WorldWideScience

Sample records for pilot-scale field demonstration

  1. Pilot Scale Advanced Fogging Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  2. BNL Citric Acid Technology: Pilot Scale Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  3. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    Science.gov (United States)

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  4. Pilot-Scale Demonstration of an Innovative Treatment for Vapor Emissions.

    Science.gov (United States)

    Watt, Andrew S; Magrini, Kimberly A; Carlson, Lynnae E; Wolfrum, Edward J; Larson, Sheldon A; Roth, Christine; Glatzmaier, Greg C

    1999-11-01

    Researchers from the National Renewable Energy Laboratory recently conducted a pilot-scale study at McClellan Air Force Base (AFB) in Sacramento, CA. The objective of the test was to determine the effectiveness of an ambient-temperature, solar-powered photocatalytic oxidation treatment unit for destroying emissions of chlorinated organic compounds from an air stripper. This paper reports test results and discusses applications and limitations of the technology. A 10-standard-cubic-foot-per-minute (SCFM) (28.3 L/min) slip stream of air from an air stripper at Operative Unit 29-31 at McClellan AFB was passed through a reactor that contained a lightweight, perforated, inert support coated with photoactive titanium dioxide. The reactor faced south and was tilted at a 45° angle from vertical so that the light-activated catalyst received most of the available sunlight. An online portable gas chro-matograph with two identical columns simultaneously analyzed the volatile organic compounds contained in the reactor inlet and outlet air streams. Summa canister grab samples of the inlet and outlet were also collected and sent to a certified laboratory for U.S. Environmental Protection Agency Method TO-14 analysis and verification of our field analyses. Three weeks of testing demonstrated that the treatment system's destruction and removal efficiencies (DREs) are greater than 95% at 10 SCFM with UV intensities at or greater than 1.5 milliwatts/square centimeter (mW/cm(2)). DREs greater than 95% at 20 SCFM were obtained under conditions where UV irradiation measured at or greater than 2 mW/cm(2). In Sacramento, this provided 6 hours of operation per clear or nearly clear day in April. A solar tracking system could extend operating time. The air stream also contained trace amounts of benzene. We observed no loss of system performance during testing.

  5. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Juan Daniel, E-mail: juand.martinez@upb.edu.co [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain); Grupo de Investigaciones Ambientales, Instituto de Energía, Materiales y Medio Ambiente, Universidad Pontificia Bolivariana, Circular 1 N°70-01, Bloque 11, piso 2, Medellín (Colombia); Murillo, Ramón; García, Tomás; Veses, Alberto [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018, Zaragoza (Spain)

    2013-10-15

    Highlights: • The continuous pyrolysis of waste tire has been demonstrated at pilot scale in an auger reactor. • More than 500 kg of waste tires were processed in 100 operational hours. • The yields and characteristics of the pyrolysis products remained constant. • Mass and energy balances for an industrial scale plant are provided. • The reaction enthalpy necessary to perform the waste tire pyrolysis was determined. -- Abstract: This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kW{sub th}. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550 °C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  6. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    Science.gov (United States)

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  7. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    Energy Technology Data Exchange (ETDEWEB)

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  8. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    Science.gov (United States)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  9. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    Science.gov (United States)

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  10. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2

  11. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.

    Science.gov (United States)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-10-15

    This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign.

  12. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  13. RECOVERY AND UTILIZATION OF COALMINE METHANE: PILOT-SCALE DEMONSTRATION PHASE

    Energy Technology Data Exchange (ETDEWEB)

    George Steinfeld; Jennifer Hunt

    2004-09-28

    A fuel cell demonstration was conducted on coalmine methane to demonstrate the utilization of methane emissions associated with underground coal mining operations in a carbonate Direct FuelCell{reg_sign} (DFC{reg_sign}) power plant. FuelCell Energy (FCE) conducted the demonstration with support from the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and in cooperation with Northwest Fuel Development, the operator of the Rose Valley test site in Hopedale, Ohio. The fuel cell power plant, a first generation sub megawatt power plant, was operated on CMM between August 1, 2003 and December 13, 2003. The direct fuel cell operated on low-Btu CMM with 42% methane content and achieved performance levels comparable to natural gas on a Btu feed basis. During this period 1456 hours on-load operation was achieved. The total power generated using CMM was 134 megawatt-hours (MWh) of electricity. The power generated was connected to the American Electric Power grid by a 69-kilovolt (kV) transformer. The maximum power level achieved was 140 kW. Efficiency of power generation was 40% based on the lower heating value (LHV) of the CMM. Compression and drying of the CMM resulted in additional parasitic load, which reduced the overall efficiency to 36 % LHV. In future applications, on-board compression and utilization of the saturated CMM without drying will be investigated in order to reduce the auxiliary power requirements. By comparison, the internal combustion engines operating on CMM at the Hopedale site operate at an over efficiency of 20%. The over-all efficiency for the fuel cell is therefore 80% higher than the internal combustion engine (36% vs. 20%). Future operation of a 250 kW Fuel Cell Power Plant on CMM will utilize 18,400,000 cubic feet of methane per year. This will be equivalent to: (a) avoiding 7428 metric tons of CO{sub 2} emissions, (b) avoiding 16.4 million pounds of CO{sub 2} emissions, (c) removing 1640 cars off the road for one

  14. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design.

    Science.gov (United States)

    Abriola, Linda M; Drummond, Chad D; Hahn, Ernest J; Hayes, Kim F; Kibbey, Tohren C G; Lemke, Lawrence D; Pennell, Kurt D; Petrovskis, Erik A; Ramsburg, C Andrew; Rathfelder, Klaus M

    2005-03-15

    A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted to recover dense nonaqueous phase liquid (DNAPL) tetrachloroethene (PCE) from a sandy glacial outwash aquifer underlying a former dry cleaning facility at the Bachman Road site in Oscoda, MI. Part one of this two-part paper describes site characterization efforts and a comprehensive approach to SEAR test design, effectively integrating laboratory and modeling studies. Aquifer coring and drive point sampling suggested the presence of PCE-DNAPL in a zone beneath an occupied building. A narrow PCE plume emanating from the vicinity of this building discharges into Lake Huron. The shallow unconfined aquifer, characterized by relatively homogeneous fine-medium sand deposits, an underlying clay layer, and the absence of significant PCE transformation products, was judged suitable for the demonstration of SEAR. Tween 80 was selected for application based upon its favorable solubilization performance in batch and two-dimensional sand tank treatability studies, biodegradation potential, and regulatory acceptance. Three-dimensional flow and transport models were employed to develop a robust design for surfactant delivery and recovery. Physical and fiscal constraints led to an unusual hydraulic design, in which surfactant was flushed across the regional groundwater gradient, facilitating the delivery of concentrations of Tween 80 exceeding 1% (wt) throughout the treatment zone. The potential influence of small-scale heterogeneity on PCE-DNAPL distribution and SEAR performance was assessed through numerical simulations incorporating geostatistical permeability fields based upon available core data. For the examined conditions simulated PCE recoveries ranged from 94to 99%. The effluent treatment system design consisted of low-profile air strippers coupled with carbon adsorption to trap off-gas PCE and discharge of treated aqueous effluent to a local wastewater treatment plant. The

  15. Influence of aggregate sizes and microstructures on bioremediation assessment of field-contaminated soils in pilot-scale biopiles

    Science.gov (United States)

    Chang, W.; Akbari, A.; Frigon, D.; Ghoshal, S.

    2011-12-01

    Petroleum hydrocarbon contamination of soils and groundwater is an environmental concern. Bioremediation has been frequently considered a cost-effective, less disruptive remedial technology. Formation of soil aggregate fractions in unsaturated soils is generally believed to hinder aerobic hydrocarbon biodegradation due to the slow intra-pore diffusion of nutrients and oxygen within the aggregate matrix and to the reduced bioavailability of hydrocarbons. On the other hand, soil aggregates may harbour favourable niches for indigenous bacteria, providing protective microsites against various in situ environmental stresses. The size of the soil aggregates is likely to be a critical factor for these processes and could be interpreted as a relevant marker for biodegradation assessment. There have been only limited attempts in the past to assess petroleum hydrocarbon biodegradation in unsaturated soils as a function of aggregate size. This study is aimed at investigating the roles of aggregate sizes and aggregate microstructures on biodegradation activity. Field-aged, contaminated, clayey soils were shipped from Norman Wells, Canada. Attempts were made to stimulate indigenous microbial activity by soil aeration and nutrient amendments in a pilot-scale biopile tank (1m L×0.65m W×0.3 m H). A control biopile was maintained without the nutrient amendment but was aerated. The initial concentrations of petroleum hydrocarbons in the field-contaminated soils increased with increasing aggregate sizes, which were classified in three fractions: micro- (250-2000 μm) and macro-aggregates (>2000 μm). Compared to the TPH analyses at whole-soil level, the petroleum hydrocarbon analyses based on the aggregate-size levels demonstrated more clearly the extent of biodegradation of non-volatile, heavier hydrocarbons (C16-C34) in the soil. The removal of the C16-C34 hydrocarbons was 44% in macro-aggregates, but only 13% in meso-aggregates. The increased protein concentrations in macro

  16. PILOT-SCALE FIELD VALIDATION OF THE LONG ELECTRODE ELECTRICAL RESISTIVITY TOMOGRAPHY METHOD

    Energy Technology Data Exchange (ETDEWEB)

    GLASER DR; RUCKER DF; CROOK N; LOKE MH

    2011-07-14

    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  17. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    Science.gov (United States)

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Perchlorate Removal, Destruction and Field Monitoring Demonstration (Groundwater RemediationPilot-Scale)

    Science.gov (United States)

    2008-08-01

    Public Health Services CSTR continuously stirred tank reactor DoD Department of Defense DWEL drinking water equivalent level DWSP Drinking Water...continuously stirred tank reactor ( CSTR ) anoxic biodegradation process. The full-scale ion exchange process will be fully automated—being controlled by

  19. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field.

    Science.gov (United States)

    Pierro, Lucia; Matturro, Bruna; Rossetti, Simona; Sagliaschi, Marco; Sucato, Salvatore; Alesi, Eduard; Bartsch, Ernst; Arjmand, Firoozeh; Papini, Marco Petrangeli

    2016-11-27

    A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed.

  20. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    Post-combustion CO2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  1. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450

  2. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study.

    Science.gov (United States)

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (pelectric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.

  3. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.

    Science.gov (United States)

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2009-12-01

    The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.

  4. A field pilot-scale study of biological treatment of heavy oil-produced water by biological filter with airlift aeration and hydrolytic acidification system.

    Science.gov (United States)

    Zhang, Min; Wang, Junming; Zhang, Zhongzhi; Song, Zhaozheng; Zhang, Zhenjia; Zhang, Beiyu; Zhang, Guangqing; Wu, Wei-Min

    2016-03-01

    Heavy oil-produced water (HOPW) is a by-product during heavy oil exploitation and can cause serious environmental pollution if discharged without adequate treatment. Commercial biochemical treatment units are important parts of HOPW treatment processes, but many are not in stable operation because of the toxic and refractory substances, salt, present. Therefore, pilot-scale experiments were conducted to evaluate the performance of hydrolytic acidification-biological filter with airlift aeration (HA-BFAA), a novel HOPW treatment system. Four strains isolated from oily sludge were used for bioaugmentation to enhance the biodegradation of organic pollutants. The isolated bacteria were evaluated using 3-day biochemical oxygen demand, oil, dodecyl benzene sulfonic acid, and chemical oxygen demand (COD) removals as evaluation indices. Bioaugmentation enhanced the COD removal by 43.5 mg/L under a volume load of 0.249 kg COD/m(3) day and hydraulic retention time of 33.6 h. The effluent COD was 70.9 mg/L and the corresponding COD removal was 75.0 %. The optimum volumetric air-to-water ratio was below 10. The removal ratios of the total extractable organic pollutants, alkanes, and poly-aromatic hydrocarbons were 71.1, 94.4, and 94.0 %, respectively. Results demonstrated that HA-BFAA was an excellent HOPW treatment system.

  5. Pilot-scale field tests of high-gradient magnetic filtration. Final report, September 1977-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, C.H.

    1980-03-01

    The report gives results of using a 5100 cu m/hr mobile pilot plant to evaluate the effectiveness and economics of applying high-gradient magnetic filtration (HGMF) to particulate emission control. A 4-1/2 month test program was conducted at a Pennsylvania sintering plant to characterize the performance of the pilot plant and to demonstrate its practicality under long-term operation. Analysis of the results indicates that high-efficiency collection can be achieved economically if HGMF is applied to steel industry dusts that are more homogeneous and more strongly magnetic than the tested sinter dust. The report describes laboratory pilot-plant work that demonstrated collection efficiencies greater than 99% with basic oxygen furnace and electric arc furnace dusts. The development of a filter cleaning system and the design and construction of the pilot plant are discussed. Experimental data are reported.

  6. A Pilot-scale Demonstration of Reverse Osmosis Unit for Treatment of Coal-bed Methane Co-produced Water and Its Modeling

    Institute of Scientific and Technical Information of China (English)

    钱智; 刘新春; 余志晟; 张洪勋; 琚宜文

    2012-01-01

    This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.

  7. Weed Identification Field Training Demonstrations.

    Science.gov (United States)

    Murdock, Edward C.; And Others

    1986-01-01

    Reviews efforts undertaken in weed identification field training sessions for agriprofessionals in South Carolina. Data over a four year period (1980-1983) revealed that participants showed significant improvement in their ability to identify weeds. Reaffirms the value of the field demonstration technique. (ML)

  8. Weed Identification Field Training Demonstrations.

    Science.gov (United States)

    Murdock, Edward C.; And Others

    1986-01-01

    Reviews efforts undertaken in weed identification field training sessions for agriprofessionals in South Carolina. Data over a four year period (1980-1983) revealed that participants showed significant improvement in their ability to identify weeds. Reaffirms the value of the field demonstration technique. (ML)

  9. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi-ples...

  10. Pilot-scale tests of HEME and HEPA dissolution process

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  11. Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot-scale experiments with field-aged contaminated soils from a cold regions site.

    Science.gov (United States)

    Chang, Wonjae; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Temporal atmospheric temperature changes during summers at sub-Arctic sites often cause periodic fluctuations in shallow landfarm and surface soil temperatures. However, little information is available on the effect of site-relevant variations on biodegradation performance in cold climates. This study compares the rate and extents of biodegradation of petroleum hydrocarbons at variable site temperatures (1-10 °C) representative of summers at a sub-Arctic site reported previously with those obtained under a constant average temperature of 6 °C. The biodegradation was evaluated in pilot-scale landfarming experiments with field-aged petroleum-contaminated soils shipped from Resolution Island (61°30'N, 65°00'W), Nunavut, Canada. Under the variable site temperature conditions biodegradation rate constants of semi- (F2) and non-volatile (F3) hydrocarbon fractions were enhanced by over a factor of two during the 60-d experiment, compared to the constant temperature mode. The decrease in total petroleum hydrocarbons (TPH) under the variable site temperature mode was 55% compared to only 19% under the constant average temperature mode. The enhanced biodegradation is attributable to the non-linear acceleration of microbial activity between 4.7 and 10°C and faster growth of indigenous hydrocarbon-degrading microbial populations. The first-order biodegradation rate constants of 0.018, 0.024 and 0.016 d(-1) for TPH, F2 and F3 fractions at the variable site temperature were in agreement with those determined by an on-site experiment at the same site.

  12. Pilot-scale gasification of woody biomass

    Science.gov (United States)

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  13. Pilot-scale semisolid fermentation of straw.

    Science.gov (United States)

    Grant, G A; Han, Y W; Anderson, A W

    1978-03-01

    Semisolid fermentation of ryegrass straw to increase its animal feed value was successfully performed on a pilot scale. The pilot plant, which could handle 100 kg of straw per batch, was designed so that all major operations could take place in one vessel. The straw was hydrolyzed at 121 degrees C for 30 min with 0.5 N H2SO4 (7:3 liquid:solid), treated with ammonia to raise the pH to 5.0, inoculated with Candida utilis, and fermented in a semisolid state (70% moisture). During fermentation the straw was held stationary with air blown up through it. Batch fermentation times were 12 to 29 h. Semisolid fermentation did not require agitation and supported abundant growth at 20 to 40 degrees C even at near zero oxygen tensions. Fermentation increased the protein content, crude fat content, and in vitro rumen digestibility of the straw.

  14. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  15. Supervisory control of a pilot-scale cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  16. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  17. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  18. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce.

    Science.gov (United States)

    Périno, Sandrine; Pierson, Jean T; Ruiz, Karine; Cravotto, Giancarlo; Chemat, Farid

    2016-08-01

    Microwave hydrodiffusion and gravity (MHG) technique has been applied to pilot-scale solvent-free microwave extraction (SFME) of polyphenols from Lettuce sativa. Following the dictates of green extraction and with the aim to save time and energy, the lab-scale knowledge on SFME was exploited for the development of a pilot-scale process. The investigation entailed the optimization of all main parameters (temperature, time, extracted water volume, etc.) and we showed that the polyphenols composition profile under SFME was similar to the classic methods though a bit lower in total content. The energy consumption in the optimized procedure (30min) was 1W/g of fresh matrix.

  19. design and construction of design and construction of pilot scale ...

    African Journals Online (AJOL)

    eobe

    36.86% when flat blade turbine impeller was operated at 84 rpm for 40 minutes contact time mpeller was ... Keywords:Neem oil, Design, Construction, Pilot Scale Process and Extraction. 1. .... mixture and ho is the outside film coefficient of air.

  20. Modular Hydropower Engineering and Pilot Scale Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, Phillip C. [ORNL

    2017-09-01

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, the castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously

  1. A pilot-scale trial of an improved galvanic deoxidation process for refining molten copper

    Science.gov (United States)

    Soral, P.; Pal, U.; Larson, H. R.; Schroeder, B.

    1999-04-01

    A laboratory-scale galvanic deoxidation technology developed by earlier workers has been improved, with the aim of developing a prototype pilot-scale deoxidation unit. Each deoxidation cell consists of a one end-closed yttria-stabilized zirconia (YSZ) tube coated with a Ni-YSZ cermet anode on the inner walls. The YSZ tube is immersed, with its closed end in the metallic melt, and an oxygen-chemical-potential gradient across the tube is established by passing a reducing gas through the tube. The melt is then deoxidized by short circuiting it with the anode. Through laboratory experimentation, the nature of the anode/electrolyte interface adhesion was identified to be an important factor in obtaining enhanced deoxidation kinetics. The kinetics of oxygen removal from the melt was increased by an order of magnitude with an improved anode/electrolyte interface. A pilot-scale refining unit consisting of 53 cells with the improved anode/electrolyte interface was manufactured, and a field evaluation of the galvanic deoxidation of copper was conducted. The deoxidation-process model was modified to include multiple deoxidation cells, which were required for the pilot-scale trials, and to analyze the effect of electrolyte/electrode adhesion on deoxidation kinetics. Preliminary studies on process component lifetimes were conducted by investigating the thermal cycling, corrosion behavior of the electrolyte, and stability of the cermet anode structure. Based on the results of the field trial and the analyses of the process component lifetime, future work needed toward commercializing the technology is discussed.

  2. 1994 Fernald field characterization demonstration program data report

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Cromer, M.V. [Spectra Research Inst., Albuquerque, NM (United States); Newman, G.C. [GRAM, Inc., Albuquerque, NM (United States); Beiso, D.A. [Los Alamos Technical Associates, Inc., NM (United States)

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  3. RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction

    Science.gov (United States)

    Paz, Aaron; Oryshchyn, Lara; Jensen, Scott; Sanders, Gerald B.; Lee, Kris; Reddington, Mike

    2013-01-01

    The Oxygen and Volatile Extraction Node (OVEN) is a subsystem within the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project. The purpose of the OVEN subsystem is to release volatiles from lunar regolith and extract oxygen by means of a hydrogen reduction reaction. The complete process includes receiving, weighing, sealing, heating, and disposing of core sample segments while transferring all gaseous contents to the Lunar Advanced Volatile Analysis (LAVA) subsystem. This document will discuss the design and performance of the OVEN Field Demonstration Unit (FDU), which participated in the 2012 RESOLVE field demonstration.

  4. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    Science.gov (United States)

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  6. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Directory of Open Access Journals (Sweden)

    Yann Nicolas Barbot

    2015-09-01

    Full Text Available The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP and biomethane recovery of industrial Laminaria japonica waste (LJW in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC, as well as a co-digestion approach with maize silage (MS did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.

  7. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  8. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer: Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  9. Lecture demonstrations of relativity of electric and magnetic fields

    Science.gov (United States)

    Mayer, V. V.; Varaksina, E. I.

    2016-07-01

    Students can obtain further insight into the physical essence of the principle of relativity if they experimentally investigate the phenomenon of electromagnetic induction in various reference frames. For this purpose we propose a special apparatus. This device is an indicator of a potential difference. The use of the apparatus makes it possible to detect an electric field in a reference frame moving uniformly and rectilinearly relative to a permanent magnet in a uniform magnetic field, which is created by this magnet. In addition to the above, the indicator of a potential difference ensures the fulfilment of a number of demonstration experiments on electrodynamics.

  10. Pilot Scale Tests Alden/Concepts NREC Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

    2003-09-30

    Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

  11. Pilot-scale study of biomass reduction in wastewater treatment.

    Science.gov (United States)

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  12. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.

    Science.gov (United States)

    Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

    2014-07-01

    This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment.

  13. Pilot-Scale Investigation of Forward/Reverse Osmosis Hybrid System for Seawater Desalination Using Impaired Water from Steel Industry

    Directory of Open Access Journals (Sweden)

    Hanaa M. Ali

    2016-01-01

    Full Text Available This paper was focused on the investigation of a forward osmosis- (FO- reverse osmosis (RO hybrid process to cotreat seawater and impaired water from steel industry. By using this hybrid process, seawater can be diluted before desalination, hence reducing the energy cost of desalination, and simultaneously contaminants present in the impaired water are prevented from migrating into the product water through the FO and RO membranes. The main objective of this work was to investigate on pilot-scale system the performance of the combined FO pretreatment and RO desalination hybrid system and specifically its effects on membrane fouling and overall solute rejection. Firstly, optimization of the pilot-scale FO process to obtain the most suitable and stable operating conditions for practical application was investigated. Secondly, pilot-scale RO process performance as a posttreatment to FO process was evaluated in terms of water flux and rejection. The results indicated that the salinity of seawater reduced from 35000 to 13000 mg/L after 3 hrs using FO system, while after 6 hrs it approached 10000 mg/L. Finally, FO/RO system was tested on continuous operation for 15 hrs and it was demonstrated that no pollutant was detected neither in draw solution nor in RO permeate after the end of operating time.

  14. UAV field demonstration of social media enabled tactical data link

    Science.gov (United States)

    Olson, Christopher C.; Xu, Da; Martin, Sean R.; Castelli, Jonathan C.; Newman, Andrew J.

    2015-05-01

    This paper addresses the problem of enabling Command and Control (C2) and data exfiltration functions for missions using small, unmanned, airborne surveillance and reconnaissance platforms. The authors demonstrated the feasibility of using existing commercial wireless networks as the data transmission infrastructure to support Unmanned Aerial Vehicle (UAV) autonomy functions such as transmission of commands, imagery, metadata, and multi-vehicle coordination messages. The authors developed and integrated a C2 Android application for ground users with a common smart phone, a C2 and data exfiltration Android application deployed on-board the UAVs, and a web server with database to disseminate the collected data to distributed users using standard web browsers. The authors performed a mission-relevant field test and demonstration in which operators commanded a UAV from an Android device to search and loiter; and remote users viewed imagery, video, and metadata via web server to identify and track a vehicle on the ground. Social media served as the tactical data link for all command messages, images, videos, and metadata during the field demonstration. Imagery, video, and metadata were transmitted from the UAV to the web server via multiple Twitter, Flickr, Facebook, YouTube, and similar media accounts. The web server reassembled images and video with corresponding metadata for distributed users. The UAV autopilot communicated with the on-board Android device via on-board Bluetooth network.

  15. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  16. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  17. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  18. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    Science.gov (United States)

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  19. Demonstration of the Symmetry Properties of Gravitational Metric Fields

    Institute of Scientific and Technical Information of China (English)

    邵亮; H.NODA; 邵丹; 邵常贵

    2002-01-01

    We calculate some Wilson loop functionals in a static sphere-symmetrical diagonal metric field and a gravitational metric field established by a cosmic string. Using the direction change of vector when it is parallel transported in the metric field of cosmic string, the cone symmetry of the metric field is shown.

  20. Pressurised coal combustion in a pilot scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Hardalupas, Y.; Prassas, I.; Taylor, A.M.K.P.; Whitelaw, J.H. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Dept.

    1998-12-31

    Flux, velocity and the temperature characteristics of burning coal particles were measured simultaneously in the primary combustion zone of the swirl-stabilised burner of the pilot-scale furnace constructed at Imperial College. The furnace was designed to operate at pressures up to 5 bar and at thermal loadings up to 150 kW, and provision was made for optical access in the near-burner region of the combustor. The combined instrument used a novel technique for the simultaneous measurement of velocity and size, as well as the angle between the trajectory of the particle and an axis of reference, of particles of arbitrary shape, the so-called Shadow Doppler Velocimeter; and a two-colour pyrometer, for the simultaneous measurement of velocity, size and temperature of burning pulverised coal particles. The experiments performed consisted of: measurement of the gaseous phase as a function of the swirl number; measurement of the size, velocity, and temperature of burning coal particles as a function of the swirl number; and measurement of the size and velocity of burning coal particles inside the pressurised coal combustor at atmospheric pressure. The experiments were to evaluate and improve and further develop existing instrumentation with potential to be used in pressurised combustors; provide a database of accurate measurements for the needs of numerical models; and improve the understanding of the fluid mechanics and combustion processes at atmospheric pressures. Results obtained using the optical instrumentation showed that in an open flame, evidence of particle centrifuging existed downstream of the quarl entry. The temperature of volatile flames was about 2250 K and that of the char below 2000 K. Measurements along radial profiles inside the coal combustor showed that the axial and tangential velocity of the particles was almost independent of size. 19 refs., 15 figs., 1 tab.

  1. Two-phase methanization of food wastes in pilot scale.

    Science.gov (United States)

    Lee, J P; Lee, J S; Park, S C

    1999-01-01

    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  2. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    Science.gov (United States)

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  3. Data for pilot-scale low level hydrogen peroxide tests using humidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset includes data from each experiment conducted in the pilot-scale testing. Each sheet of the Excel file pertains to each test. A data dictionary is included in...

  4. Human habitation field study of the Habitat Demonstration Unit (HDU)

    Science.gov (United States)

    Litaker, Harry L.; Archer, Ronald D.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    Landing and supporting a permanent outpost on a planetary surface represents humankind's capability to expand its own horizons and challenge current technology. With this in mind, habitability of these structures becomes more essential given the longer durations of the missions. The purpose of this evaluation was to obtain preliminary human-in-the-loop performance data on the Habitat Demonstration Unit (HDU) in a Pressurized Excursion Module (PEM) configuration during a 14-day simulated lunar exploration field trial and to apply this knowledge to further enhance the habitat's capabilities for forward designs. Human factors engineers at the NASA/Johnson Space Center's Habitability and Human Factors Branch recorded approximately 96 h of crew task performance with four work stations. Human factors measures used during this study included the NASA Task Load Index (TLX) and customized post questionnaires. Overall the volume for the PEM was considered acceptable by the crew; however; the habitat's individual work station volume was constrained when setting up the vehicle for operation, medical operations, and suit maintenance while general maintenance, logistical resupply, and geo science was considered acceptable. Crew workload for each station indicated resupply as being the lowest rated, with medical operations, general maintenance, and geo science tasks as being light, while suit maintenance was considered moderate and general vehicle setup being rated the highest. Stowage was an issue around the habitat with the Space Exploration Vehicle (SEV) resupply stowage located in the center of the habitat as interfering with some work station volumes and activities. Ergonomics of the geo science station was considered a major issue, especially with the overhead touch screens.

  5. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    Science.gov (United States)

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.

  6. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  7. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  8. Field Demonstration of Biobased Fluids in Military Construction Equipment

    Science.gov (United States)

    2007-07-01

    to mineral oils. But, they do not have identical chemical structures and lubrication properties5. In response to the demand of military BHFs...petroleum based fluids, the BHFs evaluated did not contain organo -metal additives. However, field samples contaminated with petroleum based fluid

  9. Static field dependence of the Raman polarizability, demonstrated in polystyrene

    Science.gov (United States)

    Aussenegg, Franz R.; Lippitsch, Max E.; Möller, Reinhard

    1982-01-01

    The nonlinearity of the Raman polarizability of polystyrene is revealed by applying a static electric field of ≈ 1 MV/cm to the sample while measuring the Raman intensity. A special experimental technique allows registration of relative intensity variations of 10 -3. The results can be understood using a simple theoretical model.

  10. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  11. Supermarket refrigeration modeling and field demonstration: Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.H.; Deming, G.I.

    1989-03-01

    The Electric Power Research Institute (EPRI) has undertaken a project to investigate supermarket refrigeration. The objectives of this project are (1) to develop an energy use and demand model of supermarket refrigeration systems and (2) to carry out an extensive field test of such systems in an operating supermarket. To accomplish these goals, a supermarket owned by Safeway Stores, Inc., and located in Menlo Park, CA, with an existing conventional refrigeration system utilizing single compressor units, was equipped with a state-of-the-art system with multiplexed parallel compressors. The store and both refrigeration systems were thoroughly instrumented and a test schedule was prepared and executed. Presented in this report are the preliminary results of this field test along with the initial validation of the energy use and demand model. 62 figs., 47 tabs.

  12. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale.

    Science.gov (United States)

    Löser, Christian; Urit, Thanet; Stukert, Anton; Bley, Thomas

    2013-01-10

    Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 μg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 μg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale.

  13. Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation

    KAUST Repository

    Phuntsho, Sherub

    2016-02-20

    The pilot-scale fertiliser driven forward osmosis (FDFO) and nanofiltration (NF) system was operated in the field for about six months for the desalination of saline groundwater from the coal mining activities. Long-term operation of the FDFO-NF system indicates that simple hydraulic cleaning could effectively restore the water flux with minimal chemical cleaning frequency. No fouling/scaling issues were encountered with the NF post-treatment process. The study indicates that, FDFO-NF desalination system can produce water quality that meets fertigation standard. This study also however shows that, the diffusion of solutes (both feed and draw) through the cellulose triacetate (CTA) FO membrane could be one of the major issues. The FO feed brine failed to meet the effluent discharge standard for NH4+ and SO42+ (reverse diffusion) and their concentrations are expected to further increase at higher feed recovery rates. Low rejection of feed salts (Na+, Cl−) by FO membrane may result in their gradual build-up in the fertiliser draw solution (DS) in a closed FDFO-NF system eventually affecting the final water quality unless it is balanced by adequate bleeding from the system through NF and re-reverse diffusion towards the FO feed brine. Therefore, FO membrane with higher reverse flux selectivity than the CTA-FO membrane used in this study is necessary for the application of the FDFO desalination process.

  14. Experimental demonstration of coherent feedback control on optical field squeezing

    CERN Document Server

    Iida, Sanae; Yonezawa, Hidehiro; Yamamoto, Naoki; Furusawa, Akira

    2011-01-01

    Coherent feedback is a non-measurement based, hence a back-action free, method of control for quantum systems. A typical application of this control scheme is squeezing enhancement, a purely non-classical effect in quantum optics. In this paper we report its first experimental demonstration that well agrees with the theory taking into account time delays and losses in the coherent feedback loop. The results clarify both the benefit and the limitation of coherent feedback control in a practical situation.

  15. Laser Ceilometer CL51 Demonstration Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winston, Herb A. [Vaisala, Inc., Vantaa (Finland)

    2016-05-01

    Improvements in the measurements of clouds and the ability to support observation systems are critically important to advancing our understanding and improving global climate model performance. The purpose of a demonstration of the Vaisala CL51 ceilometer was to evaluate its high-range capabilities as a possible augmentation to data provided by the CL31 ceilometer that currently is deployed at U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility sites. Vaisala performed a no-cost demonstration of the equipment; Pacific Northwest National Laboratory (PNNL) supported the data analysis; and ARM provided logistical support, power, maintenance, etc. The laser ceilometer provided measurements of cloud-base height, vertical visibility, and backscatter profile at a vertical range of 15 km. The ceilometer demonstration was conducted during the Characterization of Cirrus and Aerosol Properties campaign (CCAP) to provide coincident observations of cirrus cloud heights and potential backscatter signals by aerosols. This campaign included deployment of a CL51 ceilometer at the ARM Facility’s Southern Great Plains (SGP) site, co-located with the current CL31, micropulse lidar, and balloon-borne sounding system. Data collected from these sensors were analyzed to compare and contrast the data from the CL51 ceilometer.

  16. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors.

    Science.gov (United States)

    Jauffrais, Thierry; Kilcoyne, Jane; Séchet, Véronique; Herrenknecht, Christine; Truquet, Philippe; Hervé, Fabienne; Bérard, Jean Baptiste; Nulty, Cíara; Taylor, Sarah; Tillmann, Urban; Miles, Christopher O; Hess, Philipp

    2012-06-01

    Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell · mL(-1) at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day(-1), with optimum toxin production at 0.25 day(-1). After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.

  17. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

    Institute of Scientific and Technical Information of China (English)

    Hongxun HOU; Shuying WANG; Yongzhen PENG; Zhiguo YUAN; Fangfang YIN; Wang GAN

    2009-01-01

    The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evalu-ate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L)was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, pO3-4, and TN were 88.2%, 92.6%, 87.8%,and 73.1%, respectively, when the steady state of the pilotscale A2/O OD plant was reached during 31-73d,demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3 was 40 mg/L.

  18. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  19. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  20. Field demonstration of rapid turnaround, multilevel groundwater screening

    Energy Technology Data Exchange (ETDEWEB)

    Tingle, A.R. [Analysas Corp., Oak Ridge, TN (United States); Baker, L. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Long, D.D. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Hazardous Waste Remedial Actions Program; Miracle, M. [Advanced Sciences, Inc., Oak Ridge, TN (United States)

    1994-09-01

    A combined technology approach to rapidly characterizing source area and downgradient groundwater associated with a past fuel spill has been field tested. The purpose of this investigation was to determine the presence and extent of fuel-related compounds or indications of their biodegradation in groundwater. The distance from the source area to be investigated was established by calculating the potential extent of a plume based only on groundwater flow velocities. To accomplish this objective, commercially available technologies were combined and used to rapidly assess the source area and downgradient groundwater associated with the fuel discharge. The source of contamination that was investigated overlies glacial sand and gravel outwash deposits. Historical data suggest that from 1955 to 1970 as many as 1 to 6 million pi of aviation gasoline (AVGAS) were god at the study area. Although the remedial investigation (RI) for this study area indicated fuel-related groundwater contamination at the source area, fuel-related contamination was not detected in downgradient monitoring wells. Rapid horizontal groundwater velocities and the 24-year time span from the last reported spill farther suggest that a plume of contaminated groundwater could extend several thousand feet downgradient. The lack of contamination downgradient from the source suggests two possibilities: (1) monitoring wells installed during the RI did not intersect the plume or (2) fuel-related compounds had naturally degraded.

  1. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  2. NASA's Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) In-Field Demonstration at Desert RATS 2010

    Science.gov (United States)

    Tri, Terry O.; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy R.; Howe, A. Scott

    2011-01-01

    This paper describes the construction, assembly, subsystem integration, transportation, and field testing operations associated with the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) and discusses lessons learned. In a one-year period beginning summer 2009, a tightly scheduled design-develop-build process was utilized by a small NASA "tiger team" to produce the functional HDU-PEM prototype in time to participate in the 2010 Desert Research and Technology Studies (Desert RATS) field campaign. The process required the coordination of multiple teams, subcontractors, facility management and safety staff. It also required a well-choreographed material handling and transportation process to deliver the finished product from the NASA-Johnson Space Center facilities to the remote Arizona desert locations of the field test. Significant findings of this paper include the team s greater understanding of the HDU-PEM s many integration issues and the in-field training the team acquired which will enable the implementation of the next-generation of improvements and development of high-fidelity field operations in a harsh environment. The Desert RATS analog environment is being promoted by NASA as an efficient means to design, build, and integrate multiple technologies in a mission architecture context, with the eventual goal of evolving the technologies into robust flight hardware systems. The HDU-PEM in-field demonstration at Desert RATS 2010 provided a validation process for the integration team, which has already begun to retool for the 2011 field tests that require an adapted architecture.

  3. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B.

    Science.gov (United States)

    Zayas, Caridad; González, Domingo; Acevedo, Reinaldo; del Campo, Judith; Lastre, Miriam; González, Elizabeth; Romeu, Belkis; Cuello, Maribel; Balboa, Julio; Cabrera, Osmir; Guilherme, Luisa; Pérez, Oliver

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m² area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated.

  4. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  5. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    Science.gov (United States)

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  6. A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation

    Science.gov (United States)

    A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...

  7. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    Science.gov (United States)

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  8. PILOT-SCALE STUDIES ON THE EFFECT OF BROMINE ADDITION ON THE EMISSIONS OF CHLORINATED ORGANIC COMBUSTION BY-PRODUCTS

    Science.gov (United States)

    The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...

  9. Transformation of ionophore antimicrobials in poultry litter during pilot-scale composting.

    Science.gov (United States)

    Munaretto, Juliana S; Yonkos, Lance; Aga, Diana S

    2016-05-01

    Ionophores are the second top selling class of antimicrobials used in food-producing animals in the United States. In chickens, ionophores are used as feed additives to control coccidiosis; up to 80% of administered ionophores are excreted in the litter. Because poultry litter is commonly used to fertilize agricultural fields, ionophore residues in litter have become contaminants of emerging concern. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify ionophores, and identify their transformation products (TPs) in poultry litter after on-farm pilot-scale composting. The validation parameters of the optimized method showed good accuracy, ranging from 71 to 119% recovery and relative standard deviation (precision) of ≤19% at three different concentration levels (10, 50 and 100 μg/kg). Monensin, salinomycin and narasin, were detected in the poultry litter samples prior to composting at 290.0 ± 40, 426 ± 46, and 3113 ± 318 μg kg(-1), respectively. This study also aims to investigate the effect of different composting conditions on the removal of ionophores, such as the effect of turning or aeration. Results revealed a 13-68% reduction in ionophore concentrations after 150 d of composting, depending on whether the compost was aerated, turned, or subjected to a combination of both aeration and turning. Three transformation products and one metabolite of ionophores were identified in the composted litter using high-resolution liquid chromatography with quadrupole time-of-flight mass spectrometry (LC-QToF/MS).

  10. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  11. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  12. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  13. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.

    Science.gov (United States)

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T; Manenti, Flavio

    2015-06-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and linear in chains. Rheological properties such as viscosity, storage and loss modulus, beyond the loss factor, and creep and recovery were measured in a plate-plate sensor within the viscoelastic linear region. The results showed the relevant influence of the molecular weight on the viscosity and elasticity of the material, and how, as the molecular weight increases, the viscoelastic properties are getting closer to those of human bone. This article demonstrates that by using the implemented methodology it is possible to synthesize a polymer, with properties comparable to commercially-available PMMA.

  14. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant.

    Science.gov (United States)

    Ma, Yong; Peng, Yongzhen; Wang, Shuying; Yuan, Zhiguo; Wang, Xiaolian

    2009-02-01

    Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V=300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.

  15. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  16. Field Demonstration of Military Bio-based Hydraulic Fluids Using Construction Equipment at Fort Leonard Wood

    Science.gov (United States)

    2009-05-01

    Committed to Excellence 4-7 May 2009 1 Field Demonstration of Military Bio -based Hydraulic Fluids Using Construction Equipment at Fort Leonard Wood...AND SUBTITLE Field Demonstration of Military Bio -based Hydraulic Fluids Using Construction Equipment at Fort Leonard Wood 5a. CONTRACT NUMBER 5b...4-7 May 2009 2 Outline  Background  Military Bio -based Hydraulic Fluid Specification  Field Demonstration and Results  Conclusions 4-7 May

  17. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    Science.gov (United States)

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  18. Electrochemical removal of salts from masonry - Experiences from pilot scale

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge; Villumsen, Arne

    2008-01-01

    A pilot experiment with newly developed electrodes was tested for removal of contaminating salts from brick masonry where plaster peeling was a problem. A high concentration of sulfate was found at the height where the paint peeling was most pronounced. The concentrations of chloride and nitrate...... were smaller, though in dangerous concentrations at some points. In the applied electric field, chloride and nitrate were efficiently removed. Sulfate, on the other hand, was less mobile, due to lower solubility of sulphate salts and thus lower percentage in ionic form and mobile for electromigration....... The mean concentration of sulfate was decreased from 0.68 wt% to 0.46 wt% during the approx. 4 months of treatment. The removal rate for sulphate did not decrease significantly during the treatment period and it is expected that reduction in sulphate concentration could continue over longer duration...

  19. Modeling the Pyrochemical Reduction of Spent UO2 Fuel in a Pilot-Scale Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Herrmann; Michael F. Simpson

    2006-08-01

    A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a radial flow reactor. In this reaction, lithium dissolved in molten LiCl reacts with UO2 and fission product oxides to form a porous, metallic product. As the reaction proceeds, the depth of the porous layer around the exterior of each fuel particle increases. The observed rate of reaction has been found to be only dependent upon the rate of diffusion of lithium across this layer, consistent with a classic shrinking core kinetic model. This shrinking core model has been extended to predict the behavior of a hypothetical, pilot-scale reactor for oxide reduction. The design of the pilot-scale reactor includes forced flow through baskets that contain the fuel particles. The results of the modeling indicate that this is an essential feature in order to minimize the time needed to achieve full conversion of the fuel.

  20. Pilot-scale development of a low-NOx coal-fired tangential system

    Science.gov (United States)

    Kelly, J. T.; Brown, R. A.; Chu, E. K.; Wightman, J. B.; Pam, R. L.; Swenson, E. L.; Merrick, E. B.; Busch, C. F.

    1981-08-01

    A 293 kWt (1 million Btu/hr) pilot scale facility is used to develop a low NOx pulverized coal fired tangential system. A burner concept is developed which achieves low NOx by directing the fuel and a fraction of the secondary combustion air into the center of the furnace, with the remaining secondary combustion air directed horizontally and parallel to the furnance walls. Such separation of secondary combustion air creates a fuel rich zone in the center of the furnace where NOx production is minimized. This combustion modification technique lowers NOx 64%, relative to conventional tangential firing, by injecting 85% of the secondary air along the furnace walls. Under these conditions, NO emissions are 180 ppm corrected to 0% 02. Also at these conditions, CO, UHC, and unburned carbon emissions are less than 40 ppm, 3 ppm, and 2.4%, respectively, comparable to conventional tangentially fired pilot scale results.

  1. Pilot Field Demonstration of Alternative Fuels in Force Projection Petroleum and Water Distribution Equipment

    Science.gov (United States)

    2014-09-04

    UNCLASSIFIED UNCLASSIFIED PILOT FIELD DEMONSTRATION OF ALTERNATIVE FUELS IN FORCE PROJECTION PETROLEUM AND WATER DISTRIBUTION EQUIPMENT...Fort Belvoir, Virginia 22060- 6218. Disposition Instructions Destroy this report when no longer needed. Do not return it to the originator ...UNCLASSIFIED UNCLASSIFIED PILOT FIELD DEMONSTRATION OF ALTERNATIVE FUELS IN FORCE PROJECTION PETROLEUM AND WATER DISTRIBUTION EQUIPMENT

  2. Pilot scale direct flotation of a phosphate ore with silicate-carbonate gangue.

    OpenAIRE

    2012-01-01

    The present pilot scale study addresses the direct flotation route for the concentration of a phosphate ore bearing a silicate-carbonate gangue. The target was to selectively separate apatite from a phosphate ore bearing silicate/carbonate gangue using flotation columns. Based on the results of a previous laboratory scale investigation, a reagents scheme was selected and tested, using, under alkaline conditions, corn starch and a natural collector extracted from the distillation of coconut oi...

  3. Simulated control in Aspen Dynamics for the production of limonene epoxide at pilot scale

    OpenAIRE

    Yeison Agudelo Arenas; Rolando Barrera Zapata

    2016-01-01

    In this contribution is reported the study and analysis of the control system (simulated) for the process of obtaining limonene epoxide. The modelling of the process at pilot scale was implemented in the software Aspen Plus from literature reports. Aspen Dynamics was used for the study of the process control. The model allows observing the behavior of the variables of interest in the process such as outflows from the distillation tower, heat duty, operating temperaturas and purity of the fina...

  4. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.;

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (< 50 mg/l). To obtain...... of water to the wash processes. Reuse of the permeate in all rinsing steps requires additional treatment through reverse osmosis....

  5. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D.

    2009-05-28

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin hydraulic cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Sixteen of these cycles were completed in the 24-inch IX Column (1/2 scale column). Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 3 times better than the design requirements of the WTP full-scale IX system. The RF resin bed showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. The hydraulic and chemical performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins. The pilot-scale testing indicates that the RF resin is durable and should hold up to many hydraulic cycles in actual radioactive Cesium (Cs) separation.

  6. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry.

    Science.gov (United States)

    Andersen, M; Kristensen, G H; Brynjolf, M; Grüttner, H

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (treatment, addition of nitrogen was necessary. The biodegradability of the permeate was very low (BOD5 treatment through reverse osmosis.

  7. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    Science.gov (United States)

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  8. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

  9. Pilot Scale Production of Manganese Ferroalloys Using Heat-Treated Mn-Nodules

    Science.gov (United States)

    Tangstad, Merete; Ringdalen, Eli; Manilla, Edmundo; Davila, Daniel

    2016-12-01

    Pilot-scale experiments are one way to investigate the process patterns and the reaction mechanisms of processes and raw materials. To understand a process fully, both theoretical considerations as well as small-scale investigations are needed; nevertheless, the complex patterns of chemical reactions and physical phenomena can best be studied in pilot-scale investigations. After studying the chemical and mineralogical properties, the strength and the melting behavior of Mn-nodules, presented in a previous paper, the process behavior of the ore is studied in a pilot scale experiment. The industrial process is simulated in a top-and bottom-electrode furnace operated at about 150 kW. The high-strength, low-melting Mn-nodules produced by Autlan were the main raw material mixed with Comilog ore and some lime. It was shown that the Mn-nodules behave in principle like other commercial Mn-raw materials. The ore will at the border of the high-temperature area produce a liquid in coexistence with a MnO phase. As the ore is reaching the cokebed zone, the ore is already fully reduced. The ore will not be reduced much more in the cokebed area. The slag will be tapped at the composition close to the liquidus composition, as observed for other Mn-raw materials, and thus, also follow the well-known rule of lower MnO content in the slag with higher basicity.

  10. Pilot Scale Production of Manganese Ferroalloys Using Heat-Treated Mn-Nodules

    Science.gov (United States)

    Tangstad, Merete; Ringdalen, Eli; Manilla, Edmundo; Davila, Daniel

    2017-02-01

    Pilot-scale experiments are one way to investigate the process patterns and the reaction mechanisms of processes and raw materials. To understand a process fully, both theoretical considerations as well as small-scale investigations are needed; nevertheless, the complex patterns of chemical reactions and physical phenomena can best be studied in pilot-scale investigations. After studying the chemical and mineralogical properties, the strength and the melting behavior of Mn-nodules, presented in a previous paper, the process behavior of the ore is studied in a pilot scale experiment. The industrial process is simulated in a top-and bottom-electrode furnace operated at about 150 kW. The high-strength, low-melting Mn-nodules produced by Autlan were the main raw material mixed with Comilog ore and some lime. It was shown that the Mn-nodules behave in principle like other commercial Mn-raw materials. The ore will at the border of the high-temperature area produce a liquid in coexistence with a MnO phase. As the ore is reaching the cokebed zone, the ore is already fully reduced. The ore will not be reduced much more in the cokebed area. The slag will be tapped at the composition close to the liquidus composition, as observed for other Mn-raw materials, and thus, also follow the well-known rule of lower MnO content in the slag with higher basicity.

  11. Field Jet Erosion Tests on the Mississippi River Collocated Demonstration Section, Plaquemines Parish, Louisiana

    Science.gov (United States)

    2015-06-01

    ER D C/ G SL T R- 15 -1 3 Field Jet Erosion Tests on the Mississippi River Collocated Demonstration Section, Plaquemines Parish...default. ERDC/GSL TR-15-13 June 2015 Field Jet Erosion Tests on the Mississippi River Collocated Demonstration Section, Plaquemines Parish...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-15-13 ii Abstract Field jet erosion tests (JETs) were

  12. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  13. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  14. DEMONSTRATION BULLETIN: FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - U.S. ENVIRONMENTAL PROTECTION AGENCY

    Science.gov (United States)

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new technologies to assess their effectiveness. This bulletin summarizes results from the 1993 SITE demonstration of the Field Analytical Screening Program (FASP) Pentachlorophenol (PCP) Method to determine P...

  15. U.S. Army Field Demonstration of the Single Common Powertrain Lubricant (SCPL)

    Science.gov (United States)

    2015-02-01

    Coakley reflecting the program plans and goals. Mr. Coakley then tasked Mr. Jim Logan , the director of FMX TACOM at Ft. Benning to coordinate the...basic climate field demonstration program. Mr. Logan then identified Mr. Thomas Esposito, the Ground Systems Material Management Directorate (GSMMD...SCPL field demonstration was initiated with operations at Ft. Benning being less than a year old , thus activity was still ramping up to their

  16. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems

    Science.gov (United States)

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, electro-scan (FELL-41), and a multi-sens...

  17. Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas

    KAUST Repository

    Choi, Seung Hak

    2013-06-01

    In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.

  18. Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders R.; Larsen, Morten B.; Glarborg, Peter

    2012-01-01

    Cement production is highly energy intensive and requires large quantities of fuels. For both economical and environmental reasons, there is an increasing tendency for utilization of alternative fuels in the cement industry, examples being tire derived fuels, waste wood, or different types...... of industrial waste. In this study, devolatilization and combustion of large particles of tire rubber and pine wood with equivalent diameters of 10 mm to 26 mm are investigated in a pilot scale rotary kiln able to simulate the process conditions present in the material inlet end of cement rotary kilns...

  19. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  20. TREATMENT OF TEXTILE WASTEWATER USING A CONTINUOUS FLOW ACTIVATED SLUDGE SYSTEM AT PILOT-SCALE

    Directory of Open Access Journals (Sweden)

    M. A. ABOULHASSAN

    2014-11-01

    Full Text Available Textile industry wastewaters contain high concentrations of organic matter, toxic substances and dyes and pigments, and are harmful to receiving environment. Activated sludge system at pilot scale with continuous feeding, was used for the treatment of a dyeing unit effluent. The results showed that treatment allows a removal rate of 40-56 % of chemical oxygen demand (COD, and 13 to 30 % of color. The adsorption on sludge appears to be the main process responsible for the color removal of wastewater generated by textile industry.

  1. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  2. Start up and operation of a pilot scale aerobic granular SBR

    Energy Technology Data Exchange (ETDEWEB)

    Morales, N.; Figueroa, M.; Val del Rio, A.; Mosquera-Corral, A.; Campos, J. L.; Mendez, R.

    2009-07-01

    The development of biomass in the form of aerobic granules is being recently under study as an improvement of conventional activated sludge system. Aerobic granules have been formed treating synthetic, municipal and industrial wastewaters in lab scale reactors, achieving good performances. The aim of this work is the study of the development and operation of aerobic granules in a pilot scale sequencing batch reactor (SBR). A SBR with a working volume of 100 L, an internal diameter of 30 cm and a useful height of 150 cm was used. (Author)

  3. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment.

    Science.gov (United States)

    del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M

    2014-02-15

    A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal.

  4. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  5. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems.

    Science.gov (United States)

    Li, Cong; Yang, Y Jeffrey; Yu, Jieze; Zhang, Tu-qiao; Mao, Xinwei; Shao, Weiyun

    2012-08-01

    It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP).

  6. Pilot-scale tests of an innovative 'serial self-turning reactor' composting technology in Thailand.

    Science.gov (United States)

    Sungsomboon, Praj-ya; Chaisomphob, Taweep; Bongochgetsakul, Nattakorn; Ishida, Tetsuya

    2013-02-01

    Composting facilities in Thailand have faced various operational problems, resulting in the emission of odours, incomplete digestion of waste organics, and higher than desired costs. Composting technologies imported from developed countries tend to be sized for larger communities and are otherwise not suited for the rural communities that comprise more than 80% of all communities in Thailand. This article addresses the research and development of a novel composting technology aimed at filling this observed need. The study was divided into two parts: (1) the development of a new composting technology and fabrication of a prototype configuration of equipment; and (2) scale-up and study on a pilot-scale using real rubbish. The proposed technology, called 'serial self-turning reactor (STR)', entailed a vertical flow composting system that consisted of a set of aerobic reactors stacked on a set of gravity fed turning units. In-vessel bioreactor technology enables the operator to control composting conditions. The researchers found that a tower-like STR results in flexibility in size scale and waste processing residence time. The pilot-scale experiments showed that the proposed system can produce good quality compost while consuming comparatively little energy and occupying a compact space, compared to traditional land-intensive windrow composting facilities.

  7. Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater.

    Science.gov (United States)

    Saran, S; Kamalraj, G; Arunkumar, P; Devipriya, S P

    2016-09-01

    Pilot scale thin film plate reactors (TFPR) were fabricated to study the solar photocatalytic treatment of wastewater obtained from the secondary treatment plant of a sugar refinery. Silver-impregnated titanium dioxide (TiO2) was prepared by a facile chemical reduction method, characterized, and immobilized onto the surface of ceramic tiles used in the pilot scale reactors. On 8 h of solar irradiation, percentage reduction of chemical oxygen demand (COD) of the wastewater by Ag/TiO2, pure TiO2, and control (without catalyst) TFPR was about 95, 86, and 22 % respectively. The effects of operational parameters such as, flow rate, pH, and addition of hydrogen peroxide (H2O2) were optimized as they influence the rate of COD reduction. Under 3 h of solar irradiation, 99 % COD reduction was observed at an optimum flow rate of 15 L h(-1), initial pH of 2, and addition of 5 mM of H2O2. The results show that Ag/TiO2 TFPR could be effectively used for the tertiary treatment of sugar refinery effluent using sunlight as the energy source. The treated water could be reused for industrial purposes, thus reducing the water footprint of the industry. Graphical Abstract Sugar refinery effluent treatment by solar photocatalytic TFPR.

  8. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    Science.gov (United States)

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute.

  9. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, L.; Castle, J.W.; Rodgers, J.H. [Clemson University, Clemson, SC (United States)

    2009-05-15

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  10. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation.

  11. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage.

    Science.gov (United States)

    Nges, Ivo Achu; Björn, Annika; Björnsson, Lovisa

    2012-08-01

    Biogas production from maize/sugar beet silage was studied under mesophilic conditions in a continuous stirred tank reactor pilot-scale process. While energy crop mono-digestion is often performed with very long hydraulic retention times (HRTs), the present study demonstrated an efficient process operating with a 50-day HRT and a corrected total solids (TS(corr)) based organic loading rate of 3.4 kg/m(3)d. The good performance was attributed to supplementation with both macro- and micronutrients and was evidenced by good methane yields (318 m(3)/ton TS(corr)), which were comparable to laboratory maximum expected yields, plus low total volatile fatty acid concentrations (<0.8 g/L). A viscoplastic and thixotropic digester fluid behaviour was observed, and the viscosity problems common in crop mono-digestion were not seen in this study. The effluent also complied with Swedish certification standards for bio-fertilizer for farmland application. Nutrient addition thus rendered a stable biogas process, while the effluent was a good quality bio-fertilizer.

  12. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications

    Science.gov (United States)

    Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao

    2016-02-01

    Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future.

  13. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period.

    Science.gov (United States)

    Heidrich, Elizabeth S; Edwards, Stephen R; Dolfing, Jan; Cotterill, Sarah E; Curtis, Thomas P

    2014-12-01

    A 100-L microbial electrolysis cell (MEC) was operated for a 12-month period fed on raw domestic wastewater at temperatures ranging from 1°C to 22°C, producing an average of 0.6 L/day of hydrogen. Gas production was continuous though decreased with time. An average 48.7% of the electrical energy input was recovered, with a Coulombic efficiency of 41.2%. COD removal was inconsistent and below the standards required. Limitations to the cell design, in particular the poor pumping system and large overpotential account for many of the problems. However these are surmountable hurdles that can be addressed in future cycles of pilot scale research. This research has established that the biological process of an MEC will to work at low temperatures with real wastewater for prolonged periods. Testing and demonstrating the robustness and durability of bioelectrochemical systems far beyond that in any previous study, the prospects for developing MEC at full scale are enhanced. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    Science.gov (United States)

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.

  15. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale.

    Science.gov (United States)

    Djelal, Hayet; Amrane, Abdeltif

    2013-09-01

    A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in

  16. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale

    Institute of Scientific and Technical Information of China (English)

    Hayet Djelal; Abdeltif Amrane

    2013-01-01

    A fungal consortium including Aspergillus niger,Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater.The bio-augmentation method was tested at lab-scale (4 L),at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP).The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent.Indeed,chemical oxygen demand (COD) removal yields increased from 55% to 75%for model medium,diluted milk.While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000L pilot plant,the outlet COD values decreased from values above the standard one (100 mg/L)to values in the range of 50-70 mg/L.In addition,there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP.It was in the range of 451%-1111% before adding fungal consortium,and in the range of 257%-153% after bio-augmentation with fungi.An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in WWTP.

  17. Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment.

    Science.gov (United States)

    Papaevangelou, Vassiliki A; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2017-02-01

    The current experimental work aimed at the investigation of the overall chromium removal capacity of constructed wetlands (CWs) and the chromium fate-distribution within a wetland environment. For this purpose, the experimental setup included the parallel operation and monitoring of two horizontal subsurface flow (HSF) pilot-scale CWs and two vertical flow (VF) pilot-scale CWs treating Cr-bearing wastewater. Samples were collected from the influent, the effluent, the substrate and the plants. Apart from the continuous experiment, batch experiments (kinetics and isotherm) were conducted in order to investigate the chromium adsorption capacity of the substrate material. According to the findings, HSF-CWs demonstrated higher removal capacities in comparison to VF-CWs, while in both types the planted units indicated better performance compared to the unplanted ones. Analysis in various wetland compartments and annual mass balance calculation highlighted the exceptional contribution of substrate to chromium retention, while Cr accumulation in plant was not so high. Finally, experimental data fitted better to the pseudo-second-order and Langmuir models regarding kinetics and isotherm simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    Science.gov (United States)

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  19. A design study for a medium-scale field demonstration of the viscous barrier technology

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G. [Lawrence Berkeley National Lab., CA (United States); Yen, P. [Bechtel Corp., San Francisco, CA (United States); Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.

  20. Demonstration of the spatial separation of the entangled quantum side-bands of an optical field

    CERN Document Server

    Huntington, E H; Robilliard, C; Ralph, T C; Glöckl, O; Andersen, U L; Lorenz, S; Leuchs, G

    2005-01-01

    Quantum optics experiments on "bright" beams typically probe correlations between side-band modes. However the extra degree of freedom represented by this dual mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum side-bands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the side-bands of a squeezed beam.

  1. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  2. A Simple Demonstration of a General Rule for the Variation of Magnetic Field with Distance

    Science.gov (United States)

    Kodama, K.

    2009-01-01

    We describe a simple experiment demonstrating the variation in magnitude of a magnetic field with distance. The method described requires only an ordinary magnetic compass and a permanent magnet. The proposed graphical analysis illustrates a unique method for deducing a general rule of magnetostatics. (Contains 1 table and 6 figures.)

  3. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  4. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  5. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  6. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the

  7. Study and Pilot Scale Development of Catalyst for Ethylebenzene Synthesis Through Transalkylation of Benzene and Polyethylbenzene

    Institute of Scientific and Technical Information of China (English)

    Wang Jin; Zhang Fengmei; Li Minglin; Hao Xiaoming; Shu Xingtian; He Mingyuan

    2002-01-01

    This paper refers to the results of study and development of benzene and polyethylbenzene transalkylation catalyst (type AEB-1) for synthesis of ethylbenzene. The effect of reaction conditions on the reaction performance of the catalyst was investigated in the pressurized microreactor CDS-900. A transalkylation catalyst with high activity, good selectivity and stability was developed following a 2000-hour test on the activity and stability of the catalyst. The preparation of this catalyst was implemented in pilot scale and this catalyst was tested for activity and stability in a 150 t/a pilot unit for production of ethylbenzene. The test results have shown that this transalkylation catalyst has excellent activity, selectivity and stability. The operation of pilot test unit ran smoothly and the process scheme is viable.

  8. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system.

    Science.gov (United States)

    Arora, Sudipti; Rajpal, Ankur; Bhargava, Renu; Pruthi, Vikas; Bhatia, Akansha; Kazmi, A A

    2014-08-01

    The present study investigated microbial community diversity and antibacterial and enzymatic properties of microorganisms in a pilot-scale vermifiltration system during domestic wastewater treatment. The study included isolation and identification of diverse microbial community by culture-dependent method from a vermifilter (VF) with earthworms and a conventional geofilter (GF) without earthworms. The results of the four months study revealed that presence of earthworms in VF could efficiently remove biochemical oxygen demand (BOD), chemical oxygen demand (COD), total and fecal coliforms, fecal streptococci and other pathogens. Furthermore, the burrowing activity of earthworms promoted the aeration conditions in VF which led to the predominance of the aerobic microorganisms, accounting for complex microbial community diversity. Antibacterial activity of the isolated microorganisms revealed the mechanism behind the removal of pathogens, which is reported for the first time. Specifically, cellulase, amylase and protease activity is responsible for biodegradation and stabilization of organic matter.

  10. Evaluation of Wastewater Treatment of Detergent Industry Using Coagulation Procession Pilot Scale

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri

    2005-04-01

    Full Text Available Introduction: Surfactant or surface active agents are slightly soluble in water and cause foaming in waste treatment plants and also in the surface waters into which the waste effluent is discharged. During aeration of wastewater, these compounds collect on the surface of the water bubbles and create some problems in waste treatment. Methods: In this study, surfactant, turbidity and COD in the industrial wastewater of the company, Paksan was studied. Study was done at pH ranging between 2 and 13 in a pilot scale process. Results: The results showed that ferric chloride has higher efficiency in removal and it is possible to decrease the surfactant, turbidity and COD Conclusion: The efficiency of ferric chloride in coagulation process for removal of surfactant, turbidity and COD from industrial wastewater is better than ALUM, Lime and Ferric Sulfate,

  11. Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Christensen, Børge Holm; Felby, Claus

    2014-01-01

    , there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50–65 °C. Experiments were performed in a pilot-scale stripper, where the effect...... on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other......Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature...

  12. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    Science.gov (United States)

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite.

  13. A pilot-scale study of selective desulfurization via urea addition in iron ore sintering

    Science.gov (United States)

    Long, Hong-ming; Wu, Xue-jian; Chun, Tie-jun; Di, Zhan-xia; Wang, Ping; Meng, Qing-min

    2016-11-01

    The iron ore sintering process is the main source of SO2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO2 concentration in flue gas without urea addition, the SO2 concentration decreased substantially from 694.2 to 108.0 mg/m3 when 0.10wt% urea was added. NH3 decomposed by urea reacted with SO2 to produce (NH4)2SO4, decreasing the SO2 concentration in the flue gas.

  14. Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai

    2014-01-01

    accordance with the model data. In an additional step a continuous, pilot scale reactor was built to produce torrefied wood chips in large quantities. The "two-step reaction in series" model was applied to predict the mass yield of the torrefaction reaction. Parameters used for the calculation were......Torrefaction is a mild thermal treatment (200-300 °C) in an inert atmosphere, known to increase the energy density of biomass by evaporation of water and a proportion of the volatiles. In this work a "two-step reaction in series" model was used to describe the thermal degradation kinetics of pine...... the temperature along the reactor and the biomass feeding rate in combination with the kinetic parameters obtained from the tests in the TGA. Together with results from a laboratory scale, batch torrefaction reactor that was used to determine the higher heating value (HHV) and mass loss (y) of the same material...

  15. A pilot scale test of ozonization treatment of ethene wastewater for reuse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A pilot scale test of advanced treatment of ethene wastewater by ozonization was carried out for industrial water reuse.Effects of different operating conditions on COD degradation,such as wastewater flow rate,ozonized gas flow rate,operating voltage of ozonizer and two ozone generation means,using pure oxygen or air,was investigated.The results show that the increase of ozonizer operating voltage,the decrease of wastewater flow rate and the suitable ozonized gas flow rate improve the removal of COD in wastewater and that ozone generated respectively from air and pure oxygen can effectively remove COD of ethene wastewater to meet the industrial water reuse criterion.

  16. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    Science.gov (United States)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  17. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  18. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor.

    Science.gov (United States)

    Afzal, Muhammad; Shabir, Ghulam; Hussain, Irshad; Khalid, Zafar M

    2008-10-01

    Pilot scale reactor based on combined biological-coagulation-filtration treatments was designed and evaluated for the treatment of effluent from a paper and board mill. Biological treatment by fed batch reactor (FBR) followed by coagulation and sand filtration (SF) resulted in a total COD and BOD reduction of 93% and 96.5%, respectively. A significant reduction in both COD (90%) and BOD (92%) was also observed by sequencing batch reactor (SBR) process followed by coagulation and filtration. Untreated effluent was found to be toxic, whereas the treated effluents by either of the above two processes were found to be non-toxic when exposed to the fish for 72h. The resultant effluent from FBR-coagulation-sand filtration system meets National Environmental Quality Standards (NEQS) of Pakistan and can be discharged into the environment without any risks.

  19. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg;

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  20. Studies and research concerning BNFP pilot-scale pulsed columns: column profile and holdup studies

    Energy Technology Data Exchange (ETDEWEB)

    Cermak, A. F.

    1980-11-01

    Experimental studies were conducted on pilot-scaled pulsed columns for the purpose of obtaining data for verification of contactor computer programs. This work is in support of safeguards programs related to determination of near real-time inventories in pulsed columns. Holdup tests were performed resulting in the derivation of an empirical equation for estimation of the dispersed phase holdup in a column. Uranium solvent extraction mass-transfer tests were conducted in which all four process cycles were simulated under coprocessing flowsheet conditions. Extensive data were obtained during these tests on uranium profiles and inventories within the columns. Transient profile data were also determined between selected runs under the tested operating conditions. No concentration peaks could be observed during the transient period. Based on the extensive inventory data taken, empirical equations were developed for relating uranium inventory in a column to the test parameters. These equations were found useful for predicting and estimating the column inventory under the known run conditions.

  1. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  2. Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit.

    Science.gov (United States)

    Skovgaard, Pernille Anastasia; Christensen, Børge Holm; Felby, Claus; Jørgensen, Henning

    2014-04-01

    Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature, there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50-65 °C. Experiments were performed in a pilot-scale stripper, where the effect of temperature (55-65 °C) and exposure to gas-liquid and liquid-heat transmission interfaces were tested on a mesophilic and thermostable enzyme mixture in fiber beer and buffer. Lab-scale tests were included in addition to the pilot-scale experiments to study the effect of shear, ethanol concentration, and PEG on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other stabilizing substances in fiber beer. However, at extreme conditions with high temperature (65 °C) and ethanol content (7.5 % w/v), PEG had no enzyme stabilizing effect. The novel distillation setup proved to be useful for maintaining enzyme activity during ethanol extraction.

  3. Pilot-scale grout production test with a simulated low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  4. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  5. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  6. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field.

    Science.gov (United States)

    Nakajima, M; Namai, A; Ohkoshi, S; Suemoto, T

    2010-08-16

    We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted epsilon-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted epsilon-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

  7. Feasibility and simulation model of a pilot scale membrane bioreactor for wastewater treatment and reuse from Chinese traditional medicine

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; YAN Xian-feng; CHEN Zhao-bo; HU Dong-xue; GONG Man-li; GUO Wan-qian

    2007-01-01

    The lack and pollution of water resource make wastewater reuse necessary. The pilot scale long-term tests for submerged membrane bioreactor were conducted to treat the effluents of anaerobic or aerobic treatment process for the high-strength Chinese traditional medicine wastewater. This article was focused on the feasibility of the wastewater treatment and reuse at shorter hydraulic retention time (HRT) of 5.0, 3.2 and 2.13 h. MLSS growth, membrane flux, vacuum values and chemical cleaning periods were also investigated.The experimental results of treating two-phase anaerobic treatment effluent demonstrated that the CODfilt was less than 100 mg/L when the influent COD was between 500-10000 mg/L at HRT of 5.0 h, which could satisfy the normal discharged standard in China. The experimental results to treat cross flow aerobic reactor effluent demonstrated that the average value of CODfilt was 17.28 mg/L when the average value of infiuent COD was 192.84 mg/L at HRT of 2.13 h during 106 d, which could completely meet the normal standard for water reuse. The maximum MLSS and MLVSS reached 24000 and 14500 mg/L at HRT of 3.2 h respectively. Membrane flux had maximal resume degrees of 94.7% at vacuum value of 0.02 MPa after cleaning. Chemical cleaning periods of membrane module were 150 d. A simulation model of operational parameters was also established based on the theory of back propagation neural network and linear regression of traditional mathematical model. The simulation model showed that the optimum operational parameters were of MLSS was between 7543-13694 mg/L.

  8. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  9. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an

  10. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

    Science.gov (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.

    2017-04-01

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

  11. Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Tzeferacos, P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Rigby, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bott, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bell, A. R. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom; Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom; Casner, A. [CEA, DAM, DIF, F-91297 Arpajon, France; Cattaneo, F. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Churazov, E. M. [Max Planck Institute for Astrophysics, D-85741 Garching, Germany; Space Research Institute (IKI), Moscow 117997, Russia; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Flocke, N. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Forest, C. B. [Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Foster, J. [AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, United Kingdom; Graziani, C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Koenig, M. [Laboratoire pour l' Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, France; Li, C. -K. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Meinecke, J. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Petrasso, R. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Park, H. -S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ryu, D. [Department of Physics, UNIST, Ulsan 689-798, South Korea; Ryutov, D. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weide, K. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; White, T. G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom; Miniati, F. [Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland; Schekochihin, A. A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Gregori, G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Lamb, D. Q. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA

    2017-03-22

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

  12. Magnetic field component demonstration for a neutron electric dipole moment search

    Science.gov (United States)

    Slutsky, Simon

    2016-09-01

    A neutron electric dipole moment (EDM) search at the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) will probe with a sensitivity of EDM will appear as a variation in the precession frequency correlated with the electric field. Magnetic field gradients must be kept below 10 pT/cm to mitigate false EDMs produced by the geometric phase effect and to maximize the neutron spin-relaxation lifetime. I will discuss a prototype magnetic shielding system, including a nearly-hermetic superconducting lead shield, built to demonstrate the required gradients at 1/3-scale of the final experiment. Additionally, the system will evaluate the eddy current heating due to RF fields produced by a proposed neutron-``spin-dressing'' technique.

  13. A field demonstration of a modified wet scrubber for dust control in an Illinois coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Alam, M.M.; Patwardhan, A.; Thatavarthy, K.K. [Southern Illinois University, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

    2005-07-01

    A commercial wet scrubber was used in the SIU-Joy dust control laboratory to test several concepts for improving the dust control efficiency of a wet scrubber. The concepts tested included two filter-two-spray systems, hollow and full-cone sprays, horizontal and vertical sprays, different layer filters and addition of surfactant. The optimised scrubber configuration had water-only vertical sprays for pre-wetting coarse dust, and vertical surfactant-laden water sprays for wetting ultrafine particles. This scrubber configuration reduced dust concentrations from 250 mg/m{sup 3} to 1.8 mg/m{sup 3}. Upon successful testing and optimisation of parameters in the laboratory, field demonstration of the concepts was conducted at an Illinois coal mine. The optimised scrubber configuration was tested in the field with good results in terms of improved visibility in the face area and reduced respirable and quartz dust concentrations. Additional modifications in the field involved relocation of the scrubber suction inlets from the bottom to the side and changing the water spray configuration on the miner head. These additional changes were based on a conceptualised spatial dust distribution profile in the face area. The results of these laboratory development and field demonstration studies are presented in this paper. 6 refs., 11 figs., 4 tabs.

  14. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    Electrode units for electrokinetic desalination of masonry has been developed and tested in pilot scale at three different locations. The units are formed as casings with a metallic mesh electrode, and carbonate rich clay to buffer the acid produced at the anode. The case has an extra loose bottom...

  15. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and p

  16. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    Science.gov (United States)

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  17. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    Science.gov (United States)

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  18. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic...

  19. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  20. Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Xin, H.

    2014-01-01

    High microbial concentrations and emissions associated with livestock houses raise health and environmental concerns. A pilot-scale ultraviolet photocatalytic (UV-PCO) scrubber was tested for its efficacy to inactivate aerosolized Enterococcus faecalis and infectious bursal disease virus (IBDV). Mic

  1. Pilot-scale comparison of constructed wetlands operated under high hydraulicloading rates and attached biofilm reactors for domestic wastewater treatment

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.

    2009-01-01

    Four different pilot-scale treatment units were constructed to compare the feasibility of treating domestic wastewater in the City of Heraklio, Crete, Greece: (a) a freewater surface (FWS) wetland system, (b) a horizontal subsurface flow (HSF) wetland system, (c) a rotating biological contactor...

  2. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    Science.gov (United States)

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150.

  3. Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors

    Directory of Open Access Journals (Sweden)

    Philipp Hess

    2012-06-01

    Full Text Available Azaspiracid (AZA poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.

  4. Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA (Drinking Water Treatment - Pilot Scale)

    Science.gov (United States)

    2008-08-01

    Health Services CSTR continuously stirred tank reactor DoD Department of Defense DWEL drinking water equivalent level DWSP Drinking Water Supply...stirred tank reactor ( CSTR ) anoxic biodegradation process. The full-scale ion exchange process will be fully automated—being controlled by a PLC

  5. Field measurements demonstrate distinct initiation and cessation thresholds governing aeolian sediment transport flux

    CERN Document Server

    Martin, Raleigh L

    2016-01-01

    Wind-blown sand and dust transport models depend sensitively on selection of the threshold wind stress. However, the coexistence of distinct "fluid" and "impact" thresholds for the respective initiation and cessation of aeolian saltation, which is suggested by laboratory and numerical experiments, produces ambiguity in wind-driven transport predictions. Based on comprehensive high-frequency field saltation measurements, we provide the first field-based demonstration of distinct fluid and impact thresholds, and we determine the respective importance of these thresholds for modeling wind-blown sediment flux. We show that statistically-determined "effective" threshold stress decreases linearly with the fraction of time that saltation is active. As saltation activity increases, potential threshold crossings are increasingly governed by impact threshold, whose value is only 80% of fluid threshold shear velocity. Though both fluid and impact thresholds are likely important for high-frequency saltation prediction, w...

  6. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2007-03-31

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

  7. Micellar-polymer joint demonstration project, Wilmington Field, California. Third annual report, June 1978-July 1979

    Energy Technology Data Exchange (ETDEWEB)

    Staub, H.L.

    1981-08-01

    The micellar-polymer demonstration project to be conducted - through the design phase - in the HXa sand of Wilmington Field is proceeding satisfactorily but has fallen behind schedule. Results of some core floods were unsatisfactory. The recovery efficiencies were much lower than those achieved using the laboratory sample cosurfactant final design slug. Nearly six months of reformulating and additional core testing were required to finally achieve satisfactory laboratory results. Other laboratory tests were performed to optimize the polymer buffer for size and concentration. Other reservoir and reservoir fluid problems have been encountered in production and injection operations during the pre-flush period.

  8. Demonstration and field trial of a resilient hybrid NG-PON test-bed

    Science.gov (United States)

    Prat, Josep; Polo, Victor; Schrenk, Bernhard; Lazaro, Jose A.; Bonada, Francesc; Lopez, Eduardo T.; Omella, Mireia; Saliou, Fabienne; Le, Quang T.; Chanclou, Philippe; Leino, Dmitri; Soila, Risto; Spirou, Spiros; Costa, Liliana; Teixeira, Antonio; Tosi-Beleffi, Giorgio M.; Klonidis, Dimitrios; Tomkos, Ioannis

    2014-10-01

    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results.

  9. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  10. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  11. Efficiency of a locally designed pilot-scale trickling biofilter (TBF) system in natural environment for the treatment of domestic wastewater.

    Science.gov (United States)

    Rasool, Tabassum; Rehman, Abdul; Naz, Iffat; Ullah, Rahat; Ahmed, Safia

    2017-06-07

    In the present study, a cost-effective and simple stone media pilot-scale trickling biofilter (TBF) was designed, constructed and operated in a continuous recirculation mode for wastewater treatment with a hydraulic flow rate of 1.2 L/min (Q = 0.072 m(3)/h) and hydraulic loading (Q/A) of 0.147 m(3)/day for 15 weeks at a temperature range of 14.5-36°C. A substantial reduction in the average concentration of different pollution indicators, such as chemical oxygen demand (COD) (85.6%), biochemical oxygen demand (BOD5) (85.6%), total dissolved solid (TDS) (62.8%), total suspended solid (TSS) (99.9%), electrical conductivity (EC) (15.1%), phosphates (63.22%), sulfates (28.5%) and total nitrogen (TN) (34.4%), was observed during 15 weeks of operational period. Whereas a considerable average increase in the levels of dissolved oxygen (DO) (63.2%) was found after treatment of wastewater by the TBF system. No significant reduction in most probable number (MPN) index of fecal coliforms was observed in the effluent in first 9 weeks of operation. However, a significant reduction in the MPN of fecal coliforms was observed, i.e. 80-90% in the last few weeks of treatment. Thus, overall results suggest that pilot-scale TBF has a great potential to be transferred to field scale for treating sewage for small communities in developing countries, in order to produce effluent of good quality, which can be safely used for irrigation as well as ornamental purposes.

  12. Irreversible Wash Aid Additive for Cesium Mitigation. Small-Scale Demonstration and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part of the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.

  13. Bentonite mat demonstration: Field performance evaluation of an alternative geosynthetic composite cover system

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.G. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site

    1994-12-31

    The Savannah River Site is investigating an alternative RCRA closure cover system configuration for hazardous solid-waste landfills. The bentonite mat demonstration is a field performance test of an alternative composite geosynthetic material cover configuration. The bentonite mat demonstration consists of four test pads; each test pad is a compacted sandy clay layer 30 ft wide, 80 ft long, and 2 ft deep. Three of the test pads will be blanketed with one of the commercially available bentonite mats (geosynthetic clay liner), then overlain by a flexible membrane liner to form the composite barrier. The remaining test pad will not contain any geosynthetic materials and will be used as the control pad for the demonstration. Each test pad will be constructed over a 4-ft sand layer. A series of access pipes will be embedded in the sand layer to provide a means for evacuating portions of the sand layer in order to create underlying cavities, thus inducing localized subsidence in the test pad. Material stress data will be collected to identify the composite barrier failure point. Infiltration data will be collected for each test pad to correlate permeability as a function of deflection. At the conclusion of the subsidence testing, the test pads will be dismantled to identify the failure mechanisms of the barriers. A finite-element analysis computer model is being developed to predict the structural behavior of the composite barrier system. The bentonite mat demonstration data will be used to verify this model, which will serve as a diagnostic tool for future designs. The formulation and execution of this demonstration is one element in achieving regulatory approval of the composite geosynthetic materials alternative cover system design configuration.

  14. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.

    2015-11-01

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  15. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  16. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.

    Science.gov (United States)

    Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar

    2015-01-01

    The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers.

  17. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    Science.gov (United States)

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%.

  18. Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digester.

    Science.gov (United States)

    Alvarez, J A; Zapico, C A; Gómez, M; Presas, J; Soto, M

    2003-01-01

    Raw domestic wastewater from the city of Santiago de Compostela (Northwest Spain) was fed into a pilot-scale hydrolytic up flow sludge bed (HUSB) digester with an active volume of 25.5 m3. The total influent chemical oxygen demand (COD) ranged from 360 to 470 mg/l, the influent SS varied from 190 to 370 mg/l, and the temperature was between 17 degrees and 20 degrees C. The organic load rate (OLR) applied increased step by step from 1.2 to 3.9 kgCOD/m3 x d, while the hydraulic retention time (HRT) decreased from 7.1 h to 2.9 h. A high suspended solids (SS) removal of about 82-85% from the influent was reached, most of which (81 to 88%) was eliminated by hydrolysis, while the rest remained in the purge stream. The total COD removal ranged from 46 to 59%. On the other hand, a high acidification of the COD remaining in the effluent was obtained, so the percent COD in the form of volatile fatty acids (VFA(COD)) with respect to total effluent COD was about 43% for the highest HRT applied, and about 27% for the lowest HRT. The soluble to total COD ratio (CODs/CODt) increased from 25-32% for the influent to 71-86% for the effluent. The results obtained confirm the viability and interest of direct anaerobic hydrolytic pre-treatment of domestic wastewater.

  19. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater.

    Science.gov (United States)

    Kimura, Katsuki; Yamato, Nobuhiro; Yamamura, Hiroshi; Watanabe, Yoshimasa

    2005-08-15

    The main obstacle for wider use of membrane bioreactors (MBRs) for wastewater treatment is membrane fouling (i.e., deterioration of membrane permeability),which increases operating costs. For more efficient control of membrane fouling in MBRs, an understanding of the mechanisms of membrane fouling is important. However, there is a lack of information on membrane fouling in MBRs, especially information on features of components that are responsible for the fouling. We conducted a pilot-scale experiment using real municipal wastewater with three identical MBRs under different operating conditions. The results obtained in this study suggested that the food-microorganisms ratio (F/M) and membrane filtration flux were the important operating parameters that significantly influenced membrane fouling in MBRs. Neither concentrations of dissolved organic matter in the reactors nor viscosity of mixed liquor, which have been thought to have influences on fouling in MBRs, showed clear relationships with membrane fouling in this study. Organic substances that had caused the membrane fouling were desorbed from fouled membranes of the MBRs at the termination of the operation and were subjected to Fourier transform infrared (FTIR) and 13C nuclear magnetic resonance (NMR) analyses. These analyses revealed that the nature of the membrane foulant changes depending on F/M. It was shown that high F/M would make the foulant more proteinaceous. Carbohydrates were dominant in membrane foulants in this study, while features of humic substances were not apparent.

  20. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.

    Science.gov (United States)

    Morgan-Sagastume, F; Hjort, M; Cirne, D; Gérardin, F; Lacroix, S; Gaval, G; Karabegovic, L; Alexandersson, T; Johansson, P; Karlsson, A; Bengtsson, S; Arcos-Hernández, M V; Magnusson, P; Werker, A

    2015-04-01

    A pilot-scale process was operated over 22 months at the Brussels North Wastewater Treatment Plant (WWTP) in order to evaluate polyhydroxyalkanoate (PHA) production integration with services of municipal wastewater and sludge management. Activated sludge was produced with PHA accumulation potential (PAP) by applying feast-famine selection while treating the readily biodegradable COD from influent wastewater (average removals of 70% COD, 60% CODsol, 24% nitrogen, and 46% phosphorus). The biomass PAP was evaluated to be in excess of 0.4gPHA/gVSS. Batch fermentation of full-scale WWTP sludge at selected temperatures (35, 42 and 55 °C) produced centrate (6-9.4 gCODVFA/L) of consistent VFA composition, with optimal fermentation performance at 42 °C. Centrate was used to accumulate PHA up to 0.39 gPHA/gVSS. The centrate nutrients are a challenge to the accumulation process but producing a biomass with 0.5 gPHA/gVSS is considered to be realistically achievable within the typically available carbon flows at municipal waste management facilities.

  1. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite

    Institute of Scientific and Technical Information of China (English)

    SU Shi-jun; ZHU Xiao-fan; LIU Yong-jun; JIANG Wen-ju; JIN Yan

    2005-01-01

    MnO2 in pyrolusite can react with SO2 in flue gas and obtain by-product MnSO4· H2 O. A pilot scale jet bubbling reactor was applied in this work. Different factors affecting both SO2 absorption efficiency and Mn2+ extraction rate have been investigated, these factors include temperature of inlet gas flue, ration of liquid/solid mass flow rate(L/S), pyrolusite grade, and SO2 concentration in the inlet flue gas. In the meantime, the procedure of purification of absorption liquid was also discussed. Experiment results indicated that the increase of temperature from 30 to 70 K caused the increase of SO2 absorption efficiency from 81.4% to 91.2%. And when SO2 concentration in the inlet flue gas increased from 500 to 3000 ppm, SO2 absorption efficiency and Mn2+ extraction rate decreased from 98.1% to 82.2% and from 82.8% to 61.7%, respectively. The content of MnO2 in pyrolusite had a neglectable effect on SO2 absorption efficiency. Low L/S was good for both removal of SO2 and Mn2+ extraction. The absorption liquid was filtrated and purified to remove Si,standards.

  2. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  3. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  4. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  5. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

    2003-01-01

    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

  6. Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.

    Science.gov (United States)

    Smith, Ami M; Sharma, Deepak; Lappin-Scott, Hilary; Burton, Sara; Huber, David H

    2014-03-01

    The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m(3) digester produced biogas with 57% methane, and chemical oxygen demand removal of 54%. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93% of the clones and 76% of the pyrotags. Of the Firmicutes, class Clostridia (52% pyrotags) was most abundant followed by class Bacilli (13% pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97% minimum similarity level. Fifteen OTUs were dominant (≥2% abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (99% of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.

  7. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    Science.gov (United States)

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  8. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    Science.gov (United States)

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.

  9. Removal of N, P, BOD5, and coliform in pilot-scale constructed wetland systems.

    Science.gov (United States)

    Jin, Guang; Kelley, Tim; Freeman, Mike; Callahan, Mike

    2002-01-01

    Pilot-scale surface-flow (SF), subsurface-flow (SSF), and floating aquatic plant (FAP) constructed wetland system designs were installed and evaluated to determine the effectiveness of constructed wetlands to treat tertiary effluent wastewater in a Midwestern U.S. climate (central Illinois). Average ammonia-nitrogen (N) concentrations decreased approximately 50% in the SSF system design, suggesting that this design had the highest nitrification rate. Nitrate-N concentrations decreased by over 60% in the FAP system design, possibly due to dissimilatory reduction or plant uptake. Total phosphorus (P) concentration reductions of 25 to 40% were observed in all three system designs. Five-day biochemical oxygen demand (BOD5) and dissolved oxygen (DO) results suggested that biodegradation was highest in the SSF system design and lowest in the FAP system design. Greater than 90% concentration reductions of total coliform and E. coli recovered were also observed following treatment in all three system designs. The FAP system design appeared to yield the highest concentration reduction efficiency for E. coli, possibly due to increased sunlight and related bacteriocidal ultraviolet light exposure. Ongoing experiments will test regularly for a variety of vegetative, water quality, and biological conditions for longer time periods in order to gain a better understanding of the pilot constructed wetland system design kinetics.

  10. Simulated control in Aspen Dynamics for the production of limonene epoxide at pilot scale

    Directory of Open Access Journals (Sweden)

    Yeison Agudelo Arenas

    2016-12-01

    Full Text Available In this contribution is reported the study and analysis of the control system (simulated for the process of obtaining limonene epoxide. The modelling of the process at pilot scale was implemented in the software Aspen Plus from literature reports. Aspen Dynamics was used for the study of the process control. The model allows observing the behavior of the variables of interest in the process such as outflows from the distillation tower, heat duty, operating temperaturas and purity of the final product (limonene epoxide. The performance of the controllers (level, flow and temperature was evaluated by simulating disturbances (+30% in the feedstream to the process. Sensitivity analysis and preliminary design specifications allow to conclude that according to the simulations it is possible to obtain limonene epoxide (97,5% w/w with this system. The results of this work can be used for more detailed studies of the system, including experimental study designs that help to determine the operating point for the process variables which increase limonene epoxide production.

  11. Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerin.

    Science.gov (United States)

    Razaviarani, Vahid; Buchanan, Ian D; Malik, Shahid; Katalambula, Hassan

    2013-04-01

    The effect on process performance of adding increasing proportions of biodiesel waste glycerin (BWG) to municipal wastewater sludge (MWS) was studied using two 1300 L pilot-scale digesters under mesophilic conditions at 20 days SRT. The highest proportion of BWG that did not cause a process upset was determined to be 23% and 35% of the total 1.04 kg VS/(m(3)d) and 2.38 kg COD/(m(3)d) loadings, respectively. At this loading, the biogas and methane production rates in the test digester were 1.65 and 1.83 times greater than of those in the control digester which received only MWS, respectively. The COD and VS removal rates at this loading in the test digester were 1.82 and 1.63-fold those of the control digester, respectively. Process instability was observed when the proportion of BWG in the test digester feed was 31% and 46% of the 1.18 kg VS/(m(3)d) and 2.88 kg COD/(m(3)d) loadings, respectively.

  12. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-09-14

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  13. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.

    Science.gov (United States)

    Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr

    2014-01-01

    This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.

  14. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    Science.gov (United States)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-07-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  15. Experimental proof of concept of a pilot-scale thermochemical storage unit

    Science.gov (United States)

    Tescari, Stefania; Singh, Abhishek; de Oliveira, Lamark; Breuer, Stefan; Agrafiotis, Christos; Roeb, Martin; Sattler, Christian; Marcher, Johnny; Pagkoura, Chrysa; Karagiannakis, George; Konstandopoulos, Athanasios G.

    2017-06-01

    The present study presents installation and operation of the first pilot scale thermal storage unit based on thermochemical redox-cycles. The reactive core is composed of a honeycomb ceramic substrate, coated with cobalt oxide. This concept, already analyzed and presented at lab-scale, is now implemented at a larger scale: a total of 280 kg of storage material including 90 kg of cobalt oxide. The storage block was implemented inside an existing solar facility and connected to the complete experimental set-up. This experimental set-up is presented, with focus on the measurement system and the possible improvement for a next campaign. Start-up and operation of the system is described during the first complete charge-discharge cycle. The effect of the chemical reaction on the stored capacity is clearly detected by analysis of the temperature distribution data obtained during the experiments. Furthermore two consecutive cycles show no evident loss of reactivity inside the material. The system is cycled between 650°C and 1000°C. In this temperature range, the total energy stored was about 50 kWh, corresponding to an energy density of 630 kJ/kg. In conclusion, the concept feasibility was successfully shown, together with a first calculation on the system performance.

  16. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    Science.gov (United States)

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use.

  17. Production of Zinc Borate for Pilot-Scale Equipment and Effects of Reaction Conditions on Yield

    Directory of Open Access Journals (Sweden)

    Melek BARDAKCI

    2013-05-01

    Full Text Available In this study, zinc borate (ZB was synthesized by reacting zinc oxide and boric acid in the presence of standard ZB (w/w, in terms of boric acid in order to promote crystallization. The effects of seed, H3BO3/ZnO (boric acid/zinc oxide ratio, reaction time, water volume, reaction temperature and cooling temperature on yield were investigated for pilot-scale equipment. The results indicated that the addition of seed (w/w to a saturated solution of reactants increased the yield of the reaction. The results of reaction yields obtained from either magnetically or mechanically stirred systems were compared. At various reaction times, the optimal yield was 86.78 % in a saturated aqueous solution. The products were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and Thermogravimetric / Differential Thermal Analysis (TG/DTA. The results displayed that ZB was successfully produced under the optimized reaction conditions and the product synthesized had high thermal stability.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4432

  18. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  19. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw.

    Science.gov (United States)

    Sharma, Sandeep; Kumar, Ravindra; Gaur, Ruchi; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Das, Biswapriya

    2015-01-01

    Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200°C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (∼87%) at 200 and 180°C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Petrochemical wastewater treatment with a pilot-scale bioaugmented biological treatment system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures,bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O)process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously increased.

  1. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system

    Institute of Scientific and Technical Information of China (English)

    PENG Yongzhen; HOU Hongxun; WANG Shuying; CUI Youwei; Zhiguo Yuan

    2008-01-01

    To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal(SNDPR),a whole course of SNDPR damage and recovery was studied in a pilot-scale,anaerobicanoxic oxidation ditch(OD),where the volumes of anaerobic zone,anoxic zone,and ditches zone of the OD system were 7,21,and 280L,respectively.The reactor was fed with municipal wastewater with a flow rate of 336 L/d.The concept of simultaneous nitrification and denitrification (SND)rate(rSND) was put forward to quantify SND.The results indicate that:(1)high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase,total nitrogen (TN) and total phosphate(TP) removal rates were 80%and 85%,respectively;(2)when the system was aerated excessively,the stability of SND was damaged,and rSND dropped from 80% to 20%or less;(3)the natural logarithm of the ratio of NOx to MJ4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP);(4)when NO3- was less than 6 mg/L.high phosphorus removal efficiency could be achieved;(5)denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system.The major innovation was that the SND rate was devised and quantified.

  2. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven.

    Science.gov (United States)

    Cinquanta, L; Albanese, D; Cuccurullo, G; Di Matteo, M

    2010-01-01

    The effects on orange juice batch pasteurization in an improved pilot-scale microwave (MW) oven was evaluated by monitoring pectin methyl-esterase (PME) activity, color, carotenoid compounds and vitamin C content. Trials were performed on stirred orange juice heated at different temperatures (60, 70, 75, and 85 degrees C) during batch process. MW pilot plant allowed real-time temperature control of samples using proportional integrative derivative (PID) techniques based on the infrared thermography temperature read-out. The inactivation of heat sensitive fraction of PME, that verifies orange juice pasteurization, showed a z-value of 22.1 degrees C. Carotenoid content, responsible for sensorial and nutritional quality in fresh juices, decreased by about 13% after MW pasteurization at 70 degrees C for 1 min. Total of 7 carotenoid compounds were quantified during MW heating: zeaxanthin and beta-carotene content decreased by about 26%, while no differences (P < 0.05) were found for beta-cryptoxanthin in the same trial. A slight decrease in vitamin C content was monitored after MW heating. Results showed that MW heating with a fine temperature control could result in promising stabilization treatments.

  3. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    Science.gov (United States)

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  4. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    Science.gov (United States)

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  5. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Chemoautotrophic ammonia oxidizing bacteria (AOB have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs. However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The community dynamics of ammonia oxidizing bacteria (AOB in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP. During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days of AOB community structures was 10% ± 8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO, effluent ammonia, effluent Biochemical Oxygen Demand (BOD and temperature. CONCLUSIONS/SIGNIFICANCE: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.

  6. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    Science.gov (United States)

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  7. Comparison of microbial communities in pilot-scale bioreactors treating Bayer liquor organic wastes.

    Science.gov (United States)

    McSweeney, Naomi J; Plumb, Jason J; Tilbury, Amanda L; Nyeboer, Hugh J; Sumich, Matt E; McKinnon, Anthony J; Franzmann, Peter D; Sutton, David C; Kaksonen, Anna H

    2011-04-01

    Western Australian bauxite deposits are naturally associated with high amounts of humic and fulvic materials that co-digest during Bayer processing. Sodium oxalate remains soluble and can co-precipitate with aluminium hydroxide unless it is removed. Removal of sodium oxalate requires a secondary crystallisation step followed by storage. Bioreactors treating oxalate wastes have been developed as economically and environmentally viable treatment alternatives but the microbial ecology and physiology of these treatment processes are poorly understood. Analysis of samples obtained from two pilot-scale moving bed biofilm reactors (MBBRs) and one aerobic suspended growth bioreactor (ASGB) using polymerase chain reaction- denaturing gradient gel electrophoresis of 16S rRNA genes showed that members of the α-, β- and γ-Proteobacteria subgroups were prominent in all three processes. Despite differing operating conditions, the composition of the microbial communities in the three reactors was conserved. MBBR2 was the only configuration that showed complete degradation of oxalate from the influent and the ASGB had the highest degradation rate of all three configurations. Several strains of the genus Halomonas were isolated from the bioreactors and their morphology and physiology was also determined.

  8. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.

    Science.gov (United States)

    Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2017-05-01

    The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO2-H2S absorption column (AC) via settled broth recirculation. CO2-removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H2S removal was achieved regardless of the operational conditions. A maximum CH4 concentration of 94% with a limited O2 and N2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm(-2)d(-1) and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.

    Science.gov (United States)

    Tok, Ai Tee; Goh, Xueping; Ng, Wai Kiong; Tan, Reginald B H

    2008-01-01

    The purpose of this research was to analyze and compare the responses of three Process Analytical Technology (PAT) techniques applied simultaneously to monitor a pilot-scale fluidized bed granulation process. Real-time measurements using focused beam reflectance measurement (Lasentec FBRM) and near-infra red spectroscopy (Bruker NIR) were taken by inserting in-line probes into the fluidized bed. Non-intrusive acoustic emission measurements (Physical Acoustic AE) were performed by attaching piezoelectric sensors on the external wall of the fluidized bed. Powder samples were collected at regular intervals during the granulation process and characterized offline using laser diffraction, scanning electron microscopy, stereo-optical microscopy and loss on drying method. PAT data comprising chord length distribution and chord count (from FBRM), absorption spectra (from NIR) and average signal levels and counts (from AE) were compared with the particle properties measured using offline samples. All three PAT techniques were able to detect the three granulation regimes or rate processes (wetting and nucleation, consolidation and growth, breakage) to varying degrees of sensitivity. Being dependent on optical signals, the sensitivities of the FBRM and NIR techniques were susceptible to fouling on probe windows. The AE technique was sensitive to background fluidizing air flows and external interferences. The sensitivity, strengths and weaknesses of the PAT techniques examined may facilitate the selection of suitable PAT tools for process development and scale-up studies.

  10. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    Science.gov (United States)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  11. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    Science.gov (United States)

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J

    2009-01-01

    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  12. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  13. Treatment of Pulp Mill D-Stage Bleaching Effluent Using a Pilot-Scale Electrocoagulation System.

    Science.gov (United States)

    Perng, Yuan-Shing; Wang, Eugene I-Chen

    2016-03-01

    A pilot-scale study was conducted using electrocoagulation technology to treat chlorine dioxide bleaching-stage effluent of a local pulp mill, with the purpose of evaluating the treatment performance. The operating variables were the current density (0 ~ 133.3 A/m(2)) and hydraulic retention time (HRT, 6.5 ~ 16.25 minutes). Water quality indicators investigated were the conductivity, suspended solids (SS), chemical oxygen demand (COD), true color, and hardness. The results showed that electrocoagulation technology can be used to treat D-stage bleaching effluent for water reuse. Under the operating conditions studied, the removal of conductivity and COD always increased with increases in either the current density or HRT. The highest removals obtained at 133.3 A/m(2) and an HRT of 16.25 minutes for conductivity, SS, COD, true color, and hardness were respectively 44.2, 98.5, 75.0, 85.9, and 36.9% with aluminum electrodes. Iron electrodes were not applicable to the D-stage effluent due to formation of dark-colored ferric complexes.

  14. Production of Zinc Borate for Pilot-Scale Equipment and Effects of Reaction Conditions on Yield

    Directory of Open Access Journals (Sweden)

    Melek BARDAKCI

    2013-05-01

    Full Text Available In this study, zinc borate (ZB was synthesized by reacting zinc oxide and boric acid in the presence of standard ZB (w/w, in terms of boric acid in order to promote crystallization. The effects of seed, H3BO3/ZnO (boric acid/zinc oxide ratio, reaction time, water volume, reaction temperature and cooling temperature on yield were investigated for pilot-scale equipment. The results indicated that the addition of seed (w/w to a saturated solution of reactants increased the yield of the reaction. The results of reaction yields obtained from either magnetically or mechanically stirred systems were compared. At various reaction times, the optimal yield was 86.78 % in a saturated aqueous solution. The products were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and Thermogravimetric / Differential Thermal Analysis (TG/DTA. The results displayed that ZB was successfully produced under the optimized reaction conditions and the product synthesized had high thermal stability.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4432

  15. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.

    Science.gov (United States)

    Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E

    2011-03-01

    A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.

  16. Suppression of dioxins by S-N inhibitors in pilot-scale experiments.

    Science.gov (United States)

    Zhan, Ming-Xiu; Fu, Jian-Ying; Chen, Tong; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-08-01

    S-N inhibitors like thiourea and sewage sludge decomposition gases (SDG) are relatively novel dioxins suppressants and their efficiencies are proven in numerous lab-scale experiments. In this study, the suppression effects of both thiourea and SDG on the formation of dioxins are systematically tested in a pilot-scale system, situated at the bypass of a hazardous waste incinerator (HWI). Moreover, a flue gas recirculation system is used to get high dioxin suppression efficiencies. Operating experience shows that this system is capable of stable operation and to keep gaseous suppressant compounds at a high and desirable molar ratio (S + N)/Cl level in the flue gas. The suppression efficiencies of dioxins are investigated in flue gas both without and with addition of S-N inhibitors. A dioxin reduction of more than 80 % is already achieved when the (S + N)/Cl molar ratio is increased to ca. 2.20. When this (S + N)/Cl molar ratio has augmented to 4.18 by applying suppressant recirculation, the residual PCDD/Fs concentration in the flue gas shrank from 1.22 to 0.08 ng I-TEQ/Nm(3). Furthermore, the congener distribution of dioxins is analysed to find some possible explanation or suppression mechanism. In addition, a correlation analysis between (S + N)/Cl molar ratios and PCDD/Fs is also conducted to investigate the chief functional compounds for dioxin suppression.

  17. Pilot-scale study of removal effect on Chironomid larvae with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Chironomid larvae propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfection process like chlorination due to its stronger resistance to oxidation. In this paper, a pilot-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Chironomid larvae removal was conducted in Shenzhen Waterworks in Guangdong Province, China. The experimental results were compared with that of the existing prechlorination process in several aspects, including the Chironomid larvae removal efficiencies of water samples taken from the outlets of sedimentation tank, sand filter, the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Chironomid larvae than chlorine and Chironomid larvae could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that ofprechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.

  18. Removal of phosphorus from wastewaters using ferrous salts - a pilot scale membrane bioreactor study.

    Science.gov (United States)

    Wang, Yuan; Tng, K Han; Wu, Hao; Leslie, Greg; Waite, T David

    2014-06-15

    A pilot scale membrane bioreactor (3.7 m(3)/day capacity), configured for alternate point ferrous sulphate addition, was evaluated in a fourteen month trial to comply with an effluent discharge requirement of less than 0.15 mg-P/L at the 50(th) percentile and less than 0.30 mg-P/L at the 90th percentile. Ferrous sulphate was added at a molar ratio (Fe(II):PO4) of 2.99 in the filtration chamber for 85 days and 2.60 in the primary anoxic zone for 111 days. Addition of ferrous salts to the anoxic zone achieved a final effluent phosphorous concentration (mg-P/L) of ferrous salts in the filtration zone achieved ferrous salts were added to the membrane zone while the reactor behaved close to a completely mixed reactor when dosing to the primary anoxic zone, resulting in improved phosphorus removal. The addition of ferrous salt was also found to delay the onset of severe increase in trans-membrane pressure as a result of the removal of macro-molecules. However, detailed analysis of the form and concentration of iron species in the supernatant and permeate indicated that the presence of fine iron particles resulted in a higher fouling rate when Fe(II) was added to the membrane zone rather than the primary anoxic zone and could cause more severe irreversible fouling in long-term operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes.

    Science.gov (United States)

    Lee, Jiho; Lee, Byoung C; Ra, Jin S; Cho, Jaeweon; Kim, In S; Chang, Nam I; Kim, Hyun K; Kim, Sang D

    2008-04-01

    The removal efficiency of endocrine disrupting compounds from effluents using pilot scale sewage treatment processes, including various treatment technologies, such as membrane bioreactors (MBR), nanofiltration (NF) and reverse osmosis (RO) for the purpose of water reuse, were estimated and compared. The calculated estrogenic activity, expressed in ng-EEQ/l, based on the concentration detected by GC/MS, and relative potencies for each target compound were compared to those measured using the E-screen assay. The removal efficiencies for nonylphenol, was within the range of 55-83% in effluents. High removal efficiencies of approximately >70% based on the detection limits were obtained for bisphenol A, E1, EE2 and genistein with each treatment processes, with the exception of E1 ( approximately 64%) using the MBR process. The measured EEQ values for the effluents from the MBR, NF and RO processes also indicated low estrogenic activities of 0.65, 0.23 and 0.05 ng-EEQ/l, respectively. These were markedly reduced values compared with the value of 1.2 ng-EEQ/l in influent. Consequently, the removals of EDCs in terms of the EEQ value from the biological and chemical determinations were sufficiently achieved by the treatment process applied in this study, especially in the cases of the NF and RO treatments.

  20. Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

    Science.gov (United States)

    Meinel, F; Sperlich, A; Jekel, M

    Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

  1. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  2. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  3. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  4. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  5. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis.

    Science.gov (United States)

    Ferraz, F M; Bruni, A T; Povinelli, J; Vieira, E M

    2016-01-15

    Multivariate analysis was used to identify the variables affecting the performance of pilot-scale activated sludge (AS) reactors treating old leachate from a landfill and from domestic wastewater. Raw leachate was pre-treated using air stripping to partially remove the total ammoniacal nitrogen (TAN). The control AS reactor (AS-0%) was loaded only with domestic wastewater, whereas the other reactor was loaded with mixtures containing leachate at volumetric ratios of 2 and 5%. The best removal efficiencies were obtained for a ratio of 2%, as follows: 70 ± 4% for total suspended solids (TSS), 70 ± 3% for soluble chemical oxygen demand (SCOD), 70 ± 4% for dissolved organic carbon (DOC), and 51 ± 9% for the leachate slowly biodegradable organic matter (SBOM). Fourier transform infrared (FTIR) spectroscopic analysis confirmed that most of the SBOM was removed by partial biodegradation rather than dilution or adsorption of organics in the sludge. Nitrification was approximately 80% in the AS-0% and AS-2% reactors. No significant accumulation of heavy metals was observed for any of the tested volumetric ratios. Principal component analysis (PCA) and partial least squares (PLS) indicated that the data dimension could be reduced and that TAN, SCOD, DOC and nitrification efficiency were the main variables that affected the performance of the AS reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bell Creek field micellar-polymer pilot demonstration. Third annual report, October 1978-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Goldburg, A.

    1980-07-01

    Gary Energy Corporation is conducting a DOE Demonstration Pilot to determine if micellar-polymer flooding is an economically feasible technique to enhance oil recovery from the Bell Creek Field, Powder River County, southeastern Montana. The pilot is a contained 40-acre 5-spot located in a representative watered-out portion of Unit A Reservoir. The pay is sandstone with an average net pay of 6.4 feet, air permeability of 1050 md, and water TDS of 4000 ppM. The current average remaining oil saturation in the 40-acre pilot area is estimated to be 28%. The pilot has four injectors (Wells MPP-1, MPP-2, MPP-3, and MPP-4) and one producer (Well 12-1). The overall micellar-polymer oil recovery is estimated at 47% of the remaining oil at the initiation of the micellar-polymer flood. In the third contract year (October 1978 to September 1979), all tasks including the initiation of soluble oil/micellar injection were completed. Test site development included completion of: (1) radioactive tracer survey and analysis, (2) core analysis, (3) pressure pulse tests and analysis, (4) reservoir description, and (5) test site facilities. Based on test site development data, soluble oil/micellar formulation was finalized and mathematical simulation work by Intercomp completed. The preflush injection phase of the demonstration program was completed, and the soluble oil/micellar injection was initiated at the end of the contract year. The pilot demonstration project has progressed as scheduled.

  7. Implementation and field demonstration of PacketBLAST system for tactical communications

    Science.gov (United States)

    Pidwerbetsky, Alex; Beacken, Marc; Romain, Dennis; Girone, Michael

    2006-05-01

    Multiple Input Multiple Output (MIMO) wireless communications vastly expand the capacity and connectivity of communications for forces operating in challenging environments such as urban or forested terrain. A MIMO architecture called BLAST (Bell Laboratories Layered Space-Time) has been formulated to realize these capacities. We have developed a packet version of BLAST, called PacketBLAST, specifically to support high mobility, ad-hoc, tactical communications on the move in challenging environments. PacketBLAST offers a number of benefits to tactical communications. We have implemented a first-ever, end-to-end mobile, ad-hoc network (MANET) of PacketBLAST nodes and have successfully tested it in a number of field demonstrations.

  8. Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, James [Cass Business School, City University, 106 Bunhill Row, London EC1Y 8TZ (United Kingdom)], E-mail: j.e.brown@city.ac.uk; Hendry, Chris [Cass Business School, City University, 106 Bunhill Row, London EC1Y 8TZ (United Kingdom)], E-mail: c.n.hendry@city.ac.uk

    2009-07-15

    The paper considers the role of government funded demonstration projects and field trials (DTs) in accelerating the commercialisation of new energy technologies that meet a public good but do not have immediate market appeal [Sagar, A.D., van der Zwaan, B., 2006. Technological innovation in the energy sector: R and D, deployment, and learning-by-doing. Energy Policy 34, 2601-2608]. Drawing on an original database of DTs in the EU, Japan and USA from 1973 to 2004, we review the history of DTs in photovoltaic technology for electricity generation, and its subsequent take up as a commercial energy source. We find that DTs that are aimed purely at discovering suitable market opportunities are less successful in achieving diffusion than projects that target a particular application and concentrate resources on it. The former nevertheless have a vital role to play in the learning process, while a targeted focus is often dependent on national industrial and institutional factors.

  9. Public demonstration projects and field trials. Accelerating commercialisation of sustainable technology in solar photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, James; Hendry, Chris [Cass Business School, City University, 106 Bunhill Row, London EC1Y 8TZ (United Kingdom)

    2009-07-15

    The paper considers the role of government funded demonstration projects and field trials (DTs) in accelerating the commercialisation of new energy technologies that meet a public good but do not have immediate market appeal [Sagar, A.D., van der Zwaan, B., 2006. Technological innovation in the energy sector: R and D, deployment, and learning-by-doing. Energy Policy 34, 2601-2608]. Drawing on an original database of DTs in the EU, Japan and USA from 1973 to 2004, we review the history of DTs in photovoltaic technology for electricity generation, and its subsequent take up as a commercial energy source. We find that DTs that are aimed purely at discovering suitable market opportunities are less successful in achieving diffusion than projects that target a particular application and concentrate resources on it. The former nevertheless have a vital role to play in the learning process, while a targeted focus is often dependent on national industrial and institutional factors. (author)

  10. Big Muddy Field Low-Tension Flood Demonstration Project. Third annual report, April 1980-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.G.; Ferrell, H.H.; Stewart, W.C.

    1981-11-01

    Objectives of the project are: evaluate a commercial-scale field test using cost-optimized chemical slug size and composition; field test a surfactant system which could be made available in commercial quantities; demonstrate oil recovery effectiveness in multiple patterns; and demonstrate the feasibility of applying a low-tension process to low-permeability sands by using propped fractures in injection and producing wells. The first annual report dealt primarily with drilling, formation evaluation, and preliminary plant design. The second annual report emphasized plant construction and completion of laboratory work to specify the chemicals needed for the project. This report discusses the project operation during the preflush and problems arising during start-up of chemical injection. The most significant operating problem during the preflush was failure of the monel filter screens due to chlorine attack. The monel screens were replaced with polyester cloth screens. The cloth screens worked very well filtering the preflush water. After a short term test in which the 200-square-foot filter showed that the cloth screens would also filter the polymer, polyester cloth screens were ordered as replacement screens for the 800-square-foot product filter. All of the construction and installation necessary for the chemical phase handling and blending were completed, individual components were checked out, and the low-tension slug injection was scheduled to begin the latter half of January. In spite of the preparation, low-tension slug injection has been delayed because of continued faulty filter operation. The exact cause of the erratic filter operation is still being evaluated.

  11. COST-BENEFIT ANALYSIS OF BIOCONVERSION NEUFCHATEL WHEY INTO RECTIFIED ETHANOL AND ORGANIC LIQUID FERTILIZER IN SEMI PILOT SCALE

    Directory of Open Access Journals (Sweden)

    Gemilang Lara UTAMA

    2015-10-01

    Full Text Available Aims of the study was to determine the cost-benefit analysis in neufchatel whey bioconversion into rectified ethanol and organic liquid fertilizer. Bioconversion whey into rectified ethanol and organic liquid fertilizer has shown great potential as a way to reduce the pollution resulting from cheese-making process. Semi pilot scale experiment was done to ferment 5 L neufchatel whey using 5% K. lactis at 33°C for 24 h in semi anaerobic plastic container without agitation and then distilled into 96.2% purity. Data collected and analyzed descriptively related to benefit cost ratio/BCR, net present value/NPV and internal rate returns/IRR. The result showed that semi pilot scale bioconversion of neufchatel whey resulting in 106.42 ml rectified ethanol and 4404.22 ml distillery residue. Economic benefit could achieved by the support of distillery residue sales as organic liquid fertilizer.

  12. Prediction of wall deposition behaviour in a pilot-scale spray dryer using deposition correlations for pipe flows

    Institute of Scientific and Technical Information of China (English)

    KOTA K.; LANGRISH T.A.G.

    2007-01-01

    The particle deposition behaviour of skim milk, water and maltodextrin in the conical section of a pilot-scale spray dryer was predicted using simple correlations for particle depositions in pipes. The predicted particle deposition fluxes of these materials were then compared with the measured deposition fluxes. The predicted particle deposition regimes of the spray dryer were expected to be in the diffusional and mixed (diffusional and inertial) regimes, but the experimental results suggested that the particle deposition was mainly in the inertial regime. Therefore, using the pipe correlations for predicting deposition in a pilot-scale spray dryer suggests that they do not sufficiently represent the actual deposition behaviour. This outcome indicates that a further study of particle flow patterns needs to be carried out using numerical simulations (computational fluid dynamics,CFD) in view of the additional geometrical complexity of the spray dryer.

  13. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    Science.gov (United States)

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.

  14. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    Electrode units for electrokinetic desalination of masonry has been developed and tested in pilot scale at three different locations. The units are formed as casings with a metallic mesh electrode, and carbonate rich clay to buffer the acid produced at the anode. The case has an extra loose bottom...... which allows continuous pressure between clay and masonry so good electrical contact is remained. The electrode units were tested at three different locations, two on baked brick masonry (inside in a heated room and outside on a masonry with severe plaster peeling) and the third pilot scale experiment...... was conducted outside on a limestone masonry. The duration of the experiments was 4-8 month. Chloride concentrations were measured in drilling powder from the masonry before and after experiments. In all three masonries, the average concentrations decreased. The transport numbers for chloride was between 0...

  15. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  16. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    Science.gov (United States)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  17. Big Muddy Field Low-Tension Flood Demonstration Project. Sixth annual report, April 1983-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The Big Muddy low-tension flood is a commercial-size demonstration project consisting of nine 10-acre injection patterns in the heart of the Big Muddy Oil Field located 15 miles east of Casper, Wyoming. The main goal of the project is to provide data for commercialization of the process for the Big Muddy Field and similar Wyoming and Colorado fields. Other objectives are discussed in previous annual reports. This report discusses the project performance during the polymer drive phase with emphasis on the analyses of oil cut, pattern balance, and early tracer response. The oil rate increased only slightly during 1983 and began to flatten near year-end at about 210 barrels per day or 12% of the injection rate. The injection rate was increased in late 1982 and early 1983 but simply resulted in a net input (influx plus injection) greater than production with only slight improvement in oil rate. In fact, the imbalance is suspected of contributing to the early flattening in oil production. Though the project oil rate flattened, an increased cut was observed in the north row of wells, indicating an oil response to slug injection in all wells except Well 54. Also during 1983, the polymer drive volume increased to about 10% of pore volume or to the midpoint of the polymer drive. Tracer and slug components have still appeared in only a few wells, even after 20% pore volume injection. Oil treating was becoming more troublesome but was relieved when the new treating facility was put into use. 5 references, 91 figures, 7 tables.

  18. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  19. A Online NIR Sensor for the Pilot-Scale Extraction Process in Fructus Aurantii Coupled with Single and Ensemble Methods

    OpenAIRE

    2015-01-01

    Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS) and moving window partial least squares (MWP...

  20. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    Science.gov (United States)

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  1. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies.

    Science.gov (United States)

    Wang, Long; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-12-01

    The anaerobic digestion performances of kitchen waste (KW) and fruit/vegetable waste (FVW) were investigated for establishing engineering digestion system. The study was conducted from lab-scale to pilot-scale, including batch, single-phase and two-phase experiments. The lab-scale experimental results showed that the ratio of FVW to KW at 5:8 presented higher methane productivity (0.725 L CH4/g VS), and thereby was recommended. Two-phase digestion appeared to have higher treatment capacity and better buffer ability for high organic loading rate (OLR) (up to 5.0 g(VS) L(-1) d(-1)), compared with the low OLR of 3.5 g(VS) L(-1) d(-1) for single-phase system. For two-phase digestion, the pilot-scale system showed similar performances to those of lab-scale one, except slightly lower maximum OLR of 4.5 g(VS) L(-1) d(-1) was allowed. The pilot-scale system proved to be profitable with a net profit of 10.173$/ton as higher OLR (⩾ 3.0 g(VS) L(-1) d(-1)) was used.

  2. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broilers.

    Science.gov (United States)

    Zhang, L; Li, J; Yun, T T; Li, A K; Qi, W T; Liang, X X; Wang, Y W; Liu, S

    2015-10-01

    This study was conducted to evaluate the pilot-scale production of microencapsulated in a 500-L fermenter using emulsion and gelation and to assess the effect of the products on the growth performance, antioxidant activity, immune function, and cecal microbiota in Arbor Acres broilers. A total of seven hundred 1-d-old male Arbor Acres broilers were randomly assigned to 7 dietary treatments with 5 replicate pens per treatment and 20 broilers per pen. The dietary treatments were as follows: 1) basal diet (CON), 2) basal diet containing 0.1% Aureomycin (ANT), 3) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P1), 4) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P2), 5) basal diet containing 0.01% empty microcapsules (CAP), 6) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP1), and 7) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP2). The feeding experiment included 2 phases: the starter phase from d 1 to 21 and the grower phase from d 22 to 42. The results showed that a 500-L fermenter could produce 20.73 ± 4.05 kg of microcapsules with an approximate diameter of 549 μm. The feeding experiment showed that ADG of broilers in CAPP1 was significantly ( microencapsulation of microbial cells can be achieved using emulsion and initial gelation and that the dietary administration of microencapsulated can significantly enhance the growth performance, immune function, cecum microbial community, and overall health of broilers.

  3. Pilot Scale Production of Irradiated Natural Rubber Latex and its Dipping Products

    Directory of Open Access Journals (Sweden)

    M. Utama

    2005-07-01

    Full Text Available One hundred and fifty kg natural rubber latex (NRL before and after concentration were added with 3 phr (part hundred ratio of rubber normal butyl acrylate, then the mixture were irradiated at 25 kGy by gamma rays of 60Co in pilot scale. The irradiated natural rubber latex (INRL were then being to use for producing rubber products such as condom, surgical gloves, and spygmomanometer in factory scale. The quality of INRL and rubber products such as : total solid content (TSC, dry rubber content (DRC, KOH, VFA and MST number, tensile strength, modulus, elongation at break, extractable protein content, and response against Type I allergy etc. were evaluated. The economic aspect for producing INRL by means of Gamma Irradiator (GI and Electron Beam Machine (EBM such as payback period (PP, net present value (NPV and internal rate return (IRR were calculated. The results showed that the latex properties of INRL such as DRC, TSC, KOH, VFA, and MST number are not only found to the requirement of the ISO 2004 standard but also the latex has low protein, lipid, and carbohydrate content. The physical and mechanical properties (tensile strength, modulus, and elongation at break of rubber dipping products such as condom, gloves, and sphygmomanometer are not only found to the requirement of ISO 4074, ISO 10282, and ANSI/AAMI SP-1994 standards, but also the allergic response tested clinical latex-sensitive protein allergen by ELISA test on gloves, and by SPT test on condom are found to be negative. It indicates that production of INRL or PVNRL or RVNRL by EBM 250 keV/10 mA, was more cheap than by using gamma γ irradiator 200 kCi, or sulfur vulcanization. The value of PBP (payback period was 2,1 years, NPV (net present value was 4,250 US $, PI (profitability index 1,06 and IRR (internal rate of returns was 25,0%.

  4. Biological Nitrate Removal from Groundwater by Filamentous Media at Pilot Scale, 2015

    Directory of Open Access Journals (Sweden)

    Leila Keshtgar

    2016-07-01

    Full Text Available Background: The compounds which contain nitrogen entering the environment can cause some problems, such as eutrophication for water resources and potential risk for human health because of methemoglobinemia and cancer. Biological techniques are effective in removing nitrate. The aim of this study was to remove nitrate from groundwater using denitrification. The main objectives of this research were determining the reduction of water nitrate based on different retention time and also the effect of using grape extract as organic matter and electron acceptor in biological nitrate removal from water. Methods: In this experimental study, the effect of heterotrophic Pseudomonas separated from Shiraz wastewater treatment plant on removing nitrate from groundwater was investigated at pilot scale using grape extract as carbon source and filamentous media at constant pH (7±0.1 and temperature (20±1 °C. During this study, 2 pilots were made. Pilot number 1 was used for separation and growth of the above mentioned bacteria (Pseudomonas that are able to remove nitrate. Pilot number 2 was also used for surveying the removal of nitrate by these bacteria. At least, 13 samples were examined in every retention time and each test was repeated for 2 or 3 times. Statistical analysis was performed in SPSS (ver.19 software using one-way repeated measures ANOVA, and Bonferroni tests. Results: According to the results, nitrate removal rates were 49%, 55%, 67% and, 67% at retention times of 1, 1.5, 2, and 2.5 hours, respectively. The best retention time was 2 hours with 67% removal rate (P<0.05. Conclusion: The results showed that using grape extract as the carbon source and proper growth of bacteria in filamentous media led to a significant increase in the removal rate

  5. Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study.

    Science.gov (United States)

    Chen, T Y; Kao, C M; Yeh, T Y; Chien, H Y; Chao, A C

    2006-06-01

    The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.

  6. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.

    Science.gov (United States)

    Milani, Mirco; Toscano, Attilio

    2013-01-01

    This article reports the results of evapotranspiration (ET) experiments carried out in Southern Italy (Sicily) in a pilot-scale constructed wetland (CW) made of a combination of vegetated (Phragmites australis) and unvegetated sub-surface flow beds. Domestic wastewater from a conventional wastewater treatment plant was used to fill the beds. Microclimate data was gathered from an automatic weather station close to the experimental plant. From June to November 2009 and from April to November 2010, ET values were measured as the amount of water needed to restore the initial volume in the beds after a certain period. Cumulative reference evapotranspiration (ET(0)) was similar to the cumulative ET measured in the beds without vegetation (ET(con)), while the Phragmites ET (ET (phr) ) was significantly higher underlining the effect of the vegetation. The plant coefficient of P. australis (K(p)) was very high (up to 8.5 in August 2009) compared to the typical K(c) for agricultural crops suggesting that the wetland environment was subjected to strong "clothesline" and "oasis" effects. According to the FAO 56 approach, K(p) shows different patterns and values in relation to growth stages correlating significantly to stem density, plant height and total leaves. The mean Water Use Efficiency (WUE) value of P. australis was quite low, about 2.27 g L(-1), probably due to the unlimited water availability and the lack of the plant's physiological adaptations to water conservation. The results provide useful and valid information for estimating ET rates in small-scale constructed wetlands since ET is a relevant issue in arid and semiarid regions. In these areas CW feasibility for wastewater treatment and reuse should also be carefully evaluated for macrophytes in relation to their WUE values.

  7. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.

    Science.gov (United States)

    Hadad, H R; Maine, M A; Bonetto, C A

    2006-06-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.

  8. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  9. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    Science.gov (United States)

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC 60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39.

    Science.gov (United States)

    Toyoshima, Masakazu; Aikawa, Shimpei; Yamagishi, Takahiro; Kondo, Akihiko; Kawai, Hiroshi

    Microalgae are considered to be efficient bio-resources for biofuels and bio-based chemicals because they generally have high productivity. The filamentous cyanobacterium Arthrospira (Spirulina) platensis has been widely used for food, feed, and nutrient supplements and is usually cultivated in open ponds. In order to extend the surface area for growing this alga, we designed a pilot-scale floating closed culture system for cultivating A. platensis on open water and compared the growth and quality of the alga harvested at both subtropical and temperate regions. The biomass productivity of A. platensis NIES-39 was ca. 9 g dry biomass m(-2) day(-1) in summer at Awaji Island (warm temperature region) and ca. 10 and 6 g dry biomass m(-2) day(-1) in autumn and winter, respectively, at Ishigaki Island, (subtropical region) in Japan. If seawater can be used for culture media, culture cost can be reduced; therefore, we examined the influence of seawater salt concentrations on the growth of A. platensis NIES-39. Growth rates of A. platensis NIES-39 in diluted seawater with enrichment of 2.5 g L(-1) NaNO3, 0.01 g L(-1) FeSO4·7H2O, and 0.08 g L(-1) Na2EDTA were considerably lower than SOT medium, but the biomass productivity (dry weight) was comparable to SOT medium. This is explained by the heavier cell weight of the alga grown in modified seawater media compared to the alga grown in SOT medium. Furthermore, A. platensis grown in modified seawater-based medium exhibited self-flocculation and had more loosely coiled trichomes.

  11. Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale.

    Science.gov (United States)

    Madera-Parra, C A; Peña, M R; Peña, E J; Lens, P N L

    2015-09-01

    Four subsurface horizontal-flow constructed wetlands (CWs) at a pilot scale planted with a polyculture of the tropical plants Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) were evaluated for 7 months. The CW cells with an area of 17.94 m(2) and 0.60 m (h) each and 0.5 m of gravel were operated at continuous gravity flow (Q = 0.5 m(3) day(-1)) and a theoretical HRT of 7 days each and treating landfill leachate for the removal of filtered chemical oxygen demand (CODf), BOD5, TKN, NH4 (+), NO3 (-), PO4 (3-)-P and Cr(VI). Three CWs were divided into three sections, and each section (5.98 m(2)) was seeded with 36 cuttings of each species (plant density of six cuttings per square metre). The other unit was planted randomly. The final distributions of plants in the bioreactors were as follows: CW I (He-Ce-Gs), CW II (randomly), CW III (Ce-Gs-He) and CW IV (Gs-He-Ce). The units received effluent from a high-rate anaerobic pond (BLAAT®). The results show a slightly alkaline and anoxic environment in the solid-liquid matrix (pH = 8.0; 0.5-2 mg L(-1) dissolved oxygen (DO)). CODf removal was 67 %, BOD5 80 %, and TKN and NH4 (+) 50-57 %; NO3 (-) effluents were slightly higher than the influent, PO4 (3-)-P (38 %) and Cr(VI) between 50 and 58 %. CW IV gave the best performance, indicating that plant distribution may affect the removal capacity of the bioreactors. He and Gs were the plants exhibiting a translocation factor (TF) of Cr(VI) >1. The evaluated plants demonstrated their suitability for phytoremediation of landfill leachate, and all of them can be categorized as Cr(VI) accumulators. The CWs also showed that they could be a low-cost operation as a secondary system for treatment of intermediated landfill leachate (LL).

  12. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    Science.gov (United States)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    Combining ethanol with gasoline has become increasingly common in order to create more environmentally conscience transportation fuels. These blended fuels are favourable alternatives since ethanol is a non-toxic and highly labile renewable biomass-based resource which is an effective fuel oxygenate that reduces air pollution. Recent research however, has indicated that upon accidental release into groundwater systems, the preferential microbial metabolism of ethanol can cause progressively reducing conditions leading to slower biodegradation of petroleum hydrocarbons. Therefore, the presence of ethanol can result in greater persistence of BTEX compounds and longer hydrocarbon plumes in groundwater systems. Microbial biodegradation and community carbon sources coupled to aqueous geochemistry were monitored in a pilot-scale laboratory tank (80cm x 525cm x 175cm) simulating an unconfined sand aquifer. Dissolved ethanol and toluene were continuously injected into the aquifer at a controlled rate over 330 days. Carbon isotope analyses were performed on phospholipid fatty acid (PLFA) samples collected from 4 different locations along the aquifer. Initial stable carbon isotope values measured over days 160-185 in the bacterial PLFA ranged from δ13C = -10 to -21‰, which is indicative of dominant ethanol incorporation by the micro-organisms based on the isotopic signature of ethanol derived from corn, a C4 plant. A negative shift to δ13C = -10 to -30‰ observed over days 185-200, suggests a change in microbial metabolisms associated with less ethanol incorporation. This generally corresponds to a decrease in ethanol concentrations from day 40 to full attenuation at approximately day 160, and the onset of toluene depletion observed on day 120 and continuing thereafter. In addition, aqueous methane concentrations first detected on day 115 continued to rise to 0.38-0.70 mmol/L at all monitoring locations, demonstrating a significant redox shift to low energy methanogenic

  13. Field demonstration of on-site analytical methods for TNT and RDX in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Craig, H. [Environmental Protection Agency Region 10, Portland, OR (United States); Ferguson, G.; Markos, A. [Black and Veatch Special Projects Corp., Tacoma, WA (United States); Kusterbeck, A.; Shriver-Lake, L. [Naval Research Lab., Washington, DC (United States). Center for Bio/Molecular Science and Engineering; Jenkins, T.; Thorne, P. [Army Corps of Engineers, Hanover, NH (United States). Cold Regions Research and Engineering Lab.

    1996-12-31

    A field demonstration was conducted to assess the performance of eight commercially-available and emerging colorimetric, immunoassay, and biosensor on-site analytical methods for explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ground water and leachate at the Umatilla Army Depot Activity, Hermiston, Oregon and US Naval Submarine Base, Bangor, Washington, Superfund sites. Ground water samples were analyzed by each of the on-site methods and results compared to laboratory analysis using high performance liquid chromatography (HPLC) with EPA SW-846 Method 8330. The commercial methods evaluated include the EnSys, Inc., TNT and RDX colorimetric test kits (EPA SW-846 Methods 8515 and 8510) with a solid phase extraction (SPE) step, the DTECH/EM Science TNT and RDX immunoassay test kits (EPA SW-846 Methods 4050 and 4051), and the Ohmicron TNT immunoassay test kit. The emerging methods tested include the antibody-based Naval Research Laboratory (NRL) Continuous Flow Immunosensor (CFI) for TNT and RDX, and the Fiber Optic Biosensor (FOB) for TNT. Accuracy of the on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison criteria. Over the range of conditions tested, the colorimetric methods for TNT and RDX showed the highest accuracy of the emerging methods for TNT and RDX. The colorimetric method was selected for routine ground water monitoring at the Umatilla site, and further field testing on the NRL CFI and FOB biosensors will continue at both Superfund sites.

  14. A field vaccine trial in Tanzania demonstrates partial protection against malignant catarrhal fever in cattle.

    Science.gov (United States)

    Lankester, F; Russell, G C; Lugelo, A; Ndabigaye, A; Mnyambwa, N; Keyyu, J; Kazwala, R; Grant, D; Percival, A; Deane, D; Haig, D M; Cleaveland, S

    2016-02-01

    Malignant catarrhal fever (MCF) is a fatal lymphoproliferative disease of cattle that, in East Africa, results from transmission of the causative virus, alcelaphine herpesvirus 1 (AlHV-1), from wildebeest. A vaccine field trial involving an attenuated AlHV-1 virus vaccine was performed over two wildebeest calving seasons on the Simanjiro Plain of northern Tanzania. Each of the two phases of the field trial consisted of groups of 50 vaccinated and unvaccinated cattle, which were subsequently exposed to AlHV-1 challenge by herding toward wildebeest. Vaccination resulted in the induction of virus-specific and virus-neutralizing antibodies. Some cattle in the unvaccinated groups also developed virus-specific antibody responses but only after the start of the challenge phase of the trial. PCR of DNA from blood samples detected AlHV-1 infection in both groups of cattle but the frequency of infection was significantly lower in the vaccinated groups. Some infected animals showed clinical signs suggestive of MCF but few animals went on to develop fatal MCF, with similar numbers in vaccinated and unvaccinated groups. This study demonstrated a baseline level of MCF-seropositivity among cattle in northern Tanzania of 1% and showed that AlHV-1 virus-neutralizing antibodies could be induced in Tanzanian zebu shorthorn cross cattle by our attenuated vaccine, a correlate of protection in previous experimental trials. The vaccine reduced infection rates by 56% in cattle exposed to wildebeest but protection from fatal MCF could not be determined due to the low number of fatal cases.

  15. Demonstration of large field effect in topological insulator films via a high-κ back gate

    Science.gov (United States)

    Wang, C. Y.; Lin, H. Y.; Yang, S. R.; Chen, K. H. M.; Lin, Y. H.; Chen, K. H.; Young, L. B.; Cheng, C. K.; Fanchiang, Y. T.; Tseng, S. C.; Hong, M.; Kwo, J.

    2016-05-01

    The spintronics applications long anticipated for topological insulators (TIs) has been hampered due to the presence of high density intrinsic defects in the bulk states. In this work we demonstrate the back-gating effect on TIs by integrating Bi2Se3 films 6-10 quintuple layer (QL) thick with amorphous high-κ oxides of Al2O3 and Y2O3. Large gating effect of tuning the Fermi level EF to very close to the band gap was observed, with an applied bias of an order of magnitude smaller than those of the SiO2 back gate, and the modulation of film resistance can reach as high as 1200%. The dependence of the gating effect on the TI film thickness was investigated, and ΔN2D/ΔVg varies with TI film thickness as ˜t-0.75. To enhance the gating effect, a Y2O3 layer thickness 4 nm was inserted into Al2O3 gate stack to increase the total κ value to 13.2. A 1.4 times stronger gating effect is observed, and the increment of induced carrier numbers is in good agreement with additional charges accumulated in the higher κ oxides. Moreover, we have reduced the intrinsic carrier concentration in the TI film by doping Te to Bi2Se3 to form Bi2TexSe1-x. The observation of a mixed state of ambipolar field that both electrons and holes are present indicates that we have tuned the EF very close to the Dirac Point. These results have demonstrated that our capability of gating TIs with high-κ back gate to pave the way to spin devices of tunable EF for dissipationless spintronics based on well-established semiconductor technology.

  16. Clustering Properties of Far-Infrared Sources in Hi-GAL Science Demonstration Phase Fields

    CERN Document Server

    Billot, N; Pestalozzi, M; Molinari, S; Noriega-Crespo, A; Mottram, J C; Anderson, L D; Elia, D; Stringfellow, G; Thompson, M A; Polychroni, D; Testi, L

    2011-01-01

    We use a Minimum Spanning Tree algorithm to characterize the spatial distribution of Galactic Far-IR sources and derive their clustering properties. We aim to reveal the spatial imprint of different types of star forming processes, e.g. isolated spontaneous fragmentation of dense molecular clouds, or events of triggered star formation around HII regions, and highlight global properties of star formation in the Galaxy. We plan to exploit the entire Hi-GAL survey of the inner Galactic plane to gather significant statistics on the clustering properties of star forming regions, and to look for possible correlations with source properties such as mass, temperature or evolutionary stage. In this paper we present a pilot study based on the two 2x2 square degree fields centered at longitudes l=30 and l=59 obtained during the Science Demonstration Phase (SDP) of the Herschel mission. We find that over half of the clustered sources are associated with HII regions and infrared dark clouds. Our analysis also reveals a sm...

  17. Field and long-term demonstration of a wide area quantum key distribution network

    CERN Document Server

    Wang, Shuang; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective i...

  18. Near Real Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    Science.gov (United States)

    Elphic, Richard; Colaprete, Anthony; Heldmann, Jennifer; Mattes, Gregory W.; Ennico, Kimberly; Sanders, Gerald; Quinn, Jacqueline; Tegnerud, Erin Leigh; Marinova, Margarita; Larson, William E.; Picard, Martin; Morse, Stephanie

    2012-01-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this

  19. Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    Science.gov (United States)

    Elphic, R. C.; Colaprete, A.; Heldmann, J. L.; Mattes, G.; Ennico, K.; Sanders, G. B.; Quinn, J.; Fritzler, E.; Marinova, M.; Roush, T. L.; Stoker, C.; Larson, W.; Picard, M.; McMurray, R.; Morse, S.

    2012-12-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this

  20. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  1. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    Science.gov (United States)

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  2. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  3. Nitrogen removal in a pilot-scale subsurface horizontal flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Del Bubba, M.; Lepri, L. [Florence Univ., Florence (Italy). Dept. of Public Health, Epidemiology and Environmental Analytical Chemistry; Griffini, O.; Tabani, F. [Florentine Division of Water Production and Wastewater Treatment, Municipality of Florence, Florence (Italy)

    2000-10-01

    Nitrogen removal in a pilot-scale submerged flow constructed wetland, planted with Phragmites australis and receiving domestic wastewaters was investigated for two years (November 1997-October 1999). Nitrification and denitrification simultaneously occurred in this system, showing the presence of both aerobic and anaerobic sites. A second-order polynomial regression fit well (R{sup 2} = O.9414) the experimental values of log K{sub T} versus T-20 in the temperature range 5-27{sup 0}C. In addition, a linear trend (R{sup 2} = O.7834) could also be used as a first approximation in a narrower temperature range (10-27{sup 0}C); the rate constant at 20{sup 0}C (K{sub 2}0) for ammonium microbial oxidation was 0.3985 d{sup -}1, which corresponds to a fully developed root zone. [Italian] Per un periodo di due anni (Novembre 1997-Ottobre 1999), e' stata studiata la rimozione dell'azoto in una zona umida costruita a flusso sommerso di tipo pilota, piantumata con Phragmites australis e ricevente acque di scarico di tipo civile. Nel sistema sono avvenuti contemporaneamente sia il processo di nitrificazione che quello di denitrificazione, a dimostrazione della presenza nella rizosfera sia di micrositi aerobici che anaerobici. L'andamento del log K{sub T} in funzione di T-20 nell'intervallo di temperature 5-27{sup 0}C e' ben interpretabile mediante una regressione polinomiale del secondo ordine (R{sup 2} = O.9414). Tuttavia, prendendo in esame i dati relativi ad un intervallo di temperatura piu' ristretto (10-27{sup 0}C), puo' essere utilizzato, in prima approssimazione, un andamento lineare (R{sup 2} O.7834); la costante di velocita' per l'ossidazione microbica dell'ammoniaca a 20{sup 0}C (K{sub 2}0) e' risultata pari a 0.3985 d{sup -}1, che corrisponde a un letto completamente occupato dalle radici.

  4. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration, a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice

  5. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    Science.gov (United States)

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter

  6. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  7. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    Science.gov (United States)

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

  8. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Science.gov (United States)

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These

  9. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    Science.gov (United States)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  10. Micellar-polymer joint demonstration project, Wilmington Field, California. Annual report, 1976--1977

    Energy Technology Data Exchange (ETDEWEB)

    Wade, J.E.

    1977-12-01

    Work accomplished under the contract during the first year of operation consisted of Micellar-Polymer laboratory systems design; Test Pattern Model Studies; Drilling and coring injection well FT-1; Pressure Transient Tests of Wells Z-81, Z1-16and FT-1; as well as design and construction of a portion of the surface facilities. Radial core floods conducted by Marathon Research Center using reservoir rock and fluid samples from the Wilmington Field demonstrated that Micellar-Polymer systems showing good recovery efficiency could be made from several different commercially available sulfonates. Residual oil saturations obtained were as low as 7 to 10% pore volume. Sulfonates made from Wilmington crude oil also proved to be effective. Polyacrylamides, both liquid and dry, as well as polysaccharides proved equally effective as a mobility buffer. Test pattern model studies were conducted on seven different arrays of wells. These studies showed that the pattern originally proposed exhibited poor areal sweep efficiency and was seriously affected by waterflood operations in the North Flank of the fault block. An E-W staggered line drive backed-up against the Pier A Fault appeared to be the best pattern studied, assuming the Pier A Fault to be a pressure barrier. Injection well FT-1 was drilled, cored and completed in the Hx/sub a/ sand. Cores were taken using low-solids, polymer drilling fluid and were frozen on site. The frozen cores from the project area will be used in the Phase B laboratory work. Pressure Transient Tests run in Z-81 and Z1-16 indicated the Pier A Fault to be pressure competent. The plant site was located adjacent to a railroad siding near the injection wells. The site was graded and seven 2000 barrel tanks were erected. The tanks were internally plastic coated on site. Mixing, filtering and injection facilities are being installed.

  11. Pilot-scale studies of soil vapor extraction and bioventing for remediation of a gasoline spill at Cameron Station, Alexandria, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Joss, C.J.; Martino, L.E. [and others

    1994-07-01

    Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designed and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.

  12. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  13. C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field.

    Science.gov (United States)

    Chrisman, Steven D; Waite, Christopher B; Scoville, Alison G; Carnell, Lucinda

    2016-01-01

    C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals' tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals' tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis

  14. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  15. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    Science.gov (United States)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation. Due to the fact that the technology lends itself to a bide variety of processes, several site demonstrations were organized in order to allow for greater evaluation of the laser systems across NASA. The project consisted of an introductory demonstration and a more in-depth evaluation at Wright-Patterson Air Force Base. Additionally, field demonstrations occurred at Glenn Research Center and Kennedy Space Center. During these demonstrations several NASA specific applications were evaluated, including the removal of coatings within Orbiter tile cavities and Teflon from Space Shuttle Main Engine gaskets, removal of heavy grease from Solid Rocket Booster components and the removal of coatings on weld lines for Shuttle and general ground service equipment for non destructive evaluation (NDE). In addition, several general industry applications such as corrosion removal, structural coating removal, weld-line preparation and surface cleaning were evaluated. This included removal of coatings and corrosion from surfaces containing lead-based coatings and applications similar to launch-structure maintenance and Crawler maintenance. During the project lifecycle, an attempt was made to answer process specific concerns and questions as they arose. Some of these initially unexpected questions concerned the effects lasers might have on substrates used on flight equipment including strength, surface re-melting, substrate temperature and corrosion resistance effects. Additionally a concern was PPE required for operating such a system including eye, breathing and hearing protection. Most of these questions although not initially planned, were fully explored as a part of this project. Generally the results from tesng

  16. Experimental demonstration of the role of electron pressure in fast magnetic reconnection with a guide field

    Science.gov (United States)

    Fox, W.; Sciortino, F.; von Stechow, A.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.

    2016-10-01

    We report detailed laboratory observations of the structure of reconnection current sheets in a two-fluid plasma regime with a guide magnetic field, conducted on the Magnetic Reconnection Experiment. We observe in the laboratory for the first time the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended MHD simulation. We quantitatively analyze the parallel and perpendicular force balance, and observe the projection of the electron pressure gradient parallel to the B field balances the parallel electric field. The resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Electron density variations are observed to dominate temperature variations and may provide a new diagnostic of reconnection with finite guide field for fusion experiments and spacecraft missions. Supported by Max-Planck Princeton Center for Plasma Physics.

  17. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale sequencing batch reactor

    CSIR Research Space (South Africa)

    Zvimba, JN

    2013-10-01

    Full Text Available the suspended solids impacted more positively on Fe(II) oxidation during pilot scale AMD neutralization in a SBR, a phenomenon ascribed to generation of acidity by hydrolysis of Fe(II) as shown in equation 2. Figure 3 shows the chemical behavior... to the acidity generation resulting from hydrolysis of Fe(III) (Reaction 2) that would require further neutralization by CaCO3 (Reaction 3), and as such promotes further CaCO3 dissolution with AMD pH increasing to above 6.8 following complete Fe(II) oxidation...

  18. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  19. A comparison of impulse drying to double felted pressing on pilot- scale shoe presses and roll presses

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1992-08-01

    Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.

  20. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  1. Experimental demonstration of a fifth force due to chameleon field via cold atoms

    OpenAIRE

    Zhang, Hai-Chao

    2017-01-01

    We tested a fifth force using cold atom experiments. The accelerated expansion of the universe implies the possibility of the presence of a scalar field throughout the universe driving the acceleration. This field would result in a detectable force between normal-matter objects. Theory of the chameleon field states that the force should be strong in a thin shell near the surface of a source object but greatly suppressed inside and outside of the source object. We used two atom clouds: one as ...

  2. Californian demonstration and validation of automated agricultural field extraction from multi-temporal Landsat data

    Science.gov (United States)

    Yan, L.; Roy, D. P.

    2013-12-01

    The spatial distribution of agricultural fields is a fundamental description of rural landscapes and the location and extent of fields is important to establish the area of land utilized for agricultural yield prediction, resource allocation, and for economic planning. To date, field objects have not been extracted from satellite data over large areas because of computational constraints and because consistently processed appropriate resolution data have not been available or affordable. We present a fully automated computational methodology to extract agricultural fields from 30m Web Enabled Landsat data (WELD) time series and results for approximately 250,000 square kilometers (eleven 150 x 150 km WELD tiles) encompassing all the major agricultural areas of California. The extracted fields, including rectangular, circular, and irregularly shaped fields, are evaluated by comparison with manually interpreted Landsat field objects. Validation results are presented in terms of standard confusion matrix accuracy measures and also the degree of field object over-segmentation, under-segmentation, fragmentation and shape distortion. The apparent success of the presented field extraction methodology is due to several factors. First, the use of multi-temporal Landsat data, as opposed to single Landsat acquisitions, that enables crop rotations and inter-annual variability in the state of the vegetation to be accommodated for and provides more opportunities for cloud-free, non-missing and atmospherically uncontaminated surface observations. Second, the adoption of an object based approach, namely the variational region-based geometric active contour method that enables robust segmentation with only a small number of parameters and that requires no training data collection. Third, the use of a watershed algorithm to decompose connected segments belonging to multiple fields into coherent isolated field segments and a geometry based algorithm to detect and associate parts of

  3. LOTUS field demonstration of integrated multi-sensor mine-detection system in Bosnia

    NARCIS (Netherlands)

    Schavemaker, J.G.M.; Breejen, E. den; Benoist, K.W.; Schutte, K.; Tettelaar, P.; Bijl, M. de; Fritz, P.J.; Cohen, L.H.; Mark, W. van der; Chignell, R.

    2003-01-01

    The successful demonstration of the LOTUS landmine detection system was discussed. The demonstration of the integrated multi-sensor mine-detection system took place in August 2002 near the village of Vidovice, in the northeast of Bosnia and Herzegovina. The system consisted of a metal detector (MD)

  4. GATEWAY Demonstrations: Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    The GATEWAY program evaluated the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  5. GATEWAY Report Brief: SSL Demonstration: Long-Term Evaluation of Indoor Field Performance

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-02-28

    Report brief summarizing a GATEWAY program evaluation of the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  6. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs.

  7. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach.

    Science.gov (United States)

    Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César

    2015-01-01

    This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption.

  8. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    Science.gov (United States)

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies.

  9. Comparison of Kinetic-based and Artificial Neural Network Modeling Methods for a Pilot Scale Vacuum Gas Oil Hydrocracking Reactor

    Directory of Open Access Journals (Sweden)

    Sepehr Sadighi

    2013-12-01

    Full Text Available An artificial neural network (ANN and kinetic-based models for a pilot scale vacuum gas oil (VGO hydrocracking plant are presented in this paper. Reported experimental data in the literature were used to develop, train, and check these models. The proposed models are capable of predicting the yield of all main hydrocracking products including dry gas, light naphtha, heavy naphtha, kerosene, diesel, and unconverted VGO (residue. Results showed that kinetic-based and artificial neural models have specific capabilities to predict yield of hydrocracking products. The former is able to accurately predict the yield of lighter products, i.e. light naphtha, heavy naphtha and kerosene. However, ANN model is capable of predicting yields of diesel and residue with higher precision. The comparison shows that the ANN model is superior to the kinetic-base models.  © 2013 BCREC UNDIP. All rights reservedReceived: 9th April 2013; Revised: 13rd August 2013; Accepted: 18th August 2013[How to Cite: Sadighi, S., Zahedi, G.R. (2013. Comparison of Kinetic-based and Artificial Neural Network Modeling Methods for a Pilot Scale Vacuum Gas Oil Hydrocracking Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 125-136. (doi:10.9767/bcrec.8.2.4722.125-136][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4722.125-136

  10. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units.

    Science.gov (United States)

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C

    2011-01-01

    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  11. Characterization of microbial communities in a pilot-scale constructed wetland using PLFA and PCR-DGGE analyses.

    Science.gov (United States)

    Jin, Guang; Kelley, Timothy R

    2007-09-01

    Phospholipid fatty acid (PLFA) analysis and 16S ribosomal DNA polymerase chain reaction amplification-denaturing gradient gel electrophoresis (PCR-DGGE) were used to determine microbial communities and predominant microbial populations in water samples collected from a pilot-scale constructed wetland system. This pilot-scale constructed wetland system consists of three types: subsurface-flow (SSF), surface-flow (SF) and a floating aquatic plant (FAP) system. Analysis of PLFA profiles indicated primarily eukaryotic organisms, including fungi, protozoa, and diatoms were observed in all three wetland systems. Biomarkers for Gram-negative bacteria were also detected in all samples analyzed while low proportions of biomarkers for Gram-positive bacteria were observed. Biomass content (total PFLA/sample) was highest in water samples collected from both SF and FAP system while highest metabolic activity was observed in FAP system. This is consistent with the observed highest metal removal rate in FAP system. Sequence analysis of the predominant PCR-DGGE DNA fragments showed 0.92 to 0.99 similarity indices to Beta-proteobacteria, Flavobacterium sp. GOBB3-206, Flexibacter-Cytophaga-Bacteroides group, and Gram-positive bacteria. Results suggest diverse microbial communities including microorganisms that may significantly contribute to biogeochemical elemental cycles.

  12. Comparison of pilot-scale furnace experiments and predictions to full-scale boiler performance of compliance coals

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, L.S. [Southern Research Inst., Birmingham, AL (United States); Clarkson, R.J. [Southern Co. Services, Inc., Birmingham, AL (United States); Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-01-01

    A series of compliance coals have been fired in the Southern Company Services and Southern Research Institute pilot-scale Combustion Research Facility, with the goal of predicting NO{sub x} emissions, unburned carbon levels, and other operating parameters. The research was financed by a tailored collaboration between Alabama Power and the Electric Power Research Institute. The coals included a South American coal, a Powder River Basin coal, and several local Alabama bituminous coals. They were fired in conventional and low NO{sub x} firing modes, where some of the coals were fired in a tangential-fired simulation, others as wall-fired, and some in both types of firing. Two of Alabama Power`s boilers were used as the plants simulated in the pilot-scale experiments, along with a Gulf Power boiler. The results of the NO{sub x} emissions and unburned carbon from the pilot furnace testing are presented and compared to the limited full-scale boiler data available on these coals.

  13. A online NIR sensor for the pilot-scale extraction process in Fructus aurantii coupled with single and ensemble methods.

    Science.gov (United States)

    Pan, Xiaoning; Li, Yang; Wu, Zhisheng; Zhang, Qiao; Zheng, Zhou; Shi, Xinyuan; Qiao, Yanjiang

    2015-04-14

    Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS) and moving window partial least squares (MWPLS) variable selection methods were compared. Single quantification models (PLS) and ensemble methods combined with partial least squares (bagging-PLS) were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP) of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM.

  14. A Online NIR Sensor for the Pilot-Scale Extraction Process in Fructus Aurantii Coupled with Single and Ensemble Methods

    Directory of Open Access Journals (Sweden)

    Xiaoning Pan

    2015-04-01

    Full Text Available Model performance of the partial least squares method (PLS alone and bagging-PLS was investigated in online near-infrared (NIR sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS and moving window partial least squares (MWPLS variable selection methods were compared. Single quantification models (PLS and ensemble methods combined with partial least squares (bagging-PLS were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM.

  15. UV/TiO2 photocatalytic disinfection of carbon-bacteria complexes in activated carbon-filtered water: Laboratory and pilot-scale investigation.

    Science.gov (United States)

    Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin

    2015-01-01

    The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.

  16. Effect of advanced oxidation on N-nitrosodimethylamine (NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration.

    Science.gov (United States)

    Li, Dong; Stanford, Ben; Dickenson, Eric; Khunjar, Wendell O; Homme, Carissa L; Rosenfeldt, Erik J; Sharp, Jonathan O

    2017-04-15

    Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H2O2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H2O2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H2O2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications.

  17. Pilot-scale tertiary MBBR nitrification at 1°C: characterization of ammonia removal rate, solids settleability and biofilm characteristics.

    Science.gov (United States)

    Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain

    2016-08-01

    Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system.

  18. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    Science.gov (United States)

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ρ (NH3-N)) aromatics reduced greatly by UASBs according to GC-MS. Microbial community analysis by PCR-DGGE showed that Bacteroidetes and Alphaproteobacteria were the dominant communities in the bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment.

  19. Investigation of a sewage-integrated technology combining an expanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant.

    Science.gov (United States)

    Dai, Ruihua; Liu, Yan; Liu, Xiang; Zhang, Xudong; Zeng, Ciyuan; Li, Liang

    2011-09-15

    A sewage-integrated treatment system (SITS) for the treatment of municipal wastewater, consisting of an expanded granular sludge bed (EGSB) reactor to remove soluble organic matter and an electrochemical (EC) reactor to oxidize the NH(3)-N, was evaluated. The performance of the EGSB reactor was monitored for 12 months in a pilot-scale plant. Iron shavings were added to the EGSB reactor on the sixtieth day to improve the removal efficiency of the chemical oxygen demand (COD), suspended solids (SS) and total phosphorus (TP). After the iron shavings were added, the effluent COD, SS and TP decreased from 104 to 46 mg L(-1), 21 to 8.6 mg L(-1) and 3.62 to 1.36 mg L(-1), respectively. Moreover, in the EC reactor, which was equipped with IrO(2)/Ti anodes, the NH(3)-N and total nitrogen (TN) concentrations decreased from 25 to 12 mg L(-1) and 29 to 15 mg L(-1), respectively. The NH(3)-N was directly oxidized to N(2), resulting in no secondary pollution. The results demonstrated the possibility of removing carbon and nutrients in a SITS with high efficiency. The system runs efficiently and with a flexible operation, making it suitable for low-strength wastewater. The results and parameters presented here can provide references for the practical project.

  20. Abundance and diversity of ammonia-oxidizing archaea and bacteria on biological activated carbon in a pilot-scale drinking water treatment plant with different treatment processes.

    Science.gov (United States)

    Kasuga, Ikuro; Nakagaki, Hirotaka; Kurisu, Futoshi; Furumai, Hiroaki

    2010-01-01

    The effects of different placements of rapid sand filtration on nitrification performance of BAC treatment in a pilot-scale plant were evaluated. In this plant, rapid sand filtration was placed after ozonation-BAC treatment in Process (A), while it preceded ozonation-BAC treatment in Process (B). Analysis of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) combined with nitrification potential test was conducted. BAC from Process (A) demonstrated slightly higher nitrification potential at every sampling occasion. This might be due to higher abundances of AOB on BAC from Process (A) than those on BAC from Process (B). However, AOA rather than AOB could be predominant ammonia-oxidizers in BAC treatment regardless of the position of rapid sand filtration. The highest nitrification potential was observed for BAC from both processes in February when the highest abundances of AOA-amoA and AOB-amoA genes were detected. Since rapid sand filtration was placed after BAC treatment in Process (A), residual aluminum concentration in BAC influent was higher in Process (A). However, adverse effects of aluminum on nitrification activity were not observed. These results suggest that factors other than aluminum concentration in different treatment processes could possibly have some influence on abundances of ammonia-oxidizing microorganisms on BAC.

  1. Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Chandan; Raustad, Richard

    2013-07-01

    Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

  2. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preference

    Science.gov (United States)

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations ...

  3. First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core

    Science.gov (United States)

    Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team

    2016-10-01

    Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.

  4. Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma.

    Science.gov (United States)

    Klistorner, A I; Graham, S L; Martins, A

    2000-01-01

    To determine if a multifocal PERG could be recorded in normals, and to examine changes in the multifocal PERG in glaucoma patients. To compare the ability of multifocal PERG and multifocal VEP responses in the same individuals to identify localised field defects in glaucoma. Using the VERIS Scientific system multifocal PERGs were recorded from 19 sites of the visual field according to pseudo-random binary m-sequence. Twenty normals and 15 glaucoma subjects were tested. Multifocal pattern VEPs were also recorded in the glaucoma cases using a cortically scaled stimulus. The second order kernel of the PERG shows a consistent signal. The overall PERG amplitude decreases with age in normals. In glaucoma the PERG amplitude was reduced across the field, but reductions did not correspond to the area of the scotoma. The VEP showed localised signal reductions in all 15 cases of glaucoma. A multifocal PERG can be recorded in normals. However it did not reflect localised ganglion cell losses, whereas the multifocal pattern VEP recorded to a very similar stimulus in the same individual did show losses in the scotoma area.

  5. Field Demonstration of a Novel Biotreatment Process for Perchlorate Reduction in Groundwater

    Science.gov (United States)

    2010-12-01

    Certification Program FeCO3 siderite FOB freight on board ID inside diameter Mo molybdenum MPN most probably number NaHCO3 sodium bicarbonate...of an organic substrate.  Possibility of treating both perchlorate and possible co-contaminants such as nitrate, chlorinated solvents such as TCE...continuously extracted from a single well, from where it was distributed to the different demonstration projects. The water average contaminant

  6. Exploiting SENTINEL-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier

    Science.gov (United States)

    Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M.

    2016-06-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary coregistration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics.

  7. Big Muddy Field Low-Tension Flood Demonstration Project. Fourth annual report, April 1981-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.

    1982-09-01

    During 1981, about two-thirds of the low-tension slug was injected. By year-end, the oil cut had increased from 0.6 to over 2%. Injection rates were less than predicted. The viscosity of the slug was reduced from 20 to 14 cp. Following the viscosity reduction, the injection rate continued to decline from 65,000 to 50,000 barrels per month by year-end. An oil response has apparently occurred from the low-tension slug injection, with tracer appearance in only Well 88. The plant operation is now satisfactory. By year-end, the filter operation was satisfactory. The blending system produced satisfactory concentrations throughout the year. Laboratory support work is being done on field treatments of sulfonate-containing crude. A family of chemicals has been developed for a two-stage field treating operation; the first stage for demulsification and the second stage for extraction of the sulfonate from the crude oil. All of the sulfonate has been manufactured and quality control tests were run on each batch. While differences between batches could not be discerned by chemical analysis, the amount of alcohol required for phase stability at constant temperature differed between batches. It was found that if the required isobutyl alcohol (IBA) for phase stability was added, the oil recovery was about the same for each batch. 90 figures, 20 tables.

  8. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  9. Demonstration of full-field patterning of 32 nm test chips using EUVL

    Science.gov (United States)

    Vandentop, Gilroy; Chandhok, Manish; Putna, Ernisse S.; Younkin, Todd R.; Clarke, James S.; Carson, Steven; Myers, Alan; Leeson, Michael; Zhang, Guojing; Liang, Ted; Murachi, Tetsunori

    2009-03-01

    EUV lithography is considered one of the options for high volume manufacturing (HVM) of 16 nm MPU node devices [1]. The benefits of high k1(~0.5) imaging enable EUVL to simplify the patterning process and ease design rule restrictions. However, EUVL with its unique imaging process - reflective optics and masks, vacuum operation, and lack of pellicle, has several challenges to overcome before being qualified for production. Thus, it is important to demonstrate the capability to integrate EUVL into existing process flows and characterize issues which could hamper yield. A patterning demonstration of Intel's 32 nm test chips using the ADT at IMEC [7] is presented, This test chip was manufactured using processes initially developed with the Intel MET [2-4] as well as masks made by Intel's mask shop [5,6]. The 32 nm node test chips which had a pitch of 112.5 nm at the trench layer, were patterned on the ADT which resulted in a large k1 factor of 1 and consequently, the trench process window was iso-focal with MEEF = 1. It was found that all mask defects detected by a mask pattern inspection tool printed on the wafer and that 90% of these originated from the substrate. We concluded that improvements are needed in mask defects, photospeed of the resist, overlay, and tool throughput of the tool to get better results to enable us to ultimately examine yield.

  10. Flight Integral Field Spectrograph (IFS) Optical Design for WFIRST Coronagraphic Exoplanet Demonstration

    Science.gov (United States)

    Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal

    2017-01-01

    Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.

  11. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  12. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    R. Baker; T. Hofmann; K. A. Lokhandwala

    2006-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

  13. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    R. Baker; T. Hofmann; K. A. Lokhandwala

    2005-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provided onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 11 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

  14. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems - Paper

    Science.gov (United States)

    A USEPA-sponsored field demonstration program was conducted to gather technically reliable cost and performance information on the electro-scan (FELL -41) pipeline condition assessment technology. Electro-scan technology can be used to estimate the magnitude and location of pote...

  15. Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    CERN Document Server

    Bowman, J D; Briggs, F H; Corey, B E; Lynch, M J; Bhat, N D R; Cappallo, R J; Doeleman, S S; Fanous, B J; Herne, D; Hewitt, J N; Johnston, C; Kasper, J C; Kocz, J; Kratzenberg, E; Lonsdale, C J; Morales, M F; Oberoi, D; Salah, J E; Stansby, B; Stevens, J; Torr, G; Wayth, R; Webster, R L; Wyithe, J S B; Bowman, Judd D.; Barnes, David G.; Briggs, Frank H.; Corey, Brian E.; Lynch, Merv J.; Cappallo, Roger J.; Doeleman, Sheperd S.; Fanous, Brian J.; Herne, David; Hewitt, Jacqueline N.; Johnston, Chris; Kasper, Justin C.; Kocz, Jonathon; Kratzenberg, Eric; Lonsdale, Colin J.; Morales, Miguel F.; Oberoi, Divya; Salah, Joseph E.; Stansby, Bruce; Stevens, Jamie; Torr, Glen; Wayth, Randall; Webster, Rachel L.

    2006-01-01

    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric measurements. The radio spectrum is remarkably free of strong terrestrial signals, with the exception of two narrow frequency bands allocated to satellite downlinks and rare bursts due to ground-based transmissions being scattered from aircraft and meteor trails. Results indicate the potential of the MWA-LFD to make significant achievements in its three key science objectives: epoch of reionziation science, heliospheric science, and radio transient detection.

  16. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  17. Field demonstration of age dependent increase in lead phytoextraction by Pelargonium cultivar

    Science.gov (United States)

    Shahid, Muhammad; Arshad, Muhammad; Pinelli, Eric; Alric, Alain; Kaemmerer, Michel; Pradere, Philippe; Dumat, Camille

    2013-04-01

    Unnecessary for living organisms, lead (Pb) is one of the major widespread toxic metals found in the environment with potential danger to human health and to ecosystems (Shahid et al. 2012). Lead is known to induce a broad range of toxic effects to living organism, including those that are morphological, physiological and biochemical in origin (Pourrut et al. 2011). A field study was carried out in the vicinity of Pb recycling plant near Toulouse-France, and contaminated by atmospheric fallouts to evaluate lead extraction and uptake efficiency of hyperaccumulater Attar of Roses Pelargonium cultivar. It was found that Attar of Roses has ability to accumulate (8644 mgPb/kg DW plant) and survive on highly contaminated acidic soil (39250 mg kg-1 of total Pb) without any morpho-phytotoxicity symptoms. Moreover Attar showed increased extraction of lead from bulk soil to rhizosphere through Pb mobilization and ultimately increased uptake by roots and translocation to shoots. The studied contaminated soil could be cleaned up in few years by planting hyperaccumulater Attar of Rose for longer time period. Under optimum fertlization, irrigation and use of natural or synthetic chelates (EDTA, LMOWA, humic substances etc.) along with old Attar of rose plants, time requires for complete remediation of contaminated site can be reduced to practically applicable time period. Moreover, the use of Pelargonium for remediation has several additional practical, esthetical and economic advantages. The extraction of value-added essential oils from harvested biomass could offset the cost of deploying phytoremediation and renders it as a viable approach for remediating highly contaminated soils, on large scale. Keywords: metal uptake, Pelargonium, phytoremediation, cultivar, soil-plant transfer and kinetic. References Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E., 2011a. Lead uptake, toxicity and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113-136. Shahid

  18. Field demonstration and commercialization of silent discharge plasma hazardous air pollutant control technology

    Energy Technology Data Exchange (ETDEWEB)

    Rosocha, L.A.; Coogan, J.J.; Korzekwa, R.A.; Secker, D.A. [Los Alamos National Lab., NM (United States); Reimers, R.F.; Herrmann, P.G.; Chase, P.J.; Gross, M.P. [High Mesa Technologies LLC, Santa Fe, NM (United States)]|[High Mesa Technologies LLC, Irvine, CA (United States); Jones, M.R. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-07-01

    Silent electrical discharge plasma (dielectric barrier) reactors can decompose gas-phase pollutants by free-radical attack or electron-induced fragmentation. The radicals or electrons are produced by the large average volume nonthermal plasmas generated in the reactor. In the past decade, the barrier configuration has attracted attention for destroying toxic chemical agents for the military, removing harmful greenhouse gases, and treating other environmentally- hazardous chemical compounds. At the Los Alamos National Laboratory, we have been studying the silent discharge plasma (SDP) for processing gaseous-based hazardous chemicals for approximately five years. The key objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more easily managed. The main applications have been for treating off-gases from thermal treatment units, and for abating hazardous air-pollutant emissions (e.g., industrial air emissions, vapors extracted from contaminated soil or groundwater). In this paper, we will summarize the basic principles of SDP processing, discuss illustrative applications of the technology, and present results from small-scale field tests that are relevant to our commercialization effort.

  19. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  20. A field based, self-excited compulsator power supply for a 9 MJ railgun demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Walls, W.A.; Pratap, S.B.; Brinkman, W.G.; Cook, K.G.; Herbst, J.D.; Manifold, S.M.; Reah, B.M.; Thelen, R.F.; Thompson, R.C. (Texas Univ., Austin, TX (United States). Center for Electromechanics)

    1991-01-01

    Fabrication efforts have begun on a field-based compulsator for firing 9 MJ projectiles from a railgun launcher. The machine is designed to store 200 MJ kinetic energy and fire a salvo of nine rounds in three minutes at velocities between 2.5 and 4.0 km/s. Prime power required to meet this firing schedule is 1,865 kW and will be supplied by a gas turbine engine. It is also possible to fire a burst of two shots in rapid succession, if desired. Operating speed of the machine is 8,250 rpm and it has design ratings of 3.2 MA peak current and 20 GW peak power into a 9 MJ railgun load. A detailed description of the machine as designed, and its auxiliary and control systems, is provided in this paper. Fabrication and assembly methods are reviewed and the current status of the project is discussed. In conjunction with this project, a lightweight railgun is being developed and is discussed in a companion paper presented at the 5th EML conference.

  1. On-Field Demonstration Results of Medium Concentration System HSun®

    Science.gov (United States)

    Mendes-Lopes, J.; Pina, L.; Reis, F.; Coelho, S.; Wemans, J.; Sorasio, G.; Pereira, N.

    2011-12-01

    The paper presents the HSUN®, a new medium concentration photovoltaic (CPV) system, developed and produced by WS Energia S.A. The low cost manufacturing and standard components used by HSUN® technology increases the potential of the system to reach grid parity. The system was designed to have stable performance and low cost manufacturing, with a total active collector area of 1.68 m2 and 6.3 kg/m2 of weight. Based on a 20X integrated parabolic trough with coupled reflective secondary optics, the system uses high efficiency silicon cells, a passive cooling integrated system and is integrated in 1-axis horizontal tracking structure, the WS CPV HORIZON®. The open-chain configuration ensures that the wind drag is greatly reduced, increasing the reliability of the tracker, while the optimized optics design enables a high acceptance angle and uniform distribution of radiation throughout the PV receiver, using low-cost and low-weight components. Ray tracing simulations and experimental imaging acquisitions of the radiation profile were performed and compared, finite element models were used to perform thermal and structural analysis, and a specifically developed model was used to predict the electrical parameters of the receiver as a function of the concentration. All the components that integrate HSUN® technology are produced with machines used in mature industrial sectors thus guarantying mass production and benefiting from economies of scale. The on-field results are presented and discussed.

  2. Field Demonstration of Ground-Source Integrated Heat Pump - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Reducing energy consumption in buildings is key to reducing or limiting the negative environmental impacts from the building sector. According to the United States (U.S.) Energy Information Administration (EIA), in 2013, commercial buildings consumed 18.1 quads of primary energy, which was 18.6% of the total U.S. primary energy consumption. The primary energy consumption in the commercial sector is projected to increase by 2.8 quads from 2013 to 2040, the second largest increase after the industrial sector. Further space heating, space cooling, and ventilation (HVAC) services accounted for 31% of the energy consumption in commercial buildings. The technical objective of this project is to demonstrate the capability of the new GS-IHP system to reduce overall energy use for space heating, space cooling, and water heating by at least 45% vs. a conventional electric RTU and electric WH in a light commercial building application. This project supports the DOE-Building Technologies Office (BTO) goals of reducing HVAC energy use by 20% and water heating by 60% by 2030.

  3. Field demonstration of in-situ air stripping using horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Kaback, D.S.

    1991-12-31

    Under sponsorship from the US Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The 139 day long test was designed to remove volatile chlorinated solvents from the subsurface using two horizontal wells. One well, approximately 90m long and 45m deep drilled below a contaminant plume in the groundwater, was used to inject air and strip the contaminants from the groundwater. A second horizontal well, approximately 50m long and 20m deep in the vadose zone, was used to extract residual contamination in the vadose zone along with the material purged from the groundwater. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems.

  4. Dynamic Memory Cells Using MoS2 Field-Effect Transistors Demonstrating Femtoampere Leakage Currents.

    Science.gov (United States)

    Kshirsagar, Chaitanya U; Xu, Weichao; Su, Yang; Robbins, Matthew C; Kim, Chris H; Koester, Steven J

    2016-09-27

    Two-dimensional semiconductors such as transition-metal dichalcogenides (TMDs) are of tremendous interest for scaled logic and memory applications. One of the most promising TMDs for scaled transistors is molybdenum disulfide (MoS2), and several recent reports have shown excellent performance and scalability for MoS2 MOSFETs. An often overlooked feature of MoS2 is that its wide band gap (1.8 eV in monolayer) and high effective masses should lead to extremely low off-state leakage currents. These features could be extremely important for dynamic memory applications where the refresh rate is the primary factor affecting the power consumption. Theoretical predictions suggest that leakage currents in the 10(-18) to 10(-15) A/μm range could be possible, even in scaled transistor geometries. Here, we demonstrate the operation of one- and two-transistor dynamic memory circuits using MoS2 MOSFETs. We characterize the retention times in these circuits and show that the two-transistor memory cell reveals MoS2 MOSFETs leakage currents as low as 1.7 × 10(-15) A/μm, a value that is below the noise floor of conventional DC measurements. These results have important implications for the future use of MoS2 MOSFETs in low-power circuit applications.

  5. Electrodril system field test program. Phase II, task B: deep drilling system demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-15

    The effort included the design, fabrication and Systems Verification Testing of the Deep Drilling System. The Systems Verification Test was conducted during October 1978 in a test well located on the premises of Brown Oil Tools Inc., Houston, Texas. In general, the Systems Verification test program was an unqualified success. All of the system elements of the Deep Drilling System were exercised and evaluated and in every instance the system can be declared ready for operational well demonstration. The motor/bit shaft combination operated very well and seal performance exceeds the design goals. The rig floor system performed better than expected. The power cable flexural characteristics are much better than anticipated and longitudinal stability is excellent. The prototype production connectors have functioned without failure. The cable reels and drive skid have also worked very well during the test program. The redesigned and expanded instrumentation subsystem also functioned very well. Some electronic component malfunctions were experienced during the early test stages, but they were isolated quickly and repaired. Subsequent downhole instrumentation deployments were successfully executed and downhole data was displayed both in the Electrodril instrumentation trailer and on the remote control and display unit.

  6. Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors.

    Science.gov (United States)

    San Pedro, A; González-López, C V; Acién, F G; Molina-Grima, E

    2014-10-01

    This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.

  7. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  8. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD).

    Science.gov (United States)

    Ghosh, S; Henry, M P; Sajjad, A; Mensinger, M C; Arora, J L

    2000-01-01

    Bioconversion of municipal solid waste-sludge blend by conventional high-rate and two-phase anaerobic digestion was studied. RDF (refused-derived fuel)-quality feed produced in a Madison, Wisconsin, USA, MRF (materials-recovery facility) was used. High-rate digestion experiments were conducted with bench-scale digesters under target operating conditions developed from an economic feasibility study. The effects of digestion temperature, RDF content of digester feed, HRT, loading rate, RDF particle size, and RDF pretreatment with cellulase or dilute solutions of NaOH or lime on digester performance were studied. A pilot-scale two-phase digestion plant was operated with 80:20 (weight ratio) RDF-sludge blends to show that this process exhibited a higher methane yield, and produced a higher methane-content digester gas than those obtained by single-stage, high-rate anaerobic digestion.

  9. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.

    Science.gov (United States)

    Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

    2013-01-01

    A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed.

  10. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    Science.gov (United States)

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.

  11. Phosphorus Sorption Capacities of Steel Slag in Pilot-Scale Constructed Wetlands for Treating Urban Runoff: Saturation Potential and Longevity

    Science.gov (United States)

    Guo, W. J.; Zhao, L. Y.; Zhao, W. H.; Li, Q. Y.; Wu, Z. B.

    2017-01-01

    Two parallel pilot-scale integrated constructed wetland (ICW) systems were constructed on the bank of Nanfeihe River. The phosphate (PO4 3-) isothermal adsorption properties of the upper substrate steel furnace slag (SFS) in up-flow chamber was investigated during one-year operation period. The maximum phosphorus (P) adsorption capacity of SFS 9, 11, 13, 15, 17, 19 months service time were 848.9 mg/kg, 968.1 mg/kg, 824.5 mg/kg, 788.7 mg/kg, 864.7 mg/kg and 960.3 mg/kg, respectively. The saturated adsorption amount of SFS had not decreased with the service time prolonging in ICW. The longevity of a full-scale system could not be reliably estimated only based on the theoretical saturated adsorption capacity from laboratory experiments.

  12. The kinetics of sulfides oxidation in the coal mine spoils of the Upper Silesian coal basin. Pilot scale test

    Energy Technology Data Exchange (ETDEWEB)

    Witczak, S.; Postawa, A. (University of Mining and Metallurgy, Cracow (Poland). Department of Hydrogeology, Engineering and Mining Geology)

    1993-01-01

    Presents results of six years of pilot-scale geochemical tests into sulfide oxidation. Environmental impacts of oxidized sulfides contained in coal mine waste are investigated. Materials and methods used for investigations are described. Kinetics of sulfides oxidation and the effect of ambient temperature and precipitation are studied. High sulfate contents were found in the leachate of a 1.5 m high column of coal mine waste. Values of pH changed during the test from 2.64 to 4.4 in the end without any visible changes in sulfide oxidation rate. Total amount of reactive sulfides at the beginning of tests was estimated at 0.192 wt % of sulfide sulfur. Half-decomposition time was found to be 2,735 days. It is concluded that the detrimental effect of the mine waste tested can have an environmental impact for about 33 years. 6 refs.

  13. Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; WANG Shuying; YANG Anming; GUO Jianhua; BO Fengyang

    2007-01-01

    Since eutrophication has become increasingly severe in China,nitrogen and phosphorous have been the concern of wastewater treatment,especially nitrogen removal.The stabilization of the intelligent control system and nitrogen removal efficiency were investigated in a pilot-scale aerobic-anoxic sequencing batch reactor(SBR)with a treatment capacity of 60 m3/d.Characteristic points on the profiles of dissolved oxygen(DO),pH,and oxidation reduction potential(ORP)could exactly reflect the process of nitrification and denitrification.Using the intelligent control system not only could save energy,but also could achieve advanced nitrogen removal.Applying the control strategy water quality of the effluent could stably meet the national first discharge standard during experiment of 10 months.Even at low temperature(t=13℃),chemical oxygen demand(COD)and total nitrogen(TY)in the effluent were under 50 and 5 mg/L,respectively.

  14. A pilot scale anoxic/oxic membrane bioreactor (A/O MBR) for woolen mill dyeing wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A pilot-scale(10 m3/d) anoxic/oxic membrane bioreactor(A/O MBR) was tested for dyeing wastewater treatment of woolen millwithout wasting sludge in 125 days operation. Results showed that the effluent quality was excellent, i.e. effluent COD less than 25 mg/L,BOD5 under 5 mg/L, turbidity lower than 0.65 NTU, and colour less than 30 DT, and met with the reuse water standard of Cb. ina. The removalrates of COD, BOD5, colour, and turbidity were 92.4%, 98.4%, 74% and 98.9%, respectively. Constant-flux operation mode was carriedout in this study, and backwash was effective for reducing membrane fouling and maintaining constant flux. Membrane fouling had heavy impacton energy consumption. More attention should be paid on pipe selection and design for the sidestream MBR system, too.

  15. Pilot-scale application of an online VFA sensor for monitoring and control of a manure digester

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    parameter for optimization, it could not distinguish between the decreases of biogas production from inhibition and from lower organic content in the substrate, which resulted in undesired decreasing of the control gas setpoint when the substrate was diluted. It was necessary to adjust the yield parameter...... in order to get this control approach to function properly, which is not suitable for the full-scale biogas plant where the organic content of waste streams can vary. An alternative approach could be a modified rule-based algorithm that includes VFA parameters to help distinguish between different process......A volatile fatty acids (VFA) sensor based on headspace chromatography was tested for online monitoring and control of a pilot-scale manure digester. The sensor showed satisfying results in terms of sensitivity and reliability for monitoring of the digester. The online VFA and biogas production data...

  16. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.

    Science.gov (United States)

    Yang, Zixu; Zhang, Shihong; Liu, Lei; Li, Xiangpeng; Chen, Hanping; Yang, Haiping; Wang, Xianhua

    2012-04-01

    Despite its abundant supply, tobacco stem has not been exploited as an energy source in large scale. This study investigates the combustion behaviours of tobacco stem in a thermogravimetric analyser (TGA) and a pilot-scale fluidized bed (FB). Combustion characteristics, including ignition and burnout index, and combustion reaction kinetics were studied. Experiments in the FB investigated the effects of different operating conditions, such as primary air flow, secondary air flow and feeding rates, on the bed temperature profiles and combustion efficiency. Two kinds of bed materials cinder and silica sand were used in FB and the effect of bed materials on agglomeration was studied. The results indicated that tobacco stem combustion worked well in the FB. When operation condition was properly set, the tobacco stem combustion efficiency reached 94%. In addition, compared to silica sand, cinder could inhibit agglomeration during combustion because of its high aluminium content.

  17. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  18. COMPARISON OF RADIAL AND AXIAL FLOW CHROMATOGRAPHY FOR MONOCLONAL ANTIBODY DOWNSTREAM PROCESSING AT BENCH AND PILOT SCALES

    Directory of Open Access Journals (Sweden)

    Ali Demirci

    2012-01-01

    Full Text Available Axial Flow Chromatography (AFC is widely used for the purification of therapeutic Monoclonal Antibodies (MAbs. However, AFC columns can generate high pressure drops across the resin bed, preventing operation of the column at high flow rates especially at pilot or manufacturing-scales. Radial Flow Chromatography (RFC was developed to provide lower pressure drops during chromatographic separations. In these studies, small and pilot-scale columns were used to evaluate purification of a MAb using both AFC and RFC technologies. A bench-scale, wedge RFC column (250 mL was compared to a bench-scale AFC column at various linear velocities with resulting Residence Times (RT using Protein A resin for the recovery of a monoclonal antibody. The bench RFC column was successfully operated at 4.5 min RT for equilibration and loading steps and 2 min RT for washing, elution and cleaning steps without compromising yield. The RFC column had approximately 50% lower pressure drop than the AFC column at similar flow rates. The process was then scaled-up to 5 L using a pilot-scale RFC column. The 5-L RFC column was operated at 4.5 min RT for equilibration and loading and 2 min. RT for washing, elution and cleaning with no loss of yield. However, pressure drop across the 5 L RFC column was higher than expected, but antibody recovery yields were similar for both column types. Subsequent investigations revealed a potential design issue with the RFC column. Overall, RFC has great potential to be used for pilot or manufacturing scale without high pressure drop concerns, which will certainly improve processing efficiency.

  19. The Effect of HLRs on Nitrogen Removal by Using a Pilot-scale Aerated Steel Slag System

    Directory of Open Access Journals (Sweden)

    Hamdan R.

    2017-01-01

    Full Text Available Discharge from domestic wastewater treatment plant amongst the main sources of nitrogen pollution in the environment. However, to remove nitrogen conventionally in domestic wastewater require high cost and complex chemical treatment method. Vertical flow aerated rock filter emerged as one of attractive alternative wastewater treatment method due to simplicity and compactness of the system. However, the application is yet to be developed in warm climate countries in particular Malaysia. Therefore, this study was conducted to investigate the effect of hydraulic loading rate (HLR to the performance of a pilot-scale Vertical Flow Aerated Rock Filter (VFARF in removing nitrogen from domestic wastewater using pilot-scale VFARF systems with steel slag as the filter media. Furthermore, this study has been designed to focus on the effects of two HLRs; 2.72 and 1.04 m3/m3.day. Influent and effluent of the filter systems were monitored biweekly basis for 11 weeks and analyzed for selected parameters. Results from this study shows that the VFARF with HLR 1.04 m3/m3.day has performed better in terms of removal ammonium-nitrogen and TKN as the system able to remove 90.4 ± 6.9%, 86.2 ± 10.7%, whilst the VFARF with 2.72 m3/m3.day remove 87.4 ± 9.9%, 80 ± 11.7%, respectively. From the observation, it can be concluded that nitrogen removal does affect by HLR as the removal in lower HLR system was higher due to high DO level in the VFARF system with 1.04 m3/m3.day which range from 4.5 to 5.1 mg/L whilst the DO level was slightly lower in the VFARF system with 2.72 m3/m3.day in the range of 3.7 to 4.5 mg/L.

  20. Improvement and Validation of Pilot-Scale Emerging Pathogen Removal Studies: The Effects of Spiking Concentration and Sampling Method

    Science.gov (United States)

    Lau, B. L.; Harrington, G. W.; Hoffman, R. M.; Borchardt, M. A.

    2004-05-01

    The presence of waterborne enteric pathogens in domestic water supplies represents a potentially significant human health risk. To evaluate the removal of these pathogens in drinking water treatment processes, researchers have needed to spike raw water with at least 106 pathogens/L in order to reliably detect the pathogens in treated water. Unfortunately, occurrence surveys have shown that pathogen concentrations in raw waters are significantly smaller than 106 pathogens/L (LeChevallier and Norton, 1995; States et al., 1997). Since regulatory decisions are based on results from pilot-scale experiments, it is necessary to determine if it is appropriate to extrapolate removal capacities based on unrealistic spike doses. Recent advances have been made in sample concentration and pathogen detection that allows removal studies to be conducted at more realistic spike concentrations. The overall goal of this project is to use continuous separation channel centrifugation (CSCC) and flow cytometry with cell sorting (FCCS) to evaluate Cryptosporidium removals in water treatment processes at concentrations nearer to those found in the aquatic environment. This project evaluates Cryptosporidium removal with a unique combination of experimental, concentration, and analytical methods. In order to characterize the removal of Cryptosporidium, pilot-scale experiments will be conducted between March and April 2004 with different initial Cryptosporidium concentrations (range from 102 to 106 Cryptosporidium/L) and sampling methods (grab versus continuous). CSCC will be used for concentration of pathogens in samples collected from the pilot plant. FCCS capability will be used for Cryptosporidium detection. These methods will achieve significantly higher pathogen recoveries and more precise pathogen counts than the methods that have traditionally been used for pilot plant studies. This research will provide the water industry with a way of validating previous removal studies and insight

  1. Implementing the CDC’s Colorectal Cancer Screening Demonstration Program: Wisdom From the Field

    Science.gov (United States)

    Rohan, Elizabeth A.; Boehm, Jennifer E.; DeGroff, Amy; Glover-Kudon, Rebecca; Preissle, Judith

    2017-01-01

    BACKGROUND Colorectal cancer, as the second leading cause of cancer-related deaths among men and women in the United States, represents an important area for public health intervention. Although colorectal cancer screening can prevent cancer and detect disease early when treatment is most effective, few organized public health screening programs have been implemented and evaluated. From 2005 to 2009, the Centers for Disease Control and Prevention funded 5 sites to participate in the Colorectal Cancer Screening Demonstration Program (CRCSDP), which was designed to reach medically underserved populations. METHODS The authors conducted a longitudinal, multiple case study to analyze program implementation processes. Qualitative methods included interviews with 100 stakeholders, 125 observations, and review of 19 documents. Data were analyzed within and across cases. RESULTS Several themes related to CRCSDP implementation emerged from the cross-case analysis: the complexity of colorectal cancer screening, the need for teamwork and collaboration, integration of the program into existing systems, the ability of programs to use wisdom at the local level, and the influence of social norms. Although these themes were explored independently from 1 another, interaction across themes was evident. CONCLUSIONS Colorectal cancer screening is clinically complex, and its screening methods are not well accepted by the general public; both of these circumstances have implications for program implementation. Using patient navigation, engaging in transdisciplinary teamwork, assimilating new programs into existing clinical settings, and deferring to local-level wisdom together helped to address complexity and enhance program implementation. In addition, public health efforts must confront negative social norms around colorectal cancer screening. PMID:23868482

  2. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2007-03-30

    The objective of this project was to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions was conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute partially supported the field demonstration and BP-Amoco helped install the unit and provide onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. During the course of this project, MTR has sold thirteen commercial units related to the field test technology. Revenue generated from new business is already more than four times the research dollars invested in this process by DOE. The process is ready for broader commercialization and the expectation is to pursue the commercialization plans developed during this project, including collaboration with other companies already servicing the natural gas processing industry.

  3. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    R. Baker; T. Hofmann; J. Kaschemekat; K.A. Lokhandwala; Membrane Group; Module Group; Systems Group

    2001-01-11

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

  4. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    R. Baker; R. Hofmann; K.A. Lokhandwala

    2003-02-14

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

  5. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    R. Baker; T. Hofmann; K. A. Lokhandwala

    2004-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

  6. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    Science.gov (United States)

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  7. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    Science.gov (United States)

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  8. Real-Time Quantitative Operando Raman Spectroscopy of a CrOx/Al2O3 Propane Dehydrogenation Catalyst in a Pilot-Scale Reactor

    NARCIS (Netherlands)

    Sattler, Jesper J. H. B.|info:eu-repo/dai/nl/328235601; Mens, Ad M.; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2014-01-01

    Combined operando UV/vis-Raman spectroscopy has been used to study the deactivation of CrOx/Al2O3 catalyst extrudates in a pilot scale propane dehydrogenation reactor. For this purpose, UV/vis and Raman optical fiber probes have been designed, constructed and tested. The light absorption measured by

  9. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

  10. Comparison of aluminum thermal-death-time disks with a pilot-scale pasteurizer on the thermal inactivation of Escherichia coli K12 in apple cider

    Science.gov (United States)

    This study was conducted to compare thermal inactivation kinetics of Escherichia coli K12 in apple cider using conventional glass tubes, aluminum thermal-death-time (TDT) disks, and a pilot-scale pasteurizer. D-values of E. coli K12 in glass tubes and TDT disks were determined at 56, 58, and 60C. D-...

  11. Results of a Pilot-Scale Disinfection Test using Peracetic Acid (PAA) at the Oak Ridge National Laboratory (ORNL) Sewage Treatment Plant (STP)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The purpose of this report is to present the results of a small pilot-scale test using PAA to disinfect a side stream of the effluent from the ORNL STP. These results provide the basis for requesting approval for full-scale use of PAA at the ORNL STP.

  12. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage

    CSIR Research Space (South Africa)

    Mulopo, J

    2012-01-01

    Full Text Available Batch regeneration of barium carbonate (BaCO3) from barium sulphide (BaS) slurries by passing CO2 gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO3 recovery in the Alkali...

  13. A Demonstration of Accurate Wide-field V-band Photometry Using a Consumer-grade DSLR Camera

    CERN Document Server

    Kloppenborg, Brian K; Eggenstein, Heinz-Bernd; Maravelias, Grigoris; Pearson, Tom

    2013-01-01

    The authors examined the suitability of using a Digital Single Lens Reflex (DSLR) camera for stellar photometry and, in particular, investigated wide field exposures made with minimal equipment for analysis of bright variable stars. A magnitude-limited sample of stars was evaluated exhibiting a wide range of (B-V) colors taken from four fields between Cygnus and Draco. Experiments comparing green channel DSLR photometry with VT photometry of the Tycho 2 catalogue showed very good agreement. Encouraged by the results of these comparisons, a method for performing color-based transformations to the more widely used Johnson V filter band was developed and tested. This method is similar to that recommended for Tycho 2 VT data. The experimental evaluation of the proposed method led to recommendations concerning the feasibility of high precision DSLR photometry for certain types of variable star projects. Most importantly, we have demonstrated that DSLR cameras can be used as accurate, wide field photometers with on...

  14. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    Science.gov (United States)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  15. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  16. Pilot-scale Limestone Emission Control (LEC) process: A development project. Volume 1, Main report and appendices A, B, C, and D: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prudich, M.E. [Ohio Univ., Athens, OH (United States); Appell, K.W.; McKenna, J.D. [ETS, Inc., Roanoke, VA (United States)

    1994-03-01

    ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. A nominal 5,000 acfm LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. A total of over 90 experimental trials have been performed using the pilot-scale moving-bed LEC dry scrubber as a part of this research project with run times ranging up to a high of 125 hours. SO{sub 2} removal efficiencies as high as 99.9% were achievable for all experimental conditions studied during which sufficient humidification was added to the LEC bed. The LEC process and conventional limestone scrubbing have been compared on an equatable basis using flue gas conditions that would be expected at the outlet of the electrostatic precipitator (ESP) of a 500 MW coal-fired power plant. The LEC was found to have a definite economic advantage in both direct capital costs and operating costs. Based on the success and findings of the present project, the next step in LEC process development will be a full-scale commercial demonstration unit.

  17. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production.

    Science.gov (United States)

    Zhao, Y; Fang, Y; Jin, Y; Huang, J; Bao, S; Fu, T; He, Z; Wang, F; Wang, M; Zhao, H

    2015-01-01

    The application potential of four duckweed strains from four genera, Wolffia globosa 0222, Lemna japonica 0223, Landoltia punctata 0224 and Spirodela polyrhiza 0225, were compared in four parallel pilot-scale wastewater treatment systems for more than 1 year. The results indicated that each duckweed strain had unique potential advantages. Unlike L. japonica 0223 and La. punctata 0224, which grow throughout the year, S. polyrhiza 0225 and W. globosa 0222 do not survive cold weather. For year round performance, L. japonica 0223 was best not only in dry biomass production (6.10 g·m(-2) ·day(-1) ), but also in crude protein (35.50%), total amino acid (26.83%) and phosphorus (1.38%) content, plus recovery rates of total nitrogen (TN), total phosphorus (TP) and CO2 (0.31, 0.085 and 7.76 g·m(-2) ·day(-1) , respectively) and removal rates of TN and TP (0.66 and 0.089 g·m(-2) ·day(-1) , respectively). This strongly demonstrates that L. japonica 0223 performed best in wastewater treatment and protein biomass production. Under nutrient starvation conditions, La. punctata 0224 had the highest starch content (45.84%), dry biomass production (4.81 g·m(-2) ·day(-1) ) and starch accumulation (2.9 g·m(-2) ·day(-1) ), making it best for starch biomass production. W. globosa 0222 and S. polyrhiza 0225 showed increased flavonoid biomass production, with higher total flavonoid content (5.85% and 4.22%, respectively) and high dominant flavonoids (>60%). This study provides useful information for selecting the appropriate local duckweed strains for further application in wastewater treatment and valuable biomass production.

  18. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    Science.gov (United States)

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.

  19. Evaluation of a pilot scale high pressure plasma ozonizer for use in ...

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... Key words: Ozone, ozonizer, oxidizer, plasma, high pressure, plasma system. INTRODUCTION ... the electric field which can result in a voltage breakdown. .... electric current of 10 mA, discharge gap of 0.006 m, gas pressure ...

  20. Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer

    Science.gov (United States)

    Llopis-Albert, Carlos; Capilla, José E.

    2009-06-01

    SummaryIn the first paper of this series a methodology for the generation of non-Gaussian transmissivity fields conditional to flow, mass transport and secondary data was presented. This methodology, referred to as the gradual conditioning (GC) method, constitutes a new and advanced powerful approach in the field of stochastic inverse modelling. It is based on gradually changing an initial transmissivity ( T) field, conditioned only to T and secondary data, to honour flow and transport measured data. The process is based on combining the initial T field with other seed T fields in successive iterations maintaining the stochastic structure of T, previously inferred from data. The iterative procedure involves the minimization of a penalty function which depends on one parameter, and is made up by the weighted summation of the square deviations among flow and/or transport variables, and the corresponding known measurements. The GC method leads gradually to a final simulated field, uniformly converging to a better reproduction of conditioning data as more iterations are performed. The methodology is now demonstrated on a synthetic aquifer in a non-multi-Gaussian stochastic framework. First, an initial T field is simulated, and retained as reference T field. With prescribed head boundary conditions, transient flow created by an abstraction well and a mass solute plume migrating through the formation, a long-term and large scale hypothetical tracer experiment is run in this reference synthetic aquifer. Then T, piezometric head ( h), solute concentration ( c) and travel time ( τ) are sampled at a limited number of points, and for different time steps where applicable. Using this limited amount of information the GC method is applied, conditioning to different sets of these sampled data and model results are compared to those from the reference synthetic aquifer. Results demonstrate the ability and robustness of the GC method to include different types of data without

  1. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Saibal Bhattacharya

    2005-08-31

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring

  2. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  3. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    Science.gov (United States)

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  4. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas: Nineteenth Quarterly Progress Report (Second Quarter 2006)

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2006-06-30

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation, and is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract for a demonstration plant in Rio Vista, CA. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

  5. Gas mixing in a pilot scale (500 KW{sub th}) air blown circulating fluidised bed biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, S.R.A.; Moonen, R.H.W.; Oosting, T.P. [ECN Biomass, Petten (Netherlands); Prins, W.; Van Swaaij, W.P.M. [Faculty of Chemical Engineering, University of Twente, Enschede (Netherlands)

    2000-07-01

    To study the gas mixing capacity of circulating fluidised bed (CFB) biomass gasifiers, radial and axial gas concentration profiles have been measured and interpreted in both a hot pilot scale biomass gasifier (100 kg/hr fuel) and a cold-flow set-up. The presented data of the pilot scale gasifier are unique and provide new insight in the radial gas mixing capacity of circulating fluidised bed gasifiers. Gas mixing is an important process because the effectiveness of a CFB biomass gasifier, regarding conversion of carbon and tars in the product gas, depends among other things on the degree of reactant mixing. At five different axial positions, in the pilot plant, especially developed probes are installed to withdraw gases from the interior of the reactor. They can be moved freely over the reactor diameter, so full radial profiles can be obtained at each axial position. In the cold-flow set-up similar probes are used to determine radial dispersion coefficients as a function of process variables such as solids flux, gas velocity and additional internals. Considerable radial gas phase concentration gradients have been observed in the pilot plant gasifier, with a difference between wall and centre concentrations up to a factor 3. It must be concluded that the radial gas mixing is far from ideal. On basis of these pilot plant data and a suitable reactor model it can be concluded that the radial Peclet number of the dilute region is in the order of 1000. Such a value excludes the radial mixing of gases almost entirely. Simulations indicate that the occurrence of a parabolic gas velocity profile (also observed in earlier hydrodynamic studies) and a possibly non-uniform biomass distribution, are major causes for steep gradients in the radial gas concentration profiles. From the experiments in the cold-flow set-up it can be concluded that in the dilute region of the riser the radial mixing intensity decreases due to presence of solids. This can be ascribed to a reducing

  6. The value of smart artificial lift technology in mature field operations demonstrated in the Zistersdorf oilfield in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, S.; Oberndorfer, M.; Rice, D. [Rohoelaufsuchungs-AG, Wien (Austria); Soliman, K. [Montanuniversitaet Leoben (Austria)

    2013-08-01

    Currently, approximately 40% of world oil production comes from mature fields and the tendency is that this will increase with time. A significant portion of operational expenditures in mature oil fields is related to lifting costs including the cost of maintenance of the artificial lift equipment. In many cases additional, unnecessary, costs are incurred due to inadequate control of corrosion and sand production leading to premature failures of the equipment and thus to additional workover operations. In mature fields this can result in a significant loss of reserves when the production has to be abandoned prematurely because workover operations become uneconomic. In order to combat such losses of reserves RAG and its partners have developed fit-for-purpose technologies such as: continuous control of the liquid level in the annulus (i.e. bottom hole flowing pressure), innovative advanced sand control and longer lasting artificial lift equipment. On the basis of the 75 years old Zistersdorf oilfields the value of these developments in artificial lift technology is demonstrated. The Zistersdorf oilfields produce primarily from the compacted and fairly permeable 'Sarmat' sandstone formation which has many layers whereby the higher layers are poorly consolidated. The fields are currently producing from 33 producing wells some 6 900 m{sup 3} (Vn)/d gas and 48 t/d of oil at an average water cut of 97.1%. It will be shown that the implementation of the technologies described in combination with the in-house knowledge and the dedication of the field staff has extended considerably the mean time between failures of the equipment, reduced markedly the average yearly decline rate and thus extended the economic life expectancy of the fields and increased the ultimate recovery significantly.

  7. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis; Hagen Schempf

    2004-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its sixth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot completed its first field demonstration in June 2004 and is undergoing further extensive endurance testing and some minor modifications in order to prepare for the second and last field demonstration planned for October 2004.

  8. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2003-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.

  9. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  10. Pilot scale facility to determine gaseous emissions from livestock slurry during storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Skov, Morten; Drøscher, Per

    2009-01-01

    Livestock production is a growing source of air pollution, locally and to the wider environment. Improved livestock manure management has the potential to reduce environmental impacts, but there is a need for methodologies to precisely quantify emissions. This paper describes and evaluates a novel......) or a syringe (time point samples). Complete recovery of CH4 independent of ventilation rate was demonstrated. Vertical profiles of CO2 and CH4 above the slurry surface with and without ventilation and mixing of the headspace indicated methane oxidation activity in the surface crust. p-Cresol and 4-ethyl phenol...

  11. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilot-scale investigation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guiying [The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao [The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Bing [Experiment Medical Research Centre, Guangzhou Medical College, Guangzhou 510182 (China)

    2013-04-15

    Highlights: ► VOCs and biohazards emitted during garbage compressing process were monitored. ► BTF–PC integrated reactor was employed for VOCs and biohazards removal. ► Health risk of target VOCs and biohazards were assessed before and after treatment. -- Abstract: Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32–306.03 μg m{sup −3}) were much higher than those as compressor off (0–13.31 μg m{sup −3}). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m{sup −3} as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter–photocatalytic (BTF–PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF–PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale.

  12. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation.

    Science.gov (United States)

    Sanches, S; Fraga, M C; Silva, N A; Nunes, P; Crespo, J G; Pereira, V J

    2016-11-22

    The treatment of large volumes of olive mill wastewater is presently a challenge. This study reports the technical and economical feasibility of a sequential treatment of olive mill wastewater comprising a dissolved air flotation pre-treatment and nanofiltration. Different pilot nanofiltration assays were conducted in a concentration mode up to different volume reduction factors (29, 45, 58, and 81). Data attained demonstrated that nanofiltration can be operated at considerably high volume reduction factors and still be effective towards the removal of several components. A flux decline of approximately 50% was observed at the highest volume reduction factor, mainly due to increase of the osmotic pressure. Considerably high rejections were obtained across all experiments for total suspended solids (83 to >99%), total organic carbon (64 to 99%), chemical oxygen demand (53 to 77%), and oil and grease (67 to >82%). Treated water was in compliance with European legal limits for discharge regarding total suspended solids and oil and grease. The potential recovery of phenolic compounds was evaluated and found not relevant. It was demonstrated that nanofiltration is economically feasible, involving operation costs of approximately 2.56-3.08 €/m(3), depending on the working plan schedule and volume reduction factor, and requiring a footprint of approximately 52 m(2) to treat 1000 m(3) of olive mill wastewater.

  13. ESTCP Technology Demonstration Final Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands With Application to Northern FUD Sites

    Science.gov (United States)

    2004-06-01

    fingerprint for the heavy fuel, fuel oil no. 4. ............................................75 Figure 21. Histogram for three ESTCP field sites - decalin...possibly by greater contaminant solubility due to biosurfactants or pH changes near the root surface, and by “pseudo-mixing” of soil due to root...containment or removal of organic and/ or metal contaminants). A. Phytoextraction: contaminant uptake and accumulation for removal. B

  14. Mathematical simulation of column flotation in pilot scale; Modelacion empirica de flotacion en columna a escala piloto

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; Jordan, D.; Cifuentes, G.; Morales, A.; Briones, L.

    2010-07-01

    The Procemin-I area of the Centro Minero Metalurgico Tecnologia y Servicio (CIMM T and S), has a full milling and flotation pilot plant in which several experiences are developed as: optimization of circuits, plant design, procurement of operating parameters, etc. Ones of the equipment in operation is the column flotation to pilot scale, witch have a medium level of automation. The problem presented in the operation of the column flotation is the low relationship during the operation between the operating basis parameters and the metallurgical results. The mathematical models used today to estimate the metallurgical results (i.e.: concentrate, tailing, enrichment and recovery) depending on variables that are manipulated by hand according the operator experience. But the process engineer needs tools without subjective vision to obtain the best performance of the column. The method used to help the column operation was a mathematical model based on the Stepwise Regression then considering empirical relationships between operational variables and experimental results. All the mathematical relationship developed in this study have a good correlation (up 90 % of precision), except one (up 70 %) due by non regular mineralogical feed. (Author) 7 refs.

  15. Thermal composting of faecal matter as treatment and possible disinfection method--laboratory-scale and pilot-scale studies.

    Science.gov (United States)

    Vinnerås, Björn; Björklund, Anders; Jönsson, Håkan

    2003-05-01

    When using toilets where the urine and faeces are collected separately for reuse as nutrients in agriculture, the collected matter should be disinfected. One way to do this is by thermal composting. Composting of different material mixes was investigated in a laboratory-scale experiment. This showed that the best mixture for dry thermal composting was a mix of faeces, food waste and amendment. The urine was collected separately by use of urine-diverting toilets. A new method was developed to mathematically evaluate and estimate the safety margins of pathogen inactivation during thermal composting. The method is based upon a mathematical calculation of the number of times total inactivation (at least 12log(10) reduction) of the organisms is achieved. In a pilot-scale experiment, the disinfection of a faeces/food waste mix was performed with a calculated safety margin of more than 37 times the total die-off of Enteroviruses and some 550 times that of Ascaris. Thus, well functioning composting seems to be effective for disinfection of faecal matter. To get a high temperature in all of the material, the reactor has to have sufficient insulation. A major disadvantage is the initial need for handling the raw un-disinfected material. The degradation of the organic matter in the compost was almost 75%, resulting in a small final volume that could safely be recycled.

  16. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    Science.gov (United States)

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-09-02

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  17. Performance and microbial community analysis of a pilot-scale UASB for corn-ethanol wastewater treatment.

    Science.gov (United States)

    Huang, Jianping; Xiao, Ling; Xi, Chunhui

    2015-04-01

    The performance and microbial community structure of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor inoculated with flocculent sludge were investigated over 52 days. The characteristics of corn-ethanol wastewater were as follows: CODCr, 1,050-4,970 mg l(-1); ammonia, 14-298 mg l(-1); and alkalinity, 332-2,867 mg l(-1). The UASB could start up smoothly with a hydraulic loading rate lower than 180 l h(-1) and a ratio of volatile fatty acid versus alkalinity between 0.04 and 0.48. The maximum gas production rate was 432 l h(-1) and the highest volumetric loading rate of 7.2 kg m(-3) day(-1) was obtained after 48 days. The 1 mm granules could form a complex network and were composed of many Methanosaeta. Aceticlastic methanogens served as a dominant methanogenic group, which accounted for the relatively high resistance to shock loading.

  18. Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor.

    Science.gov (United States)

    Sun, Faqian; Sun, Bin; Li, Qian; Deng, Xiaoya; Hu, Jian; Wu, Weixiang

    2014-04-01

    A combined process consisting of ex situ nitrification and in situ denitrification in landfill refuse was studied in pilot scale for nitrogen removal from municipal landfill leachate. The results showed that above 80% of partial nitrification ratio and an average COD loading rate of 1.50 kg m(-3) d(-1) were steadily maintained under DO concentrations of 1.0-1.7 mg L(-1) in the aerobic reactor. Quantitative PCR results indicated that nitrite-oxidizing bacteria being sensitive to DO fluctuations lead to partial nitrification when free ammonia inhibition was weak. Nitrified landfill leachate could be denitrified in the landfill bioreactor with maximum total oxidizing nitrogen removal rate of 67.2 g N t(-1) TSwaste d(-1). Clone and sequencing analysis of denitrifying bacterial nirS gene inferred that heterotrophic denitrifier Azoarcus tolulyticu was the primary nitrogen converter in the landfill bioreactor. The obtained results will provide valuable information for optimizing the design and operation of a landfill bioreactor.

  19. Co-Fuelling of Peat with Meat and Bone Meal in a Pilot Scale Bubbling Bed Reactor

    Directory of Open Access Journals (Sweden)

    Markku Orjala

    2010-07-01

    Full Text Available Co-combustion performance trials of Meat and Bone Meal (MBM and peat were conducted using a bubbling fluidized bed (BFB reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m3 limit upon combustion of pure MBM. SO2 emissions were found to be over the limit of 50 mg/m3, while in all trials NOx emissions were below the limit of 300 mg/m3. The HCl content of the flue gases was found to vary near the limit of 30 mg/m3. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 °C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications.

  20. Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies.

    Science.gov (United States)

    Plakas, Konstantinos V; Sklari, Stella D; Yiankakis, Dimitrios A; Sideropoulos, Georgios Th; Zaspalis, Vassilis T; Karabelas, Anastasios J

    2016-03-15

    To assess the performance of a novel 'filter'-type electro-Fenton (EF) device, results are reported from pilot-scale studies of continuous water treatment, to degrade diclofenac (DCF), a typical organic micro-pollutant, with no addition of oxidants. The novel 'filter' consisted of three pairs of anode/cathode electrodes made of carbon felt, with cathodes impregnated with iron nanoparticles (γ-Fe2O3/F3O4 oxides). The best 'filter' performance was obtained at applied potential of 2 V and low water superficial velocities (∼0.09 cm/s), i.e., the mineralization current efficiency (MCE) was >20%, during continuous steady state treatment of tap water with low DCF concentrations (16 μg/L). The EF 'filter' exhibited satisfactory stability regarding both electrode integrity (no iron leaching) and removal efficiency, even after multiple filtration/oxidation treatment cycles, achieving (under steady conditions) DCF and TOC removal 85% and 36%, respectively. This performance is considered satisfactory because the EF process took place under rather unfavorable conditions, such as neutral pH, low dissolved O2 concentration, low electrical conductivity, and presence of natural organic matter and inorganic ions in tap water. Ongoing R&D is aimed at 'filter' development and optimization for practical applications.

  1. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    Science.gov (United States)

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  2. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.

    Science.gov (United States)

    Peters, Björn-Hendrik; Leskinen, Jari T T; Molnár, Ferdinand; Ketolainen, Jarkko

    2015-11-01

    Microscale (MS) freeze-drying offers rapid process cycles for early-stage formulation development. The effects of the MS approach on the secondary structures of two model proteins, lysozyme and catalase, were compared with pilot-scale (PS) vial freeze-drying. The secondary structures were assessed by attenuated total reflection Fourier transformed infrared spectroscopy. Formulations were made with increasing sucrose-protein ratios. Freeze-drying protocols involved regular cooling without thermal treatment and annealing with MS and PS equipment, and cooling rate variations with the MS. Principal component analysis of smoothed second-derivative amide I spectra revealed sucrose-protein ratio-dependent shifts toward α-helical structures. Transferability of sucrose-protein formulations from MS to PS vial freeze-drying was evidenced at regular cooling rates. Local differences in protein secondary structures between the bottom and top of sucrose-catalase samples could be detected at the sucrose-catalase ratios of 1 and 2, this being related to the initial filling height and ice crystal morphology. Annealing revealed temperature, protein, formulation, and sample location-dependent effects influencing surface morphology at the top, or causing protein secondary structure perturbation at the bottom. With the MS approach, protein secondary structure differences at different cooling rates could be detected for sucrose-lysozyme samples at the sucrose-lysozyme ratio of 1.

  3. A pilot-scale study of wet torrefaction treatment for upgrading palm oil empty fruit bunches as clean solid fuel

    Science.gov (United States)

    Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.

    2017-05-01

    Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.

  4. Performance of a pilot-scale biotrickling filter in controlling the volatile organic compound emissions in a furniture manufacturing facility.

    Science.gov (United States)

    Martínez-Soria, Vicente; Gabaldón, Carmen; Penya-Roja, Josep M; Palau, Jordi; Alvarez-Hornos, F Javier; Sempere, Feliu; Soriano, Carlos

    2009-08-01

    A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.

  5. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules.

    Science.gov (United States)

    Ni, Shou-Qing; Gao, Bao-Yu; Wang, Chih-Cheng; Lin, Jih-Gaw; Sung, Shihwu

    2011-02-01

    The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate production to ammonium conversion were calculated to be 1.26±0.02:1 and 0.26±0.01:1, respectively. The Stover-Kincannon model which was first applied in granular anammox process indicated that the granular anammox reactor possessed high nitrogen removal potential of 27.8 kg/m(3)/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction. This pilot study can elucidate further information for industrial granular anammox application.

  6. Coupling digestion in a pilot-scale UASB reactor and electrochemical oxidation over BDD anode to treat diluted cheese whey.

    Science.gov (United States)

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-11-01

    The efficiency of the anaerobic treatment of cheese whey (CW) at mesophilic conditions was investigated. In addition, the applicability of electrochemical oxidation as an advanced post-treatment for the complete removal of chemical oxygen demand (COD) from the anaerobically treated cheese whey was evaluated. The diluted cheese whey, having a pH of 6.5 and a total COD of 6 g/L, was first treated in a 600-L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB process, which was operated for 87 days at mesophilic conditions (32 ± 2 °C) at a hydraulic retention time (HRT) of 3 days, led to a COD removal efficiency between 66 and 97 %, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 9 and 18 A and in the presence of NaCl as the supporting electrolyte, complete removal of COD was attained after 3-4 h of reaction. During electrochemical experiments, three groups of organochlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs), and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, alongside free chlorine, are thought to increase the matrix ecotoxicity to Artemia salina.

  7. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    Science.gov (United States)

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2015-01-01

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification.

  8. Design-Oriented Thermodynamic Analysis of Novel Heat-Integrated C5 Isomeride Distillation Scheme on Pilot Scale

    Institute of Scientific and Technical Information of China (English)

    孙津生; 戴雷雷; 马婷婷; 郭长宁; 卫宏远; 李正虎

    2016-01-01

    A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with the conventional distillation scheme, C5 foaming agent was directly separated at the top of the original isopentane or pentane column in the novel scheme, instead of first refining the two isomerides to high purities and then mixing them into final products. This improvement reduced the difficulty of the separation and avoided meaningless exergy loss caused by re-mixing, which finally contributed to an energy-efficient design by a big margin. Moreover, the column grand composite curves(CGCCs)were used to modify all distillation columns, indicating that there is po-tential to improve the energy efficiency further. Therefore, double-effect, or heat-integrated distillation was also adopted. Energy and exergy analyses were then conducted to evaluate the effectiveness of the proposed scheme for the purpose of energy saving. The simulation results of the conventional distillation scheme were in agreement with its on-site counterpart. Analyses showed that the novel heat-integrated scheme reduced hot utility by 27.12%, cold utility by 24.49%,, and total exergy loss by 23.95%,.

  9. Pilot-scale production and purification of a staphylokinase based fusion protein over-expressed in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Genshen ZHONG; Aiping YU; Bingxing SHI; Yang LIU; Chutse WU

    2009-01-01

    SFH,a recombinant staphylokinase-based fusion protein linked by the factor Xa recognition peptide at the N-terminus of hirudin,is a promising therapeutic candidate for thromboembolic diseases.To develop SFH into a new thrombolytic agent,scaled-up production was carried out to provide sufficient preparation for animal safety and clinical studies.Here,we describe a pilot-scale cultivation and purification process for the production of SFH.A high-cell-density fed-batch cultivation for the production of SFH in E.coli was developed in a 40-L bioreactor,which produced about 1.1 g/L of recombinant protein.SFH was purified to homogeneity from the E.coli lysate by expanded bed adsorption chromatography and anion-exchange chromatography,with over 99% purity and 54% recovery.Moreover,the residual endotoxin content was less than 0.5 EU/mL.The molecular weight and in vitro bioactivity of SFH were also determined by electrospray ionization-mass spectrometry (ESI-MS) and fibrinolytic activity assay,respectively.

  10. Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland.

    Science.gov (United States)

    Del Bubba, Massimo; Checchini, Leonardo; Pifferi, Chiara; Zanieri, Laura; Lepri, Luciano

    2004-12-01

    Performances of a pilot-scale reed bed for the olive mill wastewater (OMW) treatment were investigated, by monitoring influent and effluent pH, total suspended solids (TSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total phosphorus and polyphenols. In order to reduce the suspended matter concentration and to avoid clogging, OMW was pre-treated by adding lime putty, calcium hydroxide and hydraulic lime. The best results were obtained with 2 g/L of hydraulic lime. Pre-treated OMW was dosed in the reed bed at dilution ratios of 1/3 and 1/10 (v/v), pointing up that the latter only did not give rise to reed suffering and allowed to obtain good and durable removal efficiencies, above all for COD (74.1+/-17.6%) and polyphenols (83.4+/-17.8%). Recycling of the effluent was quite effective for the improvement of the wastewater quality, allowing a further removal of 26-70%, depending on the parameter taken into account. A post-dosage study, carried out by feeding the reed bed with the effluent of an activated sludge plant, pointed up a rapid decreasing of the outlet concentrations of the investigated parameters to values compatible with Italian regulations concerning wastewater discharge in surface water. Polyphenols were the exception, being their outlet concentration at the end of post-dosage study around 2 mg/L.

  11. Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters.

    Science.gov (United States)

    Kiseleva, Larisa; Garushyants, Sofya K; Ma, Hongwu; Simpson, David J W; Fedorovich, Viatcheslav; Cohen, Michael F; Goryanin, Igor

    2015-10-06

    The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of whole-genome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.

  12. TESTING OF BASELINE AND LAMINATED FILTER DISKS USING MST AND MMST WITH A PILOT SCALE ROTARY FILTER

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.

    2001-12-19

    Testing was completed to compare the filtration performance of modified monosodium titanate (mMST) with that of monosodium titanate (MST) with the rotary microfilter. In addition, the performance of the new laminated filter disk was compared to that of the original baseline welded filter disk. Results showed that flux rates for mMST exceeded that of MST with both the baseline and laminated filter disks in deployment concentrations of 0.2 g/L of mMST and 0.4 g/L of MST. The filtration rate of the mMST with the laminated filter disk exceeded that of the baseline filter disk. However, the baseline filter disk filtration rate for MST was greater than that of the laminated disk. The measured sample turbidity for all tests was 1.06 NTU or less. A contract was established with SpinTek Filtration{trademark} to operate a 3-disk pilot scale unit with prototypic filter disks and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of laminated filter disks using the same 0.5 micron filter disks. The membrane used for both disk sets was manufactured by the Pall Corporation (PMM 050). Each set of disks was run with monosodium titanate (MST) and modified monosodium titanate (mMST). Throughout the testing, samples of the filtrate were collected and measured for turbidity.

  13. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.

    Science.gov (United States)

    McKie, Michael J; Andrews, Susan A; Andrews, Robert C

    2016-02-15

    The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners.

  14. Co-Fuelling of peat with meat and bone meal in a pilot scale bubbling bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, K.; Cummins, E. J.; Fagan, C. C. [Biosystems Engineering, Bioresources Research Centre, UCD School of Agriculture, Food Science and Veterinary Medicine, Belfield, University College Dublin, Dublin 4 (Iran, Islamic Republic of); Orjala, M. [VTT Bioenergy, Koivurannantie, P.O. Box 1603, FIN- 40101 Jyvaeskylae (Finland)

    2010-07-15

    Co-combustion performance trials of Meat and Bone Meal (MBM) and peat were conducted using a bubbling fluidized bed (BFB) reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m{sup 3} limit upon combustion of pure MBM. SO{sub 2} emissions were found to be over the limit of 50 mg/m{sup 3}, while in all trials NO{sub x} emissions were below the limit of 300 mg/m{sup 3}. The HCl content of the flue gases was found to vary near the limit of 30 mg/m{sup 3}. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 {sup o}C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications. (authors)

  15. A Pilot-scale Benthic Microbial Electrochemical System (BMES) for Enhanced Organic Removal in Sediment Restoration

    Science.gov (United States)

    Li, Henan; Tian, Yan; Qu, Youpeng; Qiu, Ye; Liu, Jia; Feng, Yujie

    2017-01-01

    A benthic microbial electrochemical systems (BMES) of 195 L (120 cm long, 25 cm wide and 65 cm height) was constructed for sediment organic removal. Sediment from a natural river (Ashi River) was used as test sediments in the present research. Three-dimensional anode (Tri-DSA) with honeycomb structure composed of carbon cloth and supporting skeleton was employed in this research for the first time. The results demonstrated that BMES performed good in organic-matter degradation and energy generation from sediment and could be considered for river sediments in situ restoration as novel method. Community analysis from the soil and anode using 16S rDNA gene sequencing showed that more electrogenic functional bacteria was accumulated in anode area when circuit connected than control system.

  16. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  17. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  18. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2003-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGLs) and remove water from raw natural gas. To convince industry users of the efficiency and reliability of the process, we plan to conduct an extended field test to demonstrate system performance under real-world conditions. The membrane system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR). The MTR membrane system and the compressor are now onsite at BP's Pascagoula, MS plant. The plant is undergoing a very significant expansion and the installation of the membrane unit into the test location is being implemented, albeit at a slower rate than we expected. The startup of the system and conducting of tests will occur in the next six months, depending on the availability of the remaining budget. In the interim, significant commercial progress has been made regarding the introduction of the NGL membrane and systems into the natural gas market.

  19. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  20. Big Muddy Field low-tension flood-demonstration project. Fifth annual report, April 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.R.; Borah, M.T.; Ferrell, H.H.

    1983-08-01

    The Big Muddy low-tension flood is a commercial-size demonstration project consisting of nine 10-acre injection patterns in the heart of the Big Muddy Oil Field located 15 miles east of Casper, Wyoming. The main goal of the project is to provide data for commercialization of the process for the Big Muddy Field and similar Wyoming and Colorado fields. This report discusses the project performance during the last part of slug injection with particular emphasis on the analysis of the early oil response and the injectivity. Other work discussed in this report includes the pilot testing for an oil-treating facility which led to a new design. The oil production rate increased from about 75 BPD at year-end 1981 to about 170 BPD, or from about 4 percent to about 11 percent of the injection rate, in March of 1983. During the same period, the produced oil cut increased from 2 percent to about 5 percent. The low-tension slug injection was completed in August 1982 and injection of a polymer solution having the same mobility is continuing. The total low-tension slug volume was 873,000 barrels or 10.2 percent pore volume. 4 references, 91 figures, 19 tables.

  1. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    CERN Document Server

    Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

    2014-01-01

    The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

  2. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-10

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. The gas processed by the membrane system will meet pipeline specifications for dew point and Btu value, and the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. The BP-Amoco gas processing plant in Pascagoula, MS was finalized as the location for the field demonstration. Detailed drawings of the MTR membrane skid (already constructed) were submitted to the plant in February, 2000. However, problems in reaching an agreement on the specifications of the system compressor delayed the project significantly, so MTR requested (and was subsequently granted) a no-cost extension to the project. Following resolution of the compressor issues, the goal is to order the compressor during the first quarter of 2002, and to start field tests in mid-2002. Information from potential users of the membrane separation process in the natural gas processing industry suggests that applications such as fuel gas conditioning and wellhead gas processing are the most promising initial targets. Therefore, most of our commercialization effort is focused on promoting these applications. Requests for stream evaluations and for design and price quotations have been received through MTR's web site, from direct contact with potential users, and through announcements in industry publications. To date, about 90 commercial quotes have been supplied, and orders totaling about $1.13 million for equipment or rental of membrane units have been received.

  3. Field-trial demonstration of an extended-reach GPON-supporting 60-GHz indoor wireless access

    Science.gov (United States)

    Giannoulis, G.; Moraitis, N.; Argyris, N.; Dris, S.; Lessi, C.; Perdikouris, S.; Kostikidou, L.; Apostolopoulos, D.; Spatharakis, C.; Papafili, I.; Agapiou, G.; Panagopoulos, A. D.; Avramopoulos, H.

    2017-02-01

    The 5G era is nearly upon us, and poses several challenges for system designers; one important question is how the (soon to be standardized) mmWave bands of wireless mobile access can coexist harmoniously with optical links in fixed telecom networks. To this end, we present a Radio-over-Fiber (RoF) backhauling concept, interfaced to a 60-GHz indoor femto-cell via a field-installed optical fiber link. We successfully demonstrate generation of a RoF signal up to 1 Gb/s and transmit it optically over 43 km of deployed Single Mode Fiber (SMF), as well as investigate the performance of the 60-GHz access link as a function of distance. The optical link introduces negligible degradation, contrasting the effect of multipath fading in the 60-GHz wireless channel; the latter requires adaptive equalization using offline DSP. The proposed scheme is further validated by demonstration of a 60-GHz Remote Antenna Unit (RAU) concept, handling real traffic from commercial Gigabit Passive Optical Network (GPON) equipment. Proper RAU operation at 1.25 Gb/s is achieved, accommodating true data packets from a Media Converter emitting at 1310 nm through an in-building fiber link. System performance is confirmed through Bit Error Rate (BER) and Error Vector Magnitude (EVM) measurements. EVMs of 11 and 19% are achieved with BPSK signals, for distances of 1 and 2 m respectively. As standardization of mmWave technologies moves from 5G testbeds to field-trial prototypes, successful demonstration of such 60-GHz wireless access scenarios over a telecom operator's commercial fiber infrastructure is even more relevant.

  4. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.

    Science.gov (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan

    2016-07-15

    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.

  5. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    Science.gov (United States)

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  6. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Science.gov (United States)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  7. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-10-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NYGAS member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the New York Gas Group (NYGAS; a trade association of the publicly owned gas utilities in New York State), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL). The DOE's contribution to this current phase of the project is $499,023 out of a total of $780,735 (not including NASA's contribution). The

  8. Characterization of Natural Organic Matter and Disinfection Byproducts Formation Potential in Pilot-Scale Coagulation-Ultrafiltration Membrane Combined Process in Winter

    Institute of Scientific and Technical Information of China (English)

    张耀宗; 王启山; 何凤华; 丁莎莎

    2010-01-01

    A pilot-scale ultrafiltration membrane plant was set up for treating Luanhe River water with flocculating and precipitation process of waterworks.The aim is to investigate the variation and characteristics of natural organic matter and disinfection byproducts formation potential in the whole process in winter.The results show that dissolved organic matter(DOM),UV254,trihalomethanes formation potential(THMsFP) and haloacetic acids formation potential(HAAsFP) of Luanhe River water were mainly distributed in t...

  9. Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: effects of nitrate on oxidation and a pilot-scale AOP operation.

    Science.gov (United States)

    Park, J H; Park, C G; Lee, J W; Ko, K B

    2010-01-01

    The major objective of this study was to delineate the oxidation of diethyl phthalate (DEP) in water, using bench-scale UV/H2O2 and O3/H2O2 processes, and to determine the effects of nitrate (NO(3-)-N, 5 mg L(-1)) on this oxidation. The oxidation of DEP was also investigated through a pilot-scale advanced oxidation process (AOP), into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. The bench-scale operation showed that DEP could be oxidized via solely UV oxidation or O3 oxidation. The adverse effect of nitrate on the DEP oxidation was remarkable in the UV/H2O2 process, and the nitrate clearly reduced its oxidation. The adverse effect of nitrate on O3 oxidation was also observed. It was noted, however, that the nitrate clearly enhanced the DEP oxidation in the O3/H2O2 process. A series of pilot-scale AOP operations indicated that the addition of H2O2 enhanced DEP oxidation in both the UV/H2O2 and O3/H2O2 processes. No noticeable adverse effect of nitrate was observed in the NO(3-)-N concentration of about 6.0 mg L(-1), which was naturally contained in the treatment stream. About 52% and 61% of the DEP were oxidized by each of these two oxidation processes in this pilot-scale operation. Both the UV/H2O2 and O3/H2O2 processes appeared to be desirable alternatives for DEP oxidation in treatment effluent streams.

  10. Pilot scale application of ozonated water wash - effect on microbiological and sensory quality parameters of processed iceberg lettuce during self-life

    OpenAIRE

    Särkkä-Tirkkonen, Marjo; Leskinen, Marita; Ölmez, Hulya

    2008-01-01

    The aim of the study was to assess the effect of ozonated water wash on the microbiological and sensory quality parameters of minimally processed iceberg lettuce in pilot scale in comparison to aqueous chlorine wash. Alternative solutions for chlorine are needed, since its use is prohibited in organic food processing. Iceberg lettuce samples were washed with three different ozone solutions and the water wash and the 100 ppm chlorine wash were used as control. Ozone generator based on corona d...

  11. Characterization and partitioning of the char ash collected after the processing of pine wood chips in a pilot-scale gasification unit

    Science.gov (United States)

    Thomas L. Eberhardt; Hui Pan; Leslie H. Groom; Chi-Leung So

    2011-01-01

    Southern yellow pine wood chips were used as the feedstock for a pilot-scale gasification unit coupled with a 25 kW generator. The pulp-grade wood chips were relatively free of bark and low in ash content. Processing this feedstock yielded a black/sooty by-product that upon combustion in a muffle furnace resulted in an ash content of about 48%. The term "char ash...

  12. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  13. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2003-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.

  14. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis, Hagen Schempf

    2004-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fifth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot is undergoing extensive endurance testing in order to prepare for the field demonstrations planned for June 2004.

  15. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures.

    Science.gov (United States)

    Lu, Weidong; Wang, Zhongming; Wang, Xuewei; Yuan, Zhenhong

    2015-09-01

    The biomass productivity and nutrient removal capacity of simultaneous Chlorella sp. cultivation for biodiesel production and nutrient removal in raw dairy wastewater (RDW) in indoor bench-scale and outdoor pilot-scale photobioreactors were compared. Results from the current work show that maximum biomass productivity in indoor bench-scale cultures can reach 260 mg L(-1) day(-1), compared to that of 110 mg L(-1) day(-1) in outdoor pilot-scale cultures. Maximum chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP) removal rate obtained in indoor conditions was 88.38, 38.34, and 2.03 mg L(-1) day(-1), respectively, this compared to 41.31, 6.58, and 2.74 mg L(-1) day(-1), respectively, for outdoor conditions. Finally, dominant fatty acids determined to be C16/C18 in outdoor pilot-scale cultures indicated great potential for scale up of Chlorella sp. cultivation in RDW for high quality biodiesel production coupling with RDW treatment.

  16. Field demonstration for bioremediation treatment: Technology demonstration of soil vapor extraction off-gas at McClellan Air Force Base. Final report November 1997--April 1998

    Energy Technology Data Exchange (ETDEWEB)

    Magar, V.S.; Tonga, P.; Webster, T.; Drescher, E.

    1999-01-12

    McClellan Air Force Base (AFB) is a National Test Location designated through the Strategic Environmental Research and Development Program (SERDP), and was selected as the candidate test site for a demonstration of soil vapor extraction (SVE) off-gas treatment technology. A two-stage reactor system was employed for the treatment of the off-gas. The biological treatment was conducted at Operable Unit (OU) D Site S, located approximately 400 ft southwest of Building 1093. The SVE system at this area normally operates at a nominal volumetric flowrate of approximately 500 to 600 standard cubic feet per minute (scfm). The contaminated air stream from the SVE system that was fed to the reactor system operated at a flowrate of 5 to 10 scfm. The two-stage reactor system consisted of a fixed-film biofilter followed by a completely mixed (by continuous stirring), suspended-growth biological reactor. This reactor configuration was based on a review of the literature, on characterization of the off-gas from the SVE system being operated at McClellan AFB, and on the results of the laboratory study conducted by Battelle and Envirogen for this study.

  17. Demonstration of a white beam far-field neutron interferometer for spatially resolved small angle neutron scattering

    CERN Document Server

    Hussey, Daniel S; Yuan, Guangcui; Pushin, Dmitry; Sarenac, Dusan; Huber, Michael G; Jacobson, David L; LaManna, Jacob M; Wen, Han

    2016-01-01

    We provide the first demonstration that a neutron far-field interferometer can be employed to measure the microstructure of a sample. The interferometer is based on the moir\\'e pattern of two phase modulating gratings which was previously realized in hard x-ray and visible light experiments. The autocorrelation length of this interferometer, and hence the microstructure length scale that is probed, is proportional to the grating spacing and the neutron wavelength, and can be varied over several orders of magnitude for one pair of gratings. We compare our measurements of the change in visibility from monodisperse samples with calculations which show reasonable agreement. The potential advantages of a far-field neutron interferometer include high fringe visibility in a polychromatic beam (over 30 %), no requirement for an absorbing grating to resolve the interference fringes, and the ability to measure the microstructure in the length scale range of 100 nm to 10 \\mum by varying either the grating spacing or neu...

  18. Subsurface Characterization and Seismic Monitoring for the Southwest Partnerships Phase III Demonstration Project at Farnsworth Field, TX

    Science.gov (United States)

    Will, R. A.; Balch, R. S.

    2015-12-01

    The Southwest Partnership on Carbon Sequestration is performing seismic based characterization and monitoring activities at an active CO2 EOR project at Farnsworth Field, Texas. CO2 is anthropogenically sourced from a fertilizer and an ethanol plant. The field has 13 CO2 injectors and has sequestered 302,982 metric tonnes of CO2 since October 2013. The field site provides an excellent laboratory for testing a range of monitoring technologies in an operating CO2 flood since planned development is sequential and allows for multiple opportunities to record zero CO2 baseline data, mid-flood data, and fully flooded data. The project is comparing and contrasting several scales of seismic technologies in order to determine best practices for large scale commercial sequestration projects. Characterization efforts include an 85 km2 3D surface seismic survey, baseline and repeat 3D VSP surveys centered on injection wells, cross-well tomography baseline and repeat surveys between injector/producer pairs, and a borehole passive seismic array to monitor induced seismicity. All surveys have contributed to detailed geologic models which were then used for fluid flow and risk assessment simulations. 3D VSP and cross-well data with repeat surveys have allowed for direct comparisons of the reservoir prior to CO2 injection and at eight months into injection, with a goal of imaging the CO2 plume as it moves away from injection wells. Additional repeat surveys at regular intervals will continue to refine the plume. The goal of this work is to demonstrate seismic based technologies to monitor CO2 sequestration projects, and to contribute to best practices manuals for commercial scale CO2 sequestration projects. In this talk the seismic plan will be outlined, progress towards goals enumerated, and preliminary results from baseline and repeat seismic data will be discussed. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  19. Functional maintenance and structural flexibility of microbial communities perturbed by simulated intense rainfall in a pilot-scale membrane bioreactor.

    Science.gov (United States)

    Sato, Yuya; Hori, Tomoyuki; Navarro, Ronald R; Habe, Hiroshi; Ogata, Atsushi

    2016-07-01

    Intense rainfall is one of the most serious and common natural events, causing the excessive inflow of rainwater into wastewater treatment plants. However, little is known about the impacts of rainwater dilution on the structure and function of the sludge microorganisms. Here, high-throughput sequencing of 16S ribosomal RNA (rRNA) genes was implemented to describe the microbial community dynamics during the simulated intense rainfall situation (event i) in which approximately 45 % of the sludge biomass was artificially overflowed by massive water supply in a pilot-scale membrane bioreactor. Thereafter, we investigated the functional and structural responses of the perturbed microbial communities to subsequent conditional changes, i.e., an increase in organic loading rate from 225 to 450 mg chemical oxygen demand (COD) l(-1) day(-1) (event ii) and an addition of a microbiota activator (event iii). Due to the event i, the COD removal declined to 78.2 %. This deterioration coincided with the decreased microbial diversity and the proliferation of the oligotrophic Aquabacterium sp. During the succeeding events ii and iii, the sludge biomass increased and the COD removal became higher (86.5-97.4 %). With the apparent recovery of the reactor performance, microbial communities became diversified and the compositions dynamically changed. Notably, various bacterial micropredators were highly enriched under the successive conditions, most likely being involved in the flexible reorganization of microbial communities. These results indicate that the activated sludge harbored functionally redundant microorganisms that were able to thrive and proliferate along with the conditional changes, thereby contributing to the functional maintenance of the membrane bioreactor.

  20. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems.

  1. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  2. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration.

    Science.gov (United States)

    de Guardia, A; Petiot, C; Benoist, J C; Druilhe, C

    2012-06-01

    The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5°C and the peaks of temperature occurred with less than 8h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5°C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium parvum Infectivity in Immunocompetent Suckling Mice.

    Science.gov (United States)

    Le Goff, L; Hubert, B; Favennec, L; Villena, I; Ballet, J J; Agoulon, A; Orange, N; Gargala, G

    2015-12-01

    Cryptosporidium spp., a significant cause of foodborne infection, have been shown to be resistant to most chemical food disinfectant agents and infective for weeks in irrigation waters and stored fresh vegetal produce. Pulsed UV light (PL) has the potential to inactivate Cryptosporidium spp. on surfaces of raw or minimally processed foods or both. The present study aimed to evaluate the efficacy of PL on viability and in vivo infectivity of Cryptosporidium parvum oocysts present on raspberries, a known source of transmission to humans of oocyst-forming apicomplexan pathogens. The skin of each of 20 raspberries was experimentally inoculated with five 10-μl spots of an oocyst suspension containing 6 × 10(7) oocysts per ml (Nouzilly isolate). Raspberries were irradiated by PL flashes (4 J/cm(2) of total fluence). This dose did not affect colorimetric or organoleptic characteristics of fruits. After immunomagnetic separation from raspberries, oocysts were bleached and administered orally to neonatal suckling mice. Seven days after infection, mice were euthanized, and the number of oocysts in the entire small intestine was individually assessed by immunofluorescence flow cytometry. Three of 12 and 12 of 12 inoculated mice that received 10 and 100 oocysts isolated from nonirradiated raspberries, respectively, were found infected. Four of 12 and 2 of 12 inoculated mice that received 10(3) and 10(4) oocysts from irradiated raspberries, respectively, were found infected. Oocyst counts were lower in animals inoculated with 10(3) and 10(4) oocysts from irradiated raspberries (92 ± 144 and 38 ± 82, respectively) than in animals infected with 100 oocysts from nonirradiated raspberries (35,785 ± 66,221, P = 0.008). PL irradiation achieved oocyst reductions of 2 and 3 log for an inoculum of 10(3) and 10(4) oocysts, respectively. The present pilot-scale evaluation suggests that PL is an effective mode of decontamination for raspberries and prompts further applicability

  4. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    Science.gov (United States)

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  6. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    Science.gov (United States)

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda

    2016-01-01

    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  8. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  9. The substitution of sand filtration by immersed-UF for surface water treatment: pilot-scale studies.

    Science.gov (United States)

    Lihua, Sun; Xing, Li; Guoyu, Zhang; Jie, Chen; Zhe, Xu; Guibai, Li

    2009-01-01

    The newly issued National Drinking Water Standard required that turbidity should be lower than 1 NTU, and the substitution of sand filtration by immersed ultrafiltration (immersed-UF) is feasible to achieve the standard. This study aimed to optimise the operational processes (i.e. aeration, backwashing) through pilot scale studies, to control membrane fouling while treating the sedimentation effluent. Results indicated that the immersed-UF was promising to treat the sedimentation effluent. The turbidity was below 0.10 NTU, bacteria and E. coli were not detected in the permeate water. The intermittent filtration with aeration is beneficial to inhibit membrane fouling. The critical aeration intensity is observed to be 60.0 m(3) m(-2) h(-1). At this aeration intensity, the decline rate of permeate flux in one period of backwashing was 1.94% and 7.03% for intermittent filtration and sustained filtration respectively. The different membrane backwashing methods (i.e. aeration 1.5 min, synchronous aeration and water backwashing 2 min, water backwashing 1.5 min; synchronous aeration and water backwashing 3 min, water backwashing 2 min; aeration 3 min, single water backwashing 2 min; synchronous aeration and water backwashing 5 min; single water backwashing 5 min) on the recovery of permeate flux were compared, indicating that the synchronous aeration and water backwashing exhibited best potential for permeate flux recovery. The optimal intensity of water backwashing is shown to be 90.0 L m(-2) h(-1). When the actual water intensity was below or exceeded the value, the recovery rate of permeate flux would be reduced. Additionally, the average operating cost for the immersed UF membrane, including the power, the chemical cleaning reagents, and membrane modules replacement, was about 0.31 RMB/m(3).

  10. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion.

    Science.gov (United States)

    Konopa, Stephanie Lucero; Mulholland, James A; Realff, Matthew J; Lemieux, Paul M

    2008-08-01

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particle-board combustion, consistent with its higher nitrogen content. SO2 emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet.

  11. Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation.

    Science.gov (United States)

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-06-15

    The efficiency of the anaerobic treatment of olive pomace leachate (OPL) at mesophilic conditions was investigated. Daily and cumulative biogas production was measured during the operational period. The maximum biogas flowrate was 65 L/d, of which 50% was methane. In addition, the applicability of electrochemical oxidation as an advanced post-treatment method for the complete removal of chemical oxygen demand (COD) from the anaerobically treated OPL was evaluated. The diluted OPL, having a pH of 6.5 and a total COD of 5 g/L, was first treated in a 600 L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 71 days at mesophilic conditions (32 ± 2 °C) in a temperature-controlled environment at a hydraulic retention time of 3 days, and organic loading rates (OLR) between 0.33 and 1.67 g COD/(L.d). The UASB process led to a COD removal efficiency between 35 and 70%, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 18 A and in the presence of 0.17% NaCl as the supporting electrolyte, complete removal of COD was attained after 7 h of treatment predominantly through total oxidation reactions. During electrochemical experiments, three groups of organo-chlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs) and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, along with the residual chlorine are thought to increase the matrix ecotoxicity to Artemia salina. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation.

    Science.gov (United States)

    Karaolia, Popi; Michael, Irene; García-Fernández, Irene; Agüera, Ana; Malato, Sixto; Fernández-Ibáñez, Pilar; Fatta-Kassinos, Despo

    2014-01-15

    The presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations. In this study the degradation of a mixture of antibiotics i.e. sulfamethoxazole and clarithromycin, the disinfection of total enterococci and the removal of those resistant to: a) sulfamethoxazole, b) clarithromycin and c) to both antibiotics have been examined, along with the toxicity of the whole effluent mixture after treatment to the luminescent aquatic bacterium Vibrio fischeri. Solar Fenton treatment (natural solar driven oxidation) using Fenton reagent doses of 50 mg L(-1) of hydrogen peroxide and 5 mg L(-1) of Fe(3+) in a pilot-scale compound parabolic collector plant was used to examine the disinfection and antibiotic resistance removal efficiency in different aqueous matrices, namely distilled water, simulated and real wastewater effluents. There was a faster complete removal of enterococci and of antibiotics in all aqueous matrices by applying solar Fenton when compared to photolytic treatment of the matrices. Sulfamethoxazole was more efficiently degraded than clarithromycin in all three aqueous matrices (95% removal of sulfamethoxazole and 70% removal of clarithromycin in real wastewater). The antibiotic resistance of enterococci towards both antibiotics exhibited a 5-log reduction with solar Fenton in real wastewater effluent. Also after solar Fenton treatment, there were 10 times more antibiotic-resistant enterococci in the presence of sulfamethoxazole than in the presence of clarithromycin. Finally, the toxicity

  13. Optimisation of biogas production from manure through serial digestion: lab-scale and pilot-scale studies.

    Science.gov (United States)

    Kaparaju, Prasad; Ellegaard, Lars; Angelidaki, Irini

    2009-01-01

    In the present study, the possibility of optimizing biogas production from manure by serial digestion was investigated. In the lab-scale experiments, process performance and biogas production of serial digestion, two methanogenic continuously stirred tank reactors (CSTR) connected in series, was compared to a conventional one-step CSTR process. The one-step process was operated at 55 degrees C with 15d HRT and 5l working volume (control). For serial digestion, the total working volume of 5l was distributed as 70/30%, 50/50%, 30/70% or 13/87% between the two methanogenic reactors, respectively. Results showed that serial digestion improved biogas production from manure compared to one-step process. Among the tested reactor configurations, best results were obtained when serial reactors were operated with 70/30% and 50/50% volume distribution. Serial digestion at 70/30% and 50/50% volume distribution produced 13-17.8% more biogas and methane and, contained low VFA and residual methane potential loss in the effluent compared to the one-step CSTR process. At 30/70% volume distribution, an increase in biogas production was also noticed but the process was very unstable with low methane production. At 13/87% volume distribution, no difference in biogas production was noticed and methane production was much lower than the one-step CSTR process. Pilot-scale experiments also showed that serial digestion with 77/23% volume distribution could improve biogas yields by 1.9-6.1% compared to one-step process. The study thus suggests that the biogas production from manure can be optimized through serial digestion with an optimal volume distribution of 70/30% or 50/50% as the operational fluctuations are typically high during full scale application. However, process temperature between the two methanogenic reactors should be as close as possible in order to derive the benefits of serial coupling.

  14. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use.

  15. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    Science.gov (United States)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  16. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    Science.gov (United States)

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3).

  17. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID II. HOLLOW FIBER MEMBRANE MODULE. (R825511C027)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    CERN Document Server

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  19. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  20. The demonstration of nonlinear analytic model for the strain field induced by thermal copper filled TSVs (through silicon via

    Directory of Open Access Journals (Sweden)

    M. H. Liao

    2013-08-01

    Full Text Available The thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/ °C and silicon (∼2.8 ppm/ °C when the structure is exposed to a thermal ramp budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to introduce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to have large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and the analysis of the Mohr's circle. The characteristics of stress are also measured by the atomic force microscope-raman technique with nanometer level space resolution. The change of the electron mobility with the consideration of this nonlinear stress model for the strong interactions between TSVs is ∼2–6% smaller in comparison with those from the consideration of the linear stress superposition principle only.

  1. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging

    Science.gov (United States)

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.

    2016-05-01

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size.

  2. The stability of source localization in a whole-head magnetoencephalography system demonstrated by auditory evoked field measurements

    Science.gov (United States)

    Chen, Kuen-Lin; Yang, Hong-Chang; Tsai, Sung-Ying; Liu, Yu-Wei; Liao, Shu-Hsien; Horng, Herng-Er; Lee, Yong-Ho; Kwon, Hyukchan

    2011-10-01

    Superconducting quantum interference device (SQUID), which is a very sensitive magnetic sensor, has been widely used to detect the ultra-small magnetic signals in many different territories, especially in the biomagnetic measurement. In this study, a 128-channel SQUID first-order axial gradiometer system for whole-head magnetoencephalography (MEG) measurements was setup to characterize the auditory evoked magnetic fields (AEFs). A 500 Hz monaural pure tone persisting 425 ms with the sound pressure level of 80 dB was randomly applied to the left ear of subject with the inter-stimulus interval of 1.5 ˜ 2.8 s to prevent fatigue of nerves. We demonstrated the characteristic waveforms of AEFs can be accurately recorded and analyzed. Using source localization processes, the origins of AEFs were successfully calculated to be at the auditory cortices which are brain areas known for responsive to sound stimulus. A phantom experiment also proved the good localization accuracy of the established MEG system and measurement procedures. The validated performance of the SQUID system suggests that this technique can also be employed in other brain research.

  3. GroundWinds 2000 field campaign: demonstration of new Doppler lidar technology and wind lidar data intercomparison

    Science.gov (United States)

    Yoe, James G.; Varma Raja, M. K. Rama; Hardesty, R. Michael; Brewer, W. Alan; Moore, Berrien, III; Ryan, James M.; Hays, Paul B.; Nardell, Carl A.; Gentry, Bruce M.; Day, Michelle; Rancourt, Kenneth

    2003-03-01

    A field campaign featuring three collocated Doppler wind lidars was conducted over ten days during September 2000 at the GroundWinds Observatory in New Hampshire. The lidars were dissimilar in wavelength and Doppler detection method. The GroundWinds lidar operated at 532 nm and used fringe-imaging direct detection, while the Goddard Lidar Observatory for Winds (GLOW) ran at 355 nm and employed double-edge filter direct detection, and the NOAA mini-MOPA operated at 10 microns and used heterodyne detection. The objectives of the campaign were (1) to demonstrate the capability of the GroundWinds lidar to measure winds while employing several novel components, and (2) to compare directly the radial wind velocities measured by the three lidars for as wide a variety of conditions as possible. Baseline wind profiles and ancillary meteorological data (temperature and humidity profiles) were obtained by launching GPS radiosondes from the observatory as frequently as every 90 minutes. During the final week of the campaign the lidars collected data along common lines-of-sight for several extended periods. The wind speed varied from light to jet stream values, and sky conditions ranged from clear to thick clouds. Intercomparisons of overlapping lidar and radiosonde observations show that all three lidars were able to measure wind given sufficient backscatter. At ranged volumes containing thicker clouds, and those beyond, the wind sensing capability of the direct detection lidars was adversely affected.

  4. Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2004-03-15

    This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of

  5. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2002-05-01

    The goal of this program is to construct and demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The system, which was designed in an earlier effort, is built in a modular fashion in order to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system to be built under this project will include all the basic modules needed by the system, i.e. the locomotion, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has been designed, constructed and tested in the earlier effort. In the current effort, the full prototype system will be tested in the laboratory followed by two field demonstrations in real applications in NYGAS member utilities' pipes. The purpose for EXPLORER is to be able to access live gas mains, insert the system in the piping network, and remotely ''drive'' it within the gas main and its laterals through distances of five to ten thousand feet. Its adaptable locomotion system allows the robot to function through varying diameter pipes (150 - 200 mm or 6- to 8-inches) and is powered via on-board battery-banks. The presence of fish-eye cameras in both ends of the robot allows the operator to view the forward and circumferential views of the internals live using an above-ground TV. Communication takes place via wireless link between the robot and the launch-chamber used to insert/retrieve the system. This link is based on commercial technology presently employed in wireless telecommunication networks. Communication over long distances as well as battery re-charging will be accomplished without

  6. Improved production of cytotoxic thailanstatins A and D through metabolic engineering of Burkholderia thailandensis MSMB43 and pilot scale fermentation

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2016-03-01

    Full Text Available Thailanstatin A (TST-A is a potent antiproliferative natural product discovered by our group from Burkholderia thailandensis MSMB43 through a genome-guided approach. The limited supply of TST-A, due to its low titer in bacterial fermentation, modest stability and very low recovery rate during purification, has hindered the investigations of TST-A as an anticancer drug candidate. Here we report the significant yield improvement of TST-A and its direct precursor, thailanstatin D (TST-D, through metabolic engineering of the thailanstatin biosynthetic pathway in MSMB43. Deletion of tstP, which encodes a dioxygenase involved in converting TST-A to downstream products including FR901464 (FR, resulted in 58% increase of the TST-A titer to 144.7 ± 2.3 mg/L and 132% increase of the TST-D titer to 14.6 ± 0.5 mg/L in the fermentation broth, respectively. Deletion of tstR, which encodes a cytochrome P450 involved in converting TST-D to TST-A, resulted in more than 7-fold increase of the TST-D titer to 53.2 ± 12.1 mg/L in the fermentation broth. An execution of 90 L pilot-scale fed-batch fermentation of the tstP deletion mutant in a 120-L fermentor led to the preparation of 714 mg of TST-A with greater than 98.5% purity. The half-life of TST-D in a phosphate buffer was found to be at least 202 h, significantly longer than that of TST-A or FR, suggesting superior stability. However, the IC50 values of TST-D against representative human cancer cell lines were determined to be greater than those of TST-A, indicating weaker antiproliferative activity. This work enabled us to prepare sufficient quantities of TST-A and TST-D for our ongoing translational research.

  7. Permeable reactive barriers for the remediation of groundwater in a mining area: results for a pilot-scale project

    Science.gov (United States)

    Martinez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; Garcia-Lorenzo, Maria Luz; Martinez-Lopez, Salvadora; Perez-Espinosa, Victor; Gonzalez-Ciudad, Eva; Belen Martinez-Martinez, Lucia; Hernandez, Carmen; Molina-Ruiz, Jose

    2017-04-01

    The Sierra Minera of Cartagena-La Union is located in the Region of Murcia, Southeast of Spain. This zone presents high levels of heavy metals due to natural, geogenic reasons. In addition, the prolonged mining activity, and subsequent abandonment of farms, has had consequences on the environment, including severe affectation of the groundwater in the area. To remediate this situation, the Permeable Reactive Barrier (PRB) technology was assayed, which required in addition to the hydro-geological study of the zone, a careful optimization study for the design and construction of PRBs. For such a purpose a pilot-scale project was developed, and this communication reports some of the most relevant findings obtained after a four-years monitorization period. The selected reactive material for the PRBs was limestone filler. The filler is a waste material produced in many factories in the zone. These residues have good adsorption properties, high alkalinity, low cost and high availability, which make them suitable for use in remediation. The PRB was constituted by a 50% limestone filler and 50% sand, a proportion optimized by means of independent batch experiments. A layer of gravel was placed at the top, and on it a layer of natural soil. The barrier was designed in the form of a continuous trench, because the level of the contaminated groundwater was not very deep. In this way, the barrier could be prepared with standard excavation equipment. Parallel to the barrier, 6 wells where arranged downstream for sample collection. The pH and conductivity of the samples was measured directly in situ, and the content of Zn, Cd, Cu, Fe, and Pb were analyzed in the laboratory. All the samples collected after the PRB was constructed had basic pH values between 7.5 and 8. The conductivity was between 5 and 11 mS / cm except for the well 4, which had a value of 3.70 mS / cm. The concentration values of trace elements were below the detection limit (atomic absorption measurement) in

  8. Caustic waterflooding demonstration project: Ranger Zone, Long Beach Unit, Wilmington Field, California. Third annual report, June 1978-May 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, E.H.

    1979-12-01

    A caustic-enhanced waterflooding pilot test is being conducted in the Ranger Reservoir of the Long Beach Unit, Wilmington Field, California. Evaluation of entrapment and entrainment caustic flooding in Ranger Zone cores was continued. The caustic-only (entrapment) core floods failed to demonstrate improved behavior. Based on the unfavorable results of all tests of the entrapment mechanism, further laboratory work and flooding in the pilot with caustic alone have been eliminated from the project's plans. Some of the year's caustic-salt (entrainment) core floods in contrast showed both substantial recovery and WOR improvement. The poorer overall entrainment core flood results obtained in the year may be due to the core material, a smaller preflush volume used or the crude oil employed. Core flood testing where sodium silicate is substituted for some of the sodium hydroxide, was continued. The primary set of caustic water-oil dehydration tests was completed. The test softening of produced waters was completed and the results evaluated; produced water softening was found to be an economically feasible alternative to the use of fresh water. The preflush injection facilities became operational in January 1979 with the pilot's preflush officially begun April 15, 1979. The alkaline injection facility was expanded in scope to permit use of both sodium silicate and sodium hydroxide; its completion in late 1979 is anticipated with the alkaline-salt injection scheduled to begin at that time. The base case reservoir simulator prediction of the pilot under continued waterflooding was completed. This prediction provided the base line from which incremental alkaline flood production will be determined, as the test has now been declared a qualified tertiary enhanced recovery project by DOE's Economic Regulatory Administration. Major well repair/redrill work continued to be necessary exceeding earlier increased cost estimates.

  9. High-intensity drying processes: Impulse drying. Progress report on furnish evaluations for impulse drying commercialization demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.; Phelan, P.M.; Rudman, I.

    1995-02-01

    Laboratory and pilot scale experiments were performed to identify potential furnishes and operating parameters for upcoming high-speed pilot scale trials and commercial demonstration of impulse drying of heavy weight grades of paper. Results indicate that hydrodynamic specific surface is highly dependent on sheet formation and prehandling. Mill refined pulp and machine paper were comparable to laboratory prepared samples in regards to permeability and impulse drying. Process variables such as platen surface coating, felt type, felt moisture, and presteaming temperature profiles were investigated. Substantial improvements in sheet smoothness were achieved.

  10. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  11. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, M.; Formanek, J.; Blaschek, H.P. [Illinois Univ., Urbana (United States). Dept. of Food Science and Human Nutrition

    1999-10-01

    To improve the economic competitiveness of the acetone/butanol/ethanol fermentation process, glucose/corn steep water (CSW) medium was used on a pilot scale for the production of solvents. The production of butanol by the Clostridium beijerinckii NCIMB 8052 parent strain and the solvent-hyperproducing BA101 mutant was compared. In a 20-l fermentation using 5% glucose/CSW medium, C. beijerinckii 8052 produced 8.5 g butanol/l and 5 g acetone/l, while C. beijerinckii BA101 produced 16 g butanol/l and 7.5 g acetone/1. Further studies were carried out on a larger scale using an optimized 6% glucose/CSW medium. In a 200-l pilot-scale fermentor, C. beijerinckii 8052 produced 12.7 g butanol/l and 6 g acetone/l following 96 h of fermentation. C. beijerinckii BA101 produced 17.8 g/l and 5.5 g/l butanol and acetone respectively, following 130 h of fermentation. These results represent a 40% increase in final butanol concentration by the C. beijerinckii BA101 mutant strain when compared to the 8052 parent strain. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and BA101 in a 200-l fermentation were 19.2 g/l and 23.6 g/l respectively. This is the first report of pilot-scale butanol production by the solvent-hyperproducing C. beijerinckii BA101 mutant employing an inexpensive glucose/CSW medium. (orig.)

  12. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents.

    OpenAIRE

    S. Doumett; L.Lamperi; L.Checchini; Azzarello, E.; Mugnai, S.; Mancuso, S.; G.Petruzzelli; M. Del Bubba

    2008-01-01

    he distribution of Cd, Cu, Pb and Zn between a contaminated soil and the tree species Paulownia tomentosa was investigated in a pilot-scale assisted phytoremediation study. The influence of the addition of EDTA, tartrate and glutamate at 1, 5 and 10mM concentrations on metal accumulation by the plant and on metal mobilization in soil was evaluated. Root/shoot metal concentration ratios were in the range of 3-5 for Zn, 7-17 for Cu, 9-18 for Cd and 11-39 for Pb, depending on the type and concen...

  13. A comparison of impulse drying to double felted pressing on pilot- scale shoe presses and roll presses. Progress report, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1992-08-01

    Pilot-scale shoe press and roll press experiments have been conducted to compare impulse drying and double felted pressing. Both ceramic coated and Beloit Type C press rolls have been evaluated. The experiments show that impulse drying can provide significantly higher outgoing solids than double felled pressing at the same impulse. For example, at an impulse of 0.234 MPa seconds (34 psi seconds), sheets at an ingoing solids of 52% were impulse dried (using the Beloit Type C press roll) to 68% solids while optimized double felled pressing could only yield press dryness of, at most, 60%.

  14. Pilot scale digestion of source-sorted household waste as a tool for evaluation of different pre-sorting and pre-treatment strategies

    DEFF Research Database (Denmark)

    Svärd, Å; Gruvberger, C.; Aspegren, H.

    2002-01-01

    scale digestion has been carried out in systems with a 35-litres digester connected to a 77-litres gas tank. Four rounds of digestion were performed including start-up periods, full operation periods for evaluation and post-digestion periods without feeding. Different pre-sorting and pre......Pilot scale digestion of the organic fraction of source-sorted household waste from Sweden and Denmark was performed during one year. The study includes 17 waste types with differences in originating municipality, housing type, kitchen wrapping, sack type, pre-treatment method and season. The pilot...

  15. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  16. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.

    Science.gov (United States)

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-06-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m(-2) s(-1) higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4-8.1 mmol mol(-1)) than C3 averages (0.7-6.8 mmol mol(-1)), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are

  17. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought

    Science.gov (United States)

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-01-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m−2 s−1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4–8.1 mmol mol−1) than C3 averages (0.7–6.8 mmol mol−1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses

  18. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    Science.gov (United States)

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  19. Design of pilot-scale solar photocatalytic reactor for the generation of hydrogen from alkaline sulfide wastewater of sewage treatment plant.

    Science.gov (United States)

    Priya, R; Kanmani, S

    2013-01-01

    Experiments were conducted for photocatalytic generation of renewable fuel hydrogen from sulphide wastewater from the sewage treatment plant. In this study, pilot-scale solar photocatalytic reactor was designed for treating 1 m3 of sulphide wastewater and also for the simultaneous generation of hydrogen. Bench-scale studies were conducted both in the batch recycle and continuous modes under solar irradiation at similar experimental conditions. The maximum of 89.7% conversion was achieved in the continuous mode. The length of the pilot-scale solar photocatalytic reactor was arrived using the design parameters such as volumetric flow rate (Q) (11 x 10(-2) m3/s), inlet concentration of sulphide ion (C(in)) (28 mol/m3), conversion (89.7%) and average mass flow destruction rate (3.488 x 10(-6) mol/m2 s). The treatment cost of the process was estimated to be 6 US$/m3. This process would be suitable for India like sub-tropical country where sunlight is abundantly available throughout the year.

  20. Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates.

    Science.gov (United States)

    Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng

    2015-01-01

    This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.

  1. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  2. Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products.

    Science.gov (United States)

    Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Peñuela, Gustavo

    2011-07-15

    In this work the TiO(2) solar-photocatalytical degradation of the pesticide carbofuran (CBF) in water, at lab and pilot scale, was studied. At lab scale the evaluation of CBF concentration (14-282 μmol L(-1)) showed that the system followed a Langmuir-Hinshelwood kinetics type. TiO(2) concentration (0.05-2 g L(-1)) and initial pH (3-9) were also evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, initial pH 7.60 and 1.43 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of substrate, chemical oxygen demand, dissolved organic carbon, toxicity and organics by-products were evaluated. In the pilot scale tests, using direct sunlight, 55 mg L(-1) of CBF in a commercial formulation was eliminated after 420 min; while after 900 min of treatment 80% of toxicity (1/E(50) on Vibrium Fischeri), 80% of chemical oxygen demand and 60% of dissolved organic carbon were removed. The analysis and evolution of five CBF by-products, as well the evaluation of the treatment in the presence of isopropanol or using acetonitrile as a solvent suggest that the degradation is mainly carried out by OH radical attack. Finally, a schema depicting the main degradation pathway is proposed.

  3. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    Science.gov (United States)

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges.

  4. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties

    Science.gov (United States)

    Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.

    2016-09-01

    High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.

  5. Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater.

    Science.gov (United States)

    Papaevangelou, Vassiliki; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2016-10-01

    Three horizontal subsurface flow (HSF) pilot-scale constructed wetland (CW) units operated for 3 years treating municipal wastewater originating from a university campus. The main objective of the study was the evaluation of the performance of these systems under several operational, design, and climatic conditions. Several parameters and factors were investigated, including the influence of temperature, vegetation, and hydraulic residence time. The results were compared to those of a previous study conducted in the same pilot-scale units and under the same operational conditions where synthetic municipal wastewater was used. Results show the satisfying overall performance of the CW units. Performance seems to be influenced by vegetation, temperature, and hydraulic residence time (HRT). The planted units produced better results than the unplanted one while, generally, all units operated better under warmer conditions. In addition, longer HRTs contributed to higher removal efficiencies. Finally, the systems showed higher removal efficiencies in the previous study (synthetic wastewater) regarding organic matter removal, while for the other pollutants, the present study (real wastewater) showed higher or comparable performance in most cases and especially in the planted units. The study also shows the overall good, continuous, and long-term operation of CW systems, since these systems operate for about 13 years.

  6. Pilot-Scale Lactic Acid Production via Batch Culturing of Lactobacillus sp. RKY2 Using Corn Steep Liquor As a Nitrogen Source

    Directory of Open Access Journals (Sweden)

    Young-Jung Wee

    2006-01-01

    Full Text Available In this study, the determination of the efficiency of a pilot-scale fermentation process using corn steep liquor as a nitrogen source was attempted in order to produce lactic acid via batch culturing of Lactobacillus sp. RKY2. Using pure glucose, fermentation efficiency characteristics, such as final lactic acid, cell growth, yield, and productivity were not substantially influenced by the scale-up of the laboratory-scale fermentation from 2.5- to 30- and 300-litre scale fermentations. In all experiments, the content of lactic acid produced increased in a linear fashion with increases in the initial glucose concentration. In the experiments using wood hydrolyzate, both lactic acid productivity and cell growth were decreased as a result of the scaling-up of the fermentation. This might be attributed to the toxic chemicals contained in the wood hydrolyzates. However, in all experiments, lactic acid yields remained higher than 90 % with regard to the amount of glucose consumed. Therefore, lactic acid was successfully produced by the pilot-scale bioreactor scheme adopted in this study.

  7. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation.

    Science.gov (United States)

    Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A; Gonzalez-Monterrubio, César F; Acevedo-Sánchez, Eduardo V; Martínez-Salinas, Carlos; García-Cabrera, Ramsés I; Gamboa-Suasnavart, Ramsés A; Marín-Palacio, Luz D; Villegas, Jesús; Blancas-Cabrera, Abel

    2013-11-01