis. Qualitative coronary wave form analysis showed moderate classification agreement in predicting FFR but did not add substantially to the resting pressure gradients Pd/Pa and iFR; however, when discrepancies between quantitative and qualitative analyses are observed, artifact or pressure drift should be considered.

  6. Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve.

    Science.gov (United States)

    Chung, Woo-Young; Choi, Byoung-Joo; Lim, Seong-Hoon; Matsuo, Yoshiki; Lennon, Ryan J; Gulati, Rajiv; Sandhu, Gurpreet S; Holmes, David R; Rihal, Charanjit S; Lerman, Amir

    2015-06-01

    Conventional coronary angiography (CAG) has limitations in evaluating lesions producing ischemia. Three dimensional quantitative coronary angiography (3D-QCA) shows reconstructed images of CAG using computer based algorithm, the Cardio-op B system (Paieon Medical, Rosh Ha'ayin, Israel). The aim of this study was to evaluate whether 3D-QCA can reliably predict ischemia assessed by myocardial fractional flow reserve (FFR) < 0.80. 3D-QCA images were reconstructed from CAG which also were evaluated with FFR to assess ischemia. Minimal luminal diameter (MLD), percent diameter stenosis (%DS), minimal luminal area (MLA), and percent area stenosis (%AS) were obtained. The results of 3D-QCA and FFR were compared. A total of 266 patients was enrolled for the present study. FFR for all lesions ranged from 0.57 to 1.00 (0.85 ± 0.09). Measurement of MLD, %DS, MLA, and %AS all were significantly correlated with FFR (r = 0.569, 0609, 0.569, 0.670, respectively, all P < 0.001). In lesions with MLA < 4.0 mm(2), %AS of more than 65.5% had a 80% sensitivity and a 83% specificity to predict FFR < 0.80 (area under curve, AUC was 0.878). 3D-QCA can reliably predict coronary lesions producing ischemia and may be used to guide therapeutic approach for coronary artery disease.

  7. Fractional flow reserve in patients with intermediate values of Duke Treadmill Score and borderline coronary lesions

    Directory of Open Access Journals (Sweden)

    Simić I.

    2013-01-01

    Full Text Available Despite the wide usage of exercise ECG tests and Duke Treadmill Score (DTS in clinical practice, no comparison between this scoring system and Fractional Flow Reserve (FFR has yet been made, particularly in cases of angiographically verified borderline lesions. Thirty patients with single coronary lesions and angiographically assessed borderline stenosis (between 30-70% and previously calculated intermediate values of DTS between -10 to +4 were examined using FFR. Adequate specificity and sensitivity (0.769 and 0.556, respectively were in a more narrow range of -0.5 to -10. Sex and age did not have an influence on the DTS values. There was a correlation between the values of FFR and age (r=0.395, p=0.031 and between angiographic assessment of stenosis and quantitative coronary angiography (QCA (r=0.648, p<0.0001. In the study population, a decision on revascularization could not be based solely on angiographic or QCA assessment of the artery or on the values of DTS.

  8. SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: A meta analysis

    International Nuclear Information System (INIS)

    Zhou, Tao; Yang, Lin-feng; Zhai, Ji-liang; Li, Jiang; Wang, Qi-meng; Zhang, Rui-jie; Wang, Sen; Peng, Zhao-hui; Li, Min; Sun, Gang

    2014-01-01

    Purpose: The present meta-analysis illustrates the accuracy of myocardial perfusion SPECT (MPS) to diagnose functional stenotic coronary artery disease (CAD) with fractional flow reserve (FFR) as standard reference. Methods: All investigators screened and selected studies that compared MPS with FFR in symptomatic patients with suspected CAD. Patients and study characteristics were independently extracted by two investigators; differences were resolved by consensus. Results: 13 articles, including 1,017 patients, 699 vessels were included in the study. No significant publication bias was detected (P = 0.65). At the patient level, the summary sensitivity and specificity were 77% (95% confidence interval [CI], 70–83%) and 77% (95%CI, 67–84%) for MPS. Vessel-level pooled sensitivity was 66% (95%CI, 57–74%) and specificity was 81% (95%CI, 70–89%). The overall diagnostic performance of MPS was moderate. [The area under the summary receiver operating characteristic (sROC) curve was 0.83]. No study influenced the pooled results larger than 0.03. Conclusions: The accuracy between FFR and MPS SPECT was moderate

  9. SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: A meta analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Yang, Lin-feng [Department of Medical Imaging, Jinan Military General Hospital, No, 25, Shifan Road, Jinan, Shandong Province, China. 250031 (China); Zhai, Ji-liang [Department of Medical Imaging, The Branch of TaiAn Central Hospital, Middle of Changcheng Road, Shandong Province, China. 271000 (China); Li, Jiang [Department of Medical Imaging, Affiliated Hospital of Taishan Medical University, No, 706, Taishan Road, Shandong Province, China. 271000 (China); Wang, Qi-meng [Department of Medical Imaging, Taishan Hospital of Traditional Chinese Medicine, No, 216, Yingxuan Street, Shandong Province, China. 271000. (China); Zhang, Rui-jie; Wang, Sen; Peng, Zhao-hui [Department of Medical Imaging, Jinan Military General Hospital, No, 25, Shifan Road, Jinan, Shandong Province, China. 250031 (China); Li, Min, E-mail: liminyingxiang@163.com [Department of Medical Imaging, Jinan Military General Hospital, No, 25, Shifan Road, Jinan, Shandong Province, China. 250031 (China); Sun, Gang, E-mail: cjr.sungang@vip.163.com [Department of Medical Imaging, Jinan Military General Hospital, No, 25, Shifan Road, Jinan, Shandong Province, China. 250031 (China)

    2014-06-15

    Purpose: The present meta-analysis illustrates the accuracy of myocardial perfusion SPECT (MPS) to diagnose functional stenotic coronary artery disease (CAD) with fractional flow reserve (FFR) as standard reference. Methods: All investigators screened and selected studies that compared MPS with FFR in symptomatic patients with suspected CAD. Patients and study characteristics were independently extracted by two investigators; differences were resolved by consensus. Results: 13 articles, including 1,017 patients, 699 vessels were included in the study. No significant publication bias was detected (P = 0.65). At the patient level, the summary sensitivity and specificity were 77% (95% confidence interval [CI], 70–83%) and 77% (95%CI, 67–84%) for MPS. Vessel-level pooled sensitivity was 66% (95%CI, 57–74%) and specificity was 81% (95%CI, 70–89%). The overall diagnostic performance of MPS was moderate. [The area under the summary receiver operating characteristic (sROC) curve was 0.83]. No study influenced the pooled results larger than 0.03. Conclusions: The accuracy between FFR and MPS SPECT was moderate.

  10. Different elution modes and field programming in gravitational field-flow fractionation: Field programming using density and viscosity gradients

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2006-01-01

    Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  11. Putting the pinch on reactors

    International Nuclear Information System (INIS)

    Glavic, P.; Kravanja, Z.; Homsak, M.

    1990-01-01

    Pinch technology has proven to be a powerful tool for designing new processes and retrofitting old ones. But, until recently, it was thought to pertain only to heat exchanger networks, separators and power devices (such as heat engines and heat pumps). Regarded as process background, reactors have been left out of heat integrations. Their structure, however, can be changed and, within limits, their parameters modified to better exploit energy. In a pinch-designed plant, heat is transferred between the hot and cold process streams so efficiently that the plant's utility requirements (heat sources and sinks) are minimal. The design procedure is discussed. It involves two steps: finding a nearly optimal process structure by means of an analysis of process-temperature-vs.- enthalpy diagrams, and then optimizing the structure by means of grid diagrams or a computerized procedure

  12. Eigenvalue pinching on spinc manifolds

    Science.gov (United States)

    Roos, Saskia

    2017-02-01

    We derive various pinching results for small Dirac eigenvalues using the classification of spinc and spin manifolds admitting nontrivial Killing spinors. For this, we introduce a notion of convergence for spinc manifolds which involves a general study on convergence of Riemannian manifolds with a principal S1-bundle. We also analyze the relation between the regularity of the Riemannian metric and the regularity of the curvature of the associated principal S1-bundle on spinc manifolds with Killing spinors.

  13. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  14. Z-Pinch Fusion for Energy Applications

    International Nuclear Information System (INIS)

    SPIELMAN, RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999

  15. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    Energy Technology Data Exchange (ETDEWEB)

    Contado, Catia, E-mail: Catia.Contado@unife.it [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy); Ravani, Laura [University of Ferrara, Department of Life Sciences and Biotechnologies, via L. Borsari, 46, 44121 Ferrara (Italy); Passarella, Martina [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy)

    2013-07-25

    Graphical abstract: -- Highlights: •Four types of SiO{sub 2} particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO{sub 2} samples. •A method was set up to extract SiO{sub 2} particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO{sub 2} particles extracted from foodstuffs. -- Abstract: Four types of SiO{sub 2}, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w{sup −1}) a nearly silica-free instant barley coffee powder with a known SiO{sub 2} sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO{sub 2} particles and verify the new particle size distribution. The SiO{sub 2} content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w{sup −1}). The protocol to isolate the silica particles was so applied to the most SiO{sub 2}-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  16. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    Science.gov (United States)

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  17. Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives

    Science.gov (United States)

    Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.

    2018-01-01

    The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.

  18. Determination of hepatic fractional clearance of radioactive gold colloids for a measure of effective hepatic blood flow

    International Nuclear Information System (INIS)

    Fujii, Masahiro

    1979-01-01

    For a measure of effective blood flow, a hepatic fractional clearance of 198 Au-colloids was determined, which was obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic uptake was determined with a gamma camera. The counts over the liver was corrected for body weight and height. The method was considered sufficiently simple for routine use. 198 Au-colloids were obtained from Dainabot Lab. and CIS. The former gave 64% higher values of disappearance rate than the latter, without any change in the organ distribution. A quality control tests were applied over a six-year period to the disappearance rates. Reproducibility within 95 to confidence limits was found for both groups. In 28 normal control subjects, hepatic fractional clearance of the colloids from Dainabot Lab. was 18.5 +- 3.4%/min. In patients with progressed hepatic disease, both hepatic fractional clearance and final hepatic uptake were decreased, showing that the determination of hepatic uptake is necessary in measuring effective hepatic blood flow by the colloidal clearance method. The influence of splenic uptake is discussed in relation to hepatic blood flow measurement. (author)

  19. Fractional flow reserve guided percutaneous coronary intervention results in reduced ischemic myocardium and improved outcomes.

    Science.gov (United States)

    Sawant, Abhishek C; Bhardwaj, Aishwarya; Banerjee, Kinjal; Jobanputra, Yash; Kumar, Arnav; Parikh, Parth; Kandregula, Krishna C; Poddar, Kanhaiya; Ellis, Stephen G; Nair, Ravi; Corbelli, John; Kapadia, Samir

    2018-02-06

    To determine if fractional flow reserve guided percutaneous coronary intervention (FFR-guided PCI) is associated with reduced ischemic myocardium compared with angiography-guided PCI. Although FFR-guided PCI has been shown to improve outcomes, it remains unclear if it reduces the extent of ischemic myocardium at risk compared with angiography-guided PCI. We evaluated 380 patients (190 FFR-guided PCI cases and 190 propensity-matched controls) who underwent PCI from 2009 to 2014. Clinical, laboratory, angiographic, stress testing, and major adverse cardiac events [MACE] (all-cause mortality, recurrence of MI requiring PCI, stroke) data were collected. Mean age was 63 ± 11 years; the majority of patients were males (76%) and Caucasian (77%). Median duration of follow up was 3.4 [Range: 1.9, 5.0] years. Procedural complications including coronary dissection (2% vs. 0%, P = .12) and perforation (0% vs. 0%, P = 1.00) were similar between FFR-guided and angiography-guided PCI patients. FFR-guided PCI patients had lower unadjusted (14.7% vs. 23.2%, P = .04) and adjusted [OR = 0.58 (95% CI: 0.34-0.98)] risk of repeat revascularization at one year. FFR-guided PCI patients were less likely (23% vs. 32%, P = .02) to have ischemia and had lower (5.9% vs. 21.1%, P guided PCI, FFR-guided PCI results in less repeat revascularization and a lower incidence of post PCI ischemia translating into improved survival, without an increase in complications. © 2018 Wiley Periodicals, Inc.

  20. Resting Pd/Pa and haemodynamic relevance of coronary stenosis as evaluated by fractional flow reserve.

    Science.gov (United States)

    De Luca, Giuseppe; Verdoia, Monica; Barbieri, Lucia; Marino, Paolo; Suryapranata, Harry

    2018-03-01

    Fractional flow reserve (FFR) currently represents the gold standard in the evaluation of the haemodynamic relevance of coronary stenoses. However, both intracoronary and intravenous adenosine may be tolerated poorly by some patients. Therefore, considerable interest had been focused in the last few years on new adenosine-free indexes to define the haemodynamic relevance of coronary stenoses. So far, few data have been reported on resting Pd/Pa and its correlation with FFR as evaluated with high-dose intracoronary adenosine administration, which is the aim of the current study. FFR was assessed in 120 patients with 137 intermediate lesions during cardiac catheterization by a pressure-recording guidewire (PrimeWire). FFR was calculated as the ratio of the distal coronary pressure to the aortic pressure at hyperaemia. Intracoronary doses of adenosine were administered up to 720 μg as intracoronary boli. Exclusion criteria were as follows: (a) allergy to adenosine; (b) baseline bradycardia (heart rate values and increased the percentage of patients showing an FFR less than 0.80. Resting Pd/Pa showed good accuracy in the identification of patients with significant FFR values (value in the prediction of a positive FFR value. A value up to 0.88 was associated with a 100% positive predictive value, whereas a value of at least 0.95 was associated with a 95% negative predictive value. This study showed that in intermediate lesions, resting Pd/Pa was related linearly to FFR. We identified 0.93 as the best cut-off value in the prediction of haemodynamically significant coronary stenosis as evaluated by FFR. However, cut-off values of 0.88 and 0.95 could provide the maximal predictive positive and negative values, suggesting the additional use of FFR only in patients with resting values within this range.

  1. Fractional flow reserve is not associated with inflammatory markers in patients with stable coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Jan-Willem E M Sels

    Full Text Available BACKGROUND: Atherosclerosis is an inflammatory condition and increased blood levels of inflammatory biomarkers have been observed in acute coronary syndromes. In addition, high expression of inflammatory markers is associated with worse prognosis of coronary artery disease. The presence and extent of inducible ischemia in patients with stable angina has previously been shown to have strong prognostic value. We hypothesized that evidence of inducible myocardial ischemia by local lesions, as measured by fractional flow reserve (FFR, is associated with increased levels of blood based inflammatory biomarkers. METHODS: Whole blood samples of 89 patients with stable angina pectoris and 16 healthy controls were analyzed. The patients with stable angina pectoris underwent coronary angiography and FFR of all coronary lesions. We analyzed plasma levels of cytokines IL-6, IL-8 and TNF-α and membrane expression of Toll-like receptor 2 and 4, CD11b, CD62L and CD14 on monocytes and granulocytes as markers of inflammation. Furthermore, we quantified the severity of hemodynamically significant coronary artery disease by calculating Functional Syntax Score (FSS, an extension of the Syntax Score. RESULTS: For the majority of biomarkers, we observed lower levels in the healthy control group compared with patients with stable angina who underwent coronary catheterization. We found no difference for any of the selected biomarkers between patients with a positive FFR (≤ 0.75 and negative FFR (>0.80. We observed no relationship between the investigated biomarkers and FSS. CONCLUSION: The presence of local atherosclerotic lesions that result in inducible myocardial ischemia as measured by FFR in patients with stable coronary artery disease is not associated with increased plasma levels of IL-6, IL-8 and TNF-α or increased expression of TLR2 and TLR4, CD11b, CD62L and CD14 on circulating leukocytes.

  2. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes.

    Science.gov (United States)

    Johnson, Nils P; Tóth, Gábor G; Lai, Dejian; Zhu, Hongjian; Açar, Göksel; Agostoni, Pierfrancesco; Appelman, Yolande; Arslan, Fatih; Barbato, Emanuele; Chen, Shao-Liang; Di Serafino, Luigi; Domínguez-Franco, Antonio J; Dupouy, Patrick; Esen, Ali M; Esen, Ozlem B; Hamilos, Michalis; Iwasaki, Kohichiro; Jensen, Lisette O; Jiménez-Navarro, Manuel F; Katritsis, Demosthenes G; Kocaman, Sinan A; Koo, Bon-Kwon; López-Palop, Ramón; Lorin, Jeffrey D; Miller, Louis H; Muller, Olivier; Nam, Chang-Wook; Oud, Niels; Puymirat, Etienne; Rieber, Johannes; Rioufol, Gilles; Rodés-Cabau, Josep; Sedlis, Steven P; Takeishi, Yasuchika; Tonino, Pim A L; Van Belle, Eric; Verna, Edoardo; Werner, Gerald S; Fearon, William F; Pijls, Nico H J; De Bruyne, Bernard; Gould, K Lance

    2014-10-21

    Fractional flow reserve (FFR) has become an established tool for guiding treatment, but its graded relationship to clinical outcomes as modulated by medical therapy versus revascularization remains unclear. The study hypothesized that FFR displays a continuous relationship between its numeric value and prognosis, such that lower FFR values confer a higher risk and therefore receive larger absolute benefits from revascularization. Meta-analysis of study- and patient-level data investigated prognosis after FFR measurement. An interaction term between FFR and revascularization status allowed for an outcomes-based threshold. A total of 9,173 (study-level) and 6,961 (patient-level) lesions were included with a median follow-up of 16 and 14 months, respectively. Clinical events increased as FFR decreased, and revascularization showed larger net benefit for lower baseline FFR values. Outcomes-derived FFR thresholds generally occurred around the range 0.75 to 0.80, although limited due to confounding by indication. FFR measured immediately after stenting also showed an inverse relationship with prognosis (hazard ratio: 0.86, 95% confidence interval: 0.80 to 0.93; p < 0.001). An FFR-assisted strategy led to revascularization roughly half as often as an anatomy-based strategy, but with 20% fewer adverse events and 10% better angina relief. FFR demonstrates a continuous and independent relationship with subsequent outcomes, modulated by medical therapy versus revascularization. Lesions with lower FFR values receive larger absolute benefits from revascularization. Measurement of FFR immediately after stenting also shows an inverse gradient of risk, likely from residual diffuse disease. An FFR-guided revascularization strategy significantly reduces events and increases freedom from angina with fewer procedures than an anatomy-based strategy. Copyright © 2014. Published by Elsevier Inc.

  3. Effects of caffeine on fractional flow reserve values measured using intravenous adenosine triphosphate.

    Science.gov (United States)

    Nakayama, Masafumi; Chikamori, Taishiro; Uchiyama, Takashi; Kimura, Yo; Hijikata, Nobuhiro; Ito, Ryosuke; Yuhara, Mikio; Sato, Hideaki; Kobori, Yuichi; Yamashina, Akira

    2018-04-01

    We investigated the effects of caffeine intake on fractional flow reserve (FFR) values measured using intravenous adenosine triphosphate (ATP) before cardiac catheterization. Caffeine is a competitive antagonist for adenosine receptors; however, it is unclear whether this antagonism affects FFR values. Patients were evenly randomized into 2 groups preceding the FFR study. In the caffeine group (n = 15), participants were given coffee containing 222 mg of caffeine 2 h before the catheterization. In the non-caffeine group (n = 15), participants were instructed not to take any caffeine-containing drinks or foods for at least 12 h before the catheterization. FFR was performed in patients with more than intermediate coronary stenosis using the intravenous infusion of ATP at 140 μg/kg/min (normal dose) and 170 μg/kg/min (high dose), and the intracoronary infusion of papaverine. FFR was followed for 30 s after maximal hyperemia. In the non-caffeine group, the FFR values measured with ATP infusion were not significantly different from those measured with papaverine infusion. However, in the caffeine group, the FFR values were significantly higher after ATP infusion than after papaverine infusion (P = 0.002 and P = 0.007, at normal and high dose ATP vs. papaverine, respectively). FFR values with ATP infusion were significantly increased 30 s after maximal hyperemia (P = 0.001 and P < 0.001 for normal and high dose ATP, respectively). The stability of the FFR values using papaverine showed no significant difference between the 2 groups. Caffeine intake before the FFR study affected FFR values and their stability. These effects could not be reversed by an increased ATP dose.

  4. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    Science.gov (United States)

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  5. The New Frontier of Cardiac Computed Tomography Angiography: Fractional Flow Reserve and Stress Myocardial Perfusion.

    Science.gov (United States)

    Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Mushtaq, Saima; Baggiano, Andrea; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Rabbat, Mark G; Pepi, Mauro

    2016-12-01

    The increased number of patients with coronary artery disease (CAD) in developed countries is of great clinical relevance and involves a large burden of the healthcare system. The management of these patients is focused on relieving symptoms and improving clinical outcomes. Therefore the ideal test would provide the correct diagnosis and actionable information. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography (ICA), but their diagnostic yield remains low with limited accuracy when compared to obstructive CAD at the time of ICA or invasive fractional flow reserve (FFR). Invasive FFR is considered the gold standard for the evaluation of functionally relevant CAD. Therefore, an urgent need for non-invasive techniques that evaluate both the functional and morphological severity of CAD is growing. Coronary computed tomography angiography (CCTA) has emerged as a unique non-invasive technique providing coronary artery anatomic imaging. More recently, the evaluation of FFR with CCTA (FFR CT ) has demonstrated high diagnostic performance compared to invasive FFR. Additionally, stress myocardial computed tomography perfusion (CTP) represents a novel tool for the diagnosis of ischemia with high diagnostic accuracy. Compared to nuclear imaging and cardiac magnetic resonance imaging, both FFR CT and stress-CTP, allow us to integrate the anatomical evaluation of coronary arteries with the functional relevance of coronary artery lesions having the potential to revolutionize the diagnostic paradigm of suspected CAD. FFR CT and stress-CTP could be assimilated in diagnostic pathways of patients with stable CAD and will likely result in a decrease of invasive diagnostic procedures and costs. The current review evaluates the technical aspects and clinical experience of FFR CT and stress-CTP in the evaluation of functionally relevant CAD discussing the strengths and weaknesses of each approach.

  6. Multivariate DoE Optimization of Asymmetric Flow Field Flow Fractionation Coupled to Quantitative LC-MS/MS for Analysis of Lipoprotein Subclasses

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Kuklenyik

    2015-02-01

    Full Text Available In this report we demonstrate a practical multivariate design of experiment (DoE approach for asymmetric flow field-flow fractionation (AF4 method optimization using separation of lipoprotein subclasses as an example. First, with the aid of commercially available software, we built a full factorial screening design where the theoretical outcomes were calculated by applying established formulas that govern AF4 channel performance for a 5–35 nm particle size range of interest for lipid particles. Second, using the desirable ranges of instrumental parameters established from theoretical optimization, we performed fractional factorial DoE for AF4 separation of pure albumin and ferritin with UV detection to narrow the range of instrumental parameters and allow optimum size resolution while minimizing losses from membrane immobilization. Third, the optimal range of conditions were tested using response surface DoE for sub-fractionation of high and low density lipoproteins (HDL and LDL in human serum, where the recovery of the analytes were monitored by fraction collection and isotope-dilution LC-MS/MS analysis of each individual fraction for cholesterol and apolipoproteins (ApoA-1 and ApoB-100. Our results show that DoE is an effective tool in combining AF4 theoretical knowledge and experimental data in finding the most optimal set of AF4 instrumental parameters for quantitative coupling with LC-MS/MS measurements.

  7. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    Science.gov (United States)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  8. Identification of two-phase flow patterns in a nuclear reactor by the high-frequency contribution fraction

    International Nuclear Information System (INIS)

    Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.

    1989-01-01

    Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items

  9. Predicting changes in flow category in patients with severe aortic stenosis and preserved left ventricular ejection fraction on medical therapy.

    Science.gov (United States)

    Ngiam, Jinghao Nicholas; Kuntjoro, Ivandito; Tan, Benjamin Y Q; Sim, Hui-Wen; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong

    2017-11-01

    Controversy surrounds the prognosis and management of patients with paradoxical low-flow severe aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF). It was not certain if patients in a particular flow category remained in the same category as disease progressed. We investigated whether there were switches in categories and if so, their predictors. Consecutive subjects (n = 203) with isolated severe AS and paired echocardiography (>180 days apart) were studied. They were divided into 4 groups, based on their flow categories and if they progressed on subsequent echocardiography to switch or remain in the same flow category. Univariate analyses of clinical and echocardiographic parameters identified predictors of these changes in flow category. One hundred eighteen were normal flow (SVI ≥ 35 mL/m 2 ), while 85 were low flow on index echocardiography. In the patients with normal flow, 33% switched to low flow. This was associated with higher valvuloarterial impedance (Zva, P 4.77 mm Hg/mL/m 2 , AUC = 0.81 [95% CI:0.75-0.87, P < .001]). In patients with low flow, 25% switched to normal flow, which was associated with lower Zva and higher SAC and the switch was predicted by a higher initial mean transaortic pressure gradient. A significant number of patients switched flow categories in severe AS with preserved LVEF on subsequent echocardiography. Changes in flow were reflected by respective changes in Zva and SAC. Identifying echocardiographic predictors of a switch in category may guide prognostication and management of such patients. © 2017, Wiley Periodicals, Inc.

  10. On the dynamics of cylindrical z-pinch

    International Nuclear Information System (INIS)

    Solov'ev, L.S.

    1984-01-01

    The stationary configurations of cylindrical plasma flow in the framework of two-liquid relativistic electromagnetic gas dynamics (REMG)) and nonlinear radial oscillations of the plasma cylinder with longitudinal current in the framework of classical monoliquid MGD are considered. It is shown that at sufficiently high conductivity Z-pinch is stable relative to one-dimensional radial perturbations and its motion represents respectively nonlinear radial oscillations. In case of a rather low conductivity or low particle concentration there is in cross section a stability also in relation to the development of sausage type instability. The performed investigations of cylindrical equilibrium and radial oscillations give a qualitative representation on plasma behaviour in Z-pinch at the initial stage of it compression and expansion as well as on motion in an average plane of the developing sausage type instability

  11. Recent studies of Reversed-Field Pinch reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    The reactor prognoses of a class of confinement scheme that relies primarily on self-fields induced by axial currents flowing within a plasma column are presented. The primary focus has been placed on the toroidal Reversed-Field Pinch (RFP). At the limit of very large current densities is the gas-embedded Dense Z-Pinch (DZP), a small-radius, linear device. Past conventional RFP reactor designs are reviewed. The extention of these conventional RFP reactors to DD advanced-fuel operation is described. The implications are summarized of operating higher-density, compact RFPs as reactors, wherein the current density rather than physical dimensions are scaled. Lastly, the application of very high current densities supported in a sub-millimeter linear current channel, as embodied in the DZP reactor, is reviewed

  12. Estimation of the Arterial Fraction of Total Hepatic Flow from Radionuclide Angiogram Using 99mTc-DISIDA

    International Nuclear Information System (INIS)

    Lee, Hae Gin; Lim, Gye Yeon; Yang, Il Kwon; Kim, Hack Hee; Lim, Jung Ik; Bahk, Yong Whee; Han, Sok Won; Han, Nam Ik; Lee, Young Sok

    1991-01-01

    Arterial fraction of total hepatic blood flow was estimated by a new method, slope method, on radionuclide angiogram using 99m Tc-DISIDA and was compared with that from 99m Tc-Phytate radionuclide angiogram. This study included 11 of normal subjects, 37 of intermediate group with various liver diseases, and 25 patients with liver cirrhosis. We analyzed the data with slope method from radionuclide angiograms and the results were compared with hepatic arterial fractions from uptake method, introduced by Lee et al. at 1986. The hepatic arterial fractions from radionuclide angiograms using 99m Tc-DISIDA and 99m Tc- Phytate were 0.32 ± 0.09 and 0.31 ± 0.11 respectively in normal subjects, and 0.75 ± 0.18 and 0.77 ± 0.21 respectively in patients with liver cirrhosis. The hepatic arterial fractions by the slope method was well correlated with those of the uptake method on 99m Tc-DISIDA scan. There was high correlation between the hepatic arterial fractions from 99m Tc-DISIDA and 99m Tc-Phytate scans. Hepatic arterial fraction estimated by the slope method is a useful index for the diagnosis of liver cirrhosis and the evaluation of status of portal hypertension.

  13. 1/4-pinched contact sphere theorem

    DEFF Research Database (Denmark)

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness...

  14. PBFA Z: A 20-MA z-pinch driver for plasma radiation sources

    International Nuclear Information System (INIS)

    Spielman, R.B.; Breeze, S.F.; Deeney, C.

    1996-01-01

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be a z-pinch driver capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of ∼ 40 cm/μs. Design constraints resulted in an accelerator with a 0.12-Ω impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four, self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15--mg mass, coupling 1.5 MJ into kinetic energy. We present 2-D Rad-Hydro calculations showing MJ x-ray outputs from tungsten wire-array z pinches

  15. The pinch of cold ions from recycling in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Wan Weigang; Parker, Scott E.; Chen Yang; Park, Gun-Young; Chang, Choong-Seock; Stotler, Daren

    2011-01-01

    We apply the ''natural fueling mechanism'' [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well.

  16. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME)

    DEFF Research Database (Denmark)

    van Nunen, Lokien X; Zimmermann, Frederik M; Tonino, Pim A L

    2015-01-01

    BACKGROUND: In the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) study, fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) improved outcome compared with angiography-guided PCI for up to 2 years of follow-up. The aim in this study...... was to investigate whether the favourable clinical outcome with the FFR-guided PCI in the FAME study persisted over a 5-year follow-up. METHODS: The FAME study was a multicentre trial done in Belgium, Denmark, Germany, the Netherlands, Sweden, the UK, and the USA. Patients (aged ≥ 18 years) with multivessel coronary...... artery disease were randomly assigned to undergo angiography-guided PCI or FFR-guided PCI. Before randomisation, stenoses requiring PCI were identified on the angiogram. Patients allocated to angiography-guided PCI had revascularisation of all identified stenoses. Patients allocated to FFR-guided PCI had...

  17. Structure of two-phase air-water flows. Study of average void fraction and flow patterns; Structure des ecoulements diphasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que

  18. Lower pinch radius limit in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1989-01-01

    In an Extrap pinch there is a superimposed magnetic octupole field which forms a magnetic separatrix with the field generated by the pinch current. Earlier experiments have shown that the octupole field has a stabilizing influence on the plasma. Regardless of the details of this stabilizing mechanism, it is expected that the influence of the octupole field should become negligible for a sufficiently small ratio between the characteristic pinch and separatrix radii. In other words, there should exist a lower limit of this ratio below which the system approaches the state of an ordinary unstabilized Z-pinch. The present paper presents an extended version of an earlier theoretical model of this lower limit, and its relation to the corresponding critical ratio between the external conductor and pinch currents. This ratio is found to vary substantially with the plasma parameters. (authors)

  19. Plasma sheath dynamics in pinch discharge

    International Nuclear Information System (INIS)

    Mansour, A.A.Abd-Fattah

    1995-01-01

    The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule

  20. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  1. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  2. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations

    DEFF Research Database (Denmark)

    Correia, Manuel; Löschner, Katrin

    2018-01-01

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies...... were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic...

  3. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B

  4. Analysis of humic colloid borne trace elements by flow field-flow fractionation, gel permeation chromatography and icp-mass spectrometry

    International Nuclear Information System (INIS)

    Ngo, Manh Thang; Beck, H.P; Geckeis, H.; Kim, J.I.

    1999-01-01

    Groundwater samples containing aquatic humic substances are analyzed by flow field- flow fractionation (FFFF) and gel permeation chromatography (GPC). Natural concentrations of U, Th and rare earth elements (REE) in a size-fractionated groundwater sample are analyzed by on-line coupling of inductively coupled plasma-mass spectrometry (ICP-MS) to either FFFF or GPC. The uranium, thorium, and REE are found to be quantitatively attached to colloidal species in the investigated groundwater sample. Their distribution in different colloid size fractions, however, is quite heterogeneous. Both, FFFF and GPC reveal that Th and REE are preferentially located in the size fraction > 50 kDalton. U is also attached to low molecular weight humic acid, similar to Fe and Al. This finding could be qualitatively reproduced by sequential ultrafiltration. The results are interpreted in terms of different binding mechanisms for the individual elements in the heterogeneous humic macromolecules. The inclusion of actinides into larger aggregates of aquatic humic acid might explain the considerable kinetic hindrance of actinide-humic acid dissociation reactions described in the literature. (authors)

  5. Catalyst volumetric fraction simulation in a riser of a cold flow pilot unit with aid of transmission gamma technique

    International Nuclear Information System (INIS)

    Santos, Kamylla A.L. dos; Lima Filho, Hilario J.B. de; Benachour, Mohand; Dantas, Carlos C.; Santos, Valdemir A. dos

    2013-01-01

    Was obtained the radial profile of the catalyst volume fraction in a riser of the cold flow pilot unit of the Fluid Catalytic Cracking (FCC) unit, which was used for adjustment of the entrance conditions of the catalyst in a simulation program by Computational Fluid Dynamics (CFD). The height of the riser of the Cold Flow Pilot Unity (CFPU) utilized is 6.0m and its inner diameter is 0.097 m. A radiation-γ source of Am-241 and a NaI (Tl) detector, with shielding made of lead, have been installed on a steel backing that maintains the geometry of the source-detector-riser and allows to vary the distance from the source to the detector and the radial position in a given cross section of the riser. The data associated with the simulation of volume fraction radial profile of the catalyst were: Fluent software, version 12.0; preprocessor GAMBIT, version 2.3.16; Eulerian approach; structured mesh, cell number of 60000; turbulence model used was k-ε and kinetic theory of granular flow (KTGF) was implemented to describe the solid phase. Comparison of radial profiles simulated and experimental of the catalyst volumetric fraction in the CFPU riser allowed the identification of needs adjustments in the simulation for the input of catalyst, with consequent validation for the proposed model simulation. (author)

  6. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  7. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, N.F.

    2001-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  8. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at imperial college

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, F.N.

    1999-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  9. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Directory of Open Access Journals (Sweden)

    Möhlenkamp Stefan

    2006-06-01

    Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal

  10. Reversed-field pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. The 5-s dwell period between burn pulses for plasma quench and refueling allows steady-state operation of all thermal systems outside the first wall; no auxiliary thermal capacity is required. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented water/steam coolant tubes. The slightly superheated steam emerging from this blanket directly drives a turbine that produces electrical power at an efficiency of 30%. A borated-water shield is located immediately outside the thermal blanket to protect the superconducting magnet coils. Both the superconducting poloidal and toroidal field coils are energized by homopolar motor/generators. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  11. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  12. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  13. Upper pinch radius limit in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1989-12-01

    A simple static equilibrium model of the Z-pinch is considered where a hot plasma core is surrounded by a cold-mantle (gas blanket). The pinch radius, defined as the radial extension of the fully ionized plasma core, is uniquely determined by the plasma particle. momentum and heat balance equations. In Extrap configurations an octupole field is introduced which imposes a magnetic separatrix on Z-pinch geometry. This makes the conditions for Extrap equilibrium 'overdetermined' when the characteristic pinch radium given by the plasma parameters tends to exceed the characteristic radius of the magnetic separatrix. In this case no conventional pinch equilibrium can exist, and part of the current which is forced into the plasma discharge by external sources must be channelled outside of the separatrix, i.e. into the surrounding support structure of the Extrap conductors and the vessel walls. A possibly existing bootstrap current in the plasma boundary layer is further expected to be 'scraped off' in this case. The present paper gives some illustrations of the marginal case of this upper pinch radius limit, in a state where the pinch current is antiparallel to the external rod currents which generate the octupole field. (authors)

  14. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention.

    Science.gov (United States)

    Siebert, Uwe; Bornschein, Bernhard; Schnell-Inderst, Petra; Rieber, Johannes; Pijls, Nico; Wasem, Jürgen; Klauss, Volker

    2008-08-27

    Coronary artery disease (CAD) is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI) are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR) is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. This health technology assessment (HTA) aims to evaluate (1) the diagnostic accuracy, (2) the risk-benefit trade-off and (3) the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation) to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI). Individual studies' case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM), a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT) investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81.7% (95% CI: 77.0-85.7%) and 78.7% (95% CI: 74

  15. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Wasem, Jürgen

    2008-08-01

    Full Text Available Background: Coronary artery disease (CAD is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. Objectives: This health technology assessment (HTA aims to evaluate (1 the diagnostic accuracy, (2 the risk-benefit trade-off and (3 the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. Methods: We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI. Individual studies’ case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM, a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Results: Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81

  16. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    International Nuclear Information System (INIS)

    Peixoto, Philippe N.B.; Salgado, Cesar M.

    2015-01-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  17. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Philippe N.B.; Salgado, Cesar M., E-mail: phbelache@hotmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  18. Void fraction and interfacial velocity in gas-liquid upward two-phase flow across tube bundles

    International Nuclear Information System (INIS)

    Ueno, T.; Tomomatsu, K.; Takamatsu, H.; Nishikawa, H.

    1997-01-01

    Tube failures due to flow-induced vibration are a major problem in heat exchangers and many studies on the problem of such vibration have been carried out so far. Most studies however, have not focused on two-phase flow behavior in tube bundles, but have concentrated mainly on tube vibration behavior like fluid damping, fluid elastic instability and so on. Such studies are not satisfactory for understanding the design of heat exchangers. Tube vibration behavior is very complicated, especially in the case of gas-liquid two-phase flow, so it is necessary to investigate two-phase flow behavior as well as vibration behavior before designing heat exchangers. This paper outlines the main parameters that characterize two-phase behavior, such as void fraction and interfacial velocity. The two-phase flow analyzed here is gas-liquid upward flow across a horizontal tube bundle. The fluids tested were HCFC-123 and steam-water. HCFC-123 stands for Hydrochlorofluorocarbon. Its chemical formula is CHCl 2 CF 3 , which has liquid and gas densities of 1335 and 23.9 kg/m 3 at a pressure of 0.40 MPa and 1252 and 45.7 kg/m 3 at a pressure of 0.76 MPa. The same model tube bundle was used in the two tests covered in this paper, to examine the similarity law of two-phase flow behavior in tube bundles using HCFC-123 and steam-water two-phase flow. We also show numerical simulation results for the two fluid models in this paper. We do not deal with vibration behavior and the relationship between vibration behavior and two-phase flow behavior. (author)

  19. Comparing characteristics and clinical and echocardiographic outcomes in low-flow vs normal-flow severe aortic stenosis with preserved ejection fraction in an Asian population.

    Science.gov (United States)

    Ngiam, Jinghao Nicholas; Tan, Benjamin Yong-Qiang; Sia, Ching-Hui; Lee, Glenn K M; Kong, William K F; Chan, Yiong-Huak; Poh, Kian-Keong

    2017-05-01

    In severe aortic stenosis (AS), deterioration of left ventricular ejection fraction (LVEF) to 50%) and with paired echocardiography were studied. Univariate and multivariate analyses identified factors associated with LVEF deterioration. Clinical outcomes were determined on follow-up for more than 5 years. Significant LVEF deterioration (to <50%) was seen in 18% of low-flow (initial LVEF 63±8% to 32±9%) and 18% of normal-flow AS (61±7% to 31±12%). Independent factors in low-flow AS were hypertension (OR: 30.7, 95% CI: 2.0-467.6, P=.014) and higher end-systolic wall stress (OR: 1.086, 95% CI: 1.022-1.153, P=.008), compared to normal-flow, which were hypertension (OR: 15.9, 95% CI: 3.1-81.9, P=.001), higher septal E/E' ratio (OR: 1.16, 95% CI: 1.01-1.35, P=.043), lower septal S' velocity (OR: 0.204, 95% CI: 0.061-0.682, P=.010), and higher end-systolic wall stress (OR: 1.051, 95% CI: 1.001-1.104, P=.047). Overall, a third of the cohort experienced MACE, regardless of flow (log-rank 0.048, P=.827). However, aortic valve replacement (AVR) rates were lower in low-flow AS (20% vs 43%, P=.005). Low-flow AS despite normal LVEF appears similar to normal-flow in terms of LVEF deterioration and clinical outcomes in our Asian population. AVR rate was lower even though low-flow may not reflect less severe disease. © 2017, Wiley Periodicals, Inc.

  20. ANTHEM simulation of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1989-01-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs

  1. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed; Radwan, Ahmed G.; Sun, Shuyu

    2017-01-01

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  2. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  3. Rolling effects on two-phase flow pattern and void fraction

    International Nuclear Information System (INIS)

    Yan Changqi; Yu Kaiqiu; Luan Feng; Cao Xiaxin

    2008-01-01

    The experimental and theoretical study was carried out for the upward gas-liquid two-phase explained reasonably through the analysis of slip ratio of two-phase flow and theoretical analysis using momentum equation of two-phase flow separating model. (authors)

  4. Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat

    2005-01-01

    generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...

  5. The Effect of Fuel Mass Fraction on the Combustion and Fluid Flow in a Sulfur Recovery Unit Thermal Reactor

    Directory of Open Access Journals (Sweden)

    Chun-Lang Yeh

    2016-11-01

    Full Text Available Sulfur recovery unit (SRU thermal reactors are negatively affected by high temperature operation. In this paper, the effect of the fuel mass fraction on the combustion and fluid flow in a SRU thermal reactor is investigated numerically. Practical operating conditions for a petrochemical corporation in Taiwan are used as the design conditions for the discussion. The simulation results show that the present design condition is a fuel-rich (or air-lean condition and gives acceptable sulfur recovery, hydrogen sulfide (H2S destruction, sulfur dioxide (SO2 emissions and thermal reactor temperature for an oxygen-normal operation. However, for an oxygen-rich operation, the local maximum temperature exceeds the suggested maximum service temperature, although the average temperature is acceptable. The high temperature region must be inspected very carefully during the annual maintenance period if there are oxygen-rich operations. If the fuel mass fraction to the zone ahead of the choke ring (zone 1 is 0.0625 or 0.125, the average temperature in the zone behind the choke ring (zone 2 is higher than the zone 1 average temperature, which can damage the downstream heat exchanger tubes. If the zone 1 fuel mass fraction is reduced to ensure a lower zone 1 temperature, the temperature in zone 2 and the heat exchanger section must be monitored closely and the zone 2 wall and heat exchanger tubes must be inspected very carefully during the annual maintenance period. To determine a suitable fuel mass fraction for operation, a detailed numerical simulation should be performed first to find the stoichiometric fuel mass fraction which produces the most complete combustion and the highest temperature. This stoichiometric fuel mass fraction should be avoided because the high temperature could damage the zone 1 corner or the choke ring. A higher fuel mass fraction (i.e., fuel-rich or air-lean condition is more suitable because it can avoid deteriorations of both zone 1

  6. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    Science.gov (United States)

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  7. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement

  8. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  9. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    International Nuclear Information System (INIS)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J.; Wang, D.F.

    2015-01-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  10. Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer

    International Nuclear Information System (INIS)

    Ezzat, M.A.; El-Bary, A.A.

    2016-01-01

    In this study, the constitutive relation for the heat flux vector is derived to be the Fourier's law of heat conduction with a variable thermal conductivity and time-fractional order. The Stokes' flow of unsteady incompressible thermoelectric fluid due to a moving plate in the presence of a transverse magnetic field is molded. Stokes' first problem is solved by applying Laplace transform with respect to time variable and evaluating the inverse transform integrals by using a numerical approach. Numerical results for the temperature and the velocity distributions are given and illustrated graphically for given problem. The results indicate that the thermal conductivity and time-fractional order play a major role in the temperature and velocity distributions. (authors)

  11. Reversed-Field Pinch Reactor (RFPR) concept

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.

    1979-08-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times

  12. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Science.gov (United States)

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  13. History of the Z-pinch

    International Nuclear Information System (INIS)

    Lovberg, R.H.

    1988-01-01

    The plasma Z-Pinch occupies a unique position in the history of controlled fusion research as the first confinement and heating scheme to be tried experimentally. In contrast to the sophistication of programs being conducted today, in which extensive theoretical and experimental forces are in close collaboration, early pinch experiments were designed on quite elementary theoretical grounds. Indeed, these systems and the results from them provided the focus for much of the rapid development of theoretical plasma physics and magnetohydrodynamics during the 1950's. In comparison to present programs, these early experiments had the considerable advantage of small size and minimal managerial encumbrance. After nearly three decades of abandonment because of difficulties with MHD instabilities, the Z-pinch is arising once again in a new incarnation characterized by microscopic size and time scales, and very high density. Uniquely in the history of the pinch, the new experimental surprises seem encouraging, rather than discouraging, to the goal of thermonuclear fusion

  14. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    KAUST Repository

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  15. Characteristics of phosphorus fractionated from the sediment resuspension in abrupt expansion flow experiments

    Institute of Scientific and Technical Information of China (English)

    Jun Wan; Ze Wang; Hezhong Yuan

    2010-01-01

    Phosphorous (P) fraction characteristics in sediment resuspension were investigated under adequately hydrodynamic conditions.Four forms of P in overlying water,including dissolved inorganic P,dissolved total P,total P,and particulate P,and six fractions of P in suspended particulate matter (SPM),including loosely sorbed P (NH4Cl-P),redox-sensitive P (BD-P),aluminum-bound P (Al-P),organic P (NaOH-nrP),calcium-bound P (Ca-P) and residual P (Res-P),were quantified,respectively.Different hydrodynamic conditions resulted in different P form changes.Four states could be ascribed:(1) P desorption by sediment and SPM,and P adsorption by overlying water;(2) P desorption by SPM,and P adsorption by overlying water;(3) P adsorption by SPM,and P desorption by overlying water;and (4) P equilibrium between SPM and overlying water.The contents of P in overlying water acquired peak values in the middle position of the vertical P distribution due to the combined actions of SPM and sediment.P fractions in SPM were in the following order:BD-P>NaOH-nrp>Ca-P>Al-P>Res-P>NH4CI-P.BD-P in SPM frequently exchanged with P forms in overlying water.Resuspension was favorable to forming Ca-P in SPM.

  16. Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole. This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is assumed. Proposition for uncertainties in groundwater studies was given.

  17. Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve.

    Science.gov (United States)

    Zafar, Haroon; Sharif, Faisal; Leahy, Martin J

    2014-12-01

    The main objective of this study was to assess the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography (FD-OCT). A correlation between fractional flow reserve (FFR) and FD-OCT derived blood flow velocity is also included in this study. A total of 20 coronary stenoses in 15 patients were assessed consecutively by quantitative coronary angiography (QCA), FFR and FD-OCT. A percutaneous coronary intervention (PCI) optimization system was used in this study which combines wireless FFR measurement and FD-OCT imaging in one platform. Stenoses were labelled severe if FFR ≤ 0.8. Blood flow rate and velocity in each stenosis segment were derived from the volumetric analysis of the FD-OCT pull back images. The FFR value was ≤ 0.80 in 5 stenoses (25%). The mean blood flow rate in severe coronary stenosis ( n  = 5) was 2.54 ± 0.55 ml/s as compared to 4.81 ± 1.95 ml/s in stenosis with FFR > 0.8 ( n  = 15). A good and significant correlation between FFR and FD-OCT blood flow velocity in coronary artery stenosis ( r  = 0.74, p  < 0.001) was found. The assessment of stenosis severity using FD-OCT derived blood flow rate and velocity has the ability to overcome many limitations of QCA and intravascular ultrasound (IVUS).

  18. The Physics of Fast Z Pinches

    Energy Technology Data Exchange (ETDEWEB)

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  19. The physics of fast Z pinches

    International Nuclear Information System (INIS)

    Ryutov, D.D.; Derzon, M.S.; Matzen, M.K.

    1998-07-01

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references

  20. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender

    2009-01-01

    mechanical and barrier properties and be more suitable for a wider range of food-packaging applications. Natural or synthetic clay nanofillers are being investigated for this purpose in a project called NanoPack funded by the Danish Strategic Research Council. In order to detect and characterize the size...... of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...... of polylactide (PLA) with 5% Cloisite®30B (a derivatized montmorillonite clay) as a filler. Based on AF4-MALS analyses, we found that particles ranging from 50 to 800 nm in radius indeed migrated into the 95% ethanol used as a food simulant. The full hyphenated AF4-MALS-ICP-MS system showed, however, that none...

  1. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... to ICP-MS was used to confirm the metal–protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF4 of the wear particles in hip aspirates. In the serum samples, AF4–ICP-MS suggested that Cr...... unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF4 with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes...

  2. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Carlson, G.; Hoffman, M.; Werner, R.

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no ''first wall'', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low re-circulated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10. The conceptual reactors are characterized by simplicity, small minimum size (100MW(e)) and by the potential for minimal radioactivity hazards. (author)

  3. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    Science.gov (United States)

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  4. [Value of fractional flow reserve measurement in endovascular therapy for patients with Stanford B type aortic dissection complicated with renal blood flow injury].

    Science.gov (United States)

    Guo, Xi; Li, Peng; Liu, Guangrui; Huang, Xiaoyong; Yong, Qiang; Wang, Guoqin; Huang, Lianjun

    2015-10-01

    To analyze the value of fractional flow reserve (FFR) measurement on endovascular therapy for patients with renal artery stenosis. Clinical data of 12 patients with Stanford B type aortic dissection complicated with renal blood flow injury in Anzhen hospital hospitalized from May 2013 to February 2014 were retrospectively analyzed. Renal artery angiography was performed and fractional flow reserve (FFR) was measured before Thoracic endovascular aortic repair. After operation, renal artery FFR was measured again, and renal artery stenting was performed in patients with FFR ≤ 0.90 or average pressure difference between proximal and distal of renal artery > 20 mmHg (1 mmHg = 0.133 kPa) and not applied for patients with FFR > 0.90.The patients were then subsequently followed up clinically. Kidney function were measured after 1 month, and contrast-enhanced ultrasonography data were obtained at 1 and 3 months later, respectively. The FFR of 1 patient was 0.90, while the FFR of other patients were less than 0.90 before thoracic endovascular aortic repair. After the procedure,the angiography showed that the blood flow of renal artery in 8 patients were fluency, and the FFR index was over 0.90. There were 4 patients with FFR less than 0.90. After renal artery stenting, the FFR of these 4 patients were all above 0.90. Compared with pre-procedure, blood urea nitrogen ((8.84 ± 3.99) mmol/L vs. (5.18 ± 1.69) mmol/L, P = 0.011) and uric acid ((359.3 ± 77.3) µmol/L vs. (276.9 ± 108.3) µmol/L, P = 0.008) decreased significantly after 1 month, and there was no significant difference in serum creatinine (P = 0.760). Contrast-enhanced ultrasonography results showed that blood flow of renal artery were fluency after 1 month and 3 months. In patients with aortic dissection complicating renal blood flow injury, the FFR measurement is meaningful in evaluating the blood flow status of target organs and guide the endovascular revascularization.

  5. Semi-continuous protein fractionating using affinity cross-flow filtration

    NARCIS (Netherlands)

    Borneman, Zandrie; Zhang, W.; van den Boomgaard, Anthonie; Smolders, C.A.

    2002-01-01

    Protein purification by means of downstream processing is increasingly important. At the University of Twente a semi-continuous process is developed for the isolation of BSA out of crude protein mixtures. For this purpose an automated Affinity Cross-Flow Filtration, ACFF, process is developed. This

  6. On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles

    Czech Academy of Sciences Publication Activity Database

    Janča, J.; Stejskal, Jaroslav

    2009-01-01

    Roč. 1216, č. 52 (2009), s. 9071-9080 ISSN 0021-9673 Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrodynamic lift forces * slow shear-flow * macroscopic rigid spheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.101, year: 2009

  7. A novel graphical technique for Pinch Analysis applications: Energy Targets and grassroots design

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Graphical abstract: A new HEN graphical design. - Highlights: • A new graphical technique for heat exchanger networks design. • Pinch Analysis principles and design rules are better interpreted. • Graphical guidelines for optimum heat integration. • New temperature-based graphs provide user-interactive features. - Abstract: Pinch Analysis is for decades a leading tool to energy integration for retrofit and design. This paper presents a new graphical technique, based on Pinch Analysis, for the grassroots design of heat exchanger networks. In the new graph, the temperatures of hot streams are plotted versus those of the cold streams. The temperature–temperature based graph is constructed to include temperatures of hot and cold streams as straight lines, horizontal lines for hot streams, and vertical lines for cold streams. The graph is applied to determine the pinch temperatures and Energy Targets. It is then used to synthesise graphically a complete exchanger network, achieving the Energy Targets. Within the new graph, exchangers are represented by inclined straight lines, whose slopes are proportional to the ratio of heat capacities and flows. Pinch Analysis principles for design are easily interpreted using this new graphical technique to design a complete exchanger network. Network designs achieved by the new technique can guarantee maximum heat recovery. The new technique can also be employed to simulate basic designs of heat exchanger networks. The strengths of the new tool are that it is simply applied using computers, requires no commercial software, and can be used for academic purposes/engineering education

  8. PBFA Z: A 20-MA Z-pinch driver for plasma radiation sources

    International Nuclear Information System (INIS)

    Spielman, R.B.; Breeze, S.F.; Deeney, C.

    1996-01-01

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of ∼ 40 cm/μs. Design constraints resulted in an accelerator with a 0.12-Ω impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15-mg mass, coupling 1.5 MJ into kinetic energy. Calculations are presented showing MJ x-ray outputs from tungsten wire-array z pinches. (author). 4 figs., 14 refs

  9. Fiber Z-pinch experiments and calculations in the finite Larmor radius regime

    International Nuclear Information System (INIS)

    Haines, M.G.; Dangor, A.E.; Coppins, M.

    1996-01-01

    The dense Z-pinch project at Imperial College is aimed at achieving radiative collapse to high density in a hydrogen plasma, and also to study plasmas close to controlled fusion conditions. To this end, the MAGPIE generator (2.4 MV, 1.25 Ω, and 200 ns) has been built and tested, and is now giving preliminary experimental data at 60% of full voltage for carbon and CD 2 fibers. These discharges are characterized by an initial radial expansion followed by the occurrence of m = 0 structures with transient X-ray emission from bright spots. Late in the discharge a disruption can occur, accompanied by hard X-ray emission from the anode due to an energetic electron beam and, in the case of CD 2 fibers, a neutron burst. Concomitant theoretical studies have solved the linear stability problem for a Z-pinch with large ion Larmor radii, showing that a reduction in growth rate of m = 0 and m = 1 modes to about 20% of the magnetohydrodynamic (MHD) value can occur for a parabolic density profile when the Larmor radius is optimally 20% of the pinch radius. Two-dimensional MHD simulations of Z-pinches in two extremes of focussed short-pulse laser-plasma interactions and of galactic jets reveal a nonlinear stabilizing effect in the presence of sheared flow. One-dimensional simulations show that at low line density the lower hybrid drift instability can lead to coronal radial expansion of a Z-pinch plasma. (Author)

  10. PBFA Z: A 20-MA Z-pinch driver for plasma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Spielman, R B; Breeze, S F; Deeney, C [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of {approx} 40 cm/{mu}s. Design constraints resulted in an accelerator with a 0.12-{Omega} impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15-mg mass, coupling 1.5 MJ into kinetic energy. Calculations are presented showing MJ x-ray outputs from tungsten wire-array z pinches. (author). 4 figs., 14 refs.

  11. sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann

    2015-01-01

    floods. The model is intended for temporal scales from the individual event (several hours to few days up to longer-term evolution of stream channels (several years. The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL (www.wsl.ch/sedFlow. Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015.

  12. Study of void fraction and mixing of immiscible liquids in a pool configuration by an upward gas flow

    International Nuclear Information System (INIS)

    Casas, J.C.; Corradini, M.L.

    1992-01-01

    In this paper, investigations are performed to study the mixing between immiscible liquids in a pool configuration due to an upward gas flow. A water-R113 system is sued in the bubbly/churn-turbulent regimes to determine the effects of the unagitated pool depth on layer mixing. The superficial gas velocity at which full mixing is attained is observed to increase with the pool depth, although it is concluded that this is a weak dependency. Mixing in the churn-turbulent regime is studied with Wood's metal-water and Wood's metal-silicone fluid (100 cS) as pairs of fluids. Additional past mixing data from six other fluids are also included in the data base. A criterion is proposed to determine if two liquids will entrain in bubbly or churn-turbulent flow. Correlations are derived that, for a set of given conditions, allow prediction of the mixing state (mixed or segregated) of a system. Because of the indirect method of measuring the mixed layer thickness, pool void fraction experiments are also performed. For the case of water and R113, the effect of unagitated pool depth on the void fraction is studied

  13. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haiou [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States); Quevedo, Ivan R. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K., E-mail: Thilak.Mudalige@fda.hhs.gov [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States)

    2016-10-15

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  14. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    International Nuclear Information System (INIS)

    Qu, Haiou; Quevedo, Ivan R.; Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K.

    2016-01-01

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  15. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method

    Directory of Open Access Journals (Sweden)

    Akgül Ali

    2016-01-01

    Full Text Available In this manuscript we investigate electrodynamic flow. For several values of the intimate parameters we proved that the approximate solution depends on a reproducing kernel model. Obtained results prove that the reproducing kernel method (RKM is very effective. We obtain good results without any transformation or discretization. Numerical experiments on test examples show that our proposed schemes are of high accuracy and strongly support the theoretical results.

  16. Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm?

    Science.gov (United States)

    Prowle, John; Bagshaw, Sean M; Bellomo, Rinaldo

    2012-12-01

    Global renal blood flow is considered pivotal to renal function. Decreased global renal blood flow (decreased perfusion) is further considered the major mechanism of reduced glomerular filtration rate responsible for the development of acute kidney injury (AKI) in critically ill patients. Additionally, urinary biochemical tests are widely taught to allow the differential diagnosis of prerenal (functional) AKI and intrinsic [structural AKI (so-called acute tubular necrosis)]. In this review we will examine recent evidence regarding these two key clinical paradigms. Recent animal experiments and clinical studies in humans using cine-phase contrast magnetic resonance technology are not consistent with the decreased perfusion paradigm. They suggest instead that changes in the intra-renal circulation including modification in efferent arteriolar function and intra-renal shunting are much more likely to be responsible for AKI, especially in sepsis. Similarly, recent human studies indicate the urinary biochemistry has limited diagnostic or prognostic ability and is dissociated form biomarker and microscopic evidence of tubular injury. Intra-renal microcirculatory changes are likely more important than changes in global blood flow in the development of AKI. Urinary biochemistry is not a clinically useful diagnostic or prognostic tool in critically ill patients at risk of or with AKI.

  17. Severe aortic stenosis patients with preserved ejection fraction according to flow and gradient classification: Prevalence and outcomes.

    Science.gov (United States)

    González Gómez, Ariana; Fernández-Golfín, Covadonga; Monteagudo, Juan Manuel; Izurieta, Carlos; Hinojar, Rocío; García, Ana; Casas, Eduardo; Jiménez-Nacher, José Julio; Moya, José Luis; Ruiz, Soledad; Zamorano, José Luis

    2017-12-01

    Clinicians often encounter patients with apparently discordant echocardiographic findings, severe aortic stenosis (SAS) defined by aortic valve area (AVA) despite a low mean gradient. A new classification according to flow state and pressure gradient has been proposed. We sought to assess the prevalence, characteristics and outcomes of patients with asymptomatic SAS with preserved left-ventricular ejection fraction (LVEF) according to flow and gradient. In total 442 patients with SAS (AVAigradient (≥ or Gradient (LF/LG): 21.3%(n=94); Normal Flow/Low Gradient (NF/LG): 32.1%(n=142); Low Flow/High Gradient (LF/HG): 6.8%(n=30); Normal Flow/High Gradient (NF/HG): 39,8%(n=176). Mean follow-up time was 20.5months (SD=10.3). Primary combined endpoint was cardiovascular mortality and hospital admission for SAS related symptom, secondary endpoint was aortic valve replacement (AVR), comparing HG group to LF/LG group. During follow-up 17 (18%) of LF/LG patients and 21 (10.2%) of HG patients met the primary endpoint. A lower free of event survival (cardiovascular mortality and hospital admission) was observed in patients with LF/LG AS (Breslow, p=0.002). Significant differences were noted between groups with a lower AVR free survival in the LF/LG group compared to HG groups (Breslow, p=0.002). Our study confirms the high prevalence and worse prognosis of LF/LG SAS. Clinicians must be aware of this entity to ensure appropriate patient management. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoxing, E-mail: yanchaoxing0808@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Yan, Changqi, E-mail: Changqi_yan@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Shen, Yunhai [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041 (China); Sun, Licheng; Wang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)

    2014-07-01

    Highlights: • 46 void fraction correlations are evaluated on void fraction. • Evaluation of void fraction correlations on slug velocity is studied. • Effect of void fraction correlations on separated frictional pressure drop is studied. • Drift-flux type correlation shows best agreement with experimental data. • Evaluation is investigated in different flow regions. - Abstract: A visualized investigation was conducted on inclined upward air–water slug flow in a narrow rectangular duct with the cross section of 43 mm × 3.25 mm. The slug velocity and void fraction were obtained through image processing. 46 correlations for predicting void fraction, covering the types of slip ratio, Kβ, Lockhart and Martinelli, drift-flux and general were evaluated against the experimental data. In the experiment, four inclined conditions including 0°, 10°, 20° and 30° were investigated and the ranges of gas and liquid superficial velocity were 0.16–2.63 m/s and 0.12–3.59 m/s, respectively. The results indicate that the inclination has no significant influence on prediction error for a given correlation and the drift-flux type correlations are more competitive than the others in the prediction of slug velocity and void fraction. In addition, most of drift-flux type correlations are quite accurate in turbulent flow region, while they provide relative poor predictions in laminar flow region. As for the frictional pressure drop separated from the measured total pressure drop, the deviation arising from the calculation of the void fraction by different correlations is significant in laminar flow region, whereas is negligible in turbulent flow region.

  19. Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed.

    Science.gov (United States)

    Omar, J; Boix, A; Kerckhove, G; von Holst, C

    2016-12-01

    Titanium dioxide (TiO 2 ) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO 2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CF exp ) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min -1 ; DF, 0.4 ml min -1 ; Ft, 5 min; and CF exp , 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated.

  20. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  1. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Science.gov (United States)

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  2. Metaanalysis of Diagnostic Performance of Computed Coronary Tomography Angiography, Computed Tomography Perfusion and Computed Tomography-Fractional Flow Reserve in Functional Myocardial Ischemia Assessment versus Invasive Fractional Flow Reserve

    Science.gov (United States)

    Gonzalez, Jorge A.; Lipinski, Michael J.; Flors, Lucia F.; Shaw, Peter; Kramer, Christopher M.; Salerno, Michael

    2015-01-01

    We sought to compare the diagnostic performance of computed coronary tomography angiography (CCTA), computed tomography perfusion (CTP) and computed tomography fractional flow reserve (CT-FFR) for assessing the functional significance of coronary stenosis as defined by invasive fractional flow reserve (FFR), in patients with known or suspected coronary artery disease. CCTA has proven clinically useful for excluding obstructive CAD due to its high sensitivity and negative predictive value (NPV), however the ability of CTA to identify functionally significant CAD has remained challenging. We searched PubMed/Medline for studies evaluating CCTA, CTP or CT-FFR for the non-invasive detection of obstructive CAD as compared to catheter-derived FFR as the reference standard. Pooled sensitivity, specificity, PPV, NPV, likelihood ratios (LR), odds ratio (OR) of all diagnostic tests were assessed. Eighteen studies involving a total of 1535 patients were included. CTA demonstrated a pooled sensitivity of 0.92, specificity 0.43, PPV of 0.56 and NPV of 0.87 on a per-patient level. CT-FFR and CTP increased the specificity to 0.72 and 0.77 respectively (P=0.004 and P=0.0009)) resulting in higher point estimates for PPV 0.70 and 0.83 respectively. There was no improvement in the sensitivity. The CTP protocol involved more radiation (3.5 mSv CCTA VS 9.6 mSv CTP) and a higher volume of iodinated contrast (145 mL). In conclusion, CTP and CT-FFR improve the specificity of CCTA for detecting functionally significant stenosis as defined by invasive FFR on a per-patient level; both techniques could advance the ability to non-invasively detect the functional significance of coronary lesions. PMID:26347004

  3. Towards 2D field-flow fractionation - Vector separation over slanted open cavities

    Science.gov (United States)

    Bernate, Jorge A.; Yang, Mengfei; Zhao, Hong; Risbud, Sumedh; Paul, Colin; Dallas, Matthew; Konstantopoulos, Konstantinos; Drazer, German; Shaqfeh, Eric S. G.

    2013-11-01

    Planar microfluidic platforms for vector chromatography, in which different species fan out in different directions and can be continuously sorted, are particularly promising for the high throughput separation of multicomponent mixtures. We carry out a computational study of the vector separation of dilute suspensions of rigid and flexible particles transported by a pressure-driven flow over an array of slanted open cavities. The numerical scheme is based on a Stokes flow boundary integral equation method. The simulations are performed in a periodic system without lateral confinement, relevant to microfluidic devices with negligible recirculation in the main channel. We study the deflection of rigid spherical particles, of flexible capsules as a model of white and red blood cells, and of rigid discoidal particles as a model of platelets. We characterize the deflection of different particles as a function of their size, shape, shear elasticity, their release position, and the geometric parameters of the channel. The simulations provide insight into the separation mechanism and allow the optimization of specific devices depending on the application. Good agreement with experiments is observed.

  4. A new capture fraction method to map how pumpage affects surface water flow

    Science.gov (United States)

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  5. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  6. Plasma and current structures in dynamical pinches

    International Nuclear Information System (INIS)

    Butov, I.Ya.; Matveev, Yu.V.

    1981-01-01

    Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru

  7. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  8. Ultrasonic determination of interfacial area, void fraction and Sauter mean diameter in bubbly flow

    International Nuclear Information System (INIS)

    Bensler, Henri-Paul

    1990-01-01

    In this research thesis, the author shows that it is possible to determine, by means of a single measurement, the interface surface, the vacuum rate, and the Sauter mean diameter in a bubbly water-air flow. The developed technique relies on the measurement of the attenuation of an ultrasound beam by the two-phase medium, and on the use of broadband transducers associated with a multi-frequency screening method. Tests in standing water or in forced convection are performed in ducts with a square cross section with a side of 40, 80, or 120 mm. Values obtained with ultrasounds are compared with those determined by using photographs (interface surfaces, Sauter diameters) or by using a gauge pressure, or by using X rays (vacuum rate). This method based on ultrasound attenuation reveals to be simple and in good agreement with reference methods [fr

  9. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  10. Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?

    International Nuclear Information System (INIS)

    Noergaard, B.L.; Jensen, J.M.; Leipsic, J.

    2015-01-01

    Fractional flow reserve (FFR) measured during invasive coronary angiography is the gold standard for lesion-specific decisions on coronary revascularization in patients with stable coronary artery disease (CAD). Current guidelines recommend non-invasive functional or anatomic testing as a gatekeeper to the catheterization laboratory. However, the ''holy grail'' in non-invasive testing of CAD is to establish a single test that quantifies both coronary lesion severity and the associated ischemia. Most evidence to date of such a test is based on the addition of computational analysis of FFR to the anatomic information obtained from standard-acquired coronary CTA data sets at rest (FFR CT ). This review summarizes the clinical evidence for the use of FFR CT in stable CAD in context to the diagnostic performance of other non-invasive testing modalities. (orig.)

  11. Atherosclerotic Plaque Characteristics by CT Angiography Identify Coronary Lesions That Cause Ischemia: a Direct Comparison to Fractional Flow Reserve

    Science.gov (United States)

    Park, Hyung-Bok; Heo, Ran; Hartaigh, Bríain ó; Cho, Iksung; Gransar, Heidi; Nakazato, Ryo; Leipsic, Jonathon; Mancini, G.B. John; Koo, Bon-Kwon; Otake, Hiromasa; Budoff, Matthew J.; Berman, Daniel S.; Erglis, Andrejs; Chang, Hyuk-Jae; Min, James K.

    2014-01-01

    Objective We evaluated the association between atherosclerotic plaque characteristics (APCs) by coronary CT angiography (CT) and lesion ischemia by fractional flow reserve (FFR). Background FFR is the gold standard for determining lesion ischemia. While APCs by CT—including aggregate plaque volume % (%APV), positive remodeling (PR), low attenuation plaque (LAP) and spotty calcification (SC)—are associated with future coronary syndromes, their relationship to lesion ischemia is unclear. Methods 252 patients (17 centers, 5 countries) [mean age 63 years, 71% males] underwent CT, with FFR performed for 407 coronary lesions. CT was interpreted for 50% stenosis, with the latter considered obstructive. APCs by CT were defined as: (1) PR, lesion diameter/reference diameter >1.10; (2) LAP, any voxel 50% but not for 50%. PMID:25592691

  12. Mannitol increases renal blood flow and maintains filtration fraction and oxygenation in postoperative acute kidney injury: a prospective interventional study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2012-08-17

    Acute kidney injury (AKI), which is a major complication after cardiovascular surgery, is associated with significant morbidity and mortality. Diuretic agents are frequently used to improve urine output and to facilitate fluid management in these patients. Mannitol, an osmotic diuretic, is used in the perioperative setting in the belief that it exerts reno-protective properties. In a recent study on uncomplicated postcardiac-surgery patients with normal renal function, mannitol increased glomerular filtration rate (GFR), possibly by a deswelling effect on tubular cells. Furthermore, experimental studies have previously shown that renal ischemia causes an endothelial cell injury and dysfunction followed by endothelial cell edema. We studied the effects of mannitol on renal blood flow (RBF), glomerular filtration rate (GFR), renal oxygen consumption (RVO2), and extraction (RO2Ex) in early, ischemic AKI after cardiac surgery. Eleven patients with AKI were studied during propofol sedation and mechanical ventilation 2 to 6 days after complicated cardiac surgery. All patients had severe heart failure treated with one (100%) or two (73%) inotropic agents and intraaortic balloon pump (36%). Systemic hemodynamics were measured with a pulmonary artery catheter. RBF and renal filtration fraction (FF) were measured by the renal vein thermo-dilution technique and by renal extraction of chromium-51-ethylenediaminetetraacetic acid (51Cr-EDTA), respectively. GFR was calculated as the product of FF and renal plasma flow RBF × (1-hematocrit). RVO2 and RO2Ex were calculated from arterial and renal vein blood samples according to standard formulae. After control measurements, a bolus dose of mannitol, 225 mg/kg, was given, followed by an infusion at a rate of 75 mg/kg/h for two 30-minute periods. Mannitol did not affect cardiac index or cardiac filling pressures. Mannitol increased urine flow by 61% (P renal vascular resistance (P renal FF. Mannitol treatment of postoperative AKI

  13. Comparison of fractional flow reserve of composite Y-grafts with saphenous vein or right internal thoracic arteries.

    Science.gov (United States)

    Glineur, David; Boodhwani, Munir; Poncelet, Alain; De Kerchove, Laurent; Etienne, Pierre Yves; Noirhomme, Philippe; Deceuninck, Paul; Michel, Xavier; El Khoury, Gebrine; Hanet, Claude

    2010-09-01

    Composite Y-grafts, using the left internal thoracic artery as the inflow, allow a more efficient use of conduits without the need to touch a diseased ascending aorta. Among other conduits, the saphenous vein graft may be an alternative to the radial artery in elderly patients. We evaluated the hemodynamic characteristics of 17 composite Y-grafts made with the left internal thoracic artery anastomosed to the left anterior descending coronary artery in all cases and with either the free right internal thoracic artery (RITA group, n = 10) or a saphenous vein graft (SVG group, n = 7) implanted proximally to the left internal thoracic artery and distally to the circumflex territory 6 months after the operation. At baseline, the pressure gradient measured with a 0.014-inch pressure wire was minimal between the aorta and the internal thoracic artery stem (2 +/- 1 mm Hg), the internal thoracic artery and left anterior descending (4 +/- 2 mm Hg), the internal thoracic artery and left circumflex (3 +/- 1 mm Hg), and the saphenous vein graft and left circumflex (2 +/- 2 mm Hg). During hyperemia induced by adenosine, the pressure gradient increased significantly to 6 +/- 2 mm Hg in the internal thoracic artery stem, 9 +/- 4 mm Hg in the internal thoracic artery and left anterior descending artery, 9 +/- 3 mm Hg in the internal thoracic artery and left circumflex, and 7 +/- 4 mm Hg in the saphenous vein graft and left circumflex. Fractional flow reserve was 0.94 +/- 0.02 in internal thoracic artery stem, 0.90 +/- 0.04 mm Hg in the internal thoracic artery and left anterior descending, 0.91 +/- 0.03 mm Hg in the internal thoracic artery and left circumflex, and 0.92 +/- 0.06 mm Hg in the saphenous vein graft and left circumflex. No difference between the two types of composite Y-grafts was observed for pressure gradients or fractional flow reserve measured in internal thoracic artery stem or in distal branches. Composite Y-grafts with saphenous vein or right internal thoracic

  14. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  15. Plasma focus - dense Z pinch and their applications

    International Nuclear Information System (INIS)

    Ishii, Shozo

    1986-02-01

    ''Workshop on the possibility of Z-pinch as a intense pulse light source'' in 1983 and ''Research meeting on plasma focus and Z-pinch'' in 1984 were held at Institute of Plasma Physics, Nagoya University under a collaborating research program. Research activities reported at the meetings on plasma focus, dense Z-pinch, and related phenomena are summerized. (author)

  16. Prognostic value of renal fractional flow reserve in blood pressure response after renal artery stenting (PREFER study).

    Science.gov (United States)

    Kądziela, Jacek; Januszewicz, Andrzej; Prejbisz, Aleksander; Michałowska, Ilona; Januszewicz, Magdalena; Florczak, Elżbieta; Kalińczuk, Łukasz; Norwa-Otto, Bożena; Warchoł, Ewa; Witkowski, Adam

    2013-01-01

    The aim of our study was to determine a potential relationship between resting translesional pressures ratio (Pd/Pa ratio), renal fractional flow reserve (rFFR) and blood pressure response after renal artery stenting. Thirty five hypertensive patients (49% males, mean age 64 years) with at least 60% stenosis in angiography, underwent renal artery stenting. Translesional systolic pressure gradient (TSPG), Pd/Pa ratio (the ratio of mean distal to lesion and mean proximal pressures) and hyperemic rFFR - after intrarenal administration of papaverine - were measured before stent implantation. Ambulatory blood pressure measurements (ABPM) were recorded before the procedure and after 6 months. The ABPM results were presented as blood pressure changes in subgroups of patients with normal (≥ 0.9) vs. abnormal (renal artery stenting. Median changes of 24-h systolic/diastolic blood pressure were comparable in patients with abnormal vs. normal Pd/Pa ratio (-4/-3 vs. 0/2 mm Hg; p = NS) and with abnormal vs. normal rFFR (-2/-1 vs. -2/-0.5 mm Hg, respectively). Physiological assessment of renal artery stenosis using Pd/Pa ratio and papaverine- induced renal fractional fl ow reserve did not predict hypertension response after renal artery stenting.

  17. Measurements of high-current electron beams from X pinches and wire array Z pinches

    International Nuclear Information System (INIS)

    Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Bell, K. S.; Hammer, D. A.; Agafonov, A. V.; Romanova, V. M.; Mingaleev, A. R.

    2008-01-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  18. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lee, Ju Yong; Byeon, Seul Kee; Moon, Myeong Hee

    2015-01-20

    Oxidized phospholipids (Ox-PLs) are oxidatively modified PLs that are produced during the oxidation of lipoproteins; oxidation of low density lipoproteins especially is known to be associated with the development of coronary artery disease (CAD). In this study, different lipoprotein classes (high density, low density, and very low density lipoproteins) from pooled plasma of CAD patients and pooled plasma from healthy controls were size-sorted on a semipreparative scale by multiplexed hollow fiber flow field-flow fractionation (MxHF5), and Ox-PLs that were extracted from each lipoprotein fraction were quantified by nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). The present study showed that oxidation of lipoproteins occurred throughout all classes of lipoproteins with more Ox-PLs identified from CAD patient lipoproteins: molecular structures of 283 unique PL species (including 123 Ox-PLs) from controls and 315 (including 169 Ox-PLs) from patients were identified by data-dependent collision-induced dissociation experiments. It was shown that oxidation of PLs occurred primarily with hydroxylation of PL; in particular, a saturated acyl chain such as 16:0, 18:0, or even 18:1 at the sn-1 location of the glycerol backbone along with sn-2 acyl chains with at least two double bonds were identified. The acyl chain combinations commonly found for hydroxylated Ox-PLs in the lipoproteins of CAD patients were 16:0/18:2, 16:0/20:4, 18:0/18:2, and 18:0/20:4.

  20. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  1. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  2. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  3. Extremely tortuous coronary arteries - when optical coherence tomography and fractional flow reserve did not help us much

    Directory of Open Access Journals (Sweden)

    Miloradović Vladimir

    2018-01-01

    Full Text Available Introduction. Extreme coronary tortuosity may lead to flow alteration resulting in a reduction in coronary pressure distal to the tortuous segment, subsequently leading to ischemia. Therefore the detection of a true cause of ischemia, i.e. whether a fixed stenosis or tortuosity by itself is responsible for its creation, with non-invasive and invasive methods is a real challenge. Case report. We presented a case of a patient with a history of stable angina [Canadian Cardiovascular Society (CCS class II], an abnormal stress test and coronary tortuosity without hemodynamically significant stenosis. Due to suspected linear lesion between the two bends in proximal segment of Right coronary artery (RCA we performed optical coherence tomography (OCT, minimum lumen area (MLA-13.19 mm2 and fractional flow reserve (FFR RCA (0.94. We opted for conservative treatment for stable angina. Conclusion. When tortuosities are associated with atherosclerosis in coronary artery for determination of true cause of ischemia invasive methods can be used, such as OCT and FFR.

  4. Physics considerations of the Reversed-Field Pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  5. Interaction of Eu, Th and U with bentonite colloids in presence of humic acid: a flow-field flow fractionation study

    International Nuclear Information System (INIS)

    Bouby, M.; Geckeis, H.; Schaefer, Th.; Mihai, S.; Fanghaenell, Th.

    2005-01-01

    Full text of publication follows: The actinide mobility in the far-field of a repository site can be strongly influenced by the presence of colloidal species. Field migration experiments at the Grimsel Test Site under low ionic strength (I=10 -3 mol/L) and high pH (∼9.6) conditions have demonstrated a considerable clay colloid-mediated actinide(III/IV) migration [1]. However, those studies rendered it necessary to take the kinetics of notably the actinide-colloid interaction and colloid stability into account [2]. In the present study, we examine the stability of bentonite clay colloids in natural Grimsel groundwater and their interaction with Cs(I), Eu(III), Th(IV) and U(VI) (conc. ∼ 10 -8 mol/L). Experiments cover 12 months contact times and are performed under anoxic conditions. Humic acid (Gohy-573) is added after different contact times as a competing ligand and the time dependent metal ion desorption is followed. Dedicated experiments and thermodynamic speciation calculations are performed to estimate the metal ion speciation within the colloid system. As the experimental metal ion speciation (i.e. differentiation of clay-colloid bound, humic colloid bound and dissolved metal ion species) at the given low concentration conditions is hardly possible by spectroscopic methods, we use Asymmetric Flow-Field Flow Fractionation coupled to UV-Vis spectrophotometry and ICP-MS detection. Unexpectedly, it is found that small-sized bentonite colloids ( d -values, Cs and U do not interact significantly with bentonite colloids, while Th and Eu do. Eu desorption from clay colloids by humic acid is delayed significantly upon increasing the clay colloid-Eu contact time up to several months. Nevertheless, estimated equilibrium conditions are attained after 7 months desorption time. However, it appears that significant fractions of clay colloid borne Th(IV) do not desorb in presence of humic acid and equilibrium conditions estimated from calculation and experiments are not

  6. Advanced computed tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions

    International Nuclear Information System (INIS)

    Opolski, Maksymilian P.; Kepka, Cezary; Achenbach, Stephan; Pregowski, Jerzy; Kruk, Mariusz; Staruch, Adam D.; Kadziela, Jacek; Ruzyllo, Witold; Witkowski, Adam

    2014-01-01

    Objective: To determine the application of advanced coronary computed tomography angiography (CCTA) plaque analysis for predicting invasive fractional flow reserve (FFR) in intermediate coronary lesions. Methods: Sixty-one patients with 71 single intermediate coronary lesions (≥50–80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. Advanced anatomical and morphometric plaque analysis was performed based on CCTA data set to determine optimal criteria for significant flow impairment. A significant stenosis was defined as FFR ≤ 0.80. Results: FFR averaged 0.85 ± 0.09, and 19 lesions (27%) were functionally significant. FFR correlated with minimum lumen area (MLA) (r = 0.456, p < 0.001), minimum lumen diameter (MLD) (r = 0.326, p = 0.006), reference lumen diameter (RLD) (r = 0.245, p = 0.039), plaque burden (r = −0.313, p = 0.008), lumen area stenosis (r = −0.305, p = 0.01), lesion length (r = −0.692, p < 0.001), and plaque volume (r = −0.668, p < 0.001). There was no relationship between FFR and CCTA morphometric plaque parameters. By multivariate analysis the independent predictors of FFR were lesion length (beta = −0.581, p < 0.001), MLA (beta = 0.360, p = 0.041), and RLD (beta = −0.255, p = 0.036). The optimal cutoffs for lesion length, MLA, MLD, RLD, and lumen area stenosis were >18.5 mm, ≤3.0 mm 2 , ≤2.1 mm, ≤3.2 mm, and >69%, respectively (max. sensitivity: 100% for MLA, max. specificity: 79% for lumen area stenosis). Conclusions: CCTA predictors for FFR support the mathematical relationship between stenosis pressure drop and coronary flow. CCTA could prove to be a useful rule-out test for significant hemodynamic effects of intermediate coronary stenoses

  7. Computed Tomography Fractional Flow Reserve Can Identify Culprit Lesions in Aortoiliac Occlusive Disease Using Minimally Invasive Techniques.

    Science.gov (United States)

    Ward, Erin P; Shiavazzi, Daniele; Sood, Divya; Marsden, Allison; Lane, John; Owens, Erik; Barleben, Andrew

    2017-01-01

    Currently, the gold standard diagnostic examination for significant aortoiliac lesions is angiography. Fractional flow reserve (FFR) has a growing body of literature in coronary artery disease as a minimally invasive diagnostic procedure. Improvements in numerical hemodynamics have allowed for an accurate and minimally invasive approach to estimating FFR, utilizing cross-sectional imaging. We aim to demonstrate a similar approach to aortoiliac occlusive disease (AIOD). A retrospective review evaluated 7 patients with claudication and cross-sectional imaging showing AIOD. FFR was subsequently measured during conventional angiogram with pull-back pressures in a retrograde fashion. To estimate computed tomography (CT) FFR, CT angiography (CTA) image data were analyzed using the SimVascular software suite to create a computational fluid dynamics model of the aortoiliac system. Inlet flow conditions were derived based on cardiac output, while 3-element Windkessel outlet boundary conditions were optimized to match the expected systolic and diastolic pressures, with outlet resistance distributed based on Murray's law. The data were evaluated with a Student's t-test and receiver operating characteristic curve. All patients had evidence of AIOD on CT and FFR was successfully measured during angiography. The modeled data were found to have high sensitivity and specificity between the measured and CT FFR (P = 0.986, area under the curve = 1). The average difference between the measured and calculated FFRs was 0.136, with a range from 0.03 to 0.30. CT FFR successfully identified aortoiliac lesions with significant pressure drops that were identified with angiographically measured FFR. CT FFR has the potential to provide a minimally invasive approach to identify flow-limiting stenosis for AIOD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Cuculi, Florim; De Maria, Giovanni Luigi; Meier, Pascal; Dall'Armellina, Erica; de Caterina, Alberto R; Channon, Keith M; Prendergast, Bernard D; Choudhury, Robin P; Choudhury, Robin C; Forfar, John C; Kharbanda, Rajesh K; Banning, Adrian P

    2014-11-04

    Invasive assessment of coronary physiology (IACP) offers important prognostic insights in ST-segment elevation myocardial infarction (STEMI) but the dynamics of coronary recovery are poorly understood. This study sought to examine the evolution of coronary flow reserve (CFR), index of microcirculatory resistance (IMR), ratio of distal coronary pressure (Pd) to mean aortic pressure (Pa), and fractional flow reserve (FFR) in patients undergoing primary percutaneous coronary intervention (PPCI). 82 patients with STEMI underwent IACP at PPCI. Repeat IACP was performed in 61 patients (74%) at day 1 and in 46 patients (56%) at 6 months. Contrast-enhanced cardiac magnetic resonance imaging (CMR) was performed in 45 patients (55%) at day 1 and in 41 patients (50%) at 6 months. Changes in IACP were compared between patients with and without microvascular obstruction (MVO) on CMR. MVO was present in 21 of 45 patients (47%). Patients with MVO had lower CFR at PPCI and day 1 (p < 0.05) and a trend toward higher IMR values (p = 0.07). At 6 months, CFR and IMR were not significantly different between the groups. Baseline flow and Pd/Pa remained stable over time but FFR reduced significantly between PPCI and 6 months (p = 0.008); this reduction was mainly observed in patients with MVO (p = 0.006) but not in those without MVO (p = 0.21). In PPCI-treated patients with STEMI, coronary microcirculation begins to recover within 24 h and recovery progresses further by 6 months. FFR significantly reduces from baseline to 6 months. The presence of MVO indicates a highly dysfunctional microcirculation. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Effects of local single and fractionated X-ray doses on rat bone marrow blood flow and red blood cell volume

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hopewell, J.W.

    1985-01-01

    Time and dose dependent changes in blood flow and red blood cell volume were studied in the locally irradiated bone marrow of the rat femur after single and fractionated doses of X-rays. With the single dose of 10 Gy the bone marrow blood flow although initially reduced returned to the control levels by seven months after irradiation. With doses >=15 Gy the blood flow was still significantly reduced at seven months. The total dose levels predicted by the nominal standard dose equation for treatments in three, six or nine fractions produced approximately the same degree of reduction in the bone marrow blood flow seven months after the irradiation. However, the fall in the red blood cell volume was from 23 to 37% greater in the three fractions groups compared with that in the nine fractions groups. Using the red blood cell volume as a parameter the nominal standard dose formula underestimated the severity of radiation damage in rat bone marrow at seven months for irradiation with small numbers of large dose fractions. (orig.) [de

  10. Characterization of laser-cut copper foil X-pinches

    Science.gov (United States)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  11. A summary of the Berkeley and Livermore pinch programs

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A [University of California Radiation Laboratory, Livermore, CA (United States)

    1958-07-01

    In order to progress toward practical thermonuclear devices, the principal objective must be to prolong containment times by improving the electrical conductivity of the plasma. Those pinch configurations which are grossly unstable are, of course, unsuitable for practical thermonuclear work. Therefore our purely dynamic experiments are conducted only to study basic shock heating and instability mechanisms. Our basic evaluation of progress in pinch-type experiments is the reduction of the dissipation rate of the magnetic fields. The present pessimistic viewpoint is that most of the pinch devices that depend upon high current density within the plasma are beset with an enhanced dissipation rate which is disastrous to pinch containment. This dissipation is derived either from an electron plasma current instability or from hydromagnetic turbulence. Both have been predicted in theory and observed in experiment. Studies have been presented for the following cases: linear and toroidal pinch experiments; sheet pinch devices of modest size; homopolar geometry; shock heating and screw dynamic pinch.

  12. On the use of area-averaged void fraction and local bubble chord length entropies as two-phase flow regime indicators

    International Nuclear Information System (INIS)

    Hernandez, Leonor; Julia, J.E.; Paranjape, Sidharth; Hibiki, Takashi; Ishii, Mamoru

    2010-01-01

    In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j f and ranges from 0.01 to 25 m/s in the superficial gas velocity j g . The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions. (orig.)

  13. Radiation hydrodynamics of z-pinch plasmas

    International Nuclear Information System (INIS)

    Davis, J.

    1993-01-01

    Over the years there has been a sustained interest in and fascination with Z-pinch plasmas. Whether the interest is in radiation source development, fusion plasmas, or basic research there exits an extensive bibliography of literature promulgating and perpetuating a variety of claims regarding the performance of Z-pinch plasmas. In this paper an attempt will be made to present a coherent picture of the documented and commonly held views for a class of Z-pinch plasmas concerned primarily with soft x-ray radiation source development. Many of the issues and findings are common to Z-pinch plasmas in general but the attention here will be focused on gas puffs and multiple wire arrays. The role and importance of radiation on the dynamics and the interplay between the radiation and the dynamics will also be presented and discussed. A number of comparisons with experimental results will be made with 0-, 1-, and 2-D numerical simulations for several pulsed power drivers ranging in current from several mega-amps to 10's of mega-amps for a variety of risetimes and load materials

  14. Self-stabilized pinch (SSP) concept

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Hirano, Keiichi.

    1985-01-01

    Self-Stabilized pinch (SSP) consept is revealed. SSP providcs many attractive features for application to a fusion reactor. Design studies for high temperature plasma production are carried out. Use of adiabatic compression leads to a remarkable reduction of required power source. (author)

  15. Scylla IV-P theta pinch

    International Nuclear Information System (INIS)

    Bailey, A.G.; Chandler, G.I.; Ekdahl, C.A. Jr.; Lillberg, J.W.; Machalek, M.D.; Seibel, F.T.

    1976-01-01

    Scylla IV-P is a flexible, linear theta pinch designed to investigate high-density linear concepts, end-stoppering, alternate heating methods, and plasma injection techniques relevant to a pure fusion reactor and/or a fusion-fission hybrid system. The construction and experimental arrangement of the device are briefly described

  16. Pinch Strengths in Healthy Iranian Children and Young Adult Population

    Directory of Open Access Journals (Sweden)

    Iman Dianat

    2015-03-01

    Full Text Available Background: Data on the physical strength capabilities are essential for design-ing safe and usable products and are useful in a wide range of clinical settings especially during treatment of disease affecting the function of the hand. The purpose of this study was to determine peak lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions in a healthy Iranian children and young adult population.Methods: The study was conducted among 511 participants (242 males and 269 females aged 7-30 years. Measurements were carried out with both dominant and non-dominant hands in standard sitting posture using a B&L pinch gauge. Two repetitions of each strength measurement were recorded for each condition and the average value of the two trials was used in the subsequent analysis.Results: The results showed significant differences in the pinch strength data in terms of the age, gender and hand dominance. The lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions by females were 68.4%, 68.8%, 78.8% and 81.8% of those exerted by males, respectively. Strength exertions with the non-dominant hand were 6.4%, 5.2%, 6.6% and 5.1% lower than strength exertions of the dominant hand for the lat-eral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions, respectively.Conclusion: These findings can be used to fill the gaps in strength data for Iranian population.

  17. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics.

    Science.gov (United States)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Brandl, Martin

    2016-05-30

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection there is a risk of premature drug loss due to drug transfer to plasma proteins and cell membranes. Here we report on the refinement of a recently introduced simple in vitro predictive tool by Hinna and colleagues in 2014, which brings small drug loaded (donor) liposomes in contact with large acceptor liposomes, the latter serving as a model mimicking biological sinks in the body. The donor- and acceptor-liposomes were subsequently separated using asymmetrical flow field-flow fractionation (AF4), during which the sample is exposed to a large volume of eluent which corresponds to a dilution factor of approximately 600. The model drug content in the donor- and acceptor fraction was quantified by on-line UV/VIS extinction measurements with correction for turbidity and by off-line HPLC measurements of collected fractions. The refined method allowed for (near) baseline separation of donor and acceptor vesicles as well as reliable quantification of the drug content not only of the donor- but now also of the acceptor-liposomes due to their improved size-homogeneity, colloidal stability and reduced turbidity. This improvement over the previously reported approach allowed for simultaneous quantification of both drug transfer and drug release to the aqueous phase. By sampling at specific incubation times, the release and transfer kinetics of the model compound p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine) was determined. p-THPP is structurally closely related to the photosensitizer temoporfin, which is in clinical use and under evaluation in liposomal formulations. The transfer of p-THPP to the acceptor vesicles followed 1st order kinetics with a half-life of

  18. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared Against Experimental Data of Void Fraction

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby

    2013-01-01

    Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...

  19. Development and performance evaluation of 32-channel gamma densitometer for the measurement of flow pattern and void fraction in the downcomer of MIDAS test facility

    International Nuclear Information System (INIS)

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Euh, D. J.; Song, C.

    2002-03-01

    APR 1400, which adopts DVI type of ECCS, is expected to show its unique thermal hydraulic phenomena. Therefore, it is necessary to investigate whether existing safety analysis code can correctly predict the thermal hydraulic phenomena. Among the several phenomena, void fraction and flow pattern govern the other major phenomena. Therefore, the main objective of the present study is to develop the 32-channel gamma densitometer which can measure the void fraction and flow pattern in the downcomer at various locations. The 32-channel gamma densitometer for MIDAS test apparatus has been developed. Throughout the performance evaluation test, the integrity of the 32 channel gamma densitometer has been validated. The measurement error of water film thickness is expected to be less than ±0.5mm. Also, it can correctly predict the flow patterns and the transition location of flow pattern in the downcomer of MIDAS test apparatus

  20. Linking pinch analysis and bridge analysis to save energy by heat-exchanger network retrofit

    International Nuclear Information System (INIS)

    Bonhivers, Jean-Christophe; Moussavi, Alireza; Alva-Argaez, Alberto; Stuart, Paul R.

    2016-01-01

    Highlights: • The flow rate of cascaded heat in exchangers is presented between composite curves. • Reducing energy consumption implies decreasing the flow rate of cascaded heat. • Removing cross-pinch transfers is not necessary to reduce energy consumption. • Bridge modifications are necessary to reduce energy consumption. • Bridge modifications are evaluated on the Heat Exchanger Load Diagram. - Abstract: Reduction of energy requirements in the process industries results in increased profitability and better environmental performance. Methods for heat exchanger network (HEN) retrofit are based on thermodynamic analysis and insights, numerical optimization, or combined approaches. Numerical optimization-based methods are highly complex and may not guarantee identification of the global optimum. Pinch analysis, which is an approach based on thermodynamic analysis and composite curves, is the most widely used in the industry. Its simplicity, the use of graphical tools, and the possibility for the user to interact at each step of the design process help identify solutions with consideration of practical feasibility. In the last few years, bridge analysis has been developed for HEN retrofit. It includes the following tools: (a) the definition of the necessary conditions to reduce energy consumption which are expressed in the bridge formulation, (b) a method for enumerating the bridges, (c) the representation of the flow rate of cascaded heat through each existing exchanger on the energy transfer diagram (ETD), and (4) the use of the Heat Exchanger Load Diagram (HELD) to identify a suitable HEN configuration corresponding to modifications. It has been shown that reducing energy consumption implies decreasing the flow rate of cascaded heat through the existing exchangers across the entire temperature range between the hot and cold utilities. The ETD shows all possibilities to reduce the flow rate of cascaded heat through a HEN. The objective of this paper is

  1. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gigault, Julien [National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520 (United States); Hackley, Vincent A., E-mail: vince.hackley@nist.gov [National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520 (United States)

    2013-02-06

    Highlights: ► Isotopically modified and unmodified AgNPs characterization by A4F-DAD-MALS–DLS-ICP-MS. ► Size-resolved characterization and speciation in simple or complex media. ► Capacity to detect stable isotope enriched AgNPs in a standard estuarine sediment. ► New opportunities to monitor and study fate and transformations of AgNPs. -- Abstract: The principal objective of this work was to develop and demonstrate a new methodology for silver nanoparticle (AgNP) detection and characterization based on asymmetric-flow field flow fractionation (A4F) coupled on-line to multiple detectors and using stable isotopes of Ag. This analytical approach opens the door to address many relevant scientific challenges concerning the transport and fate of nanomaterials in natural systems. We show that A4F must be optimized in order to effectively fractionate AgNPs and larger colloidal Ag particles. With the optimized method one can accurately determine the size, stability and optical properties of AgNPs and their agglomerates under variable conditions. In this investigation, we couple A4F to optical absorbance (UV–vis spectrometer) and scattering detectors (static and dynamic) and to an inductively coupled plasma mass spectrometer. With this combination of detection modes it is possible to determine the mass isotopic signature of AgNPs as a function of their size and optical properties, providing specificity necessary for tracing and differentiating labeled AgNPs from their naturally occurring or anthropogenic analogs. The methodology was then applied to standard estuarine sediment by doping the suspension with a known quantity of isotopically enriched {sup 109}AgNPs stabilized by natural organic matter (standard humic and fulvic acids). The mass signature of the isotopically enriched AgNPs was recorded as a function of the measured particle size. We observed that AgNPs interact with different particulate components of the sediment, and also self-associate to form

  2. Void fraction development in gas-liquid flow after a U-bend in a vertically upwards serpentine-configuration large-diameter pipe

    Science.gov (United States)

    Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi

    2018-01-01

    We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.

  3. Computed tomography myocardial perfusion vs {sup 15}O-water positron emission tomography and fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michelle C.; Dweck, Marc R.; Golay, Saroj K. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); Mirsadraee, Saeed; Weir, Nicholas W.; Fletcher, Alison; Lucatelli, Christophe; Reid, John H. [University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); MacGillivray, Tom; Van Beek, Edwin J.R.; Newby, David E. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); Cruden, Nicholas L.; Henriksen, Peter A.; Uren, Neal [Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); McKillop, Graham; Patel, Dilip [Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); Lima, Joao A.C. [Johns Hopkins Hospital, Departments of Medicine and Radiology, Baltimore, MD (United States)

    2017-03-15

    Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with {sup 15}O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). 51 patients (63 (61-65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by ''snapshot'' adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32-2.20) vs 3.11 (2.44-3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32-2.20) vs 3.12 (2.44-3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71-76) vs 86 (84-88) HU, P < 0.001 and 101 (96-106) vs 111 (107-114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. CT myocardial attenuation density correlates with {sup 15}O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. (orig.)

  4. Field flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution.

    Science.gov (United States)

    Pollastrini, Joey; Dillon, Thomas M; Bondarenko, Pavel; Chou, Robert Y-T

    2011-07-01

    Analysis of the strength and stoichiometry of immunoglobulin G (IgG) binding to neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR) is important for evaluating the pharmacokinetics and effector functions of therapeutic monoclonal antibody (mAb) products, respectively. The current standard for assessing FcγR and FcRn binding is composed of cell-based and surface plasmon resonance (SPR) assays. In this work, asymmetrical flow field flow fractionation (AF4) was evaluated to establish the true stoichiometry of IgG binding in solution. AF4 and liquid chromatography-mass spectrometry (LC-MS) were applied to directly observe IgG/FcγR and IgG/FcRn complexes, which were not observed using nonequilibrium size exclusion chromatography (SEC) analysis. Human serum albumin (HSA), an abundant component of human blood and capable of binding FcRn, was studied in combination with FcRn and IgG. AF4 demonstrated that the majority of large complexes of IgG/FcRn/HSA were at an approximate 1:2:1 molar ratio. In addition, affinity measurements of the complex were performed in the sub-micromolar affinity range. A significant decrease in binding was detected for IgG molecules with increased oxidation in the Fc region. AF4 was useful in detecting weak binding between full-length IgG/Fc fragments and Fc receptors and the effect of chemical modifications on binding. AF4 is a useful technique in the assessment of mAb product quality attributes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    International Nuclear Information System (INIS)

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  6. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  7. Effect of cathode and anode plasma motion on current characteristics of pinch diode

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; Li Jingya; He Xiaoping; Tang Junping; Li Hongyu; Wang Haiyang; Huang Jianjun; Ren Shuqing; Yang Li; Zou Lili

    2005-01-01

    The preliminary research results for the effect of cathode and anode plasma motion on current characteristics of the pinch ion diode on FLASH II accelerator are reported. The structure and principle of pinch reflex ion beam diode are introduced. The time dependent evolution of electron and ion flow in large aspect-ratio relativistic diodes is studied by analytic models. The equation of Child-langmuir, weak focused-flow, strong focused-flow and parapotential flow are corrected to reduce the diode A-C gap caused by the motion of cathode and anode plasma. The diode current and ion current are calculated with these corrected equations, and the results are consistent with the experimental data. The methods of increasing ion current and efficiency are also presented. The high power ion beam peak current about 160 kA with a peak energy about 500 keV was produced using water-dielectric transmission-line generators with super-pinch reflex ion diodes on FLASH II accelerator at Northwest Institute of Nuclear Technology (NINT). (authors)

  8. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    Science.gov (United States)

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Extraction of hyaluronic acid (HA) from rooster comb and characterization using flow field-flow fractionation (FlFFF) coupled with multiangle light scattering (MALS).

    Science.gov (United States)

    Kang, Dong Young; Kim, Won-Suk; Heo, In Sook; Park, Young Hun; Lee, Seungho

    2010-11-01

    Hyaluronic acid (HA) was extracted in a relatively large scale from rooster comb using a method similar to that reported previously. The extraction method was modified to simplify and to reduce time and cost in order to accommodate a large-scale extraction. Five hundred grams of frozen rooster combs yielded about 500 mg of dried HA. Extracted HA was characterized using asymmetrical flow field-flow fractionation (AsFlFFF) coupled online to a multiangle light scattering detector and a refractive index detector to determine the molecular size, molecular weight (MW) distribution, and molecular conformation of HA. For characterization of HA, AsFlFFF was operated by a simplified two-step procedure, instead of the conventional three-step procedure, where the first two steps (sample loading and focusing) were combined into one to avoid the adsorption of viscous HA onto the channel membrane. The simplified two-step AsFlFFF yielded reasonably good separations of HA molecules based on their MWs. The weight average MW (M(w) ) and the average root-mean-square (RMS) radius of HA extracted from rooster comb were 1.20×10(6) and 94.7 nm, respectively. When the sample solution was filtered through a 0.45 μm disposable syringe filter, they were reduced down to 3.8×10(5) and 50.1 nm, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  11. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score.

    Science.gov (United States)

    Miyagawa, Masao; Nishiyama, Yoshiko; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Ikeda, Shuntaro; Ishimura, Hayato; Watanabe, Emiri; Tashiro, Rami; Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Mochizuki, Teruhito

    2017-10-01

    Quantitative assessment of myocardial flow reserve (MFR) by single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is challenging but may facilitate evaluation of multi-vessel coronary artery disease (CAD). We enrolled 153 patients with suspected or known CAD, referred for pharmacological stress MPI. They underwent a 99m Tc-perfusion stress/rest SPECT with an ultrafast cadmium-zinc-telluride (CZT) camera. Dynamic data were acquired and time-activity curves fitted to a 1-tissue compartment analysis with input function. K1 was assigned for stress and rest data. The MFR index (MFRi) was calculated as K1 stress/K1 at-rest. The findings were validated by invasive coronary angiography in 69 consecutive patients. The global MFRi was 1.46 (1.16-1.76), 1.33 (1.12-1.54), and 1.18 (1.01-1.35), for 1-vessel disease (VD), 2-VD, and 3-VD, respectively. In the 3-VD, global MFRi was lower than that in 0-VD (1.63 [1.22-2.04], Pfraction (OR: 61.6 [57.5-66.0]), and global MFRi (OR: 119.6 [111.5-127.7], P=0.002). A cut-off value of 1.3 yielded 93.3% sensitivity and 75.9% specificity for diagnosing 3-VD. Fractional flow reserve positively correlated with regional MFRi (r=0.62, P=0.008), and the SYNTAX score correlated negatively with global MFRi (r=0.567, P=0.0003). We developed and validated a clinically available method for MFR quantification by dynamic 99m Tc-perfusion SPECT utilizing a CZT camera, which improves the detectability of multi-vessel CAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire - fractional flow reserve.

    Science.gov (United States)

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Lakkas, Lampros S; Nakatani, Shimpei; Bourantas, Christos V; Ligthart, Jurgen; Onuma, Yoshinobu; Echavarria-Pinto, Mauro; Tsirka, Georgia; Kotsia, Anna; Nikas, Dimitrios N; Mogabgab, Owen; van Geuns, Robert-Jan; Naka, Katerina K; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Zijlstra, Felix; Michalis, Lampros K; Serruys, Patrick W

    2014-09-01

    To develop a simplified approach of virtual functional assessment of coronary stenosis from routine angiographic data and test it against fractional flow reserve using a pressure wire (wire-FFR). Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by wire-FFR (reference standard: ≤0.80). The 3D-QCA models were processed with computational fluid dynamics (CFD) to calculate the lesion-specific pressure gradient (ΔP) and construct the ΔP-flow curve, from which the virtual functional assessment index (vFAI) was derived. The discriminatory power of vFAI for ischaemia- producing lesions was high (area under the receiver operator characteristic curve [AUC]: 92% [95% CI: 86-96%]). Diagnostic accuracy, sensitivity and specificity for the optimal vFAI cut-point (≤0.82) were 88%, 90% and 86%, respectively. Virtual-FAI demonstrated superior discrimination against 3D-QCA-derived % area stenosis (AUC: 78% [95% CI: 70- 84%]; p<0.0001 compared to vFAI). There was a close correlation (r=0.78, p<0.0001) and agreement of vFAI compared to wire-FFR (mean difference: -0.0039±0.085, p=0.59). We developed a fast and simple CFD-powered virtual haemodynamic assessment model using only routine angiography and without requiring any invasive physiology measurements/hyperaemia induction. Virtual-FAI showed a high diagnostic performance and incremental value to QCA for predicting wire-FFR; this "less invasive" approach could have important implications for patient management and cost.

  13. Cost benefit for assessment of intermediate coronary stenosis with fractional flow reserve in public and private sectors in australia.

    Science.gov (United States)

    Murphy, J C; Hansen, P S; Bhindi, R; Figtree, G A; Nelson, G I C; Ward, M R

    2014-09-01

    Fractional Flow Reserve (FFR) is a proven technology for guiding percutaneous coronary intervention (PCI), but is not reimbursed despite the fact that it is frequently used to defer PCI. Costs incurred with use of FFR were compared in both the public and private sectors with the costs that would have been incurred if the technology was not available using consecutive cases over a two year period in a public teaching hospital and its co-located private hospital. FFR was performed on 143 lesions in 120 patients. FFR was cost of $A1200 per wire, FFR actually saved money. Mean savings in the public sector were $1200 per patient while in the private sector the savings were $5000 per patient. FFR use saves money for the Federal Government in the public sector and for the Private Health Funds in the private sector. These financial benefits are seen in addition to the improved outcomes seen with this technology. Copyright © 2014. Published by Elsevier B.V.

  14. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.

    Science.gov (United States)

    Hyun, Kyung-A; Kwon, Kiho; Han, Hyunju; Kim, Seung-Il; Jung, Hyo-Il

    2013-02-15

    Circulating tumor cells (CTCs) are dissociated from primary tumor and circulate in peripheral blood. They are regarded as the genesis of metastasis. Isolation and enumeration of CTCs serve as valuable tools for cancer prognosis and diagnosis. However, the rarity and heterogeneity of CTCs in blood makes it difficult to separate intact CTCs without loss. In this paper, we introduce a parallel multi-orifice flow fractionation (p-MOFF) device in which a series of contraction/expansion microchannels are placed parallel on a chip forming four identical channels. CTCs were continuously isolated from the whole blood of breast cancer patients by hydrodynamic forces and cell size differences. Blood samples from 24 breast cancer patients were analyzed (half were from metastatic breast cancer patients and the rest were from adjuvant breast cancer patients). The number of isolated CTCs varied from 0 to 21 in 7.5 ml of blood. Because our devices do not require any labeling processes (e.g., EpCAM antibody), heterogeneous CTCs can be isolated regardless of EpCAM expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  16. Advanced 2-dimensional quantitative coronary angiographic analysis for prediction of fractional flow reserve in intermediate coronary stenoses.

    Science.gov (United States)

    Opolski, Maksymilian P; Pregowski, Jerzy; Kruk, Mariusz; Kepka, Cezary; Staruch, Adam D; Witkowski, Adam

    2014-07-01

    The widespread clinical application of coronary computed tomography angiography (CCTA) has resulted in increased referral patterns of patients with intermediate coronary stenoses to invasive coronary angiography. We evaluated the application of advanced quantitative coronary angiography (A-QCA) for predicting fractional flow reserve (FFR) in intermediate coronary lesions detected on CCTA. Fifty-six patients with 66 single intermediate coronary lesions (≥ 50% to 80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. A-QCA including calculation of the Poiseuille-based index defined as the ratio of lesion length to the fourth power of the minimal lumen diameter (MLD) was performed. Significant stenosis was defined as FFR ≤ 0.80. The mean FFR was 0.86 ± 0.09, and 18 lesions (27%) were functionally significant. FFR correlated with lesion length (R=-0.303, P=0.013), MLD (R=0.527, P44%, and >69%, respectively (maximum negative predictive value of 94% for MLA, maximum positive predictive value of 58% for diameter stenosis). The Poiseuille-based index was the most accurate (C statistic 0.86, sensitivity 100%, specificity 71%, positive predictive value 56%, and negative predictive value 100%) predictor of FFR ≤ 0.80, but showed the lowest interobserver agreement (intraclass correlation coefficient 0.37). A-QCA might be used to rule out significant ischemia in intermediate stenoses detected by CCTA. The diagnostic application of the Poiseuille-based angiographic index is precluded by its high interobserver variability.

  17. Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids

    International Nuclear Information System (INIS)

    Ranville, J.F.; Shanks, F.; Morrison, R.J.S.; Harris, T.; Doss, F.; Beckett, R.; Chittleborough, D.J.

    1999-01-01

    A relatively new hyphenated technique for the simultaneous size separation and elemental analysis of colloids has been further developed and applied to the characterization of soil colloids. Sedimentation field-flow fractionation (SdFFF) was directly interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to provide high-resolution sizing and elemental analysis of colloids in the range 0.05-1.0 μm. For this work our existing SdFFF instrument was modified by addition of an upgraded motor and software for centrifuge speed control and data collection. Analytical techniques were developed for the calibration and drift correction of the ICP-MS data collected during on-line SdFFF-ICP-MS analyses. Software was developed to allow off-line computation of drift-corrected, elemental concentrations across the colloid size range. SdFFF-ICP-MS examination of two colloid samples isolated from surface soil horizons showed significant enrichment in iron-containing phases in both the smaller and larger colloids relative to intermediate particle sizes (∼0.3 0.3 μm). These results demonstrate the utility of SdFFF-ICP-MS for examination of soil chemistry and mineralogy and suggests the technique will have application to other environmental and geochemical studies. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve.

    Science.gov (United States)

    Tanaka, Hirokazu; Chikamori, Taishiro; Tanaka, Nobuhiro; Hida, Satoshi; Igarashi, Yuko; Yamashita, Jun; Ogawa, Masashi; Shiba, Chie; Usui, Yasuhiro; Yamashina, Akira

    2014-01-01

    Although the novel cadmium-zinc-telluride (CZT) camera system provides excellent image quality, its diagnostic value using thallium-201 as assessed on coronary angiography (CAG) and fractional flow reserve (FFR) has not been validated. METHODS AND RESULTS: To evaluate the diagnostic accuracy of the CZT ultrafast camera system (Discovery NM 530c), 95 patients underwent stress thallium-201 single-photon emission computed tomography (SPECT) and then CAG within 3 months. Image acquisition was performed in the supine and prone positions after stress for 5 and 3 min, respectively, and in the supine position at rest for 10 min. Significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or a lesion with <90% and ≥50% stenosis and FFR ≤0.75. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 90%, 64%, and 78% for left anterior descending coronary artery stenosis, 78%, 84%, and 81% for left circumflex stenosis, and 83%, 47%, and 60% for right coronary artery (RCA) stenosis. The combination of prone and supine imaging had a higher specificity for RCA disease than supine imaging alone (65% vs. 47%), with an improvement in accuracy from 60% to 72%. Using thallium-201 with short acquisition time, combined with prone imaging, CZT SPECT had a high diagnostic yield in detecting significant coronary stenosis as assessed using FFR.

  19. The Impact of Objective Mathematical Analysis During Fractional Flow Reserve Measurement. Results from the OMA-FFR Study.

    Science.gov (United States)

    Sciola, Martina I; Morris, Paul D; Gosling, Rebecca; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2018-02-13

    Fractional flow reserve (FFR), the reference-standard for guiding coronary revascularisation, is most commonly acquired during intravenous adenosine infusion. Results may be sensitive to system- and operator-dependent variability in how pressure data are analysed and interpreted. We developed a computational protocol to process the recorded pressure signals in a consistent manner to objectively quantify FFR. We studied the impact upon lesion (re)classification and compared this with the operator-selected FFR obtained during cardiac catheterisation. The algorithm used a moving average and Fourier transformation to identify the Pd/Pa ratio at its nadir (FFRmin) and during the stable hyperaemic period (FFRstable) in <2s with 100% repeatability, in 163 coronary stenoses (93 patients). The mean operator-selected FFR (FFRCL) was higher than FFRmin and lower than FFRstable (0.779 vs 0.762 vs 0.806, P=<0.01). Compared with FFRmin, FFRstable resulted in 16.5% of all lesions being re-classified, all from significant to non-significant (p<0.01). FFRCL classified lesion significance differently to both FFRstable and FFRmin (11.7% and 6.1% lesions reclassified respectively, p<0.01). Subtle differences in how pressure data are analysed and interpreted by the operator during adenosine infusion result in significant differences in the classification of physiological lesion significance. An algorithmic analysis may be helpful in standardising FFR analysis providing an objective and repeatable result.

  20. Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve.

    Science.gov (United States)

    Diletti, Roberto; Van Mieghem, Nicolas M; Valgimigli, Marco; Karanasos, Antonis; Everaert, Bert R C; Daemen, Joost; van Geuns, Robert-Jan; de Jaegere, Peter P; Zijlstra, Felix; Regar, Evelyn

    2015-08-01

    The present report describes a novel coronary fractional flow reserve (FFR) system which allows FFR assessment using a rapid exchange microcatheter (RXi). The RXi microcatheter is compatible with standard 0.014" coronary guidewires facilitating lesion negotiation and FFR assessment in a wide range of coronary anatomies. In case of serial lesions, a microcatheter would have the important advantage of allowing multiple pullbacks while maintaining wire access to the vessel. The RXi is a fibre-optic sensor technology-based device. This technology might allow reduction in signal drift. The RXi microcatheter's fibre-optic sensor is located 5 mm from the distal tip. The microcatheter profile at the sensor site is 0.027"0.036". The segment of the catheter which is intended to reside within the target lesion is proximal to the sensor and has dimensions decreased to 0.020"0.025"; these dimensions are comparable to a 0.022" circular-shaped wire. The RXi microcatheter FFR system represents a novel technology that could allow easier lesion negotiation, maintaining guidewire position, facilitating pullbacks for assessment of serial lesions and simplifying the obtainment of post-intervention FFR measurements. The optical sensing technology could additionally result in less signal drift. Further investigations are required to evaluate the clinical value of this technology fully.

  1. Fractional flow reserve for the assessment of complex multivessel disease in a patient after hybrid coronary revascularization.

    Science.gov (United States)

    Corban, Michel T; Eshtehardi, Parham; Samady, Habib

    2013-06-01

    We present a case of a 43-year-old woman with history of hybrid coronary revascularization [endoscopic atraumatic coronary artery bypass (ACAB)] of left internal mammary artery (LIMA) to the left anterior descending artery (LAD) and stent implantation in right coronary artery (RCA), who presented 6 years later with recurrent atypical angina. Coronary angiography revealed patent LIMA to LAD and RCA stent, with a new lesion in an obtuse marginal artery and significant progression of disease in the proximal/mid LAD proximal to LIMA touchdown. To further evaluate the hemodynamic significance of these new disease segments, the patient underwent fractional flow reserve (FFR) assessment of the left coronary system with subsequent stent implantation in the proximal/mid LAD. This case illustrates (1) the critical value of FFR assessment in determining the ischemia provoking lesions in this post ACAB patient with complex multivessel coronary artery disease; and (2) the accelerated progression of atherosclerosis in bypassed segments as compared to segments proximal to stents. Copyright © 2012 Wiley Periodicals, Inc.

  2. Transthoracic ultrasonic tissue indices identify patients with severe left anterior descending artery stenosis. Correlation with fractional flow reserve. Pilot study.

    Science.gov (United States)

    Dobrowolski, Piotr; Kowalski, Mirosław; Rybicka, Justyna; Lech, Agnieszka; Tyczyński, Paweł; Witkowski, Adam; Hoffman, Piotr

    2016-01-01

    The aim of this study was to evaluate the potential clinical application of ultrasonic tissue indices, with a focus on systolic strain (SS) and systolic strain rate (SSR) parameters derived from transthoracic echocardiography, in the assessment of left anterior descending artery (LAD) stenosis. The data of 30 patients with significant LAD stenosis were analysed. All patients underwent transthoracic echocardiography to obtain systolic myocardial velocity (Sm), longitudinal SS, and SSR from basal, mid, and apical segments of anterior and inferior walls in two-chamber apical view. Severity of LAD obstruction was measured by means of fractional flow reserve (FFR) during coronary catheterisation. Systolic velocities, strain, and strain rate measured in basal, middle, and apical segments of the anterior left ventricular (LV) wall were lower when compared to those obtained from the corresponding, i.e. unaffected, inferior LV wall. There was a significant correlation between FFR and the value of SS, SSR characterising the apical LV segment of the anterior wall (r = -0.583, p = 0.01; r = -0.598, p = 0.01, respectively). Moreover, we found significant correlation between FFR and Sm in the mid-segment of the LV anterior wall (r = 0.611, p = 0.009). We conclude that SS and SSR obtained from the apical segment of the anterior LV wall may be related to the severity of LAD stenosis.

  3. Safety and Efficacy of a Novel Technique in the Use of Fractional Flow Reserve in Complex Coronary Artery Lesions

    Directory of Open Access Journals (Sweden)

    Wen-Ming He

    2015-01-01

    Full Text Available Background: Fractional flow reserve (FFR has become an increasingly important index when making decisions with respect to revascularization of coronary artery stenosis. However, the pressure guidewire used in obtaining FFR measurements is difficult to control and manipulate in certain complex coronary artery lesions, resulting in increased fluoroscopy time and contrast dye usage. This study examined a novel (NOV technique for obtaining FFR measurements in hope of easing the difficulties associated with evaluating and treating complex coronary artery lesions. Methods: Fifty-six patients with complex coronary artery lesions were assigned to a conventional (CON FFR technique group or a NOV FFR technique group. The NOV technique involved the use of a balloon and wire exchange within the coronary artery. The fluoroscopy time, contrast dye usage, and FFR-related complications were assessed after completing the FFR measurement procedure for each patient. Results: The median time required for fluoroscopy in the NOV technique group was significantly less than that in the CON technique group; additionally, lesser amounts of contrast dye were used in the NOV technique group (both P 0.05. Conclusions: Compared to the CON technique used for measuring FFR, the new technique reduced the fluoroscopy time and amount of contrast dye used when evaluating complex coronary artery lesions. The new technique did not increase the risk of operation or decrease the success rate.

  4. Relationship between the ratio of large and small starch granules determined by gravitational field-flow fractionation and malting quality of barley varieties

    Czech Academy of Sciences Publication Activity Database

    Chmelík, Josef; Mazanec, Karel; Bohačenko, I.; Psota, V.

    2007-01-01

    Roč. 30, 9-10 (2007), s. 1289-1301 ISSN 1082-6076 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field- flow fractionation * starch granules * barley varieties Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.977, year: 2007

  5. Different elution modes and field programming in gravitational field-flow fractionation IV. Field programming achieved with channels of non-constant cross-sections

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Matulík, František; Chmelík, Josef

    2002-01-01

    Roč. 955, č. 1 (2002), s. 95-103 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : gravitational field-flow fractionation * field programming * hydrodynamic lift forces Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002

  6. Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients With ST-Segment-Elevation Myocardial Infarction and Severe Nonculprit Disease

    DEFF Research Database (Denmark)

    Lønborg, Jacob; Engstrøm, Thomas; Kelbæk, Henning

    2017-01-01

    , and severity of the noninfarct-related stenosis on the effect of fractional flow reserve-guided complete revascularization. METHODS AND RESULTS: In the DANAMI-3-PRIMULTI study (Primary PCI in Patients With ST-Elevation Myocardial Infarction and Multivessel Disease: Treatment of Culprit Lesion Only or Complete...

  7. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; Bruyne, de B. (Bernard); Davies, Justin E.; Escaned, Javier; Fearon, W.F. (William); Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, K.G. (Keith); Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, M.; Spaan, J.A.E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    Objectives This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study.

  8. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; de Bruyne, Bernard; Davies, Justin E.; Escaned, Javier; Fearon, William F.; Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon-Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, Keith G.; Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study. FFR is an index of

  9. Dynamical determination of ohmic states of a cylindrical pinch

    International Nuclear Information System (INIS)

    Schnack, D.D.

    1980-04-01

    The dual problems of generation and sustainment of the reversed axial field are studied. It is shown that, if a cylindrical plasma is initially in an axisymmetric state with a sufficient degree of paramagnetism, field reversal can be attained by mode activity of a single helicity. The initial paramagnetism may be due to the method of pinch formation, as in fast experiments, or to a gradual altering of the pitch profile resulting from a succession of instabilities. Furthermore, if the total current is kept constant and energy loss and resistivity profiles are included in an ad hoc manner, one finds that the final steady state of the helical instability can be maintained for long times against resistive diffusion without the need for further unstable activity. These states, which possess zero order flow and possibly reversed axial field, represent steady equilibria which simultaneously satisfy force balance and Ohm's law, and are termed Ohmic states

  10. Experimental astrophysics with high power lasers and Z pinches

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  11. Interaction of Eu, Th and U with bentonite colloids in presence of humic acid: a flow-field flow fractionation study

    Energy Technology Data Exchange (ETDEWEB)

    Bouby, M.; Geckeis, H.; Schaefer, Th. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Mihai, S. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)]|[Politehnica University, Faculty of Industrial Chemistry, Calea Grivitei 132, Bucharest 78122 (Romania); Fanghaenell, Th. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)]|[Physikalisch-Chemisches Institut, Ruprecht-Karls-Universitaet, Im Neuenheimer Feld 253, D- 69120 Heidelberg (Germany)

    2005-07-01

    Full text of publication follows: The actinide mobility in the far-field of a repository site can be strongly influenced by the presence of colloidal species. Field migration experiments at the Grimsel Test Site under low ionic strength (I=10{sup -3} mol/L) and high pH ({approx}9.6) conditions have demonstrated a considerable clay colloid-mediated actinide(III/IV) migration [1]. However, those studies rendered it necessary to take the kinetics of notably the actinide-colloid interaction and colloid stability into account [2]. In the present study, we examine the stability of bentonite clay colloids in natural Grimsel groundwater and their interaction with Cs(I), Eu(III), Th(IV) and U(VI) (conc. {approx} 10{sup -8} mol/L). Experiments cover 12 months contact times and are performed under anoxic conditions. Humic acid (Gohy-573) is added after different contact times as a competing ligand and the time dependent metal ion desorption is followed. Dedicated experiments and thermodynamic speciation calculations are performed to estimate the metal ion speciation within the colloid system. As the experimental metal ion speciation (i.e. differentiation of clay-colloid bound, humic colloid bound and dissolved metal ion species) at the given low concentration conditions is hardly possible by spectroscopic methods, we use Asymmetric Flow-Field Flow Fractionation coupled to UV-Vis spectrophotometry and ICP-MS detection. Unexpectedly, it is found that small-sized bentonite colloids (< 50 nm) not visible by light scattering (PCS) analysis agglomerate and finally reach a steady-state colloid size distribution (50-200 nm) after {approx} 3 months. As estimated from known thermodynamic data and experimentally determined K{sub d}-values, Cs and U do not interact significantly with bentonite colloids, while Th and Eu do. Eu desorption from clay colloids by humic acid is delayed significantly upon increasing the clay colloid-Eu contact time up to several months. Nevertheless, estimated

  12. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS–NSTEMI randomized trial

    Science.gov (United States)

    Layland, Jamie; Oldroyd, Keith G.; Curzen, Nick; Sood, Arvind; Balachandran, Kanarath; Das, Raj; Junejo, Shahid; Ahmed, Nadeem; Lee, Matthew M.Y.; Shaukat, Aadil; O'Donnell, Anna; Nam, Julian; Briggs, Andrew; Henderson, Robert; McConnachie, Alex; Berry, Colin; Hannah, Andrew; Stewart, Andrew; Metcalfe, Malcolm; Norrie, John; Chowdhary, Saqib; Clark, Andrew; Henderson, Robert; Balachandran, Kanarath; Berry, Colin; Baird, Gordon; O'Donnell, Anna; Sood, Arvind; Curzen, Nick; Das, Raj; Ford, Ian; Layland, Jamie; Junejo, Shahid; Oldroyd, Keith

    2015-01-01

    Aim We assessed the management and outcomes of non-ST segment elevation myocardial infarction (NSTEMI) patients randomly assigned to fractional flow reserve (FFR)-guided management or angiography-guided standard care. Methods and results We conducted a prospective, multicentre, parallel group, 1 : 1 randomized, controlled trial in 350 NSTEMI patients with ≥1 coronary stenosis ≥30% of the lumen diameter assessed visually (threshold for FFR measurement) (NCT01764334). Enrolment took place in six UK hospitals from October 2011 to May 2013. Fractional flow reserve was disclosed to the operator in the FFR-guided group (n = 176). Fractional flow reserve was measured but not disclosed in the angiography-guided group (n = 174). Fractional flow reserve ≤0.80 was an indication for revascularization by percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG). The median (IQR) time from the index episode of myocardial ischaemia to angiography was 3 (2, 5) days. For the primary outcome, the proportion of patients treated initially by medical therapy was higher in the FFR-guided group than in the angiography-guided group [40 (22.7%) vs. 23 (13.2%), difference 95% (95% CI: 1.4%, 17.7%), P = 0.022]. Fractional flow reserve disclosure resulted in a change in treatment between medical therapy, PCI or CABG in 38 (21.6%) patients. At 12 months, revascularization remained lower in the FFR-guided group [79.0 vs. 86.8%, difference 7.8% (−0.2%, 15.8%), P = 0.054]. There were no statistically significant differences in health outcomes and quality of life between the groups. Conclusion In NSTEMI patients, angiography-guided management was associated with higher rates of coronary revascularization compared with FFR-guided management. A larger trial is necessary to assess health outcomes and cost-effectiveness. PMID:25179764

  13. Instability heating of solid-fiber Z pinches

    International Nuclear Information System (INIS)

    Riley, R.A. Jr.

    1994-02-01

    The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD 2 with a range in radii of 3--60 μm. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of the electrons, strongly suggesting an additional heating term that puts energy directly into the ions. An ion heating term is proposed to explain the observed rapid radial expansion and elevated ion temperatures. This heating term is based on the assumption that the observed m=0 instabilities reconnect, enclosing magnetic flux which degenerates into turbulence in the plasma. A 0-D simulation is developed to investigate the relevance of different physical models to the data presented

  14. Instability heating of solid-fiber Z pinches

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Jr., Ronald Alan [Univ. of California, San Diego, CA (United States)

    1994-02-01

    The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD2 with a range in radii of 3--60 μm. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of the electrons, strongly suggesting an additional heating term that puts energy directly into the ions. An ion heating term is proposed to explain the observed rapid radial expansion and elevated ion temperatures. This heating term is based on the assumption that the observed m=0 instabilities reconnect, enclosing magnetic flux which degenerates into turbulence in the plasma. A 0-D simulation is developed to investigate the relevance of different physical models to the data presented.

  15. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  16. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density...... gradient length, with an experimental scaling for the pinch number being -Rvpinch/χφ = 1.2R/Ln +1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend...... either on R/Ln, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/Ln, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement...

  17. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  18. ZAPP: Z-pinch atomic physics program

    International Nuclear Information System (INIS)

    Reed, K.

    1983-01-01

    High-density and high-temperature plasmas have been produced in a z-pinch with a hollow gas puff. A number of interesting atomic-physics phenomena occur in these plasmas and some of these phenomena provide important diagnostic information for characterizing the plasmas. We have been interested in collisions of high-energy electrons with highly stripped ions in these plasmas. Such collisions may produce a population inversion which could result in stimulated emission in the x-ray regime

  19. Turbulent transport in reversed field pinches

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1976-01-01

    MHD stability of the Reversed Field Pinch (RFP) relies on reversal of the toroidal field component in the outer plasma region. Interest in this configuration comes from its potential economic advantages as a thermonuclear reactor, since compared to a Tokamak the RFP supports a higher value of β, the ratio between plasma and total magnetic pressure. Results of computations on the time-evolution of the RFP using a 1D MHD model are reported. (orig./GG) [de

  20. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows

    Science.gov (United States)

    Gholipour Peyvandi, R.; Islami Rad, S. Z.

    2017-12-01

    The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.

  1. On the instability increments of a stationary pinch

    International Nuclear Information System (INIS)

    Bud'ko, A.B.

    1989-01-01

    The stability of stationary pinch to helical modes is numerically studied. It is shown that in the case of a rather fast plasma pressure decrease to the pinch boundary, for example, for an isothermal diffusion pinch with Gauss density distribution instabilities with m=0 modes are the most quickly growing. Instability increments are calculated. A simple analytical expression of a maximum increment of growth of sausage instability for automodel Gauss profiles is obtained

  2. The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Akira [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Coenen, Adriaan; Lubbers, Marisa M.; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Departmenet of Cardiology, Rotterdam (Netherlands); Kido, Teruhito; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Kido, Tomoyuki [Matsuyama Saiseikai Hospital, Department of Radiology, Matsuyama, Ehime (Japan); Yamashita, Natsumi [Clinical Research Center, National Hospital Organization Shikoku Cancer Center, Division of Clinical Biostatistics, Section of Cancer Prevention and Epidemiology, Matsuyama, Ehime (Japan); Watanabe, Kouki [Matsuyama Saiseikai Hospital, Department of Cardiology, Matsuyama, Ehime (Japan); Krestin, Gabriel P. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2017-04-15

    The aim of this study is to assess the effect of blood pressure (BP) on coronary computed tomography angiography (CTA) derived computational fractional flow reserve (CTA-FFR). Twenty-one patients who underwent coronary CTA and invasive FFR were retrospectively identified. Ischemia was defined as invasive FFR ≤0.80. Using a work-in-progress computational fluid dynamics algorithm, CTA-FFR was computed with BP measured before CTA, and simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg respectively. Correlation between CTA-FFR and invasive FFR was assessed using Pearson test. The repeated measuring test was used for multiple comparisons of CTA-FFR values by simulated BP inputs. Twenty-nine vessels (14 with invasive FFR ≤0.80) were assessed. The average CTA-FFR for measured BP (134 ± 20/73 ± 12 mmHg) was 0.77 ± 0.12. Correlation between CTA-FFR by measured BP and invasive FFR was good (r = 0.735, P < 0.001). For simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg, the CTA-FFR increased: 0.69 ± 0.13, 0.73 ± 0.12, 0.75 ± 0.12, 0.77 ± 0.11, 0.79 ± 0.11, and 0.81 ± 0.10 respectively (P < 0.05). Measurement of the BP just before CTA is preferred for accurate CTA-FFR simulation. BP variations in the common range slightly affect CTA-FFR. However, inaccurate BP assumptions differing from the patient-specific BP could cause misinterpretation of borderline significant lesions. (orig.)

  3. Core microstructure, morphology and chain arrangement of block copolymer self-assemblies as investigated by thermal field-flow fractionation.

    Science.gov (United States)

    Muza, U L; Greyling, G; Pasch, H

    2018-05-28

    The self-assembly of block copolymers (BCPs), as a result of solvent selectivity for one block, has recently received significant attention due to novel applications of BCPs in pharmaceuticals, biomedicine, cosmetics, electronics and nanotechnology. The correlation of BCP microstructure and the structure of the resulting self-assemblies requires advanced analytical methods. However, traditional bulk characterization techniques are limited in the quest of providing detailed information regarding molar mass (M w ), hydrodynamic size (D h ), chemical composition, and morphology for these self-assemblies. In the present study, thermal field-flow fractionation (ThFFF) is utilised to investigate the impact of core microstructure on the resultant solution properties of vesicles prepared from polystyrene-polybutadiene block copolymers (PS-b-PBd) with 1.2- and 1.4-polybutadiene blocks, respectively. As compared to investigations on the impact of the corona microstructure, the impact of core microstructure on micellar properties has largely been neglected in previous work. In N,N-dimethylacetamide (DMAc) these BCPs form vesicles having PS shells and PBd cores. D h , M w , aggregation number, and critical micelle concentration of these micelles are shown to be sensitive to the core microstructure, therefore, demonstrating the potential of microstructural differences to be used for providing tuneable pathways to specific self-assemblies. It is shown that micelles prepared from BCPs of similar PS and PBd block sizes are successfully separated by ThFFF. It is further demonstrated in this study that PS-b-PBd vesicles and PS homopolymers of identical surface chemistry (PS) and comparable D h in DMAc, can be separated by ThFFF. Copyright © 2018. Published by Elsevier B.V.

  4. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  5. Comparison of fractional flow reserve measurements using intracoronary adenosine versus intracoronary sodium nitroprusside infusions in moderately stenotic coronary artery lesions

    Energy Technology Data Exchange (ETDEWEB)

    Safi, Morteza; Namazi, Mohammad Hasan; Fooladi, Esfandiar; Vakili, Hossein; Parsa, Saeed Alipour; Khaheshi, Isa [Cardiovascular Research Center, Modarres hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Abbasi, Mohammad Amin [Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Movahed, Mohammad Reza, E-mail: rmova@aol.com [CareMore, Arizona, Tucson, AZ (United States); University of Arizona, Sarver Heart Center, Tucson, AZ (United States)

    2016-10-15

    Introduction: The aim of this study was to investigate the efficacy and safety of intracoronary (IC) sodium nitroprusside infusion in comparison to IC adenosine for fractional flow reserve (FFR) measurement in moderately diseased coronary artery lesions for functional assessment. Methods: During a nine month period, a consecutive of 98 patients with suspected or known coronary artery disease with moderate stenosis found during angiography (40% to 70% stenosis), were enrolled in this study. Hyperemia was induced by bolus doses of IC adenosine followed by sodium nitroprusside for FFR measurement. Results: Both IC adenosine and IC sodium nitroprusside induced similar and significant reduction in FFR. There was no statistically difference in FFR values between adenosine vs sodium nitroprusside infusions (mean FFR 84.3 ± 6.3 vs 85.7 ± 6.2, p = 0.1) respectively. Furthermore, comparing different FFR cut-off points between the groups (FFR < 0.75, 0.75–0.8 and > 0.8) showed no significant differences (p value = 0.7). Conclusion: An IC bolus of sodium nitroprusside (0.6 μg/kg) infusion induces a similar degree of hyperemia to IC bolus of 100–300 μg of adenosine. Therefore, IC sodium nitroprusside could be considered as an alternative drug to adenosine for FFR measurement with lower side effect profile. - Highlights: • Intracoronary (IC) sodium nitroprusside was compared with IC adenosine for FFR test. • IC adenosine and IC sodium nitroprusside induced similar reduction in FFR. • Different FFR cut-off points between the groups showed no significant differences. • IC sodium nitroprusside could be considered as an alternative to adenosine for FFR.

  6. The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography

    International Nuclear Information System (INIS)

    Kurata, Akira; Coenen, Adriaan; Lubbers, Marisa M.; Nieman, Koen; Kido, Teruhito; Mochizuki, Teruhito; Kido, Tomoyuki; Yamashita, Natsumi; Watanabe, Kouki; Krestin, Gabriel P.

    2017-01-01

    The aim of this study is to assess the effect of blood pressure (BP) on coronary computed tomography angiography (CTA) derived computational fractional flow reserve (CTA-FFR). Twenty-one patients who underwent coronary CTA and invasive FFR were retrospectively identified. Ischemia was defined as invasive FFR ≤0.80. Using a work-in-progress computational fluid dynamics algorithm, CTA-FFR was computed with BP measured before CTA, and simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg respectively. Correlation between CTA-FFR and invasive FFR was assessed using Pearson test. The repeated measuring test was used for multiple comparisons of CTA-FFR values by simulated BP inputs. Twenty-nine vessels (14 with invasive FFR ≤0.80) were assessed. The average CTA-FFR for measured BP (134 ± 20/73 ± 12 mmHg) was 0.77 ± 0.12. Correlation between CTA-FFR by measured BP and invasive FFR was good (r = 0.735, P < 0.001). For simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg, the CTA-FFR increased: 0.69 ± 0.13, 0.73 ± 0.12, 0.75 ± 0.12, 0.77 ± 0.11, 0.79 ± 0.11, and 0.81 ± 0.10 respectively (P < 0.05). Measurement of the BP just before CTA is preferred for accurate CTA-FFR simulation. BP variations in the common range slightly affect CTA-FFR. However, inaccurate BP assumptions differing from the patient-specific BP could cause misinterpretation of borderline significant lesions. (orig.)

  7. The acute changes of fractional flow reserve in DK (double kissing), crush, and 1-stent technique for true bifurcation lesions.

    Science.gov (United States)

    Ye, Fei; Zhang, Jun-Jie; Tian, Nai-Liang; Lin, Song; Liu, Zhi-Zhong; Kan, Jing; Xu, Hai-Mei; Zhu, Zhongsheng; Chen, Shao-Liang

    2010-08-01

    While many studies confirmed the importance of fractional flow reserve (FFR) in guiding complex percutaneous coronary interventions (PCI), data regarding the significance of FFR for bifurcation lesions are still lacking. Between October 2008 and October 2009, 51 patients with true bifurcation lesions were consecutively enrolled and randomized into double kissing (DK) crush (n = 25), and provisional 1-stent (n = 26) groups. FFR measurements at baseline and hyperemia were measured at pre-PCI, post-PCI, and at 8-month follow-up. Clinical follow-ups were available in 100% of patients while only 33% of patients underwent angiographic follow-up. Baseline clinical and angiographic characteristics were matched between the 2 groups. Pre-PCI FFR of the main branch (MB) in the DK group was 0.76 +/- 0.15, which was significantly lower than in the provisional 1-stent group (0.83 +/- 0.10, P = 0.029). This difference disappeared after the PCI procedure (0.92 +/- 0.04 vs. 0.92 +/- 0.05, P = 0.58). There were no significant differences in terms of baseline, angiographic, procedural indexes, and FFR of side branch (SB) between the 2 treatment arms. However, immediately after PCI, the patient with DK crush had higher FFR in the SB as compared to the provisional 1-stent group (0.94 +/- 0.03 vs. 0.90 +/- 0.08, P = 0.028, respectively) and also they had lower diameter stenosis (8.59 +/- 6.41% vs. 15.62 +/- 11.69%, P = 0.015, respectively). In the acute phase, immediately after PCI for bifurcation lesion, DK crush stenting was associated with higher FFR and lower residual diameter stenosis in the SB, as compared with the provisional 1-stent group.

  8. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    Science.gov (United States)

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. X-ray backlighting of two-wire Z-pinch plasma using X-pinch

    International Nuclear Information System (INIS)

    Tong, Zhao; Xiao-Bing, Zou; Ran, Zhang; Xin-Xin, Wang

    2010-01-01

    Two 50-μm Mo wires in parallel used as a Z-pinch load are electrically exploded with a pulsed current rising to 275 kA in 125 ns and their explosion processes are backlighted using an X-pinch as an x-ray source. The backlighting images show clearly the processes similar to those occurring in the initial stages of a cylindrical wire-array Z-pinch, including the electric explosion of single wires characterised by the dense wire cores surrounded by a low-density coronal plasma, the expansion of the exploding wire, the sausage instability (m = 0) in the coronal plasma around each wire, the motion of the coronal plasma as well as the wire core toward the current centroid, the formation of the precursor plasma column with a twist structure something like that of higher mode instability, especially the kink instability (m = 1). (fluids, plasmas and electric discharges)

  10. High-density fusion and the Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.L.; Munger, R.H.

    1975-01-01

    The formation of a Z-pinch in dense gas is investigated using numerical modeling in one and two dimensions. Hot, dense Z-pinches are calculated with n approximately 2 x 10 21 cm 3 and T = 10 keV. Relaxation by sausage instability of an unstable pinch profile to a marginally stable one is calculated along with end losses in 2 dimensions to show that, if plasma is confined for N = 50 to 200 sound transits across the radius a, pinches with length L = Na are of interest for fusion power. A conceptual, ''no-wall'' fusion reactor is discussed. (author)

  11. Dynamic flow-through sequential extraction for assessment of fractional transformation and inter-element associations of arsenic in stabilized soil and sludge

    International Nuclear Information System (INIS)

    Buanuam, Janya; Wennrich, Rainer

    2010-01-01

    A dynamic flow-through extraction system was applied for the first time to ascertain the fractional transformation and inter-element associations of arsenic in stabilized environmental solids, as exemplified by the partitioning of soil and sludge stabilized with three additives, namely MnO 2 , Ca(OH) 2 and FeSO 4 . The extraction system used not only gave fractionation data, but also the extraction profiles (extractograms) which were used for investigation of the breaking down of phases, kinetic releasing of As and elemental association between As and inorganic additives. Five geochemical fractions of As were elucidated by accommodation in the flow manifold of a modified Wenzel's sequential extraction scheme, well established for fractionation of arsenic. The results revealed that MnO 2 and FeSO 4 have a slight effect on As phase transformation for soil and sludge samples amended for one week whereas the addition of Ca(OH) 2 increases As mobility due to the desorption of As from the solid Fe-oxides phase. The significant change in fractional transformation after 8 weeks of incubation can be seen in MnO 2 -treated soil. There was an increase of 17% in the non-mobilizable As fraction in MnO 2 -treated soil. From extractograms, arsenic in untreated soil was found to be rapidly leached and concurrently released with Fe. This may be evidence that the release of As is dependent on the dissolution of amorphous Fe oxides. In MnO 2 -treated soil, a strong affinity was observed between Mn and As in the amorphous Fe/Al oxides fraction, and this plays an important role in slowing down the kinetics of As releasing.

  12. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  13. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  14. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  15. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  16. Optimization of a rod pinch diode radiography source at 2.3 MV

    International Nuclear Information System (INIS)

    Menge, P.R.; Johnson, D.L.; Maenchen, J.E.; Rovang, D.C.; Oliver, B.V.; Rose, D.V.; Welch, D.R.

    2003-01-01

    Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3 deg. off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed

  17. Simulation study of dynamo structure in reversed field pinch

    International Nuclear Information System (INIS)

    Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.

    1992-10-01

    The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)

  18. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study.

    Science.gov (United States)

    Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2017-08-01

    Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  19. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors Pre-nephrectomy and post-nephrectomy.

    Science.gov (United States)

    Cutajar, Marica; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D; Thomas, David L; Banks, Tina; Clark, Christopher A; Gordon, Isky

    2015-08-01

    Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.

  20. Simulation of the two-fluid model on incompressible flow with Fractional Step method for both resolved and unresolved scale interfaces

    International Nuclear Information System (INIS)

    Hou, Xiaofei; Rigola, Joaquim; Lehmkuhl, Oriol; Oliva, Assensi

    2015-01-01

    Highlights: • Two phase flow with free surface is solved by means of two-fluid model (TFM). • Fractional Step method and finite volume technique is used to solve TFM. • Conservative Level Set method reduces interface sharpening diffusion problem. • Cases including high density ratios and high viscosities validate the models. - Abstract: In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows

  1. Experimental study on gas-puff Z-pinch load characteristics on yang accelerator

    International Nuclear Information System (INIS)

    Ren Xiaodong; Huang Xianbin; Yang Libing; Dan Jiakun; Duan Shuchao; Zhang Zhaohui; Zhou Shaotong

    2010-01-01

    A supersonic single-shell gas-puff load has been developed for Z-pinch experiments on 'Yang' accelerator. Using a fast responding pressure probe to measure the supersonic gas flow, impact pressure at different position and plenum pressure were acquired, which were combined with gas dynamics formulas to determine gas pressures and densities. The radial density profile displays that positions of gas shell varies with axial position, and the gas densities on axis increases as the distance from nozzle increases. Integral radial densities indicates that the linear mass density peaks at nozzle exit and decreases as increasing the distance from nozzle. Using single-shell supersonic gas-puff load, Z-pinch implosion experiments were performed on 'Yang' accelerator. Primary analysis of implosion process was presented, and computational trajectories of imploding plasma shell using snowplow model are in agreement with the experimental results. (authors)

  2. Relationship Between Endothelial Wall Shear Stress and High-Risk Atherosclerotic Plaque Characteristics for Identification of Coronary Lesions That Cause Ischemia: A Direct Comparison With Fractional Flow Reserve.

    Science.gov (United States)

    Han, Donghee; Starikov, Anna; Ó Hartaigh, Bríain; Gransar, Heidi; Kolli, Kranthi K; Lee, Ji Hyun; Rizvi, Asim; Baskaran, Lohendran; Schulman-Marcus, Joshua; Lin, Fay Y; Min, James K

    2016-12-19

    Wall shear stress (WSS) is an established predictor of coronary atherosclerosis progression. Prior studies have reported that high WSS has been associated with high-risk atherosclerotic plaque characteristics (APCs). WSS and APCs are quantifiable by coronary computed tomography angiography, but the relationship of coronary lesion ischemia-evaluated by fractional flow reserve-to WSS and APCs has not been examined. WSS measures were obtained from 100 evaluable patients who underwent coronary computed tomography angiography and invasive coronary angiography with fractional flow reserve. Patients were categorized according to tertiles of mean WSS values defined as low, intermediate, and high. Coronary ischemia was defined as fractional flow reserve ≤0.80. Stenosis severity was determined by minimal luminal diameter. APCs were defined as positive remodeling, low attenuation plaque, and spotty calcification. The likelihood of having positive remodeling and low-attenuation plaque was greater in the high WSS group compared with the low WSS group after adjusting for minimal luminal diameter (odds ratio for positive remodeling: 2.54, 95% CI 1.12-5.77; odds ratio for low-attenuation plaque: 2.68, 95% CI 1.02-7.06; both Prelationship was observed between WSS and fractional flow reserve when adjusting for either minimal luminal diameter or APCs. WSS displayed no incremental benefit above stenosis severity and APCs for detecting lesions that caused ischemia (area under the curve for stenosis and APCs: 0.87, 95% CI 0.81-0.93; area under the curve for stenosis, APCs, and WSS: 0.88, 95% CI 0.82-0.93; P=0.30 for difference). High WSS is associated with APCs independent of stenosis severity. WSS provided no added value beyond stenosis severity and APCs for detecting lesions with significant ischemia. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa......Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified...... by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase...... associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents...

  4. Investigation on the pinch point position in heat exchangers

    Science.gov (United States)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  5. Deuterated fibre Z-pinch on the S-300 generator

    NARCIS (Netherlands)

    Klir, D.; Kravarik, J.; Kubes, P.; Bakshaev, Yu L.; Blinov, P. I.; Chernenko, A. S.; Danko, S. A.; Korolev, V. D.; Ustroev, G. I.; Ivanov, M. I.; Cai, Hongchun

    2006-01-01

    Dense Z-pinch experiments were carried out on the S-300 generator (3.5 MA, 100 ns, 0.15 Omega) at the Kurchatov Institute in Moscow. The experiments were performed at a peak current of 2 MA with a rise time of about 100 ns. The Z-pinch was formed from a deuterated polyethylene fibre of 100 mu m

  6. Self-pinched lithium beam transport experiments on SABRE

    International Nuclear Information System (INIS)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.; Shokir, I.; Cuneo, M.E.; Menge, P.R.; Johnston, R.R.; Welch, D.R.

    1996-01-01

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollow annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r ≤ 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented

  7. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  8. An empirical correlation for the entrainment fraction at the onset of annular flow based on 2006 CHF look-up table

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Bo; Yang, Dongyu [Department of Mechanical Engineering, Rongcheng Campus, Harbin University of Science and Technology, Rongcheng 264300, Shandong (China); Gan, Zhihua, E-mail: gan_zhihua@zju.edu.cn [Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou (China); Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou (China); National Quality Inspection Center of Refrigeration Equipment (Henan), Minquan (China)

    2017-06-15

    Highlights: • A parallel look-up table for the entrainment fraction at annular point was developed. • A correlation was given based on the selected database from 2006 CHF look-up table. • Its reliability on the other conditions in the look-up table was discussed. - Abstract: The critical heat flux (CHF) of gas-liquid flow plays an important role in the safety of industrial equipment. At present, the liquid film dryout model is widely used for predicting CHF in gas-liquid annular flow. Most parameters in this model can be determined by some empirical correlations which are valid under different conditions. However, up to now, the entrainment fraction at the onset of annular flow is always assumed due to the lack of relevant experimental data. In this paper, the normalized data of the 2006 CHF look-up table (LUT) which has been adopted widely, especially in the nuclear industry, were used. Firstly, the empirical correlations, provided for the onset of annular flow and the limiting quality, were employed. In the valid pressure and mass flux range of these correlations, the selected database from LUT was confirmed. Secondly, the liquid film model was built. The entrainment fraction at the onset of annular flow was obtained when the calculated CHF by the model agreed with the corresponding value in LUT. A parallel look-up table for it was developed. Its correlation including the Weber and the liquid Reynolds number at outlet was proposed. The errors are mostly within ±30%. Finally, its reliability on the other conditions in LUT, which are beyond the valid range of the empirical correlations used for determining the database, was discussed. All the conditions whose errors are outside ±30% of the predictions by the provided correlation were marked in the tables.

  9. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  10. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    International Nuclear Information System (INIS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsaaker, H.; Cecconello, M.; Drake, J.R.

    2005-01-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E x B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport

  11. Effect of transcranial magnetic stimulation on force of finger pinch

    Science.gov (United States)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  12. Influence of pinches on magnetic reconnection in turbulent space plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  13. Integration thermal processes through Pinch technology

    International Nuclear Information System (INIS)

    Rios H, Carlos Mario; Grisales Rincon, Rogelio; Cardona, Carlos Ariel

    2004-01-01

    This paper presents the techniques of heat integration used for process optimization, their fortresses and weaknesses during the implementation in several specific process are also discussed. It is focused to the pinch technology, explaining algorithms for method applications in the industry. The paper provides the concepts and models involved in different types of commercial software applying this method for energy cost reduction, both in design of new plants and improve of old ones. As complement to benefits of the energy cost reduction it is analysed other favorable aspects of process integration, as the emissions waste reduction and the combined heat end power systems

  14. The Magpie dense z-pinch project

    International Nuclear Information System (INIS)

    Chittenden, J.; Choi, P.; Mitchell, I.; Dangor, A.E.; Haines, M.G.

    1990-01-01

    The authors present a design study on the Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE), a project currently under construction at Imperial College London, to study radiative collapse of a dense Z-pinch plasma created from a 20 um diameter cryogenic hydrogen fiber. The 2 TW generator is composed of four individual 2.4 MV Marx banks of the HERMES III type design with a maximum stored energy of 336 kJ. They drive four 5 ohm Pulse Forming Lines which are combined into a single 1.25 MA in 150 ns to a 150 nH load

  15. MHD simulations of molybdenum X-pinches

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Stepnevski, V.

    2002-01-01

    One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru

  16. Electron temperature measurement in Z-pinch

    International Nuclear Information System (INIS)

    Gerusov, A.V.; Orlov, M.M.; Terent'ev, A.R.; Khrabrov, V.A.

    1987-01-01

    Measurement of temperature of emitting plasma sheath in noncylindrical Z-pinch in neon at the stage of convergence to the axis, based on comparing the intensity of spectral lines belonging to Ne1, Ne2, is performed. Line intensity relation dependence was determined using calculations according to emitting-collision model. Spectra were recorded by electron-optical converter and relative intensity was determined by subsequent photometry of photolayer. Cylindric symmetrical MHD-calculations during which temperature and the observed line intensity relation were determined, are conducted

  17. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  18. Reversed-Field Pinch plasma model

    International Nuclear Information System (INIS)

    Miley, G.H.; Nebel, R.A.; Moses, R.W.

    1979-01-01

    The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile

  19. Interchange stability of noncircular reversed field pinches

    International Nuclear Information System (INIS)

    Skinner, D.A.; Prager, S.C.; Todd, A.M.M.

    1987-08-01

    Interchange (Mercier) stability of toroidal reversed-field-pinch plasmas with noncircular cross-section is evaluated numerically. Marginally stable pressure profiles and beta values are produced. Most shapes, such as indented or vertically elongated, reduce stability by making the net magnetic curvature of the poloidal-field-dominated plasmas yet worse than that of the circle. Horizontally elongated plasmas slightly enhance stability beyond that of the circle as a result of increased shear produced by toroidicity. Such shear enhancement by the toroidal shift of magnetic surfaces might be exploited for future, more comprehensive studies

  20. Multi-scale characterization of an upcurrent turbiditic pinch-out

    Science.gov (United States)

    Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.

    2017-12-01

    Continental margins with a steep topographic profile between their continental shelf and the basin exhibit a sudden slope break at the base of their continental slope. This slope break favors strong erosion or a by-pass and a fast accumulation of sediments on the base of the continental slope due to the hydraulic jump phenomena. Such a process is responsible for the construction of thick accumulations of limited extension and generally disconnected from the feeding tributaries. These accumulations usually onlap against the continental slope but their modality of pinch out is still questioned and it is the subject of this work. The Tabernas basin is located in South East of Spain, in the continuity of the Sorbas basin. Recent field works allowed identifying a "sedimentary" onlap associated with a small-scale sandy turbidite system that we discovered near the so-called El Buho area. The superb quality of the outcrops revealed, the presence of three successive onlap structures consisting in each case of a direct contact between fluvial conglomerates / marines conglomerates / marine marls / turbidite sands. Reconstruction of paleo-current direction gives a flow direction around N00, from north to south, suggesting the outcrops are cutting the pinch out of the sandy system in a longitudinal direction. A longitudinal and vertical transition of facies can be thus observed from marines' conglomerates to turbidite sands, respectively over distances of 500 m and 70 m. The complete evolution of facies along the pinch out consists of thick conglomerates in the proximal part to sandy turbidite channels then lobes in the distal part. The three successive onlap structures are located inside the channelize part of the system, just above a slope break structure. The basal units of the pinch out consist of an alternation of conglomerates and sandy bed, while the overlying units exhibits more sandy dominated beds. In order to reconstruct the architecture of the pinch out and to

  1. Engineering feasibility evaluation of a peristaltic pinch

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1977-04-01

    A recent proposal for reducing the end loss of a linear theta pinch is to produce moving magnetic mirrors at the coil ends. The concept entails the sequential pulsing of an axially arranged series of two-turn coaxial coils. The electrical design of such a system presents some unique problems. Ideally, the individual pulse circuits should be completely independent. This would facilitate the design by eliminating interactive effects. In practice, the circuits must be interconnected through isolating inductors to enable the production of a uniform biasing magnetic field. Moreover, the coils must be located physically close together. This produces strong magnetic coupling between the pulse circuits, which can seriously affect the shape and speed of the inward-moving magnetic-mirror field. Possible systems were modeled for the NET-2 circuit analysis code. The models took account of the inductive coupling between the individual circuits in the model. The results show that an increasing magnetic mirror can be produced provided the radius of the theta pinch is not too great compared to the intercoil spacing. The peristaltic field can be maintained for several cycles in the inner coils. The voltage hold-off requirements on the pulse circuit switches are found to be severe, but not impossible to meet

  2. Moderately reverberant learning ultrasonic pinch panel.

    Science.gov (United States)

    Nikolovski, Jean-Pierre

    2013-10-01

    Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.

  3. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  4. Electrostatic turbulence in the Z pinch corona

    International Nuclear Information System (INIS)

    Terry, R.E.

    1994-01-01

    The microstability of electrostatic waves in the periphery of a Z pinch is formulated and resolved for a new class of Vlasov meta-equilibria admitting self-similar solutions in the electron gyrokinetic limit. These equilibria are subject to strong radial motions, and a mild deviation from charge neutrality arises to maintain ion acceleration close to that of the magnetized electrons. A unique class of profiles in density, axial current, temperature, and drift speed defines these equilibria. They are characterized by (i) the interior pinch current, (ii) the interior number density, (iii) the parallel and perpendicular temperatures, (iv) the exterior axial electric field value at the initial time, and (v) the radial ion acceleration relative to that of the electrons. Unstable ion sound waves arise in this medium by coupling radial and axial free energy to azimuthal longitudinal oscillations. The waves grow only for a limited range of radial or axial Exb/B drift speeds and electron temperatures. The growth rate, which can be as large as 0.115ω pi , is found to scale proportional to plasma frequency over the density range from 10 12 to 10 18 ions cm -3

  5. Processes governing pinch formation in diodes

    International Nuclear Information System (INIS)

    Blaugrund, A.E.; Cooperstein, G.; Goldstein, S.A.

    1975-01-01

    The process of pinch formation in large aspect ratio diodes has been studied by means of streak photography and time-resolved x-ray detectors. A tight pinch is formed at the anode center by a collapsing thin hollow electron beam. The collapse velocity depends, among other things, on the type of material in the top 1 μm layer of the anode. In a tentative model it is assumed that an anode plasma is at least partially created from gases released from the surface layer of the anode by the heating action of the beam. These gases are ionized by primary, backscattered, and secondary electrons. Ions emitted from this plasma modify the electron trajectories in the diode leading to a radial collapse of the hollow electron beam. The observed monotonic dependence of the collapse velocity on the atomic number of the anode material can be explained by the smooth dependence on Z of both the specific heat and the electron backscatter coefficient. In the case of high-Z anodes the ion expansion time appears to be the factor limiting the collapse velocity. Detailed experimental data are presented

  6. An ultra miniature pinch-focus discharge

    International Nuclear Information System (INIS)

    Soto, L.; Pavez, C.; Moreno, J.; Pavez, C.; Barbaglia, M.; Clausse, A.

    2004-01-01

    As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra miniature device has been designed and constructed (nano focus NF: 5 nF, 5-10 kV, 5-10 kA, 60-250 mJ, 16 ns time to peak current). Sub-millimetric anode radius covered by a coaxial insulator were used for experiments in hydrogen. Evidence of pinch was observed in electrical signals in discharges operating at 60 mJ. A single-frame image converter camera (4 ns exposure) was used to obtain plasma images in the visible range. The dynamics observed from the photographs is consistent with: a) formation of a plasma sheath close to the insulator surface, b) fast axial motion of the plasma sheath, c) radial compression over the anode, and d) finally the plasma is detached from the anode in the axial direction. The total time since stage a) to d) was observed to be about 30 ns. X ray and neutron emission is being studied. Neutron yield of the order of 10 3 neutrons per shot is expected for discharges operating in deuterium at 10 kA. (authors)

  7. Determination of volume fraction in biphasic flows oil-gas and water-gas using artificial neural network and gamma densitometry

    International Nuclear Information System (INIS)

    Peixoto, Philippe Netto Belache

    2016-01-01

    This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of 137 Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)

  8. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  9. The dense Z-pinch project at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Dangor, A.E.; Choi, P.; Mitchell, I.; Coppins, M.; Chittenden, J.P.; Culverwell, I.D.; Bayley, J.; Power, A.

    1990-01-01

    The Science and Engineering Research Council has recently awarded a grant of over L0.8M to build a large new Z-pinch driven by a high voltage pulsed power generator. The generator will be 4 Marx generators in parallel which together will supply up to 2MA at 2.85MV for 200ns. When the load is a frozen fibre of hydrogen, it is predicted that radiative collapse above the Pease-Bragniskii current will lead to ultra high density (10 4 x solid density) at 10 to 20 KeV temperature. Deuterium-tritium fibres would lead to conditions close to thermonuclear breakeven. Scaled experiments at lower currents reveal anomalous stability due to finite Larmor radius effects in one case or to a low magnetic Lundquist number in another. The theory of stability has been extensively studied in many regimes, and it is found the ideal MHD occupies a small fraction of parameter space. (author) 7 refs., 3 figs

  10. The physics of the high density Z-pinch

    International Nuclear Information System (INIS)

    Glasser, A.H.; Hammel, J.E.; Lewis, H.R.

    1988-01-01

    The fiber-initiated High-Density Z-Pinch (HDZP) is a novel concept in which fusion plasma could be produced by applying 2 MV along a thin filament of frozen deuterium, 20-30 μm in diameter, 5-10 cm long. The megamp-range currents that result would ohmically heat the fiber to fusion temperatures in 100 ns while maintaining nearly constant radius. The plasma pressure would be held stably by the self-magnetic field for many radial sound transit times during the current-rise phase while, in the case of D-T, a significant fraction of the fiber undergoes thermonuclear fusion. This paper presents results of Los Alamos HDZP studies. Existing and new experiments are described. A succession of theoretical studies, including 1D self-similar and numerical studies of the hot plasma phase, 1D and 2D numerical studies of the cold startup phase, and 3D numerical studies of stability in the hot regime, are then presented. 9 refs., 4 figs

  11. Does shaping bring an advantage for reversed field pinch plasmas?

    International Nuclear Information System (INIS)

    Guo, S.C.; Xu, X.Y.; Wang, Z.R.; Liu, Y.Q.

    2013-01-01

    The MHD–kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall β (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. (paper)

  12. Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner

  13. Measurements of high energy photons in Z-pinch experiments on primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-01-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10 10 cm −2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region

  14. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Nakayama, M.; Nobuhara, S.; Young, D.; Ishihara, O.

    1996-01-01

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H β line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs

  15. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M; Nakayama, M; Nobuhara, S [Himeji Institute of Technology (Japan); Young, D; Ishihara, O [Texas Tech Univ., Lubbock, TX (United States)

    1997-12-31

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H{sub {beta}} line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs.

  16. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS

    DEFF Research Database (Denmark)

    Wagner, Stephan; Legros, Samuel; Löschner, Katrin

    2015-01-01

    content by asymmetric flow-field flow fractionation coupled to a multi-angle light scattering detector and an inductively coupled pla