WorldWideScience

Sample records for pilot-scale biomass gasification

  1. Pilot-scale gasification of woody biomass

    Science.gov (United States)

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  2. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    Science.gov (United States)

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2015-01-01

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  4. Biomass Gasification - A synthesis of technical barriers and current research issues for deployment at large scale

    Energy Technology Data Exchange (ETDEWEB)

    Heyne, Stefan [Chalmers Univ. of Technology, Gothenburg (Sweden); Liliedahl, Truls [KTH, Royal Inst. of Technology, Stockholm (Sweden); Marklund, Magnus [Energy Technology Centre, Piteaa (Sweden)

    2013-09-01

    Thermal gasification at large scale for cogeneration of power and heat and/or production of fuels and materials is a main pathway for a sustainable deployment of biomass resources. However, so far no such full scale production exists and biomass gasification projects remain at the pilot or demonstration scale. This report focuses on the key critical technology challenges for the large-scale deployment of the following biomass-based gasification concepts: Direct Fluidized Bed Gasification (FBG), Entrained Flow Gasification (EFG) and indirect Dual Fluidized Bed Gasification (DFBG). The main content in this report is based on responses from a number of experts in biomass gasification obtained from a questionnaire. The survey was composed of a number of more or less specific questions on technical barriers as to the three gasification concepts considered. For formalising the questionnaire, the concept of Technology Readiness Level (TRL 1-9) was used for grading the level of technical maturity of the different sub-processes within the three generic biomass gasification technologies. For direct fluidized bed gasification (FBG) it is mentioned that the technology is already available at commercial scale as air-blown technology and thus that air-blown FBG gasification may be reckoned a mature technology. The remaining technical challenge is the conversion to operation on oxygen with the final goal of producing chemicals or transport fuels. Tar reduction, in particular, and gas cleaning and upgrading in general are by far the most frequently named technical issues considered problematic. Other important aspects are problems that may occur when operating on low-grade fuels - i.e. low-cost fuels. These problems include bed agglomeration/ash sintering as well as alkali fouling. Even the preparation and feeding of these low-grade fuels tend to be problematic and require further development to be used on a commercial scale. Furthermore, efficient char conversion is mentioned by

  5. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  6. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  7. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  8. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  11. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  12. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    and the pilot-scale continuous system was designed in 2010 to demonstrate the feasibility of mixed sludge biodrying for efficient combustion in biomass boilers. Mixed sludge was biodried in the reactor to 45% moisture level, which was the suitable level for boiler application. Techno-economic analysis also revealed the potential economic benefits for pulp and paper mills. However, considerable uncertainties existed in terms of feasibility of the biodrying technology for other types of biomass that are usually used in the gasification process, mainly because of low nutrient level of typical lignocellulosic biomass used as feedstock. Furthermore, the technology had not been shown to be economically viable in conjunction with gasification process at pulp and paper mills. In this work the feasibility of low-nutrient biomass biodrying was tested by experiments and techno-economic model was developed to identify the performance of biodrying process for commercial-scale application. In the economic analysis, a comprehensive approach for biodrying cost assessment was introduced that is based on the well-known approach widely used in the process industry and few sources of benefits were identified.

  13. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  14. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  15. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  16. Biomass Gasification. The characteristics of technology development and the rate of learning

    Energy Technology Data Exchange (ETDEWEB)

    Dorca Duch, Andreu; Huertas Bermejo, Javier

    2008-09-15

    . In the case of large scale, interest has shifted from electricity generation to biofuel production, primarily due to the failed demonstration projects of the technology coupled with combined cycle for electricity generation. On the other hand, in small scale projects, cogeneration applications have gained interest over heat production. However, there are fewer actors involved in small scale experimentation than in large scale. Once the specific situation of each country has been analyzed, and the main characteristics of the development process have been identified, one of the causes which have hindered the technology to reach the expected commercial stage has been the lack of resources to demonstrate its competitiveness. So far, a significant number of experimentation activities, based on demonstration projects and pilot plants, have proved the future potential of the technology. Nonetheless, the uncertainty, shown by the great majority of actors, about integrating the biomass gasification in their industrial process has hindered the demonstration of its operational feasibility. Following this, further efforts should focus on the creation of incentives for the construction of new plants which integrate this technology in an industrial process already consolidated in the market. An approximation of the number of new plants needed, could be a good indicator of the economical resources required in order to acquire enough experience to make biomass gasification a competitive technology in the short-term. After simulating various future evolutions for small scale cogeneration applications, the learning rate obtained through the learning curves model predict that, building roughly forty plants in six years, the technology can be consolidated firmly in the market. Considering the decrease in the number of new plants built since 2002, the expectancies are not really optimistic. Nevertheless, it is not an unachievable objective if incentives are created by all administrative

  17. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  18. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  19. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  20. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  1. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  2. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  3. Guideline for safe and eco-friendly biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vos, J.; Knoef, H. (BTG biomass technology group, Enschede (Netherlands)); Hauth, M. (Graz Univ. of Technology. Institute of Thermal Engineering, Graz (Austria)) (and others)

    2009-11-15

    The objective of the Gasification Guide project is to accelerate the market penetration of small-scale biomass gasification systems (< 5 MW fuel power) by the development of a Guideline and Software Tool to facilitate risk assessment of HSE aspects. The Guideline may also be applied in retrofitting or converting old thermal plants in the Eastern European countries - with rich biomass recourses - to new gasification plants. The objective of this document is to guide key target groups identifying potential hazards and make a proper risk assessment. The software tool is an additional aid in the risk assessment. This guideline is intended to be a training tool and a resource for workers and employers to safely design, fabricate, construct, operate and maintain small-scale biomass gasification facilities. The Guideline is applicable with the following constraints: 1) The maximum scale of the gasification plant was agreed to be about 1 MW{sub e}. The reason is that large companies do have normally their safety rules in place; 2) This means in principle only fixed bed gasifier designs. However, most parts are also valid to other designs and even other thermal conversion processes; 3) The use of contaminated biomass is beyond the scope of this Guideline. The Guideline contains five major chapters; Chapter 2 briefly describes the gasification technology in general. Chapter 3 gives an overview of major legal framework issues on plant permission and operation. The legal frame is changing and the description is based on the situation by the end of 2007. Chapter 4 explains the theory behind the risk assessment method and risk reduction measures. Chapter 5 is the heart of the Guideline and gives practical examples of good design, operation and maintenance principles. The practical examples and feedback have been received throughout the project and the description is based on mid-2009. Chapter 6 describes the best techniques currently available for emission abatement which are

  4. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  5. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  6. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  7. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  8. Modelling the low-tar BIG gasification concept[Biomass Integrated gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Lars; Elmegaard, B.; Qvale, B.; Henriksen, Ulrrik [Technical univ. of Denmark (Denmark); Bentzen, J.D.; Hummelshoej, R. [COWI A/S (Denmark)

    2007-07-01

    A low-tar, high-efficient biomass gasification concept for medium- to large-scale power plants has been designed. The concept is named 'Low-Tar BIG' (BIG = Biomass Integrated Gasification). The concept is based on separate pyrolysis and gasification units. The volatile gases from the pyrolysis (containing tar) are partially oxidised in a separate chamber, and hereby the tar content is dramatically reduced. Thus, the investment, and running cost of a gas cleaning system can be reduced, and the reliability can be increased. Both pyrolysis and gasification chamber are bubbling fluid beds, fluidised with steam. For moist fuels, the gasifier can be integrated with a steam drying process, where the produced steam is used in the pyrolysis/gasification chamber. In this paper, mathematical models and results from initial tests of a laboratory Low-Tar BIG gasifier are presented. Two types of models are presented: 1. The gasifier-dryer applied in different power plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification and Combined Cycle (IGCC). The paper determines the differences in efficiency of these systems and shows that the gasifier will be applicable for very different fuels with different moisture contents, depending on the system. 2. A thermodynamic Low-Tar BIG model. This model is based on mass and heat balance between four reactors: Pyrolysis, partial oxidation, gasification, gas-solid mixer. The paper describes the results from this study and compares the results to actual laboratory tests. The study shows, that the Low-Tar BIG process can use very wet fuels (up to 65-70% moist) and still produce heat and power with a remarkable high electric efficiency. Hereby the process offers the unique combination of large scale gasification and low-cost gas cleaning and use of low-cost fuels which very likely is the necessary combination that will lead to a breakthrough of gasification technology. (au)

  9. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  10. Benefits of Allothermal Biomass Gasification for Co-Firing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Vreugdenhil, B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    prevent ash entering the boiler. The calorific value of this carbon containing ash is lost. In allothermal gasifiers all the carbon containing ashes are combusted in the combustion section of the gasifier and the produced heat is used for the gasification process. The MILENA gasification technology is demonstrated at lab-scale (25 kWth) and pilot scale (800 kWth). A demonstration plant (11.6 MWth biomass input) will be constructed in Alkmaar (the Netherlands). Demolition wood will be used as fuel.

  11. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  12. The gasification of biomass: A technological challenge. Biomassa vergassen: Een technologische uitdaging

    Energy Technology Data Exchange (ETDEWEB)

    Portegijs, J

    1993-05-01

    The gasification of specially for that purpose cultivated poplars and bamboo or other biomass is an attractive option for the production of electricity. An overview is given of projects and the techniques, by which this option can be realized. Examples of biomass gasification projects in Sweden and Finland are briefly discussed. Possibilities to implement small-scale biomass gasification in the Netherlands are outlined. 1 ill., 1 tab., 4 refs.

  13. The development situation of biomass gasification power generation in China

    International Nuclear Information System (INIS)

    Zhou, Zhaoqiu; Yin, Xiuli; Xu, Jie; Ma, Longlong

    2012-01-01

    This work presents the development situation of biomass gasification power generation technology in China and analyzes the difficulty and challenge in the development process. For China, a large agricultural country with abundant biomass resources, the utilization of biomass gasification power generation technology is of special importance, because it can contribute to the electricity structure diversification under the present coal-dominant electricity structure, ameliorate the environmental impact, provide energy to electricity-scarce regions and solve the problems facing agriculture. Up to now, China has developed biomass gasification power generation plants of different types and scales, including simple gas engine-based power generation systems with capacity from several kW to 3 MW and integrated gasification combined cycle systems with capacity of more than 5 MW. In recent years, due to the rising cost of biomass material, transportation, manpower, etc., the final cost of biomass power generation has increased greatly, resulting in a serious challenge in the Chinese electricity market even under present preferential policy for biomass power price. However, biomass gasification power generation technology is generally in accord with the characteristics of biomass resources in China, has relatively good adaptability and viability, and so has good prospect in China in the future. - Highlights: ► Biomass gasification power generation of 2 kW–2 MW has wide utilization in China. ► 5.5 MW biomass IGCC demonstration plant has maximum power efficiency of up to 30%. ► Biomass power generation is facing a serious challenge due to biomass cost increase.

  14. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification.

    Science.gov (United States)

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R

    2018-06-01

    The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biogenic methane from hydrothermal gasification of biomass; Biogenes Methan durch hydrothermale Vergasung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.; Vogel, F.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on work done in the area of gasification of biomass. The use of dung, manure and sewage sludge as sources of energy is described and discussed. Hydrothermal gasification is proposed as an alternative to conventional gas-phase processes. The aim of the project in this respect is discussed. Here, a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously operating plant on a laboratory scale is being looked at. Difficulties encountered in preliminary tests are discussed. Long-term catalyst stability and the installations for the demonstration of the process are discussed, and gasification tests with ethanol are commented on.

  16. Development of a new steady state zero-dimensional simulation model for woody biomass gasification in a full scale plant

    International Nuclear Information System (INIS)

    Formica, Marco; Frigo, Stefano; Gabbrielli, Roberto

    2016-01-01

    Highlights: • A simulation model with Aspen Plus is created for a full scale biomass gasification plant. • Test results, equipment data and control logics are considered in the simulation model. • The simulation results are in agreement with the experimental data. • The gasifying air temperature affects largely the energy performance of the gasification plant. • Increasing the equivalent ratio implies a strong reduction of the gasification efficiency. - Abstract: A new steady state zero-dimensional simulation model for a full-scale woody biomass gasification plant with fixed-bed downdraft gasifier has been developed using Aspen Plus®. The model includes the technical characteristics of all the components (gasifier, cyclone, exchangers, piping, etc.) of the plant and works in accordance with its actual main control logics. Simulation results accord with those obtained during an extensive experimental activity. After the model validation, the influence of operating parameters such as the equivalent ratio, the biomass moisture content and the gasifying air temperature on syngas composition have been analyzed in order to assess the operative behavior and the energy performance of the experimental plant. By recovering the sensible heat of the syngas at the outlet of the gasifier, it is possible to obtain higher values of the gasifying air temperature and an improvement of the overall gasification performances.

  17. Characterization of Residual Particulates from Biomass Entrained Flow Gasification

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Fæster, Søren

    2013-01-01

    Biomass gasification experiments were carried out in a bench scale entrained flow reactor, and the produced solid particles were collected by a cyclone and a metal filter for subsequent characterization. During wood gasification, the major part of the solid material collected in the filter is soot...

  18. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  19. Power generation from biomass: Status report on catalytic-allothermal wood gasification. Papers; Energetische Nutzung von Biomasse: Stand der Realisierung der katalytisch-allothermen Holzvergasung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, H.; Bauermeister, U.; Kliche, H.; Seiffarth, K. (comps.)

    2001-12-01

    The topic of this event is bound up with the activities of FOeST in the field of gasification of biomass in decentralized small plants (< 2 MW{sub el}). The start project was a research work in 1993 to select a gasification process for using wood, sludge or plastic waste, continued 1995 by a research project with gasification tests of tar oil contaminated wood in a small gasification reactor with good results in environmental compatibility. But the following planning process of a demonstration plant for 500 kW{sub el} has shown, that the biomass gasification couldn't reach economic efficiency. Due to the development of an catalytic-partial allothermal gasification process of GNS ltd. it was clear, that the technical efficiency could be increased considerably. So, in 2000, a project started to test this catalytic-partial allothermal gasification in a pilot plant. Today the results of research, development and testing of biomass gasification with catalytic-partial allothermal processing as well as practically experience with a gasification plant, general conditions and further activities for energetically utilisation of biomass in Saxonia-Anhalt will be presented. (orig.)

  20. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  1. Survey of Biomass Gasification, Volume II: Principles of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  2. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H P; Adlhoch, W [Rheinbraun AG, Cologne (Germany)

    1997-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  3. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Adlhoch, W. [Rheinbraun AG, Cologne (Germany)

    1996-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  4. Analysis and co-ordination of the activities concerning gasification of biomass. Summary country report, Denmark and Norway

    International Nuclear Information System (INIS)

    Stoholm, P.; Olsen, A.

    1996-11-01

    The analysis summarises the coordination of activities concerning the gasification of biomass in Denmark and Norway. The total quantity of available biomass for energy production in Denmark corresponds to ca. 115 PJ of which ca. 40% is utilized - and this constitutes ca. 6% of the country's total energy consumption. The resulting energy from biomass is currently mostly used for heating purposes utilizing small wood/straw household or farm stoves in addition to ca. 100 district heating systems. There is a tendency to use biomass fuels for electric power production as in the case of all major waste incineration plants and about 10 fully or partly wood/straw-fired cogeneration plants which are found within the range of 2 -20 MWe. A table shows details of all Danish biomass gasification plants and information is given on the types of biomass, under the titles of residue products and energy crops, most relevant to energy production in Denmark. Data is presented on the consumption of renewable energy in Denmark, recalculated in fuel equivalents, and Danish national energy policy and related legislation are described. Information on Norway's use of biomass as fuel is given under the headings of primary consumption, biomass sources and use, legislation, and brief evaluations of commercial gasification plants, pilot and demonstration plants, and laboratory plants and studies. It has recently been decided to speed up the development of small-scale gasification plants for combined heat and electricity production using biomass as fuel in Denmark. Total Norwegian energy consumption is 25% higher than Denmark's, and biomass fuels cover only 3.6% of this. (ARW) 32 refs

  5. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A; Laatikainen-Luntama, J; Nieminen, M; Kurkela, E; Korhonen, J [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  6. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  7. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  8. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Gil, J; Martin, J A; Frances, E; Olivares, A; Caballero, M A; Perez, P [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J [Madrid Univ. (Spain)

    1997-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  9. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  10. Gasification of biomass - principles and technical alternatives; Vergasung von Biomassen - Prinzipien und technische Moeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Klose, E [Technische Univ. Bergakademie, Freiberg (Germany)

    1997-12-31

    The technical principles of gasification are outlined, and a number of biomass gasification processes are presented and compared with the coal gasification process. On the basis of the knowledge gained in coal gasification, it will be easy to carry out the development work still required on small-scale biomass gasification systems in cooperation with the gas users. (orig) [Deutsch] Das technische Prinzip derVergasung und verschiedene Verfahrensweisen bei der Vergasung von Biomasse werden vorgestellt und mit der Kohlevergasung verglichen. Auf der Grundlage der technischen Erkenntnisse bei der Kohlevergasung einschliesslich der vor- und nachgeschalteten Prozessstufen sind die noch notwendigen verfahrens- und apparatetechnischen Entwicklungsarbeiten fuer vorwiegend kleine Anlagen in Zusammenarbeit mit den Gasnutzern durchfuehrbar. (orig)

  11. Gasification of biomass - principles and technical alternatives; Vergasung von Biomassen - Prinzipien und technische Moeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Klose, E. [Technische Univ. Bergakademie, Freiberg (Germany)

    1996-12-31

    The technical principles of gasification are outlined, and a number of biomass gasification processes are presented and compared with the coal gasification process. On the basis of the knowledge gained in coal gasification, it will be easy to carry out the development work still required on small-scale biomass gasification systems in cooperation with the gas users. (orig) [Deutsch] Das technische Prinzip derVergasung und verschiedene Verfahrensweisen bei der Vergasung von Biomasse werden vorgestellt und mit der Kohlevergasung verglichen. Auf der Grundlage der technischen Erkenntnisse bei der Kohlevergasung einschliesslich der vor- und nachgeschalteten Prozessstufen sind die noch notwendigen verfahrens- und apparatetechnischen Entwicklungsarbeiten fuer vorwiegend kleine Anlagen in Zusammenarbeit mit den Gasnutzern durchfuehrbar. (orig)

  12. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  13. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    Science.gov (United States)

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  15. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  16. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Hernandez, Juan J.; Pazo, Amparo; Lopez, Julio [Universidad de Castilla-La Mancha, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n. 13071 Ciudad Real (Spain)

    2008-09-15

    Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal-coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H{sub 2} and CH{sub 4}) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H{sub 2}-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H{sub 2} concentration increased with increasing temperature. (author)

  17. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  18. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  19. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    Science.gov (United States)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  20. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz [VŠB – Technical University of Ostrava, Energy Research Center, 708 33 Ostrava (Czech Republic)

    2016-06-30

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the life of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.

  1. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  2. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  3. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    Science.gov (United States)

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane

    International Nuclear Information System (INIS)

    Li, Hailong; Larsson, Eva; Thorin, Eva; Dahlquist, Erik; Yu, Xinhai

    2015-01-01

    Highlights: • Anaerobic digestion and biomass gasification are integrated. • The novel concept can produce much more biomethane. • The novel concept can improve the exergy efficiency. • The novel concept demonstrates a big potential of income increase. - Abstract: There is a rapid growing interest in using biomethane as fuel for transport applications. A new concept is proposed to combine anaerobic digestion and biomass gasification to produce biomethane. H 2 is separated from the syngas generated by biomass gasification in a membrane system, and then is used to upgrade raw biogas from anaerobic digestion. Simulations have been conducted based on the real operation data of one full scale biogas plant and one full scale biomass gasification plant in order to investigate the feasibility of the new concept. Results show that although less power and heat are generated compared to the gasification plant, which results in a lower overall efficiency, much more biomethane can be produced than the biogas plant; and the new concept can achieve a higher exergy efficiency. Due to the increasing price of biomethane, the novel concept demonstrates a big potential of income increase. For example, at a biomethane price of 12.74SEK/kg, the annual income can be increased by 5.3% compared to the total income of the biogas and gasification plant

  5. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I; SEMIANNUAL

    International Nuclear Information System (INIS)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-01-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere

  6. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  7. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A [ATEKO a.s., Hradec Kralove (Czech Republic)

    1997-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  8. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  9. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  10. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  11. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2014-01-01

    Two plastic wastes obtained as co-products from an industrial process were fed in a pilot-scale bubbling fluidized bed gasifier, having an internal diameter of 0.38 m and a maximum thermal output of about 400 kW. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.2 to 0.3. Olivine, a neo-silicate of Fe and Mg, already tested as a good catalyst for tar removal during gasification of polyolefin plastic wastes, was used as bed material. The results provide the complete composition of the syngas, including the tar, particulate and acid/basic gas contents as well as the chemical and physical characterization of the bed material and entrained fines. The gasification process appears technically feasible, yielding a producer gas of valuable quality for energy applications in an appropriate plant configuration. On the other hand, under the experimental conditions tested, olivine particles show a strongly reduced catalytic activity in all the runs. The differences in the gasification behaviour of the two industrial plastics are explained on the basis of the structure and composition of the wastes, taking also into account the results of a combined material and substance flow analysis. - Highlights: • Pilot-scale investigation of fluidized bed gasification of two industrial plastic wastes. • Tests under conditions of thermal/chemical steady state at various equivalence ratios. • Complete composition of the producer gas, including tar, particulate and acid/basic gases. • Differences in the gasification behaviour of plastic wastes. • Material, substance, and feedstock energy flow analysis for different gasification tests

  12. Biomass utilization for the process of gasification

    Directory of Open Access Journals (Sweden)

    Josef Spěvák

    2008-01-01

    Full Text Available Biomass as one of the renewable resources of energy has bright future in utilization, especially in obtaining various forms of energy (heat, electrical energy, gas.According to the conception of energy policy of the Czech Republic and according to the fulfillment of the indicators of renewable resources using until the year 2010, the research of thermophysical characteristics of biofuels was realized.There were acquired considerable amount of results by combustion and gasification process on the basis of three-year project „Biomass energy parameters.” By means of combustion and gasification tests of various (biomass fuels were acquired the results which were not published so far.Acquired results are published in the fuel sheets, which are divided into four parts. They consist of information on fuel composition, ash composition, testing conditions and measurand overview. Measurements were realized for the process of combustion, fluidized-bed gasification and fixed-bed gasification. Following fuels were tested: Acacia, Pine, Birch, Beech, Spruce, Poplar, Willow, Rape, Amaranth, Corn, Flax, Wheat, Safflower, Mallow, and Sorrel.

  13. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    Science.gov (United States)

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  15. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  16. Biomass gasification in district heating systems - The effect of economic energy policies

    International Nuclear Information System (INIS)

    Wetterlund, Elisabeth; Soederstroem, Mats

    2010-01-01

    Biomass gasification is considered a key technology in reaching targets for renewable energy and CO 2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24-42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.

  17. Experimental investigation of small-scale gasification of woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, Maria

    2002-05-01

    A small-scale stratified down draft gasifier has been built and operated under stable conditions using wood pellets as fuel and air as gasification agent. The problems observed during the preliminary experiments have been described and explained; they are mainly related to the stability of the process. The stable operation of the gasifier has been characterised by the gas composition and the product gas tar and particle content. The biomass feeding rate has varied between 4,5 and 6,5 kg/h. The CO content of the product gas (23-26 % vol.) is higher than in similar gasifiers and the H{sub 2} content has been found to vary between 14 and 16 % vol. The tar content in the product gas (Ca. 3 g/Nm{sup 3}) is rather high compared with similar gasifiers. The temperature profile, together with other relevant parameters like the air-excess ratio, the air to fuel ratio and gas to fuel ratio have been calculated. The experiments show that the air excess ratio is rather constant, varying between 0,25 and 0,3. Experiments have been conducted with a gas engine using mixtures of CH{sub 4}, CO, H{sub 2}, CO{sub 2} and N{sub 2} as a fuel. NO{sub x} and CO emissions are analysed. The char gasification process has been studied in detail by means of Thermogravimetric Analysis. The study comprises the chemical kinetics of the gasification reactions of wood char in CO{sub 2} and H{sub 2}O, including the inhibition effect of CO and H{sub 2}. A kinetic model based on Langmuir-Hinshelwood kinetics has been found which relates the mass loss rate to the temperature, gas composition and degree of conversion for each reaction. The ratio CO/CO{sub 2} has been found to be a relevant parameter for reactivity. The gasification experiments in mixtures of CO{sub 2} and H{sub 2}O give reasons to believe that the rate of desorption for the complex C(O) varies depending on the gas mixture surrounding the char. It has been found that if the experimental data are obtained from separate H{sub 2}O/N{sub 2

  18. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  19. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  20. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    Science.gov (United States)

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  2. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  3. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  4. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  5. Technologies and trends in biomass gasification

    International Nuclear Information System (INIS)

    Stassen, H.E.M.

    1994-01-01

    Background information is given on the growing interest of energy from biomass. After a brief overview of the advantages and disadvantages of biomass gasification systems, a state of the art of the technology is given. Finally, recent developments in the Netherlands and abroad are mentioned. 3 figs

  6. Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Soprani, Stefano; Søgaard, Martin

    2013-01-01

    . The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen– steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing......Oxygen–steam biomass gasification produces a high quality syngas with a high H2/CO ratio that is suitable for upgrading to liquid fuels. Such a gas is also well suited for use in conjunction with solid oxide fuel cells giving rise to a system yielding high electrical efficiency based on biomass...... distillation, especially for small to medium scale plants. This paper examines different configurations for oxygen production using MIEC membranes where the oxygen partial pressure difference is achieved by creating a vacuum on the permeate side, compressing the air on the feed side or a combination of the two...

  7. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer

    International Nuclear Information System (INIS)

    Martin, J.; Nganhou, J.; Amie Assouh, A.

    2008-01-01

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  8. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.

    Science.gov (United States)

    Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo

    2017-06-01

    In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Hayati [TUBITAK Marmara Research Center, Energy Institute, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel; Yinesor, Guzide [Marmara University-Goztepe Campus, Faculty of Engineering - Department of Mechanical Engineering, 34722 Kuyubasi Kadikoy Istanbul (Turkey)

    2011-01-15

    A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells. (author)

  10. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  11. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  12. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  13. Economic feasibility of biomass gasification for power generation in three selected communities of northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Upadhyay, Thakur Prasad; Shahi, Chander; Leitch, Mathew; Pulkki, Reino

    2012-01-01

    Biomass gasification is expected to be an attractive option among other competitive applications of biomass conversion for bio-energy. This study analyzes economic feasibility of biomass gasification power generating plants in three selected communities (Ignace, Nipigon and Kenora) of northwestern Ontario. The major variables considered in the model are harvesting and handling costs, logistic costs for biomass feedstock delivery and storage, capital costs of power plant by scales, operation and maintenance costs, labor costs, capital financing costs and other regulatory costs. GIS analysis was undertaken to estimate the distance class matrix to apportion the biomass feedstock supply side from different forest management units. Total cost per MW h power production at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. Total cost per unit of electricity production decreases significantly as plant capacity increases due to economy of scale in the production system. Further, the locations of plants explained the cost variability. - Highlights: ► We model feasibility of gasification power plants in three rural communities. ► The variables considered in the model are logistics, operational and capital costs. ► Mean distance from each community to different forest units are estimated with GIS. ► Total cost per MWh at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. ► Total cost decreases with increase in plant capacity.

  14. Biomass gasification, stage 2 LTH. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bjerle, I.; Chambert, L.; Hallgren, A.; Hellgren, R.; Johansson, Anders; Mirazovic, M.; Maartensson, R.; Padban, N.; Ye Zhicheng [comps.] [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    1996-11-01

    This report presents the final report of the first phase of a project dealing with a comprehensive investigation on pressurized biomass gasification. The intention with the project first phase was firstly to design, install and to take in operation a PCFB biomass gasifier. A thorough feasibility study was made during the first half year including extensive calculations on an internal circulating fluidized bed concept. The experimental phase was intended to study pressurized gasification up to 2.5 MPa (N{sub 2}, air) at temperatures in the interval 850-950 deg C. The more specific experimental objective was to examine the impact from various process conditions on the product formation as well as on the function of the different systems. The technical concept has been able to offer novel approaches regarding biomass feeding and PCFB gasification. The first gasification test run was made in December 1993 after almost 18 months of installation work. Extensive work was made during 1994 and the first half of 1995 to find the balance of the PCFB gasifier. It turned out to be very difficult to find operating parameters such that gave a stable circulation of the bed material during gasification mode. Apparently, the produced gas partly changed the pressure profile over the riser which in turn gave unstable operation. After a comprehensive investigation involving more than 100 hours of tests runs it was decided to leave the circulating bed concept and focus on bubbling bed operations. The test rig is currently operating as a bubbling bed gasifier. 4 refs, 24 figs, 6 tabs

  15. Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification

    International Nuclear Information System (INIS)

    Khan, Zakir; Yusup, Suzana; Ahmad, Murni Melati; Chin, Bridgid Lai Fui

    2014-01-01

    Highlights: • The paper presents integrated catalytic adsorption (ICA) steam gasification for H 2 yield. • Effects of adsorbent to biomass, biomass particle size and fluidization velocity on H 2 yield are examined. • The present study produces higher H 2 yield as compared to that obtained in literatures. • The ICA provides enhancement of H 2 yield as compared to independent catalytic and CO 2 adsorption gasification systems. - Abstract: The present study investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen production in a pilot scale atmospheric fluidized bed gasifier. The biomass steam gasification is performed in the presence of an adsorbent and a catalyst in the system. The effect of adsorbent to biomass (A/B) ratio (0.5–1.5 wt/wt), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–2.0 mm) are studied at temperature of 675 °C, steam to biomass (S/B) ratio of 2.0 (wt/wt) and biomass to catalyst ratio of 0.1 (wt/wt). Hydrogen composition and yield, total gas yield, and lower product gas heating values (LHV gas ) increases with increasing A/B ratio, while particle size has no significant effect on hydrogen composition and yield, total gas and char yield, gasification and carbon conversion efficiency. However, gas heating values increased with increasing biomass particle size which is due to presence of high methane content in product gas. Meanwhile, medium fluidization velocity of 0.21 m/s favoured hydrogen composition and yield. The results showed that the maximum hydrogen composition and yield of 84.62 vol% and 91.11 g H 2 /kg biomass are observed at A/B ratio of 1.5, S/B ratio of 2.0, catalyst to biomass ratio of 0.1 and temperature of 675 °C. The product gas heating values are observed in the range of 10.92–17.02 MJ/N m 3 . Gasification and carbon conversion efficiency are observed in the range of 25.66–42.95% and 20.61–41.95%, respectively. These lower

  16. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  17. Combining a 2-D multiphase CFD model with a Response Surface Methodology to optimize the gasification of Portuguese biomasses

    International Nuclear Information System (INIS)

    Silva, Valter; Rouboa, Abel

    2015-01-01

    Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H 2 generation, the H 2 /CO ratio, the CH 4 /H 2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition

  18. Biomass gasification to heat, electricity and biofuels. HighBio project publication

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U.; Wikman, B. (eds.)

    2011-07-01

    Renewable energy and the use of biomass in energy production promotes sustainable development and decreases the use of fossil fuels. Biomass, e.g. wood chips can be used in the production of heat and electricity, as well as being used as a biofuel component and novel product for the chemical industry. Efficient utilisation of biomass requires a high level of knowledge and the development of new processes to create a new way of thinking. In this process, international co-operation plays a significant role. The aim of the HighBio project was to produce new information on biomass gasification and the utilisation opportunities of product gas in biofuel and biochemicals production. The project was also aimed at studying utilisation properties of biogasification ashes in distributed energy production. Small-scaled CHP plants can be used for simultaneous heat and power production by gasifying wood chips and by burning energy intensive product gas. Compared with thermal combustion, particulate emissions from gasification are lower, which also contributes to the EU's ever tightening emission legislation. Several small and middle scale companies in the Northern part of Finland and Sweden have worked with biomass gasification, and during the project, the birth of new ones has been seen. In this development stage, researchers of the HighBio project have also been strongly involved. Increased use of renewable energy opens up new possibilities for entrepreneurship and the birth of new companies, especially in rural areas. In order to enable these opportunities, we need research data from the universities, novel innovations, and especially their successful commercialisation. The HighBio project has also contributed to tackling those challenges by arranging research seminars and meetings to companies and other interest groups, as well as by establishing research activities and collaborations. Regional collaboration combined with national and international research networks

  19. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  20. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  1. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  3. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  4. Strategy for research, development and demonstration of thermal biomass gasification in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-12-15

    Technology for thermal gasification of biomass is one of the key elements to make the vision of an energy system without fossil fuels a reality. Gasification technology can enhance the flexibility needed to maintain a future energy system with a large share of wind power. Furthermore, gasification has advantages in terms of ash recycling and utilisation of vast but challenging biomass residues. Danish companies are globally well advanced with this technology and the market for gasification technology is great in both Denmark and abroad. There is a clear need for targeted technology RD and D in order to reach the last stretch to a commercial breakthrough. The project ''Strategy for research, development and demonstration of thermal biomass gasification in Denmark'' is the Danish industrys contribution to the development of biomass gasification and goes into detail with the RD and D needs. The project has been conducted by FORCE Technology for DI Bioenergy with funding from EUDP, Energinet.dk, DI Bioenergy and FORCE Technology and five stakeholder companies. (LN)

  5. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco

    2014-01-01

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  6. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  7. Gasification of biomass chars in steam-nitrogen mixture

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2006-01-01

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm 3 min -1 . The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm 3 min -1 of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock

  8. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  9. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S.

    2010-01-01

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 o C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H 2 and CO in the producer gas, H 2 /CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 o C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 o C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.

  10. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  11. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  12. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  13. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  15. Performance of entrained flow and fluidised bed biomass gasifiers on different scales

    International Nuclear Information System (INIS)

    Tremel, Alexander; Becherer, Dominik; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut

    2013-01-01

    Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MW th to 500 MW th . While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MW th ) and €7.4 cent/kWh (10 MW th ) in the economic analysis of both technologies. The study indicates that the

  16. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael

    2014-01-01

    Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden

  17. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.

    Science.gov (United States)

    Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping

    2017-11-01

    The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Methods and apparatus for catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  19. Mississippi Ethanol Gasification Project, Final Scientific / Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Larry, E.

    2007-04-30

    The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with

  20. Commercial development of the Battelle/FERCO biomass gasification process - initial operation of the McNeil gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M. [Battelle, Columbus, OH (United States); Farris, G. [Future Energy Resources Company, Atlanta, GA (United States); Slack, W. [Zurn-Nepco, South Portland, Maine (United States); Irving, J. [Burlington Electric Dept., Burlington, Vermont (United States)

    1997-07-01

    Restructuring in the utility industry has increased the emphasis on renewable energy supplies. To meet this need, the U.S. Department of Energy (DOE) has focused on a number of high efficiency power generation technologies that can effectively utilize biomass. One of these promising power generation technologies is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass from renewable energy crops can efficiently and economically produce a renewable source of a clean gaseous fuel, suitable for use in these high efficiency power systems, or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and first commercial-scale application at the Burlington Electric Department's McNeil Station of the Battelle/FERCO high-throughput gasification process for gas turbine based power generation system. Projected process economics for a gas turbine combined cycle plant are presented. (author)

  1. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  2. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    . In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....

  3. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  4. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  5. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    Science.gov (United States)

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  7. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  8. Reaction Mechanism of Tar Evolution in Biomass Steam Gasification for Hydrogen Production

    International Nuclear Information System (INIS)

    Shingo Katayama; Masahiro Suzuki; Atsushi Tsutsumi

    2006-01-01

    Reaction mechanism of tar evolution in steam gasification of biomass was investigated with a continuous cross-flow moving bed type differential reactor, in which tar and gases can be fractionated according to reaction time. We estimated that time profile of tar and gas evolution in the gasification of cellulose, xylan, and lignin, and compared it with experimental product time profile of real biomass gasification. The experimental tar evolution rate is different from estimated tar evolution rate. The estimated tar evolution rate has a peak at 20 s. On the other hand, the experimental tar evolution rate at 20 s is little, and tar at initial stage includes more water-soluble and water-insoluble compounds. It can be concluded that in the real biomass steam gasification the evolution of tar from cellulose and lignin component was found to be precipitated by that from hemi-cellulose component. (authors)

  9. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  10. Biomass gasification for electric power generation. Biomassa vergassing voor elektriciteitsopwekking

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H J

    1992-10-01

    Attention is paid to power generation by means of the use of synthesis gas, produced by biomass gasification, in internal combustion engines and gas turbines. Descriptions are given of the biomass gasification process and several types of gasifiers: cocurrent or downcraft gasifiers, countercurrent gasifiers, crosscurrent gasifiers and fluidized bed gasifiers. The first aim of this report is to assess which gasifier is the most appropriate gasifier to be used in combination with an internal combustion engine or a gas turbine. The second aim is to determine the quality of the biomass fuel, which must be gasified in a particular gasifier. In chapter two the notion biomass is discussed, and in chapter three attention is paid to the gasification process. An overview of the characteristics of available gasifiers is presented in chapter four (performance, quality of the synthesis gas and the biomass fuel, investment costs, and state of the art). In chapter five and six the internal combustion engine and the gas turbine are dealt with, as well as the experiences with and the consequences of the use of synthesis gas. Also the economic feasibility of the application of combined gasifier/engine systems and gasifier/gas turbine systems is discussed. 39 figs., 20 tabs., 43 refs.

  11. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  12. Biomass gasification : The understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    NARCIS (Netherlands)

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly

  13. Integrated bioenergy conversion concepts for small scale gasification power systems

    Science.gov (United States)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  14. Small Scale Gasification Application and Perspectives in Circular Economy

    Science.gov (United States)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  15. Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Rodriguez-Alejandro, David Aaron

    2016-01-01

    Enriched-air gasification was performed in fluidized bed reactors using the processed dairy manure which was mixed with sand bedding. The effects of temperature, modified equivalence ratio (ER_m), and oxygen concentration on the gas products were investigated based on the statistical models using a bench-scale reactor in order to obtain empirical correlations. Then, the empirical equations were applied to compare the produced gases from a pilot-scale fluidized bed gasifier. The empirical and actual H_2 and CH_4 compositions were within a 10% error, while the sum of produced CO and CO_2 gases showed similar composition within 3% error. The most influential factors for the syngas heating value were temperature followed by the oxygen concentration and ER (equivalence ratio). The composition of H_2 (2.1–11.5%) and CO (5.9–20.3%) rose with an increase in temperature and oxygen concentration. The variation of CO_2 (16.8–31.6%) was mainly affected by the degree of oxygen concentration in the gasifying agent. The ranges of the LHV (lower heating value), carbon conversion efficiency and cold gas efficiency were discussed. An economic review showed favorable indications for on-site dairy manure gasification process for electric power based on the depreciable payback period and the power production costs. - Highlights: • Sand mixed dairy manure obtained directly from a dairy farm was processed and used. • Response surface methodology was used to investigate the enriched-air gasification. • Syngas results from bench and pilot scale gasifiers were compared and reviewed. • A highest LVH of 8 MJ/Nm"3 was obtained from the enriched-air gasification. • The power production costs were determined to be $0.053/kWh

  16. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  17. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  18. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  19. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  20. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  1. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  2. Assessment on steam gasification of municipal solid waste against biomass substrates

    International Nuclear Information System (INIS)

    Couto, Nuno Dinis; Silva, Valter Bruno; Rouboa, Abel

    2016-01-01

    Highlights: • Steam gasification as an alternative for MSW treatment was studied. • A previously developed numerical model for MSW gasification was used. • Results were validated with data gathered from the literature. • Results were compared with previously studied biomass substrates. • Environment and economic assessment based on the results was conducted. - Abstract: Waste management is becoming one of the main concerns of our time. Not only does it takes up one of the largest portions of municipal budgets but it also entails extensive land use and pollution to the environment using current treatment methods. Steam gasification of Portuguese municipal solid wastes was studied using a previously developed computational fluid dynamics (CFD) model, and experimental and numerical results were found to be in agreement. To assess the potential of Portuguese wastes, these results were compared to those obtained from previously investigated Portuguese biomass substrates and steam-to-biomass ratio was used to characterize and understand the effects of steam in the gasification process. The properties of syngas produced from municipal solid waste and from biomass substrates were compared and results demonstrated that wastes present the lowest carbon conversion, gas yield and cold gas efficiency with the highest tar content. Nevertheless, the pre-existing collection and transportation infrastructure that is currently available for municipal waste does not exist for the compared biomass resources which makes it an interesting process. In addition a detailed economic study was carried out to estimate the environmental and economic benefits of installing the described system. The hydrogen production cost was also estimated and compared with alternative methods.

  3. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen [ed.

    2008-11-15

    In total 20 international and national experts were invited to give presentations (The PPT-presentations are collected in this volume).The seminar was divided into three parts: Production technologies; Applications - Gas turbines and gas Engines - Biomethane as vehicle fuel- Syngas in industrial processes; Strategy, policy and vision. Production of synthetic fuels through gasification of biomass is expected to develop rapidly due to political ambitions related to the strong fossil fuel dependency, especially within the transportation sector, security of supply issues and the growing environmental concern. Techniques that offer a possibility to produce high quality fuels in an efficient and sustainable way are of great importance. In this context gasification is expected to play a central part. The indirect gasification concept has been further developed in recent years and there are now pilot and demonstration plants as well as commercial plants in operation. The RandD activities at the semi-industrial plant in Guessing, Austria have resulted in the first commercial plant, in Oberwart. The design data is 8.5 MW{sub th} and 2.7 MW{sub e} which gives an electric efficiency of 32 % and the possibility to produce biomethane. In this scale conventional CHP production based on combustion of solid biomass and the steam cycle would result in a poor electric efficiency. Metso Power has complemented the 12 MW{sub th} CFB-boiler at Chalmers University of Technology, Gothenburg, Sweden with a 2 MW{sub th} indirect gasifier. The gasifier is financed by Gothenburg Energy and built for RD purposes. Gothenburg Energy in collaboration with E.ON Sweden will in a first stage build a 20 MW plant for biomethane production (as vehicle fuel and for grid injection) in Gothenburg based on the indirect gasification technology. The plant is expected to be in operation in 2012. The next stage involves an 80 MW plant with a planned start of operation in 2015. Indirect gasification of biomass

  4. Pre-treatment of oil palm fronds biomass for gasification

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2017-01-01

    Full Text Available Oil Palm Fronds (OPF has been proven as one of the potential types of biomass feedstock for power generation. The low ash content and high calorific value are making OPF an attractive source for gasification. The objective of this study is to investigate the effects of pre-treatments of OPF residual on gasification. The pre-treatments included the briquetting process and extensive drying of OPF which are studied separately. In briquetting process, the OPF were mixed with some portions of paper as an additives, leaflets, and water, to form a soupy slurry. The extensive drying of OPF needs to cut down OPF in 4–6 cm particle size and left to dry in the oven at 150°C for 24 hours. Gasification process was carried out at the end of each of the pre-treated processes. It was found that the average gas composition obtained from briquetting process was 8.07%, 2.06%, 0.54%,and 11.02% for CO, H2, CH4, and CO2 respectively. A good composition of syngas was produced from extensive dried OPF, as 16.48%, 4.03%, 0.91%,and 11.15% for CO, H2, CH4, and CO2 contents respectively. It can be concluded that pre-treatments improved the physical characteristics of biomass. The bulk density of biomass can be increased by briquetting but the stability of the structure is depending on the composition of briquette formulation. Furthermore, the stability of gasification process also depended on briquette density, mechanical strength, and formulation.

  5. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  6. Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification

    Science.gov (United States)

    Mark A. Dietenberger; Mark Anderson

    2007-01-01

    Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...

  7. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  8. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  9. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  11. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  12. Green power production by co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGCC processes

    Energy Technology Data Exchange (ETDEWEB)

    Van Ree, R; Korbee, R; De Smidt, R P; Jansen, D [ECN Fuels Conversion and Environment, Petten (Netherlands); Baumann, H R; Ullrich, N [Krupp Uhde, Dortmund (Germany); Haupt, G; Zimmerman, [Siemens, Erlangen (Germany)

    1998-11-01

    The use of coal for large scale power production meets a growing environmental concern. In spite of the fact that clean coal conversion technologies integrated with high-efficiency power production facilities, such as IGCC, are developed, the aim for sustainable development strives for a power production system based on renewable energy sources. One of the most promising renewable energy sources that can be used in the Netherlands is biomass, i.e. organic waste materials and/or energy crops. To accelerate the introduction of this material, in a technical and economically acceptable way, co-gasification with fossil fuels, in particular coal, in large scale IGCC processes is considered. In this paper the technical feasibility, economic profitability, and environmental acceptability of co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGM is discussed. Both a base-case coal-fired oxygen-blown entrained-flow based IGCC process - showing strong resemblance to the Puertollano IGCC plant in Spain - and three co-gasification concepts, viz.: (1) a concept with separate dry coal and biomass feeding systems, (2) a concept with a combined dry coal/biomass-derived pyrolysis char feeding system, and (3) a concept with parallel biomass pre-treatment/gasification and combined fuel gas clean-up/power production, were defined for further consideration. The base-case system and the co-gasification concepts as well are modelled in the flowsheet simulation package ASPEN{sup +}. Steady-state integral system calculations resulted in an overall net electrical plant efficiency for the base-case system of 50. 1 %LHV (48.3 %HHV). Replacing about 10 % of the total thermal plant input (coal) by biomass (willow) resulted in a decrease of the overall net electrical plant efficiency of 1.4 to 2.1 %-points LHV, avoided specific CO2 emissions of 40-49 g/kWh{sub e}, and total avoided CO2 emissions of about 129 to 159 kt/a, all depending on the co-gasification concept

  13. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M H

    2007-07-01

    operating plant on a laboratory scale (throughput 1 kg/hr, which yields about 200 L{sub SNG}/hr with a thermal heating power of 1 kW{sub th} for a feed concentration of 40 wt %). Ideally, the pilot plant should be capable of conveying solid containing slurries. Various catalysts were selected (some of them were synthesized in-house) and tested for their stability under hydrothermal conditions and for their tolerance towards inorganic salts (sulfate was chosen as model substance for these tests). The catalysts were characterized by numerous techniques (such as TG/FTIR, TPO/TPR, TOC, BET, XRD, XPS, ICP, TEM, HAADF-STEM, and SEM-EDXS). The biomass was analyzed for its constituents in order to get a reliable estimate of its energy content, which is essential for the calculation of the process economics. The lower heating value of concentrated swine manure was found to be 16.3 MJ/kg{sub dry} {sub matter}. Skeletal nickel catalysts, which are widely used in the industry due to their attractive price, gasified wood suspensions (conc. 10 - 30 wt %) in a batch reactor completely to SNG. The methane yield was 0.33 g{sub CH{sub 4}}/ g{sub wood,} {sub dry}, which corresponds to the maximum yield governed by thermodynamics. Manure suspensions were also gasified in the hydrothermal environment. The highest methane yield achieved was only 0.21 g{sub CH{sub 4}}/ g{sub dry,} {sub matter}, which is 80% of the maximum yield by thermodynamics. The reason for this were the salts present in the manure, which had not been separated before the experiments and caused the deactivation of the catalyst. Thus, the importance of an integrated salt separator in a demonstration plant cannot be emphasized enough. The most promising catalyst systems (nickel, ruthenium) were tested for their activity and stability in the hydrothermal environment in a continuously operating test rig, where due to the applied pump only liquids could be fed. A mixture of five organic substances (formic and acetic acid, ethanol

  14. Study of the Apparent Kinetics of Biomass Gasification Using High-Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Alevanau, Aliaksandr

    2010-10-15

    Among the latest achievements in gasification technology, one may list the development of a method to preheat gasification agents using switched ceramic honey combs. The best output from this technology is achieved with use of water steam as a gasification agent, which is heated up to 1600 deg C. The application of these temperatures with steam as a gasification agent provides a cleaner syngas (no nitrogen from air, cracked tars) and the ash melts into easily utilised glass-like sludge. High hydrogen content in output gas is also favourable for end-user applications.Among the other advantages of this technology is the presumable application of fixed-bed-type reactors fed by separately produced and preheated steam. This construction assumes relatively high steam flow rates to deliver the heat needed for endothermic reactions involving biomass. The biomass is to be heated uniformly and evenly in the volume of the whole reactor, providing easier and simpler control and operation in comparison to other types of reactors. To provide potential constructors and exploiters of these reactors with the kinetic data needed for the calculations of vital parameters for both reactor construction and exploitation, basic experimental research of high-temperature steam gasification of four types of industrially produced biomass has been conducted.Kinetic data have been obtained for straw and wood pellets, wood-chip charcoal and compressed charcoal of mixed origin

  15. Biomass gasification in Europe - status and perspectives; Vergasung von Biomasse in Europa - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, L; Kaltschmitt, M [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1997-12-31

    Gasification of biomass is a promising option, especially in the fields of waste management and power generation, but there are considerable economic and technical problems that must be solved first. A critical analysis of biomass gasification in Europe today shows that this technology is not marketable today and cannot contribute to environmentally acceptable power supply on a short-term basis. (orig) [Deutsch] Von allen Moeglichkeiten einer energetischen Nutzung von Biomasse stellt die Technik der Vergasung insbesondere in den Bereichen Abfallentsorgung und Stromerzeugung eine vielversprechende Option dar. Einer weiteren Verbreitung dieser Technik stehen allerdings erhebliche wirtschaftliche und technische Probleme entgegen. Die kritische Analyse der derzeitigen Gegebenheiten der Biomassevergasung in Europa fuehrt zu dem Schluss, dass diese Technik noch nicht unmittelbar vor der Mrkteinfuehrung steht und somit kurzfristig keinen merklichen Beitrag zu einer umwelt- und klimavertraeglicheren Energieversorgung in Europa leisten kann. (orig)

  16. Biomass gasification in Europe - status and perspectives; Vergasung von Biomasse in Europa - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, L.; Kaltschmitt, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1996-12-31

    Gasification of biomass is a promising option, especially in the fields of waste management and power generation, but there are considerable economic and technical problems that must be solved first. A critical analysis of biomass gasification in Europe today shows that this technology is not marketable today and cannot contribute to environmentally acceptable power supply on a short-term basis. (orig) [Deutsch] Von allen Moeglichkeiten einer energetischen Nutzung von Biomasse stellt die Technik der Vergasung insbesondere in den Bereichen Abfallentsorgung und Stromerzeugung eine vielversprechende Option dar. Einer weiteren Verbreitung dieser Technik stehen allerdings erhebliche wirtschaftliche und technische Probleme entgegen. Die kritische Analyse der derzeitigen Gegebenheiten der Biomassevergasung in Europa fuehrt zu dem Schluss, dass diese Technik noch nicht unmittelbar vor der Mrkteinfuehrung steht und somit kurzfristig keinen merklichen Beitrag zu einer umwelt- und klimavertraeglicheren Energieversorgung in Europa leisten kann. (orig)

  17. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine

  18. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  19. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  20. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  1. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    Science.gov (United States)

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  2. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  3. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  4. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  5. Gasification of peat and biomass in suspension. Turpeen ja biomassan suspensiokaasutus

    Energy Technology Data Exchange (ETDEWEB)

    Haukka, P.; Raiko, R.

    1993-01-01

    Gasification of peat and biomass in dilute particle-gas suspension has not been studied significantly in Finland, even though these fuels require drying, which often produces dry pulverized fuel. This report has concentrated on studying suitability of so-called two-stage entrained-bed gasification for peat and biomass. The gasification system consists of a pyrolysis reactor (entrained flow) and an adiabatic char combustor. Dry or almost dry fuel is fed into the hot flue gas stream coming from the char combustor. Gasification is based on flash pyrolysis in the dilute suspension flow. Residual char is separated from pyrolyzer gases in a gas cleaning device and fed back to the adiabatic combustor. In the combustor char is burned at high temperature to supply the heat required to support endothermic reactions occurring in the pyrolyzer. To study entrained-bed gasification two types of computer models were developed: steady state simulation model and kinetic pyrolyzer model. With the help of these computer models mass and energy balances of the gasifier can be solved and the main dimensions of the gasifier can be determined. Lack of proper kinetic parameters for fast pyrolysis of peat and biomass makes it more difficult to apply the kinetic model in practice. Quantitative data concerning fast pyrolysis in dilute gas-particle suspension are needed to be able to evaluate the performance of the suspension gasifier in more detail. Gasifier operation has been studied using three different levels for amounts of pyrolysis pro- ducts, nine pressure levels between 15-23 bars and five temperature levels between 800-1200 deg C. Furthermore, normal pressure performance was simulated. In addition to simulation studies product gas heating value was optimized

  6. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char

    Directory of Open Access Journals (Sweden)

    Raymond L. Huhnke

    2013-08-01

    Full Text Available Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon and carbon-based catalysts. Considering these high-value applications, char could provide economic benefits to a biorefinery utilizing gasification or pyrolysis technologies. However, the properties of char depend heavily on biomass feedstock, gasifier design and operating conditions. This paper reports the effects of biomass type (switchgrass, sorghum straw and red cedar and equivalence ratio (0.20, 0.25 and 0.28, i.e., the ratio of air supply relative to the air that is required for stoichiometric combustion of biomass, on the physiochemical properties of char derived from gasification. Results show that the Brunauer-Emmett-Teller (BET surface areas of most of the char were 1–10 m2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The corresponding Fourier Transform Infrared spectra showed that the surface functional groups of char differed between biomass types but remained similar with change in equivalence ratio.

  7. Biomass steam gasification for production of SNG – Process design and sensitivity analysis

    International Nuclear Information System (INIS)

    Gröbl, Thomas; Walter, Heimo; Haider, Markus

    2012-01-01

    Highlights: ► A model for the SNG-production process from biomass to raw-SNG is prepared. ► A thermodynamic equilibrium model of the Biomass-Heatpipe-Reformer is developed. ► A sensitivity analysis on the most important operation parameters is carried out. ► Adopting the steam excess ratio a syngas ideally suitable for SNG production is generated. ► Thermodynamic equilibrium models are a useful tool for process design. -- Abstract: A process design for small-scale production of Substitute Natural Gas (SNG) by steam gasification of woody biomass is performed. In the course of this work, thermodynamic models for the novel process steps are developed and implemented into an already existing model library of commercial process simulation software IPSEpro. Mathematical models for allothermal steam gasification of biomass as well as for cleaning and methanation of product gas are provided by applying mass balances, energy balances and thermodynamic equilibrium equations. Using these models the whole process is integrated into the simulation software, a flowsheet for an optimum thermal integration of the single process steps is determined and energy savings are identified. Additionally, a sensitivity study is carried out in order to analyze the influence of various operation parameters. Their effects on amount and composition of the product gas and process efficiency are evaluated and discussed within this article.

  8. Electric power generation from biomass gasification; Geracao de eletricidade a partir da gaseificacao de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Cristina Aparecida Vilas Boas de; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (NEST/IEM/UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mails: cristinasales@unifei.edu.br, ruben@unifei.edu.br, electo@unifei.edu.br

    2006-07-01

    This paper presents a techno-economical evaluation of the biomass gasification utilization with different technologies such as: reciprocating engine, gas micro turbine, Stirling engine and fuel cells for small scale electricity generation. The comparative evaluation about the technologies is limited to the utilization in isolated areas. This paper shows the principal characteristics of these technologies. (author)

  9. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  10. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer; Prediction de la qualite du gaz en gazeification de la biomasse ligno-cellulosique dans un gazogene a co-courant

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J [Universite Catholique de Louvain (UCL), Faculte des Sciences Appliquees, Dept. de Mecanique, Unite Thermodynamique et Turbomachines, Louvain-la-Neuve (Belgium); Nganhou, J [Universite de Yaounde, Ecole National Superieur Polytechnique de Yaounde, Dept. de Genies Mecanique et Industriel (Cameroon); Amie Assouh, A [Ecole National Superieur Polytechnique de Yaounde, Lab. d' Energetique (Cameroon)

    2008-03-15

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  11. Pyrolysis and Gasification Kinetics of Large Biomass Particles

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Jenny; Hagstroem, Magnus; Andersson, Patrik U.; Loenn, Benny; Pettersson, Jan B.C. [Goteborg Univ. (Sweden). Dep. of Chemistry, Atmospheric Science; Davidsson, Kent O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Conversion

    2004-05-01

    The aim of the project is to provide experimental data on single biomass particle pyrolysis that have an applied as well as a fundamental bearing. Transport phenomena and kinetics on the single particle level are characterized, including heat and mass transport processes. New experimental techniques and methods are applied and developed within the project. A single-particle reactor has been developed for the investigations, and several detection techniques including fast thermogravimetric analysis, molecular beam mass spectrometry, laser spectroscopy, video recording and pyrometry are applied. The experimental data are used to develop robust models for pyrolysis and gasification, which are essential components in the design of gasification and combustion reactors.

  12. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  13. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    Science.gov (United States)

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-02

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail.

  14. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  15. Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process

    International Nuclear Information System (INIS)

    Kim, Young-Doo; Yang, Chang-Won; Kim, Beom-Jong; Moon, Ji-Hong; Jeong, Jae-Yong; Jeong, Soo-Hwa; Lee, See-Hoon; Kim, Jae-Ho; Seo, Myung-Won; Lee, Sang-Bong; Kim, Jae-Kon; Lee, Uen-Do

    2016-01-01

    Highlights: • A pilot scale biomass-to-liquid (BTL) process was investigated for Fischer-Tropsch diesel production. • 200 kW_t_h dual fluidized bed gasifier was integrated with 1 bbl/day F-T synthesis reactor. • Purified syngas satisfies minimum requirements of F-T synthesis. • F-T diesel produced successfully (1 L/h) and satisfies the automotive fuel standard. • Fully integrated BTL system was operated successfully more than 500 h. - Abstract: Fischer–Tropsch (F-T) diesel produced from biomass through gasification is a promising alternative fuel. In this study, a biomass-to-liquid (BTL) system involving a dual fluidized bed gasifier (DFBG), a methanol absorption tower, and an F-T synthesis process was investigated for producing clean biodiesel as an automotive fuel. A DFBG, which is an efficient indirect gasifier, can produce syngas with high caloric value while minimizing the amount of nitrogen in the product gas. In order to meet the strict requirements of syngas for F-T synthesis, any contaminants in the syngas must be minimized and its composition must be carefully controlled. In this work, the syngas mainly comprised 35 vol% of H_2 and 21.3 vol% of CO. The concentrations of H_2S and COS in the syngas were less than 1 ppmV owing to the use of chilled methanol cleaning process. Furthermore, long-term operation of a fully integrated BTL system was successfully conducted for over 500 h. The results showed that the BTL diesel can be used as an alternative automotive diesel fuel.

  16. Biomass gasification as project for the rural development; A gaseificacao da biomassa como projeto para o desenvolvimento rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga; Parodi, Fernando Aurelio [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mails: mcortes@fem.unicamp.br; caio@fem.unicamp.br; mariobarriga@hotmail.com; jambock@rocketmail.com

    2002-07-01

    This paper presents a study on the gasification of the biomass as a project for the rural development. Consider the biomass gasification as an sustainable alternative for energy generation, with low pollutant emission.

  17. Method for Hot Real-Time Sampling of Gasification Products

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beam Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.

  18. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency. Furthermore, the SOFC operating temperature and fuel utilization should be maintained at a high level and the cathode temperature gradient maximized. Based on 1st and 2nd law...... based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants....... The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  19. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  20. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I [Condens Oy, Haemeenlinna (Finland)

    1997-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  1. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  2. Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier

    Science.gov (United States)

    Boravelli, Sai Chandra Teja

    This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.

  3. Isothermal CO2 Gasification Reactivity and Kinetic Models of Biomass Char/Anthracite Char

    Directory of Open Access Journals (Sweden)

    Hai-Bin Zuo

    2015-07-01

    Full Text Available Gasification of four biomass chars and anthracite char were investigated under a CO2 atmosphere using a thermo-gravimetric analyzer. Reactivity differences of chars were considered in terms of pyrolysis temperature, char types, crystallinity, and inherent minerals. The results show that the gasification reactivity of char decreased with the increase of pyrolysis temperature. Char gasification reactivity followed the order of anthracite coal char (AC-char ˂ pine sawdust char (PS-char ˂ peanut hull char (PH-char ˂ wheat straw char (WS-char ˂ corncob char (CB-char under the same pyrolysis temperature. Two repesentative gas-solid models, the random pore model (RPM and the modified random pore model (MRPM, were applied to describe the reactive behaviour of chars. The results indicate RPM performs well to describe gasification rates of chars but cannot predict the phenomenon that there appears to exist a peak conversion for biomass chars at a high conversion rate, where the MRPM performs better.

  4. Use of farm waste biomass in the process of gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Piechocki, J. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of gasification of waste biomass from farm production was examined along with the energy balance of the process. A newly developed biomass gasification technology that uses manure from poultry farms as the input material was shown to meet all environmental requirements. The gas was purified in a membrane process to increase its calorific value. The gas was then used in an internal combustion engine powering a current generating system to produce electricity and heat in a combined heat and power system (CHP).

  5. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  6. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  7. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  8. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity

    International Nuclear Information System (INIS)

    Bouraoui, Zeineb; Jeguirim, Mejdi; Guizani, Chamseddine; Limousy, Lionel; Dupont, Capucine; Gadiou, Roger

    2015-01-01

    The present investigation aims to examine the influence of textural, structural and chemical properties of biomass chars on the CO 2 gasification rate. Various lignocellulosic biomass chars were prepared under the same conditions. Different analytical techniques were used to determine the char properties such as Scanning Electronic Microscopy, nitrogen adsorption manometry, Raman spectroscopy and X Ray Fluorescence. Gasification tests were carried out in a thermobalance under 20% CO 2 in nitrogen at 800 °C. Significant differences of the total average reactivity were observed with a factor of 2 between the prepared chars. Moreover, different behaviors of gasification rate profiles versus conversion were obtained. This difference of behavior appeared to be correlated with the biomass char properties. Hence, up to 70% of conversion, the gasification rate was shown to depend on the char external surface and the potassium content. At higher conversion ratio, a satisfactory correlation between the Catalytic Index and the average gasification rate was identified. The results highlight the importance of knowing both textural and structural properties and mineral contents of biomass chars to predict fuel reactivity during CO 2 gasification processes. Such behavior prediction is highly important in the gasifiers design for char conversion. - Highlights: • CO 2 gasification reactivity of various lignocellulosic chars were examined. • Chars properties affect strongly samples gasification behavior. • Initial gasification rate is affected by external surface, K content and D3/G ratio. • Gasification rate behavior depends on the Alkali index at high conversion

  9. Pyrolysis and gasification of single biomass particle – new openFoam solver

    International Nuclear Information System (INIS)

    Kwiatkowski, K; Zuk, P J; Bajer, K; Dudyński, M

    2014-01-01

    We present a new solver biomassGasificationFoam that extended the functionalities of the well-supported open-source CFD code OpenFOAM. The main goal of this development is to provide a comprehensive computational environment for a wide range of applications involving reacting gases and solids. The biomassGasificationFoam is an integrated solver capable of modelling thermal conversion, including evaporation, pyrolysis, gasification, and combustion, of various solid materials. In the paper we show that the gas is hotter than the solid except at the centre of the sample, where the temperature of the solid is higher. This effect is expected because the thermal conductivity of the porous matrix of the solid phase is higher than the thermal conductivity of the gases. This effect, which cannot be considered if thermal equilibrium between the gas and solid is assumed, leads to precise description of heat transfer into wood particles.

  10. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  11. Performance of HT-WGS Catalysts for Upgrading of Syngas Obtained from Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Marano Bujan, M.; Sanchez Hervas, J. M.

    2009-05-21

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology is being investigated under the scope of the VI FP CHRISGAS project, which has started in September 2004 and has a duration of five years. The Division of Combustion and Gasification of CIEMAT participates in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the period 2005-2007 regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification. (Author) 28 refs.

  12. Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mamphweli, Ntshengedzeni S.; Meyer, Edson L. [University of Fort Hare, Institute of Technology, Private Bag X1314, Alice 5700 (South Africa)

    2009-12-15

    Eskom and the University of Fort Hare are engaged in a biomass gasification project using the System Johansson Biomass gasifier (SJBG). The SJBG installed at Melani village in the Eastern Cape province of South Africa is used to assess the viability and affordability of biomass gasification in South Africa. A community needs assessment study was undertaken at the village before the installation of the plant. The study revealed the need for low-cost electricity for small businesses including growing of crops, chicken broilers, manufacturing of windows and door frames, sewing of clothing, bakery etc. It was also found that the community had a problem with the socio-environmental aspects of burning biomass waste from the sawmill furnace as a means of waste management. The SJBG uses the excess biomass materials (waste) to generate low-cost electricity to drive community economic development initiatives. A study on the properties and suitability of the biomass materials resulting from sawmill operation and their suitability for gasification using the SJBG was undertaken. The study established that the biomass materials meet the requirements for the SJBG. A 300 Nm{sup 3}/h SJBG was then manufactured and installed at the village. (author)

  13. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  14. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  15. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  16. Roadmap for the commercialisation of biomass gasification. A critical evaluation, tips, questions and pitfalls

    International Nuclear Information System (INIS)

    Huisman, G.H.

    2000-10-01

    Biomass has the potential to be a major replacement of fossil fuels. The world wide availability of biomass is considerable but it is not always in balance with the anticipated consumption. Biomass (wood) has the disadvantage that it has a low energy density and transport costs are, therefore, relatively high. Combustion, being a well-developed technology with many references, is the obvious choice for conversion technology. On the scale that biomass plants are usually constructed, however, the overall efficiency of the combustion system is low. Gasification has the advantage that solid fuel is converted into gaseous fuel which can be used in IC (internal combustion) engines or combined (gas and steam turbine) cycles with high efficiency. Even on a very small scale (several hundred kWe) a biomass-driven IC engine can have an efficiency of around 25%. Gasification has not yet advanced to the stage that it can serve as a reliable conversion technology for supplying electric power to industry or to the national grid. This may be possible on paper but in practice the market needs to be convinced by the success of plants in full operation. The first generation of plants, now under construction, or in operation, have to demonstrate the technology and provide confidence for future developments. Fixed bed gasification in combination with IC engines is more appropriate for small units. The development in micropower units is of particular interest. This development has been initiated for natural gas-fuelled units supplying power and heat to households, apartment blocks or offices. Once the fuel handling problems have been overcome and the units are more reliable and easier to operate, this could be a market with ample cost savings on the basis of mass production. Fluidised bed gasification, integrated with a combined cycle, is probably better suited to larger units, above 10 MWe. After experience has been obtained with units at an atmospheric pressure, the increase of the

  17. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M; Hoelder, D; Backhaus, C; Althaus, W [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  18. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  19. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  20. Biomass gasification for electricity generation with internal combustion engines. Process efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia Faure, Luis; Recio Recio, Angel; Oliva Ruiz, Luis; Pajarín Rodríguez, Juan; Revilla Suarez, Dennis

    2015-01-01

    Biomass is a renewable source of energy worldwide increased prospects for its potential and its lower environmental impact compared to fossil fuels. By processes and energy conversion technologies it is possible to obtain fuels in solid, liquid and gaseous form from any biomass. The biomass gasification is the thermal conversion thereof into a gas, which can be used for electricity production with the use of internal combustion engines with a certain level of efficiency, which depends on the characteristics of biomass and engines used. In this work the evaluation of thermal and overall efficiency of the gasification in Integrated Forestry Enterprise of Santiago de Cuba, designed to generate electricity from waste from the forest industry is presented. Is a downdraft gasifier reactor, COMBO-80 model and engine manufacturing Hindu (diesel) model Leyland modified to work with producer gas. The evaluation was carried out for different loads (electric power generated) engine from experimental measurements of flow and composition of the gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25%. (full text)

  1. Investigation on the fates of vanadium and nickel during co-gasification of petroleum coke with biomass.

    Science.gov (United States)

    Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Biomass gasification in fixed bed type down draft: theoretical and experimental aspects; Gasificacao de biomassa em leito fixo tipo concorrente: aspectos teoricos e experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Daniel; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2008-07-01

    Actually are recognizing the advantages of biomass in reducing dependence on fossil fuels and significant reduction in emissions of greenhouse effect gases such as Co2. Also are known the different conversion of biomass routes for their use or exploitation, such as thermochemical process (gasification, pyrolysis and combustion), the biological process (fermentation and transesterification) and the physical process (densification, reducing grain and mechanical pressing). In this sense, the gasification is regarded as the most promising mechanism to obtain a homogeneous gaseous fuel with sufficient quality in the small scale distributed generation. This work presents some aspects of biomass gasification in fixed bed, as well as some preliminary results in the evaluation and operation of fixed bed down draft gasifier with double stage air supply of the NEST, identifying the adequate air supply quantity (equivalence ratio in the range of 0,35 to 0,45) for obtaining a fuel gas with lower heating value around 4 MJ/N m3. (author)

  3. Challenges of selecting materials for the process of biomass gasification in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Boukis, N.; Habicht, W.; Hauer, E.; Dinjus, E. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Chemie

    2010-07-01

    A new process for the gasification of wet biomass is the reaction in supercritical water. The product is a combustible gas, rich in hydrogen with a high calorific value. The reaction is performed under high temperatures - up to 700 C - and pressures up to 30 MPa. The combination of these physical conditions and the corrosive environment is very demanding for the construction materials of the reactor. Only few alloys exhibit the required mechanical properties, especially the mechanical strength at temperatures higher than 600 C. Ni-Base alloys like alloy 625 can be applied up to a temperature of 700 C and are common materials for application under supercritical water conditions. During gasification experiments with corn silage and other biomasses, corrosion of the reactor material alloy 625 appears. The gasification of an aqueous methanol solution in supercritical water at temperatures up to 600 C and 25 - 30 MPa pressure results in an product gas rich in hydrogen, carbon dioxide and some methane. Alloy 625 shows very low corrosion rates in this environment. It is obvious that the heteroatoms and salts present in biomass cause corrosion of the reactor material. (orig.)

  4. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Biomass gasification: a strategy for energy recovery and disposal of industrial and municipal wastes. Anurag Pandey, Anupam Shukla. Abstract. Energy from biological organic waste as an aspect of sustainable waste management is probably the most contentious. Solid and liquid wastes are a rapidly growing problem ...

  5. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  6. Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight

    NARCIS (Netherlands)

    Michels, M.H.A.; Slegers, P.M.; Vermue, M.H.; Wijffels, R.H.

    2014-01-01

    The effect of biomass concentration on the net volumetric productivity, yield on light and nightly biomass loss rate of Tetraselmis suecica was studied using a pilot-scale tubular photobioreactor (PBR) under outdoor light conditions. The net average productivity and yield on light of Tetraselmis

  7. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  8. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  9. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  10. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  11. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  12. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  13. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  14. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  15. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)

    2001-07-01

    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  16. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed

    International Nuclear Information System (INIS)

    Nguyen, Thanh D.B.; Ngo, Son Ich; Lim, Young-Il; Lee, Jeong Woo; Lee, Uen-Do; Song, Byung-Ho

    2012-01-01

    Highlights: ► Steam gasification of woodchips is examined in dual circulating fluidized-bed (DFB). ► We develop a three-stage model (TSM) for process performance evaluation. ► Effect of gasification temperature and steam to fuel ratio is investigated. ► Several effective operating conditions are found by parametric study. - Abstract: A three-stage steady state model (TSM) was developed for biomass steam gasification in a dual circulating fluidized-bed (DFB) to calculate the composition of producer gas, carbon conversion, heat recovery, cost efficiency, and heat demand needed for the endothermic gasification reactions. The model was divided into three stages including biomass pyrolysis, char–gas reactions, and gas–phase reaction. At each stage, an empirical equation was estimated from experimental data. It was assumed that both unconverted char and additional fuel were completely combusted at 950 °C in the combustor (riser) and the heat required for gasification reactions was provided by the bed material (silica sand). The model was validated with experimental data taken from the literature. The parametric study of the gasification temperature (T) and the steam to fuel ratio (γ) was then carried out to evaluate performance criteria of a 1.8 MW DFB gasifier using woodchips as a feedstock for the electric power generation. Effective operating conditions of the DFB gasifier were proposed by means of the contour of the solid circulation ratio, the heat recovery, the additional fuel ratio and the cost efficiency with respect to T and γ.

  17. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia

    Science.gov (United States)

    Susanto, H.; Suria, T.; Pranolo, S. H.

    2018-03-01

    The gaseous fuel from biomass gasification might reduce the consumption of diesel fuel by 70%. The investment cost of the whole unit with a capacity of 45 kWe was about IDR 220 million in 2008 comprised of 24% for gasification unit, 54% for diesel engine and electric generator, 22% for transportation of the whole unit from Bandung to the site in South Borneo. The gasification unit was made in local workshop in Bandung, while the diesel-generator was purchased also in a local market. To anticipate the development of biomass based electricity in remote areas, an economic analysis has been made for implementations in 2019. A specific investment cost of 600 USD/kW has been estimated taking account to the escalation and capacity factors. Using a discounted factor of 11% and biomass cost in the range of 0.03-0.07 USD/kg, the production cost of electricity would be in the range of 0.09-0.16 USD/kWh. This production cost was lower than that of diesel engine fueled with full oil commonly implemented in many remote areas in Indonesia at this moment. This production cost was also lower than the Feed in Tariff in some regions established by Indonesian government in 2017.

  19. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  20. Pretreatment and Feeding of Biomass for Pressurized Entrained Flow Gasification

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael; Hartman, Miloslav; Martinec, J.

    2009-01-01

    Roč. 90, č. 5 (2009), s. 629-635 ISSN 0378-3820 R&D Projects: GA AV ČR IAA400720701 Grant - others:RFCS(XE) CT/2007/00005 Institutional research plan: CEZ:AV0Z40720504 Keywords : biomass * feeding * gasification Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.321, year: 2009

  1. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  2. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    Zhang, Wennan

    2010-01-01

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  3. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H J [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  4. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Jong, W de; Hein, K R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  5. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  6. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  8. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  9. Investigation on syngas production via biomass conversion through the integration of pyrolysis and air–steam gasification processes

    International Nuclear Information System (INIS)

    Alipour Moghadam, Reza; Yusup, Suzana; Azlina, Wan; Nehzati, Shahab; Tavasoli, Ahmad

    2014-01-01

    Highlights: • Innovation in gasifier design. • Integration of pyrolysis and steam gasification processes. • Energy saving, improvement of gasifier efficiency, syngas and hydrogen yield. • Overall investigation on gasification parameters. • Optimization conditions of integration of pyrolysis and gasification process. - Abstract: Fuel production from agro-waste has become an interesting alternative for energy generation due to energy policies and greater understanding of the importance of green energy. This research was carried out in a lab-scale gasifier and coconut shell was used as feedstock in the integrated process. In order to acquire the optimum condition of syngas production, the effect of the reaction temperature, equivalence ratio (ER) and steam/biomass (S/B) ratio was investigated. Under the optimized condition, H 2 and syngas yield achieved to 83.3 g/kg feedstock and 485.9 g/kg feedstock respectively, while LHV of produced gases achieved to 12.54 MJ/N m 3

  10. Gasification of peat and biomass in suspension flow 2; Turpeen ja biomassan suspensiokaasutus 2

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Hepola, J. [VTT Energy, Espoo (Finland); Haukka, P.; Vehmaan-Kreula, M.; Raiko, R. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project was an extension of the earlier Liekki-project 402 carried out in 1993-1994. The aims of the 1995 project were: (1) to study the formation of problematic tar/soot compounds and nitrogen pounds in the conditions of entrained flow gasification of biomass and peat, (2) study the product yields and kinetics of pyrolysis, and (3) to develop simulation methods for entrained flow pyrolysis and gasification. Pyrolysis and gasification tests were carried out at a new entrained flow reactor of the Gasification Research Group of VTT using mainly peat as the feedstock. The pyrolysis kinetics was studies using three particle size distributions of fuel peat (0.075-0.125 mm, 0.16-0.25 mm and 0.315-0.5 mm). The char yields were determined at two temperatures (900 and 1000 deg C) and the effects fuel to gas ratio (suspension density) as well as the effects of gas atmosphere were determined. Limited amount of tests were also carried out with pine wood and dried de-inking sludge. The formation of tars and nitrogen compounds was studied with peat as the feedstock. Based on the test results of this project and the on earlier fluidized-bed gasification data of VTT, the following conclusions can be made: (1) the char yields in rapid entrained flow pyrolysis of small particles of peat and biomass are considerably lower than derived in fluid-bed pyrolysis of more coarse feedstocks. Consequently, simple entrained flow reactors without any recycling of char could already give rather high carbon conversions. However, high carbon conversions can also be easily achieved in fluidized-bed gasifiers with biomass fuels due to the high gasification reactivity of the char, (2) more tars were formed in entrained flow pyrolysis of peat than in fluidized-bed experiments carried out at the same temperature, (3) the total conversion of peat nitrogen to NH{sub 3}+HCN was as high in the entrained flow pyrolysis as in the fluid-bed pyrolysis experiments. (Abstract Truncated)

  11. Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production

    International Nuclear Information System (INIS)

    Maglinao, Amado L.; Capareda, Sergio C.; Nam, Hyungseok

    2015-01-01

    Highlights: • High tonnage sorghum, cotton gin trash and beef cattle manure were characterized and gasified in a fluidized bed reactor. • Biomass gasification at 730 °C and ER = 0.35 produced synthesis gas with an average energy content of 4.19 MJ Nm −3 . • Synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. • Optimum hydrogen production on HTS gasification was achieved at 780 °C temperature and ER of 0.4. - Abstract: Fluidized bed gasification using high-tonnage sorghum, cotton gin trash and beef cattle manure was performed in a pilot scale bubbling fluidized bed reactor equipped with the necessary feedback control system. Characterization of biomass showed that the high-tonnage sorghum had the highest energy and carbon content of 19.58 MJ kg −1 and 42.29% wt , respectively among the three feed stocks. At 730 °C reaction temperature and equivalence ratio of 0.35, comparable yields of methane, nitrogen and carbon dioxide (within ± 1.4% vol ) were observed in all three feed stocks. The gasification system produced synthesis gas with an average heating value of 4.19 ± 0.09 MJ Nm −3 and an average yield of 1.98 ± 0.1 Nm 3 kg −1 of biomass. Carbon conversion and gasification efficiencies indicated that most of the carbon was converted to gaseous products (85% average ) while 48% average of the energy from the biomass was converted into combustible gas. The production of hydrogen was significantly affected by the biomass used during gasification. The synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. Utilizing high-tonnage sorghum, the optimum hydrogen production during gasification was achieved at a reaction temperature of 780 °C and an equivalence ratio of 0.40.

  12. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  13. Gasification of peat and biomass in suspension flow 2; Turpeen ja biomassan suspensiokaasutus 2

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Hepola, J. [VTT Energy, Espoo (Finland); Haukka, P.; Raiko, R. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Thermal Engineering

    1995-11-01

    This project is an extension of the earlier Liekki-project 402, which was carried out in 1993-1994 in the Department of Thermal Engineering of Tampere University of Technology (TUT). In the previous project the feasibility of a two-stage entrained-flow gasification was studied by the means of process modeling and pyrolysis experiments. The present project carried out in cooperation with the Gasification Research Group of VTT and TUT. The aims of the project are: (a) to study the formation of blematic tar/soot compounds and nitrogen compounds in the conditions entrained flow gasification of biomass and peat, (b) to study the product yields and kinetics of pyrolysis and (c) to develop simulation methods for entrained flow pyrolysis and gasification. (author)

  14. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and

  15. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longer term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.

  16. Biowaste utilization in the process of co-gasification with bituminous coal and lignite

    International Nuclear Information System (INIS)

    Howaniec, Natalia; Smoliński, Adam

    2017-01-01

    Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed. - Highlights: • Biowaste co-gasification with bituminous coal/lignite to hydrogen-rich gas. • Steam co-gasification in laboratory scale fixed-bed reactor at 700 and 900 °C. • Hierarchical Clustering Analysis complemented with color map of experimental data. • Carbon conversion increase with increasing biomass content. • The highest total gas and hydrogen volume in co-gasification of C-B20 blend at 900C.

  17. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  18. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat

    2017-11-28

    Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.

  19. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  20. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  1. Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass Gasification Products to Syngas

    Directory of Open Access Journals (Sweden)

    Scott L. Swartz

    2012-04-01

    Full Text Available Magnesium nickel silicate (MNS has been investigated as a catalyst to convert tars and light hydrocarbons to syngas (CO and H2 by steam reforming and CO2 reforming in the presence of H2S for biomass gasification process at NexTech Materials. It was observed that complete CH4 conversion could be achieved on MNS catalyst granules at 800–900 °C and a space velocity of 24,000 mL/g/h in a simulated biomass gasification stream. Addition of 10–20 ppm H2S to the feed had no apparent impact on CH4 conversion. The MNS-washcoated monolith also showed high activities in converting methane, light hydrocarbons and tar to syngas. A 1200 h test without deactivation was achieved on the MNS washcoated monolith in the presence of H2S and/or NH3, two common impurities in gasified biomass. The results indicate that the MNS material is a promising catalyst for removal of tar and light hydrocarbons from biomass gasified gases, enabling efficient use of biomass to produce power, liquid fuels and valuable chemicals.

  2. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  3. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  4. Pressurised fluidised-bed gasification experiments with biomass, peat and coal at VTT in 1991-1994. Gasification of Danish wheat, straw and coal

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Laatikainen-Luntama, J; Staahlberg, P; Moilanen, A [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    Fluidised-bed air gasification of three different Danish straw feedstocks and Colombian bituminous coal was studied in the PDU-scale test facilities of VTT. The test programme was divided into two different modes of operation. First, the usability of straw as the only feedstock was investigated by operating the gasifier at relatively low temperature normally used in biomass gasifiers. In this operation mode the main aim was to find out the limits for gasification temperatures, set by the sintering behaviour of the straw. Secondly, the use of straw as an additional feedstock in a fluidised-bed coal gasifier was examined by operating the gasifier at about 1 000 deg C with different ratings of straw and coal feeding. The gasifier was operated at 5 bar pressure and at 80 990 deg C. The product gas was cleaned by ceramic candle filters operated at 465-540 deg C. Concentrations of tars, nitrogen com- pounds, sulphur gases, vapour-phase alkali metals as well as chlorine were determined in different operating conditions. (12 refs.)

  5. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  6. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  7. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  8. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  9. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  10. Techno-economic analysis of ammonia production via integrated biomass gasification

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim

    2014-01-01

    Highlights: • Techno-economic results regarding biomass-based ammonia production systems. • Integration of an ammonia production process in a pulp and paper mill. • Integrated ammonia production gains higher system efficiency than stand-alone production. • The economics of an integrated production system is improved compared to stand-alone production. - Abstract: Ammonia (NH 3 ) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH 3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH 3 selling price is required to make both production cases economically feasible

  11. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2008-01-15

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached. (author)

  12. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    International Nuclear Information System (INIS)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro

    2008-01-01

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached

  13. Rural electrification in Malaysia via small scale biomass gasifier

    International Nuclear Information System (INIS)

    Zainal Alimuddin Zainal Alauddin

    2000-01-01

    It is the government of Malaysia's vision to see that the rural community is not left behind in its endeavour to be an industrialised nation in the year 2020. The standard of living in the rural areas is very far different from that in the urban areas. To obtain equality the standard of living of the rural folks need to be ungraded. This is done largely by electrification. Electricity has been in the past the catalyst for development and raising the standard of living of the poor. Electricity supplied by the nation's electricity company might not reach all remote areas and therefore there must be a means to provide alternative electrical supply to these places. Present method employ the use of diesel generator sets to provide electricity. The availability of biomass source of supply in the rural areas could be effectively exploited to provide alternative source of energy via a gasification system to run a reciprocating engine coupled to a generator to generated electricity. A small-scale biomass gasification generator set in the range of 2-5 kW is suitable to provide electrical supply to a typical house in the rural area. The present use of biomass source of energy is in its utilisation to provide source of heat for cooking. Several tests have been conducted and the performance is very good. Alternatively another medium scale system generating about 50-20O kW would be suitable for a typical village having about 50 houses. A small-scale system has been developed in USM to provide 5 kW of electrical power. The system used a petrol engine and produces an overall efficiency of 7% with a specific consumption of about 3 kg/kWh. The biomass material used is wood. However for application in the rural areas the biomass material will depend on the type available. A further 50 kW system is being develop in USM. (Author)

  14. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  15. Gasification - Status and Technology; Foergasning - Status och teknik

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2011-07-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect atmospheric gasification and Pressurized oxygen blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them is based on conventional techniques with well-proven components that are commercially available while others more advantageous solutions, still need further development. The report deals to a minor extent with the conversion of syngas to synthetic fuels. The ongoing research and development of gasification techniques is extensive, both on national and international level. Although many process concepts and components have been demonstrated, there is still no full-scale plant for the production of synthetic fuels based on biomass. Factors affecting the choice of technology are plant size, operating conditions, the possibility for process integration, access to feedstock, market aspects, incentives and economic instruments et cetera. Increased competition for biofuels will inevitably lead to higher raw material costs. This in turn means that the fuel chains with high efficiency, such as biomethane through gasification and methanation, are favored

  16. Monitoring `Renewable fuels`. Gasification and pyrolysis of biomass. Second situation report; Monitoring ``Nachwachsende Rohstoffe``. Vergasung und Pyrolyse von Biomasse. Zweiter Sachstandsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C; Wintzer, D

    1997-04-01

    The second situation report deals with gasification and pyrolysis as means of improving the energetic utilisation of wood and strawlike biomass and with various possibilities of utilising the gas produced in these processes. It also presents different gasification techniques, measures for gas purification, and ways of utilising gas for electricity generation. Out of the wide range of possible process combinations for producing energy from biomass the report only deals more closely with a few concepts that appear very promising from today`s viewpoint. Working from the current state and perspectives of technical development and from prospective operating conditions and potential market chances of pyrolysis and gasification the report deliberates on the future orientation of research, development, and demonstration activities. (orig./SR) [Deutsch] Im zweiten Sachstandsbericht werden die Vergasung und Pyrolyse zur besseren energetischen Nutzung von Holz und halmartiger Biomasse und verschiedene Moeglichkeiten zur Verwertung des dabei erzeugten Gases betrachtet. Es werden unterschiedliche Vergasungstechniken, Massnahmen zur Gasreinigung und Arten der Gasnutzung zur Stromgewinnung dargestellt. Aus der Vielzahl an moeglichen Kombinationen werden einige, aus gegenwaertiger Sichtweise besonders vielversprechende Konzepte zur Energieerzeugung ueber die Biomassevergasung naeher ausgefuehrt. Ausgehend vom Stand und von den Perspektiven der technischen Entwicklungen sowie den Einsatzbedingungen und potentiellen Marktchancen werden Schlussfolgerungen fuer die zukuenftige Ausrichtung im Bereich Forschung, Entwicklung und Demonstration Anstrengungen gezogen. (orig./SR)

  17. Structural evolution of biomass char and its effect on the gasification rate

    International Nuclear Information System (INIS)

    Fatehi, Hesameddin; Bai, Xue-Song

    2017-01-01

    Highlights: • A comprehensive model was developed to describe the evolution of biomass char structure. • An effectiveness factor was used to account for the intra-particle chemical and physical processes. • The effect of the structural evolution of the multi-pore structure on biomass char reactivity was analyzed. • The multi-pore model yields results in satisfactory agreement with experiments. - Abstract: The evolution of char porous structure can affect the conversion rate of the char by affecting the intra-particle transport, especially in the zone II conversion regime. A multi-pore model based on the capillary pore theory is developed to take into account different conversion rates for pores with different radii. The model is valid for biomass chars produced under relatively low heating rates, when the original beehive structure of the biomass is not destroyed during the pyrolysis stage. The contribution of different pores with different radius is taken into account using an effectiveness factor presented for each pore radius with respect to different reactions. As the char conversion proceeds, the pore enlargement increases the contribution of micro-pores; consequently the effective surface area will increase. The increase in the effective surface area leads to an increased reactivity of char during the entire conversion process. This model is used to analyze the steam gasification process of biomass char of centimeter sizes. The results from the present multi-pore model are in better agreement with experimental data than those from a corresponding single pore model. Since the multi-pore model accommodates the detailed intra-particle transport, it is a useful basis toward developing a more predictive model for biomass char gasification.

  18. Electric energy generation using biomass gasification; Generacion de energia electrica a partir de la gasificacion de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.; Arauzo, J.; Gonzalo, Alberto; Sanchez, Jose Luis [Universidad de Zaragoza, Aragon (Spain). Inst. de Investigacion. Grupo de Procesos Termoquimicos; Rocha, J.D. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE); Mesa Perez, J.M. [Bioware Tecnologia, Campinas, SP (Brazil)

    2004-07-01

    Gasification experiments have been carried out with a atmospheric pressure down draft gasifier of a capacity of 250 kg/h of biomass. Biomass used have been almond shells and olive cut. Results obtained show a similar behaviour in gas composition with two biomass. A small fraction of the generated gas from the gasifier has been fed to a small generator of 4 kV A. The gas has been previously cleaned and dried by means of a scrubber and a condenser, to remove tar products. The generator has been operated with a great stability without any modification, and energy generated with gas from gasification are relatively close to the values obtained with conventional fuels such as gasoline or commercial butane. (author)

  19. Biomass - Activities and projects in 2004; Biomasse - Aktivitaeten und Projekte 2004

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2005-07-01

    This annual report by the Swiss Federal Office of Energy (SFOE) presents an overview of the Swiss research programme on biomass and its efficient use both as a source of heat and electrical power and as a fuel. Work done and results obtained in the year 2004 are looked at. Topics covered include combustion and gasification of wood, the fermentation of biogenic wastes and developments in the bio-fuels area. Several projects in each of these areas are discussed. National co-operation with various universities, private organisations and other federal offices is discussed, as are contributions made to symposia and exhibitions in the biomass area. International co-operation within the framework of International Energy Agency (IEA) tasks is mentioned. Various pilot and demonstration projects in the combustion, gasification and fermentation areas are listed and discussed.

  20. Thermal Pretreatment of Wood for Co-gasification/co-firing of Biomass and Coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Howard, Bret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Morreale, Bryan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Van Essendelft, Dirk [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Berry, David [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/co-firing of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550⁰C for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300⁰C and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300⁰C lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300⁰C is probably sufficient to

  1. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  2. Gasification of Phycoremediation Algal Biomass

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Sharara

    2015-03-01

    Full Text Available Microalgae have been utilized in wastewater treatment strategies in various contexts. Uncontrolled algal species are a cheap and effective remediation strategy. This study investigates the thermochemical potential of wastewater treatment algae (phycoremediation as a means to produce renewable fuel streams and bio-products. Three gasification temperature levels were investigated in an auger gasification platform: 760, 860, and 960 °C. Temperature increases resulted in corresponding increases in CO and H2 concentrations in the producer gas from 12.8% and 4.7% at 760 °C to 16.9% and 11.4% at 960 °C, respectively. Condensable yields ranged between 15.0% and 16.6%, whereas char yields fell between 46.0% and 51.0%. The high ash content (40% on a dry basis was the main cause of the elevated char yields. On the other hand, the relatively high yields of condensables and a high carbon concentration in the char were attributed to the low conversion efficiency in this gasification platform. Combustion kinetics of the raw algae, in a thermogravimetric analyzer, showed three consecutive stages of weight loss: drying, devolatilization, and char oxidation. Increasing the algae gasification temperature led to increases in the temperature of peak char oxidation. Future studies will further investigate improvements to the performance of auger gasification.

  3. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  4. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  5. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  6. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Korhonen, M [eds.; VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  7. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  8. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    Science.gov (United States)

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  9. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    Science.gov (United States)

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    Science.gov (United States)

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty

    International Nuclear Information System (INIS)

    Nickerson, Thomas A.; Hathaway, Brandon J.; Smith, Timothy M.; Davidson, Jane H.

    2015-01-01

    Four configurations of a novel solar-heated biomass gasification facility and one configuration of conventional biomass gasification are analyzed through financial and policy scenarios. The purpose of this study is to determine the potential financial position for varying configurations of a novel technology, as compared to the current state-of-the-art gasification technology. Through the use of project finance and policy scenario development, we assess the baseline breakeven syngas price (normalized against natural gas prices and based upon annual feedstock consumption), the sensitivity of major cost components for the novel facilities, and the implications of policy levers on the economic feasibility of the solar facilities. Findings show that certain solar configurations may compete with conventional facilities on a straightforward economic basis. However, with renewable energy policy levers in place the solar technologies become increasingly attractive options. - Highlights: • We model four solar and one conventional biomass gasification systems. • We assess economic feasibility of these systems with and without policy incentives. • Solar facilities compete with the conventional system in certain scenarios. • Feedstock costs are the largest contributor to system cost sensitivity. • Policy incentives create an economically favorable scenario for solar facilities

  13. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  14. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  15. ECN's torrefaction-based BO2-technology. From pilot to demo

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-02-15

    The contents of this PowerPoint presentation are: Torrefaction design challenges; Initial small-scale R and D; ECN's torrefaction-based BO2-technology; Pilot-scale testing; and Demonstration and market introduction. The conclusions state that Torrefaction potentially allows cost-effective production of 2nd generation biomass pellets from a wide range of biomass/waste feedstock with a high energy efficiency (>90%); Torrefaction pellets show: High energy density, Water resistance, No/Limited biological degradation and heating, Excellent grindability, and Good combustion and gasification properties; Torrefaction is a separate thermal regime and requires dedicated reactor/process design; Torrefaction development is in pilot/demo-phase and shows strong market pull for torrefaction plants and torrefaction pellets; For ECN's BO2-technology a demo-plant is in preparation and industrial partnership for world-wide market introduction is nearly established.

  16. Gasification of peat and biomass in suspension flow; Turpeen ja biomassan suspensiokaasutus

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Haukka, P. [Tampere Univ. of Technology (Finland). Thermal Engineering

    1995-11-01

    This is the second phase of a project that started with examination of a gasification process for fuels containing high amounts of volatiles such as biomass. In the earlier phase of the project the gasification process was studied with the aid of computer models. Gas production with this gasification method is based mainly on rapid pyrolysis in dilute suspension flow enabling high solid to gas conversion. The two-stage approach eliminates char gasification as a limiting process step, and consequently, allows product temperature to be controlled by the kinetics of volatile reactions. A greater amount of enthalpy is made available for rapid pyrolysis through the total combustion of the residual char than is possible by partial oxidation. The main goal in the second year (1994) was to get experimental information on peat reactivity, main pyrolysis products and formation of nitrogen compounds in the early stages of peat pyrolysis in dilute pressurized flow conditions. These experiments were conducted using pressurized entrained flow reactor at VTT Energy (Jyvaeskylae). Preliminary experiments gave the result that pressure increase accelerates pyrolysis of peat at first (residence time < 100 ms), but this difference disappears gradually. The total amount of volatile matter does not seem to depend on pressure level. (author)

  17. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  18. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  19. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  20. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat.

    Science.gov (United States)

    Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong

    2017-01-01

    Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO 2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H 2 and CH 4 and the polluted gases of NH 3 , NO and NO 2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    Science.gov (United States)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  2. Kinetic model for hydrothermal biomass gasification; Kinetisches Modell der hydrothermalen Biomassevergasung

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, A.; Keskin, M.; Faquir, M.; Dahmen, N. [Inst. fuer Technische Chemie, Forschungszentrum Karlsruhe (Germany)

    2008-07-01

    Hydrothermal biomass gasification is a promising technology to produce hydrogen from wet biomass, i.e. a water content of at least 50 %. This process allows the utilization of agricultural wastes or residuals from biochemical conversions. Since the reaction is highly kinetically controlled, it should be possible to optimimize gas yield and composition with respect to a maximum hydrogen yield. The paper describes the simulation of the process using a kinetic reaction model and experimental data from appropriate test facilities. Experiments were performed for several reactor types and a variety of model systems, like glucose, methane and hydroxy methyl furfural, that were identified as intermediate product for the hydrothermal hydrogen production. The influence of different additive 'catalysts' was tested. It was shown that the biomass composition has an important influence on the gas yield. Alkaline salts can be added to increase the yield. A fast heating and agitation of the biomass are also increasing the gas yield.

  3. Tar dew point analyser as a tool in biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vreugdenhil, B.J.; Kuipers, J. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2008-08-15

    Application of the Tar Dew point Analyzer (TDA) in different biomass based gasification systems and subsequent gas cleaning setups has been proven feasible. Such systems include BFB gasifiers, CFB gasifier and fixed bed gasifiers, with tar crackers or different scrubbers for tar removal. Tar dew points obtained with the TDA give direct insight in the performance of the gas cleaning section and help prevent any tar related problems due to condensation. The current TDA is capable of measuring tar dew points between -20 to 200C. This manuscript will present results from 4 different gasification setups. The range of measured tar dew points is -7 to 164C with comparable results from the calculated dew points based on the SPA measurements. Further detail will be presented on the differences between TDA and SPA results and explanations will be given for deviations that occurred. Improvements for the TDA regarding future work will be presented.

  4. Biomass market introduction. How to overcome the non-technical barriers for a wider use of biomass gasification in Europe. Proceedings of a workshop. Utrecht, November 28. 1997

    International Nuclear Information System (INIS)

    Kaltschmitt, M.; Kwant, K.W.

    1998-03-01

    Bioenergy projects can fail due to technical problems but also due to non-technical barriers. The authors mention the risk of failure, the biomass supply assurance, financing, uncertainty about emission regulations, and acceptance by the public. On the above mentioned background a workshop was organised at 28 November 1997, as a joint activity of Novem and the EU / FAIR Concerted Action Analysis and Co-ordination of the Activities concerning a Gasification of Biomass'. At this workshop important non-technical barriers are identified, ways how to overcome them are analyzed, defined and actions are discussed to be taken on the EU and National level to improve the implementation of biomass gasification projects. Copies of overhead sheets and texts of 14 papers are presented

  5. Gasification of wet biomass waste flows for electric power generation. Vergassing van natte biomassa-afvalstromen voor elektriciteitsproduktie

    Energy Technology Data Exchange (ETDEWEB)

    Faaij, A; Blok, K; Worrell, E

    1992-06-01

    Feasibility of gasification of biomass waste streams for electricity production is studied. An inventory of available wet biomass wastes and their features is made. A potential of at least 28 PJ/year is available in the Netherlands. On the basis of a technical survey two systems were selected. The first is a steam-injected gas turbine (STIG) of net 15 MWe, and the second system is a STIG of net 49 MWe. Both make use of the Atmospheric Circulating Fluidized Bed (ACFB) gasification technology, wet scrubber gas cleaning and of flue gas for drying the waste. Efficiencies of 27% and 30% were calculated for 160 kton and 500 kton biomass waste a year respectively. Waste treatment costs are expected to be DFl 31 and DFl 24 per ton respectively, which is significant lower than the alternatives, being compost and anaerobic digestion of biomass waste. Moreover, this technique represents a considerable potential for saving fossil fuels and reducing CO[sub 2] emissions. This indicates that gasification can become a strong competitor for anaerobic digestion, composting and incineration on biomass waste treatment. The main technical problems to be solved are optimization of pre-treatment of the waste, especially drying, the behavior of the ash and heavy metals and adaptation of gas turbines for low calorific gas, possibly combined with steam injection. Fundamental problems to prohibit further development of this option seem not to be present. It is expected that realization of the option discussed here is possible within 4-7 years. 3 figs., 6 tabs., 64 refs.

  6. Tar analysis from biomass gasification by means of online fluorescence spectroscopy

    Science.gov (United States)

    Baumhakl, Christoph; Karellas, Sotirios

    2011-07-01

    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  7. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  8. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  9. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    alternative by upgrading existing district heating plant. It provides a generic modeling framework to design flexible energy system in near future. These frameworks address the three main issues arising in the planning and designing of energy system: a) socio impact at both planning and proses design level; b...... in this study. The overall aim of this work is to provide a complete assessment of the technical potential of biomass gasification for local heat and power supply in Denmark and replace of natural gas for the production. This study also finds and defines the future areas of research in the gasification......, it possible to lay a foundation for future gasification based power sector to produce flexible output such as electricity, heat, chemicals or bio-fuels by improving energy system of existing DHP(district heating plant) integrating gasification technology. The present study investigate energy system...

  10. Optimization of Operating Conditions of a Household Up-draft Biomass Gasification Stove

    Directory of Open Access Journals (Sweden)

    Shuanghui Deng

    2015-05-01

    Full Text Available Experiments were carried out with a household up-draft biomass gasification stove to investigate effects of the air distribution method on the performance of the stove. The temperature distribution along the gasifier, the producer gas composition, the stove power, and the thermal efficiency were investigated. Results showed that in the temperature distribution along the gasifier height, the highest temperature was at the bottom oxidation layer of the gasifier, in the range of 950 to 1050 °C. With increasing air quantity through the burner, the time required to boil the water first decreased and then increased, whereas the stove power and thermal efficiency increased and then decreased. The best stove performance was obtained at an optimum air distribution ratio of 0.333 between burner and gasifier air (0.794×10-3 m3/s·kg. When the burner air increased, the flame length above the burner was remarkably reduced and the flame color gradually changed from yellow-red to blue. At the optimum air distribution ratio of 0.333, the flame was blue and stable. The present study provides references for developing a more efficient biomass gasification stove.

  11. Modeling and Assessment of a Biomass Gasification Integrated System for Multigeneration Purpose

    Directory of Open Access Journals (Sweden)

    Shoaib Khanmohammadi

    2016-01-01

    Full Text Available The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.

  12. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  13. Gasification of ‘Loose' Groundnut Shells in a Throathless Downdraft Gasifier

    OpenAIRE

    Kuhe, Aondoyila; Aliyu, Samuel Jacob

    2015-01-01

    In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6%) and ash content (3.19%) are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a ...

  14. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  15. Biomass gasification--a substitute to fossil fuel for heat application

    International Nuclear Information System (INIS)

    Dasappa, S.; Sridhar, H.V.; Sridhar, G.; Paul, P.J.; Mukunda, H.S.

    2003-01-01

    The paper addresses case studies of a low temperature and a high temperature industrial heat requirement being met using biomass gasification. The gasification system for these applications consists of an open top down draft reburn reactor lined with ceramic. Necessary cooling and cleaning systems are incorporated in the package to meet the end use requirements. The other elements included are the fuel conveyor, water treatment plant for recirculating the cooling water and adequate automation to start, shut down and control the operations of the gasifier system. Drying of marigold flower, a low temperature application is considered to replace diesel fuel in the range of 125-150 l h -1 . Gas from the 500 kg h -1 , gasifier system is piped into the producer gas burners fixed in the combustion chamber with the downstream process similar to the diesel burner. The high temperature application is for a heat treatment furnace in the temperature range of 873-1200 K. A 300 kg h -1 of biomass gasifier replaces 2000 l of diesel or LDO per day completely. The novelty of this package is the use of one gasifier to energize 16 burners in the 8 furnaces with different temperature requirements. The system operates over 140 h per week on a nearly nonstop mode and over 4000 h of operation replacing fossil fuel completely. The advantage of bioenergy package towards the economic and environmental considerations is presented

  16. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  17. Thermodynamic approach to biomass gasification; Approche thermodynamique des transformations de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Boissonnet, G.; Seiler, J.M.

    2003-07-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H{sub 2}. The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H{sub 2}. An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  18. Char-recirculation biomass gasification system--a site-specific feasibility study

    International Nuclear Information System (INIS)

    Purdy, K.R.; Kerr, C.P.; Hensley, B.D.

    1991-01-01

    A site-specific feasibility study was conducted for a char-recirculation biomass gasification plant which would dispose of the chippable solid residues of the area sawmills. The plant would receive green hardwood chips and convert them into active charcoal while producing process steam and electrical power. An economic analysis was performed on the basis of not-for-profit operation, marketing crushed active charcoal to a broker at a discounted price, and displacing purchased electric power. Given a market for the active charcoal, the plant was judged to be economically viable

  19. Production of high quality syngas from argon/water plasma gasification of biomass and waste

    Czech Academy of Sciences Publication Activity Database

    Hlína, Michal; Hrabovský, Milan; Kavka, Tetyana; Konrád, Miloš

    2014-01-01

    Roč. 34, č. 1 (2014), s. 63-66 ISSN 0956-053X R&D Projects: GA ČR GAP205/11/2070; GA MŠk MEB020814 Institutional support: RVO:61389021 Keywords : Biomass * Gasification * Plasma * Tar Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.220, year: 2014

  20. On the gasification of biomass in a steam-oxygen blown CFB gasifier with the focus on gas quality upgrading : Technology background, experiments and mathematical modeling

    NARCIS (Netherlands)

    Siedlecki, M.

    2011-01-01

    This work presents and discusses the results of the research on the gasification of biomass in an atmospheric circulating fluidized bed, with a mixture of steam and oxygen as fluidization / gasification medium. The main objectives of this research were to investigate and improve the gasification

  1. ZERO-DIMENSIONAL MODEL OF A DIMETHYL ETHER (DME) PLANT BASED ON GASIFICATION OF TORREFIED BIOMASS

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Elmegaard, Brian; Houbak, Niels

    2009-01-01

    similar to coal, which enables the use of commercially available coal gasification processing equipment. The DME plant model is integrated with a steam cycle that utilizes waste heat from the plant and covers the on-site electricity consumption. The plant model predicts a fuel production efficiency of 67...... % (LHV) from torrefied biomass to DME and 70 % (LHV) if the exported electricity is included. When accounting for raw, untreated biomass, the efficiency for DME production is reduced to about 60 %....

  2. The role of char and tar in determining the gas-phase partitioning of nitrogen during biomass gasification

    International Nuclear Information System (INIS)

    Broer, Karl M.; Brown, Robert C.

    2015-01-01

    Highlights: • Switchgrass was gasified at an equivalence ratio of zero and 650–850 °C. • Short residence times were employed to minimize secondary reactions. • Char- and tar-bound nitrogen, NH_3, HCN, and N_2 were all significant products. • Increasing temperature leads to increased release of gaseous nitrogen compounds. • Kinetic models of gasification should include nitrogen release from char and tar. - Abstract: Gasification is an attractive option for converting biomass into fuels and chemicals. Most biomass contains significant amounts of fuel-bound nitrogen (FBN), which partially converts into ammonia (NH_3) and hydrogen cyanide (HCN) during gasification. These nitrogen compounds are problematic as they can lead to NO_X emissions or catalyst poisoning in downstream applications of syngas. FBN can convert to other products as well, including diatomic nitrogen (N_2), char-bound nitrogen (char-N), and tar-bound nitrogen (tar-N). Efforts to predict concentrations of NH_3 and HCN have been hindered by a lack of accurate, comprehensive measurements of nitrogen partitioning among gasification products. The present study gasified switchgrass under allothermal, short residence time conditions and measured NH_3, HCN, char-N, and tar-N as a function of temperature in the range of 650–850 °C with diatomic nitrogen determined by difference. It was found that a major portion of FBN was retained in the char and tar products. As temperature was increased, char and tar were consumed, releasing nitrogen as gaseous NH_3 and HCN. This increase in undesirable nitrogen compounds is contrary to the predictions of most gasification models, which overlook the presence of significant nitrogen in char and tar even if they include tar cracking and char gasification reactions. The results of this study demonstrate that gas-phase reactions alone are not sufficient to predict the fate of nitrogen during gasification. In order for modeling efforts to obtain more accurate

  3. Tar removal from biomass gasification streams: processes and catalysts; Remocao do alcatrao de correntes de gaseificacao de biomassa: processos e catalisadores

    Energy Technology Data Exchange (ETDEWEB)

    Quitete, Cristina P.B. [Centro de Pesquisa e Desenvolvimento Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Processos de Conversao de Biomassa; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Escola de Quimica

    2014-07-01

    Biomass gasification is a technology that has attracted great interest in synthesis of biofuels and oxo alcohols. However, this gas contains several contaminants, including tar, which need to be removed. Removal of tar is particularly critical because it can lead to operational problems. This review discusses the major pathways to remove tar, with a particular focus on the catalytic steam reforming of tar. Few catalysts have shown promising results; however, long-term studies in the context of real biomass gasification streams are required to realize their potential. (author)

  4. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  5. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Karayildirim, T. [Department of Chemistry, Science Faculty, Ege University, Bornova-Izmir (Turkey); Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, Besevler-Ankara (Turkey); Kruse, A. [Institut fuer Technische Chemie CPV, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)

    2008-11-15

    The hydrothermal biomass gasification is a promising technology to produce hydrogen and/or methane from wet biomass with a water content of {>=}80 % (g/g). In the process, the coke formation usually is very low, but already low amounts may cause problems like, e.g., fouling in the heat exchanger. To learn more about the product formation, the results of the hydrothermal treatment (at 400,500,600 C and 1 h) of different biomass feedstocks (artichoke stalk, pinecone, sawdust, and cellulose as model biomass) in a microreactor are compared. The gas composition and the total organic carbon content of the aqueous phase were determined after reaction. The gas formation rises with increasing temperature. The formation of carbon deposits and their characterization has been investigated by scanning electron microscopy (SEM). The variation of the solid morphology during the hydrothermal conversion is discussed based on chemical pathways occurring during hydrothermal biomass degradation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Biomass gasification cogeneration – A review of state of the art technology and near future perspectives

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Thomsen, Tobias; Henriksen, Ulrik Birk

    2013-01-01

    Biomass is a renewable resource from which a broad variety of commodities can be produced. However, the resource is scarce and must be used with care to avoid depleting future stock possibilities. Flexibility and efficiency in production are key characteristics for biomass conversion technologies...... in future energy systems. Thermal gasification of biomass is proved throughout this article to be both highly flexible and efficient if used optimally. Cogeneration processes with production of heat-and-power, heat-power-and-fuel or heat-power-and-fertilizer are described and compared. The following...

  7. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  8. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  9. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    Science.gov (United States)

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Costs of elephant grass gasification for rural electric power generation; Custos da gaseificacao de graminea para eletrificacao rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos

    2000-07-01

    Biomass gasification is an sustainable option for energy supply, which presents low pollutants emission rate and allows - through the global cycle of growing and consumption of feedstock (vegetables), a balance between consumption and production of carbonic gas, preventing an increase of the carbonic gas levels in the atmosphere. Fluidized bed gasification is a means to increase the energetic use of biomass. A gasifier was built with internal diameter of 400 mm and total height of 4600 mm . The equipment was tested for gasification of elephant-grass (Pennisetum purpureum) at a 100 kg/h rate. It was evaluated an adequate diesel-electric-generator to work at hybrid regime, using 70% biomass gas and 30% diesel. With the equipment's construction costs, could be made a first economic feasibility assessment on the pilot-plant to produce electricity by grass gasification (elephant-grass) at rural communities. The annual cost of the investment was estimated. The cost of electricity was calculated as a function of the capital cost and the diesel price. The methods and equations for economic assessment are presented. This study found values between 0,16 and 0,23 R$/kWh for the produced electricity, what points towards the feasibility of this project. (author)

  11. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale

    International Nuclear Information System (INIS)

    Wiedner, Katja; Rumpel, Cornelia; Steiner, Christoph; Pozzi, Alessandro; Maas, Robert; Glaser, Bruno

    2013-01-01

    Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13 C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. -- Highlights: • Production technologies influences fundamentally chemical properties of chars. • Carbonized materials have different behaviour in soil environment. • Environmental risk of chars is low with respect to PAH and dioxin contents. • Certification standard for biochars is not suitable for hydrochars. • Commercial scale reactors are able to produce high quality biochars according to the regulations of the EBC or IBI

  12. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  13. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  14. Pressurized gasification solves many problems. IVOSDIG process for peat, wood and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Repo, A.

    1996-11-01

    Research is now being done on one of the essential elements of pressurized gasification: the feeding of fuel into high pressure. At the IVOSDIG pilot plant in Jyvaeskylae, a pilot-scale piston feeder for peat, wood and sludge has been tested. A piston feeder achieves pressurization through the movement of the piston, not by inert pressurization gas. The feeder cylinder then turns 180 degrees to another position, and the piston forces the fuel contained in the cylinder into the pressure vessel, which is at the process pressure. The feeder has to cylinders; one is filled while the other is being emptied. In pilot-scale tests, the capacity of the feeder is ten cubic metres of fuel per hour. The commercial-scale feeder has been designed for a capacity of fifty cubic metres per hour. The feeder operates hydraulically, and the hydraulic system can be assembled from commercially available components. IVO began development work to devise a feeder based on the piston technique in 1992. During 1993, short tests were performed with the pilot-scale feeder. Tests under real conditions were begun during 1994 at the laboratory of VTT Energy in Jyvaeskylae, which houses the IVOSDIG pressurized gasification pilot plant for moist fuels developed by IVO

  15. Mathematical modelling of the gasification of cellulose-containing biomass using a zoning model; Mathematische Modellierung der Vergasung zellulosehaltiger Biomasse mit Hilfe eines Zonenmodells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Saller, G; Funk, G; Krumm, W [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Energietechnik

    1998-09-01

    The composition of the product gas is decisive for the further process stages. In contrast to coal gasification, which has been investigated for more than a century, there is still a lack of theoretical and experimental knowledge on biomass gasification. The contribution presents a mathematical model that is to provide deeper knowledge of the constant-flow fixed-bed gasifier, which is still widely regarded as a `black box`. (orig./SR) [Deutsch] Einen wesentlichen Prozessschritt der thermochemischen Konversion stellt der Vergasungsprozess dar, da die Zusammensetzung des erhaltenen Gases fuer die weiteren Prozessschritte von entscheidender Bedeutung ist. Im Gegensatz zur Vergasung von Kohle, die bereits seit fast 100 Jahren untersucht wird, besteht bei der Vergasung von Biomasse ein starker Nachholbedarf in Bezug auf das theoretische und experimentelle Detailwissen. In diesem Beitrag wird im Rahmen eines mathematischen Modells ein Ansatz vorgestellt, in dem der Gleichstrom-Festbettvergaser, der bisher meist als `blackbox` betrachtet wurde, weiter aufgeschluesselt wird. (orig./SR)

  16. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  17. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Gorgens, Johann; Knoetze, Hansie

    2010-01-01

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW th . The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW th to about 6.44 R/l for a 60 MW th and 3.95 R/l for a 400 MW th methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW th , but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW th plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  18. Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole, E-mail: bamigun@csir.co.z [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons.

  19. Biomethanol production from gasification of non-woody plant in South Africa. Optimum scale and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa); Gorgens, Johann; Knoetze, Hansie [Process Engineering Department, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602 (South Africa)

    2010-01-15

    Methanol production from biomass is a promising carbon neutral fuel, well suited for use in fuel cell vehicles (FCVs), as transportation fuel and as chemical building block. The concept used in this study incorporates an innovative Absorption Enhanced Reforming (AER) gasification process, which enables an efficient conversion of biomass into a hydrogen-rich gas (syngas) and then, uses the Mitsubishi methanol converter (superconverter) for methanol synthesis. Technical and economic prospects for production of methanol have been evaluated. The methanol plants described have a biomass input between 10 and 2000 MW{sub th}. The economy of the methanol production plants is very dependent on the production capacity and large-scale facilities are required to benefit from economies of scale. However, large-scale plants are likely to have higher transportation costs per unit biomass transported as a result of longer transportation distances. Analyses show that lower unit investment costs accompanying increased production scale outweighs the cost for transporting larger quantities of biomass. The unit cost of methanol production mostly depends on the capital investments. The total unit cost of methanol is found to decrease from about 10.66 R/l for a 10 MW{sub th} to about 6.44 R/l for a 60 MW{sub th} and 3.95 R/l for a 400 MW{sub th} methanol plant. The unit costs stabilise (a near flat profile was observed) for plant sizes between 400 and 2000 MW{sub th}, but the unit cost do however continue to decrease to about 2.89 R/l for a 2000 MW{sub th} plant. Long term cost reduction mainly resides in technological learning and large-scale production. Therefore, technology development towards large-scale technology that takes into account sustainable biomass production could be a better choice due to economic reasons. (author)

  20. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  1. Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas- water stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2007-01-01

    Roč. 6, č. 1 (2007), s. 9-12. ISBN 978-4-9900642-5-9 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * biomass gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Transient Catalytic Activity of Calcined Dolomitic Limestone in a Fluidized Bed during Gasification of Woody Biomass.

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Jeremiáš, Michal; Skoblia, S.; Beňo, Z.; Šyc, Michal; Svoboda, Karel

    2016-01-01

    Roč. 30, č. 5 (2016), s. 4065-4071 ISSN 0887-0624 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : fluidized- bed gasification * woody biomass * limestone Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.091, year: 2016

  3. A comprehensive small and pilot-scale fixed-bed reactor approach for testing Fischer–Tropsch catalyst activity and performance on a BTL route

    Directory of Open Access Journals (Sweden)

    Piyapong Hunpinyo

    2017-05-01

    Full Text Available Ruthenium (Ru-based catalysts were prepared by the sol–gel technique for biomass-to-liquid (BTL operation and had their performance tested under different conditions. The catalytic study was carried out in two steps using a simple and reliable method. In the first step, the effects of reaction temperatures and inlet H2/CO molar feed ratios obtained from biomass gasification were investigated on the catalyst performance. A set of experimental results obtained in a laboratory fixed bed reactor was described and summarized. Moreover, a simplified Langmuir–Hinshelwood–Hougen–Watson (LHHW kinetic model was proposed with two promising models, where the surface decomposition of carbon monoxide was assumed as the rate determining step (RDS. In the second step, a FT pilot plant was conducted to validate the catalyst performance, especially the conversion efficiency, heat and mass transfer effects, and system controllability. The results indicated that our catalyst performances under mild conditions were not significantly different in many regards from those previously reported for a severe condition, as especially Ru-based catalyst can be performed to vary over a wide range of conditions to yield specific liquid productivity. The results in terms of the hydrocarbon product distribution obtained from the pilot scale operations were similar with that obtained from the related lab scale experiments.

  4. Supercritical water gasification of biomass for H2 production: process design.

    Science.gov (United States)

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Alternative route of process modification for biofuel production by embedding the Fischer–Tropsch plant in existing stand-alone power plant (10 MW) based on biomass gasification – Part I: A conceptual modeling and simulation approach (a case study in Thailand)

    International Nuclear Information System (INIS)

    Hunpinyo, Piyapong; Cheali, Peam; Narataruksa, Phavanee; Tungkamani, Sabaithip; Chollacoop, Nuwong

    2014-01-01

    Graphical abstract: SynBiofuel production through existing gasification plants in Thailand, using waste agricultural biomass as raw material, was studied. The process design was initiated conceptually in the areas of gas phase reaction system via Fischer-Tropsch (FT) synthesis. The development of FT configurations on syngas conversion to transportation fuels (e.g., diesel range) was investigated. In order to develop a techno-economic assessment, the three different capacities corresponding to 1 MW, 2 MW and 3 MW based on thermal input of syngas were evaluated. Once-through FT concept was proposed in which the unconverted syngas was combusted with air in an externally fired gas turbine (EFGT) to produce surplus electricity. The results of process simulation were discussed open-mindedly including the overall plant design and energy efficiency. Preliminary economics, and some site specific situations under which additional capital cost savings on existing infrastructure was realized. - Highlights: • Experimental results were used and integrated with a reactor model for SynBiofuel. • Process simulation with the lumped reaction rate was used to achieve accurate results. • Process simulation was performed using ASPEN Plus to design FT configurations. • Maximum energy FT efficiency was approximately 37%. • Economic potential was computed by ROI and PBP resulting in the attractive solutions. - Abstract: The utilization of syngas shows a highly potential to improve the economic potential of the stand-alone power unit-based gasification plants as well as enhancing the growing demand of transportation fuels. The thermochemical conversion of biomass via gasification to heat and power generations from the earlier study is further enhanced by integrating Fischer–Tropsch (FT) synthesis with the existing gasification pilot scale studied previously. To support the potential and perspectives in major economies due to scaling up in developing countries such as Thailand

  7. Carbon exergy tax applied to biomass integrated gasification combined cycle in sugarcane industry

    International Nuclear Information System (INIS)

    Fonseca Filho, Valdi Freire da; Matelli, José Alexandre; Perrella Balestieri, José Antonio

    2016-01-01

    The development of technologies based on energy renewable sources is increasing worldwide in order to diversify the energy mix and satisfy the rigorous environmental legislation and international agreements to reduce pollutant emission. Considering specific characteristics of biofuels available in Brazil, studies regarding such technologies should be carried out aiming energy mix diversification. Several technologies for power generation from biomass have been presented in the technical literature, and plants with BIGCC (biomass integrated gasification combined cycle) emerge as a major technological innovation. By obtaining a fuel rich in hydrogen from solid biomass gasification, BIGCC presents higher overall process efficiency than direct burning of the solid fuel in conventional boilers. The objective of this paper is to develop a thermodynamic and chemical equilibrium model of a BIGCC configuration for sugarcane bagasse. The model embodies exergetic cost and CO_2 emission analyses through the method of CET (carbon exergy tax). An exergetic penalty comparison between the BIGCC technology (with and without CO_2 capture and sequestration), a natural gas combined cycle and the traditional steam cycle of sugarcane sector is then presented. It is verified that the BIGCC configuration with CO_2 capture and sequestration presents technical and environmental advantages when compared to traditional technology. - Highlights: • We compared thermal cycles with the exergetic carbon exergy tax. • Thermal cycles with and without carbon capture and sequestration were considered. • Burned and gasified sugarcane bagasse was assumed as renewable fuel. • Exergetic carbon penalty tax was imposed to all studied configurations. • BIGCC with carbon sequestration revealed to be advantageous.

  8. Commercialisation BIVKIN-based gasification technology. Non-confidential version

    International Nuclear Information System (INIS)

    Van der Drift, A.; De Kant, H.F.; Rajani, J.B.

    2000-08-01

    In 1996, the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands, developed and built a circulating fluidized bed gasification process BIVKIN (Dutch abbreviation for biomass gasification installation) in co-operation with Novem, Afvalzorg and Stork. The plant was initially used at the ECN location in Petten for the characterisation of more than 15 different biomass species, including wood, sludge, grass and manure. During this test work, it was discovered that BIVKIN was an ideal tool for gasification of such diverse biomass at various thermal outputs. ECN has been conducting tests to improve the gas quality so that such fuel gas can be used for the generation of electricity by the use of a gas engine. In order to bring the BIVKIN technology to the commercial market, ECN, Shell and HoSt performed a study to evaluate the engineering concept and cost of such a design in detail. With this study, co-financed by Novem, the commercial viability of the BIVKIN technology in the electrical output range of 1 to 5 MW, is determined. For this relatively small scale, it is assumed that the extra positive cash flow due to selling the heat can compensate the higher investment per kW compared to large-scale systems where the produced heat generally cannot be used. This report is a reflection of the study to commercialise the BIVKIN technology. The BIVKIN-technology will be compared with alternative technologies commercially available for the power range under consideration. Both technical and economic evaluations will be presented. 12 refs

  9. Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas- water stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana

    2008-01-01

    Roč. 83, č. 1 (2008), s. 209-212 ISSN 0042-207X R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * biomass gasification Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.114, year: 2008

  10. Siemens fuel gasification technology - solutions and developments

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Schingnitz, M.; Schmid, C. [Siemens Fuel Gasification Technology GmbH, Freiberg (Germany)

    2007-07-01

    In 2006, Siemens Power Generation Group acquired the GSP Gasification technology, and renamed it SFGT. The presentation reviews the technology and provides an update on current projects. The future plans for the development of the technology based on extensive experience and comprehensive development work gathered over many years and proven in a number of gasification plants is covered. SFGT operates, at its Freiberg facility, a 5 MWth pilot plant which was built to test prototype designs and to determine process conditions for various feed streams. An overview is given of the results of tests completed on a wide range of carbonaceous materials including all types of solid fuels from lignite to anthracite, as well as brown coal, oil, sludge or biomass, and low-temperature coke or petcoke. The technical focus of the paper is on the unique design features such as the cooling screen and alternative refractory lining, as well as the dense flow feeding system that allows the preferable use of lignite applications.

  11. The use of oxygen-enriched air for biomass gasification: initial scoping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The article reports an initial scoping study which is aimed at assessing the potential impact of using non-cryogenic oxygen, or oxygen-enriched air, for biomass gasification with respect to cost, design and operation of stationary biomass-fuelled generators in the range 5 to 15 MW(e). The study is expected to lead to identification of options worthy of more detailed study. The format of the scoping study is as follows: (i) using data on performance and cost from the manufacturers, minimum cost-saving potential is assessed; (ii) the performance and component costs of various gasifier types and engine types are reviewed to identify possible savings in monetary cost; (iii) an assessment of the likely impact of low-cost fuels is made and (iv) areas for detailed investigation are highlighted.

  12. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  13. A general model for economics of biomass gasification technology in India

    International Nuclear Information System (INIS)

    Tripath, A.K.; Iyer, P.V.R.

    1995-01-01

    The utilisation of biomass through thermo-chemical conversion route for production of producer gas, is now an established technology in India. A wide range of standard designs of gasifiers are now commercially available in various capacities in India. Capacity range depends upon the mode of utilisation of the gasifiers i.e. 3 kW to 500 kW for electrical applications, 5 hp to 20 hp for mechanical applications and 0.015 million kCal/hr to 1.25 million kCal/hr for thermal applications. This paper presents an overview of the total cost involved in gasification process

  14. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    a waste management perspective, pyrolysis and gasification are of relatively little importance as an overall management option. Today, gasification is primarily used on specific waste fractions as opposed to mixed household wastes. The main commercial activity so far has been in Japan, with only limited....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...... success in Europe and North America (Klein et al., 2004). However, pyrolysis and gasification of waste are generally expected to become more widely used in the future. A main reason for this is that public perceptions of waste incineration in some countries is a major obstacle for installing new...

  15. Fluidized bed gasification of sugar cane bagasse. Influence on gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, E.; Aleman, Y. [Univ. of las Villas, Santa Clara (Cuba). Biomass Thermoconversion group/CETA; Arauzo, J.; Gea, G. [Univ. of Zaragoza (Spain). Chemical and Environmental Engineering Dept.

    1999-07-01

    Air and steam gasification of biomass has been studied at different temperatures. The experiments have been carried out in a bench scale plant. It consists of an atmospheric bubbling fluidized bed gasifier heated by an electric furnace. The gasification process have been carried out at high heating rates and low residence time of the gases. The biomass used has been Cuban sugar cane bagasse. Three operating parameters have been evaluated to improve the gas composition: Equivalence Ratio (E.R.) in the range of 0.15 to 0.55; the bed temperature from 780 to 920 deg C; and steam/biomass ratio (S/B) from 0.1 g/g to 0.5 g/g. The results obtained show the effect of these operating parameters in gas composition and the conditions to obtain higher yield to gas and else the maximum energy.

  16. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    For alternative thermo-chemical conversion process route via gasification, biomass can be gasified to produce syngas (mainly CO and H2). On more applications of utilization, syngas can be used to synthesize fuels through the catalytic process option for producing synthetic liquid fuels...... such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  17. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  18. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  19. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  20. Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Aondoyila Kuhe

    2015-07-01

    Full Text Available In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6% and ash content (3.19% are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.

  1. Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether

    International Nuclear Information System (INIS)

    Ravaghi-Ardebili, Zohreh; Manenti, Flavio

    2015-01-01

    Graphical abstract: Biomass-to-methanol/DME synthesis process layout. - Highlights: • Design, simulation, and control of the direct-storage concentrating solar plant. • Feasibility study of the low-temperature biomass gasification. • First-principles model of biomass gasifier. • First-principles model of one-step methanol/dimethylether synthesis reactor. • Integrated numerical platform for total plant simulation. - Abstract: A novel, integrated and unified process is proposed, modeled and studied for converting biomass to methanol (MeOH)/dimethylether (DME) to demonstrate its feasibility and applicability for the global industrial sector. The unified process consists of a concentrating solar power (CSP) plant, which supplies the produced steam to the biomass gasification process as well as to the downstream conversions to chemical commodities and energy carriers. To preserve the effectiveness of the biomass gasification with low-temperature solar-powered generated steam (approximately 400–410 °C), the gasification process is studied by means of a multi-complex (multi-scale, multi-phase, and multi-component) model and adapted to the novel proposed conditions. The syngas generated in the biomass gasification unit is then converted into MeOH/DME by means of one-step synthesis technology to improve the overall yield of the biomass-to-methanol process

  2. Synthesis gas from biomass for fuels and chemicals

    International Nuclear Information System (INIS)

    Van der Drift, A.; Boerrigter, H.

    2006-01-01

    Making H2 and CO (syngas) from biomass is widely recognised as a necessary step in the production of various second generation biofuels. There are two major ways to produce a biosyngas: fluidised bed gasification with catalytic reformer or entrained flow gasification. The latter option requires extensive pre-treatment such as flash pyrolysis, slow pyrolysis, torrefaction, or fluidized bed gasification at a low temperature. Cleaned and conditioned biosyngas can be used to synthesize second generation biofuels such as Fischer-Tropsch fuels, methanol, DME, mixed alcohols, and even pure hydrogen. The report describes the different technical options to produce, clean and condition bio-syngas. Furthermore, issues related to scale and biomass transport are covered shortly

  3. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    Science.gov (United States)

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Tao, Jun; Lu, Qiang; Dong, Changqing; Du, Xiaoze; Dahlquist, Erik

    2015-01-01

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO 2 /γ-Al 2 O 3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO 2 /γ-Al 2 O 3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H 2 and CO were the major gas products, while CO 2 and CH 4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  5. Influence of forest biomass grown in fertilised soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K; Orjala, M [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    This presentation describes research carried out by VTT Energy and METLA during 1996, as part of the collaborative EU project involving Finland, Portugal and Spain. The main objectives of this project are to carry out experimental studies of both combustion and gasification under atmospheric (Portugal and Spain) and pressurised conditions (Finland) using biomass from different countries, namely Finland, Portugal and Spain. This was to determine the influence of biomass fertilising conditions on the process itself and the impact on the integrated energy production facilities, such as gas turbines. The aim of the research was carried out during 1996: (1) To complete the biomass collection, analyses and selection of the samples for combustion and gasification tests. This task has been carried out in co-operation with VTT and METLA, (2) To start the combustion and gasification tests under pressurised and atmospheric conditions. The combustion research in Finland is being performed in pressurised entrained flow reactor at VTT in Jyvaeskylae and the gasification research is being conducted at VTT in Espoo. The collection of biomass samples has been completed. The analyses of the samples show that for instance potassium and phosphorus content will be increased by about 30-50 % due to fertilisation. In the ash fusion tests, the ash from fertilised bark and branches and needles may start to soften already at 900 deg C under reducing conditions depending on the composition of the ash. In oxidising atmospheres the ash softening seems to occur at higher temperatures. Preliminary results indicate that the fertilisation may have an influence on the combustion process

  6. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    Science.gov (United States)

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  7. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  8. Gasification-based energy production systems for different size classes - Potential and state of R and D

    International Nuclear Information System (INIS)

    Kurkela, E.

    1997-01-01

    (Conference paper). Different energy production systems based on biomass and waste gasification are being developed in Finland. In 1986-1995 the Finnish gasification research and development activities were almost fully devoted to the development of simplified IGCC power systems suitable to large-scale power production based on pressurized fluid-bed gasification, hot gas cleaning and a combined-cycle process. In the 1990's the atmospheric-pressure gasification activities aiming for small and medium size plants were restarted in Finland. Atmospheric-pressure fixed-bed gasification of wood and peat was commercialized for small-scale district heating applications already in the 1980's. Today research and development in this field aims at developing a combined heat and power plant based on the use of cleaned product gas in internal combustion engines. Another objective is to enlarge the feedstock basis of fixed-bed gasifiers, which at present are limited to the use of piece-shaped fuels such as sod peat and wood chips. Intensive research and development is at present in progress in atmospheric-pressure circulating fluidized-bed gasification of biomass residues and wastes. This gasification technology, earlier commercialized for lime-kiln applications, will lead to co-utilization of local residues and wastes in existing pulverized coal fired boilers. The first demonstration plant is under construction in Finland and there are several projects under planning or design phase in different parts of Europe. 48 refs., 1 fig., 1 tab

  9. Biomass Waste Gasification – Can Be the Two Stage Process Suitable for Tar Reduction and Power Generation?

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Štojdl, J.; Richter, M.; Popelka, J.; Svoboda, Karel; Smetana, J.; Vacek, J.; Skoblia, S.; Buryan, P.

    2012-01-01

    Roč. 32, č. 4 (2012), s. 692-700 ISSN 0956-053X Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : waste biomass * gasification * tar Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.485, year: 2012

  10. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification

    International Nuclear Information System (INIS)

    Janajreh, Isam; Raza, Syed Shabbar; Valmundsson, Arnar Snaer

    2013-01-01

    Highlights: ► Plasma/conventional gasification are modeled via Gibbs energy minimization. ► The model is applied to wide range of feedstock, tire, biomass, coal, oil shale. ► Plasma gasification show high efficiency for tire waste and coal. ► Efficiency is around 42% for plasma and 72% for conventional gasification. ► Lower plasma gasification efficiency justifies hazardous waste energy recovery. - Abstract: In this study, two methods of gasification are developed for the gasification of various feedstock, these are plasma gasification and conventional air gasification. The two methods are based on non-stoichiometric Gibbs energy minimization approach. The model takes into account the different type of feedstocks, which are analyzed at waste to energy lab at Masdar Institute, oxidizer used along with the plasma energy input and accurately evaluates the syngas composition. The developed model is applied for several types of feedstock, i.e. waste tire material, coal, plywood, pine needles, oil shale, and municipal solid waste (MSW), algae, treated/untreated wood, instigating air/steam as the plasma gas and only air as oxidizer for conventional gasification. The results of plasma gasification and conventional air gasification are calculated on the bases of product gas composition and the process efficiency. Results of plasma gasification shows that high gasification efficiency is achievable using both tire waste material and coal, also, the second law efficiency is calculated for plasma gasification that shows a relative high efficiency for tire and coal as compare to other feedstock. The average process efficiency for plasma gasification is calculated to be around 42%. On other hand the result of conventional gasification shows an average efficiency of 72%. The low efficiency of plasma gasification suggest that if only the disposal of hazard waste material is considered then plasma gasification can be a viable option to recover energy.

  11. Operation of a semi-technical pilot plant for nuclear aided steam gasification of coal

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    After intensive investigations on a small scale, the principle of the process has been tested in a semi-technical pilot plant. In its gasifier a fluidized bed of approx. 1 m 2 cross-section and of up to 4 m height is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it, which is heated electrically. The plant was commissioned in 1976 and has been in hot operation for approx. 23000 h, over 13000 h whereof account for coal gasification. Roughly 1600 t of coal have been put through. During recent years the processing of German caking long-flame gas coal and the marked improvement of the process by the use of catalysts have been demonstrated successfully. (orig.)

  12. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  13. Design of a 2.5MW(e) biomass gasification power generation module

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, R.

    2000-07-01

    The purpose of this contract was to produce a detailed process and mechanical design of a gasification and gas clean up system for a 2.5MW(e) power generation module based on the generation of electrical power from a wood chip feed stock. The design is to enable the detailed economic evaluation of the process and to verify the technical performance data provided by the pilot plant programme. Detailed process and equipment design also assists in the speed at which the technology can be implemented into a demonstration project. (author)

  14. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  15. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  16. Release of chlorine from biomass at gasification conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, E.; Stroemberg, B. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O{sub 2}, H{sub 2}O and CO{sub 2} had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO{sub 2} increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  17. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    Bjoerkman, E.; Stroemberg, B.

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O 2 , H 2 O and CO 2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO 2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  18. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst.

    Science.gov (United States)

    Jeong, Hanseob; Park, Yong-Cheol; Seong, Yeong-Je; Lee, Soo Min

    2017-12-01

    The aim of this study were to efficiently produce fermentable sugars by continuous type supercritical water hydrolysis (SCWH) of Quercus mongolica at the pilot scale with varying acid catalyst loading and to use the obtained sugars for ethanol production. The SCWH of biomass was achieved in under one second (380°C, 230bar) using 0.01-0.1% H 2 SO 4 . With 0.05% H 2 SO 4 , 49.8% of sugars, including glucose (16.5% based on biomass) and xylose monomers (10.8%), were liberated from biomass. The hydrolysates were fermented with S. cerevisiae DXSP and D452-2 to estimate ethanol production. To prepare the fermentation medium, the hydrolysates were detoxified using activated charcoal and then concentrated. The ethanol yield of fermentation with S. cerevisiae DXSP was 14.1% (based on biomass). The proposed system has potential for improvement in yield through process optimization. After further development, it is expected to be a competitive alternative to traditional systems for ethanol production from woody biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  20. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. Feasibility study of gasification of oil palm fronds

    Directory of Open Access Journals (Sweden)

    S.A. Sulaiman

    2015-12-01

    Full Text Available Considering the large and consistent supply, oil palm fronds could be a promising source of biomass energy through gasification. There is very scarce information on the characteristics of oil palm fronds, which is vital in deciding if such biomass is technically suitable for gasification. In the present work, the feasibility of oil palm fronds for biomass gasification is studied. The study is conducted experimentally via standard tests to determine their thermochemical characteristics. Ultimate analysis is conducted to determine the contents of carbon, nitrogen, hydrogen and sulphide in oil palm fronds. Proximate analysis is performed to identify the burning characteristics of the biomass. The energy content in the fronds is determined by using a bomb calorie meter and is around 18 MJ/kg. The ignitability of the fronds is also studied experimentally to assess the ease to start-up combustion of the fronds. The characteristics of the flame of the resulting syngas from gasification of oil palm fronds are qualitatively studied. Simulated syngas composition study reveals potentials of 22% CO, 1.3% H2, 18.5% CO2 and traces of CH4. The study is extended to computer simulation to predict composition of the syngas. It is found from this work that oil palm fronds are feasible for gasification and has a good potential as a renewable energy source.

  3. Biomass gasification systems in electric energy generation for isolated communities; Sistemas de gaseificacao de biomassa na geracao de energia eletrica para comunidades isoladas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortine Gonzales; Martins, Osvaldo Stella; Santos, Sandra Maria Apolinario dos; Basaglia, Fernando [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail: suani@iee.usp.br, e-mail: sgvelaz@iee.usp.br, e-mail: omartins@iee.usp.br, e-mail: sandra@iee.usp.br, e-mail: basaglia@iee.usp.br; Ushima, Ademar Hakuo [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)], e-mail: adidas@ipt.br

    2004-07-01

    The project 'Comparison Among Existing Technologies of Biomass Gasification', agreement FINEP/CT-ENERG 23.01.0695.00, is a partnership between CENBIO - The Brazilian Reference Center on Biomass, BUN - Biomass Users Network of Brazil, IPT - Technology Research Institute and UA - Amazon University. The main objective of this project is to study a biomass gasifier system and its implantation, using a sustainable way, at isolated communities in the North Region, offering an alternative to replace fossil fuel. The system is composed by a gasifier from Indian Institute of Science - IISc, that can generate 20 kW of output energy, a generator (internal combustion engine), an ashes extractor, a water cooler and treatment system, a dryer and a control panel. The project, developed at IPT, intends to evaluate the operation conditions of the gasification system: gas cleaning, electric power generation and the technology transfer to Brazil, allowing the formation of human resources in the Brazilian North region and collaborating with the national institutions from this area. (author)

  4. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  5. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  6. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny

    2017-01-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification...... process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg...... particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied...

  7. Development and operation of a 30 ton/ day gasification and melting plant for municipal solid wastes

    International Nuclear Information System (INIS)

    Jung, Hae Young; Seo, Yong-Chil; Cho, Sung-Jin; Lee, Jang-Su; Lee, Ki-Bae; Jeong, Dae-Woon; Kim, Woo-Hyun; Roh, Seon-Ah; Min, Tai-Jin

    2010-01-01

    As one of the efforts to increase recycling rate of end of life vehicles enforcing by the governmental regulation, automobile shredder residue (ASR) was considered to treat by a thermal method with converting waste to energy. Gasification and melting experimental processes of lab (1 kg/ hour) and pilot (5 ton. day) scale were installed. ASR collected from a domestic shredding company was experimented at a lab-scale and pilot-scale gasification and melting process which is similar to the shaft type gasification melting furnace. The characteristics of syngas, tar and residue (slag) generated from a conversion process (gasification and melting) were analyzed to provide the information to further utilize them as fuel and recyclable materials in scaled up plants. A series of experiments have been conducted with various air equivalent ratios (ERs), and syngas compositions, carbon conversion efficiency, heating value of syngas, yield and characteristics of slag were analyzed. Finally, slags generated from the process were recycled with various alternative technologies. In summary, energy conversion technology of ASR with the least production of residue by gasification and slag utilization has been developed. The main components in product gas were H 2 , CO, CH 4 and CO 2 ; and concentrations of C 2 H 4 and C 2 H 6 were less. This can be used as clean fuel gas whose heating value ranged from 2.5 to 14.0 MJ/ m 3 . Most of slag generated from the process can further be fabricated to valuable and usable products. Such combined technology would result in achieving almost zero waste release from ELVs. (author)

  8. Energetic use of renewable fuels. Logistics of energy carrier supply, technologies of usage, boundary conditions for economically efficient use of biomass. Proceedings; Energetische Nutzung nachwachsender Rohstoffe. Logistik der Energietraegerbereitstellung, Technologien der Energietraegernutzung, Rahmenbedingungen fuer den wirtschaftlichen Einsatz von Biomasse. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Authors of the conference reported on recent developments in utilization of renewable energy sources: resource potential of biomass, wood fuels, pollution limits, dedusting and purification of flue gas, heat recovery, straw combustion in small boilers, logistics and market of wood fuels, fluidized bed steam gasification, design of biomass-fueled power plants, organic Rankine cycle, operating experience in pilot plants. (uke)

  9. Biomass gasification in electric power production; Gaseificacao de biomassa na producao de eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P. de; Ennes, Sergio A.W. [Companhia Energetica de Sao Paulo, SP (Brazil); Corsetti, Marilena

    1992-12-31

    The main objective of this work is to evaluate the technical and economical viability of thermoelectric power generation based on biomass. The technology of gasification of sugar cane bagasse in fluidized bed and its influences in the generation or co-generation process in gas turbines is analysed. The potential of such kind of generation as well as the costs are indicated. Such potential are compared to those of the conventional technologies of co-generation using fuel oil and natural gas in the industry 10 refs., 2 figs., 4 tabs.

  10. The 7th European gasification conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The theme of the conference was 'extending resources for clean energy'. Sessions covered coal gasification, gasification of biomass and waste, hydrogen and CO{sub 2} capture and storage, and development. The poster papers are also included. Selected papers have been abstracted separately on the Coal Abstracts database.

  11. Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohammed

    2013-01-01

    Full Text Available Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites underwent two stages of decomposition during the calcination process. The X-ray diffraction and Fourier-transform infrared spectra analyses showed that thermal treatment of dolomite played a significant role in the disappearance of the CaMg(CO32 phase, producing the MgO-CaO form of dolomite. The scanning electron microscopy microphotographs of dolomite indicated that the morphological properties were profoundly affected by the calcination process, which led to the formation of a highly porous surface with small spherical particles. In addition, the calcination of dolomite led to the elimination of carbon dioxide and increases in the values of the specific surface area and average pore diameter, as indicated by surface area analysis. The results showed that calcined Malaysian dolomites have great potential to be applied as tar-cracking catalysts in the biomass gasification process based on their favorable physical properties.

  12. Syngas production by gasification of aquatic biomass with CO2/O2 and simultaneous removal of H2S and COS using char obtained in the gasification

    International Nuclear Information System (INIS)

    Hanaoka, Toshiaki; Hiasa, Shou; Edashige, Yusuke

    2013-01-01

    Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H 2 ) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO 2 /O 2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO 2 /O 2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H 2 S/N 2 , COS/N 2 , and a mixture of gases composed of CO, CO 2 , H 2 , N 2 , CH 4 , H 2 S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H 2 S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO 2 /O 2 and dry gas cleaning using self-supplied bed material. -- Highlights: • A product gas with high syngas content was produced from the gasification of gulfweed with CO 2 /O 2 . • The syngas content increased with decreasing the equivalence ratio. • The syngas content was maximized at 67.6% at an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%. • The char simultaneously removed H 2 S and COS from a mixture of gases at 450 °C efficiently

  13. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  14. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed...

  15. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  16. Research into Biomass and Waste Gasification in Atmospheric Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Skala, Zdenek; Ochrana, Ladislav; Lisy, Martin; Balas, Marek; Kohout, Premysl; Skoblja, Sergej

    2007-07-01

    Considerable attention is paid in the Czech Republic to renewable energy sources. The largest potential, out of them all, have biomass and waste. The aim therefore is to use them in CHP in smaller units (up to 5MWel). These are the subject of the research summarized in our article. The paper presents results of experimental research into gasification in a 100 kW AFB gasifier situated in Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, and fitted with gas cleaning equipment. Within the research, study was carried out into gas cleaning taking primary measures in the fluidized bed and using hot filter, metal-based catalytic filter, and wet scrubber. Descriptions and diagrams are given of the gasifier and new ways of cleaning. Results include: Impact of various fuels (farming and forest wastes and fast-growing woods and culm plants) on fuel gas quality. Individual kinds of biomass have very different thermal and physical properties; Efficiency of a variety of cleaning methods on content of dust and tars and comparison of these methods; and, Impact of gasifier process parameters on resultant gas quality. (auth)

  17. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  18. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  19. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  20. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  1. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    Mitchell, C.P.; Watters, M.P.

    1995-01-01

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  2. Influence of forest biomass grown in fertilized soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K. [VTT Energy, Jyvaeskylae (Finland)

    1999-07-01

    Project has started 1995 by determination of fertilized areas in Finland, Portugal and Spain. According to the results obtained from the analysis proper amount of pine and eucalyptus samples were selected for combustion and gasification tests. After that atmospheric and pressurized combustion and gasifications tests, including few series of gas clean up tests, have been performed by INETI and VTT. The 1 MW-scale long term test, were conducted by CIEMAT. The results are indicating that fertilization increases the potassium content in trees up to 50% or more depending upon the climate and conditions in soil. Alkali release seems to be an inverse function of the pressure indicating that the highest alkali release take place under atmospheric conditions corresponding to 111 mg/Nm{sup 3} which is over 25 wt.-% of total potassium in pine and 214 mg/Nm{sup 3} which is 32 wt.-% of total potassium in eucalyptus as received in the 1 MW ABFBC-tests. The potassium release is higher than allowed for the gas turbine process. Therefore the flue gas need to be cleaned up before it enters the gas turbine. For alkali removal at the operation conditions in oxidizing environment, the sorbent technology looks promising. According to the gasification tests the alkali release seems to be somewhat lower. Using for example filter system such as ceramic cancel filter the alkali emissions can be kept below requirements for gas turbine process using temperatures between 460-480 deg C. The research conducted here shows that fertilized biomass accumulate nutrients such potassium more than the non fertilized biomasses. Also the soil conditions has an effect to that. Due to the fact that alkalies in biomass are bonded differently than that of coal, the release is also higher. It could be shown that in combined gas turbine process the release of potassium is too high and need to be removed from the flue gas. It could also be shown that alkalies can be captured between 95-100 % at high temperature

  3. Saccharification Performances of Miscanthus at the Pilot and Miniaturized Assay Scales: Genotype and Year Variabilities According to the Biomass Composition

    Directory of Open Access Journals (Sweden)

    Nassim Belmokhtar

    2017-05-01

    Full Text Available HIGHLIGHTSBiomass production and cell wall composition are differentially impacted by harvesting year and genotypes, influencing then cellulose conversion in miniaturized assay.Using a high-throughput miniaturized and semi-automated method for performing the pretreatment and saccharification steps at laboratory scale allows for the assessment of these factors on the biomass potential for producing bioethanol before moving to the industrial scale.The large genetic diversity of the perennial grass miscanthus makes it suitable for producing cellulosic ethanol in biorefineries. The saccharification potential and year variability of five genotypes belonging to Miscanthus × giganteus and Miscanthus sinensis were explored using a miniaturized and semi-automated method, allowing the application of a hot water treatment followed by an enzymatic hydrolysis. The studied genotypes highlighted distinct cellulose conversion yields due to their distinct cell wall compositions. An inter-year comparison revealed significant variations in the biomass productivity and cell wall compositions. Compared to the recalcitrant genotypes, more digestible genotypes contained higher amounts of hemicellulosic carbohydrates and lower amounts of cellulose and lignin. In contrast to hemicellulosic carbohydrates, the relationships analysis between the biomass traits and cellulose conversion clearly showed the same negative effect of cellulose and lignin on cellulose digestion. The miniaturized and semi-automated method we developed was usable at the laboratory scale and was reliable for mimicking the saccharification at the pilot scale using a steam explosion pretreatment and enzymatic hydrolysis. Therefore, this miniaturized method will allow the reliable screening of many genotypes for saccharification potential. These findings provide valuable information and tools for breeders to create genotypes combining high yield, suitable biomass composition, and high saccharification

  4. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Barun Kumar Das

    2014-01-01

    Full Text Available Bangladesh is an agriculture based country where more than 65 percent of the people live in rural areas and over 70% of total primary energy consumption is covered by biomass, mainly agricultural waste and wood. Only about 6% of the entire population has access to natural gas, primarily in urban areas. Electricity production in Bangladesh largely depends on fossil fuel whose reserve is now under threat and the government is now focusing on the alternating sources to harness electricity to meet the continuous increasing demand. To reduce the dependency on fossil fuels, biomass to electricity could play a vital role in this regard. This paper explores the biomass based power generation potential of Bangladesh through gasification technology—an efficient thermochemical process for distributed power generation. It has been estimated that the total power generation from the agricultural residue is about 1178 MWe. Among them, the generation potential from rice husk, and bagasses is 1010 MWe, and 50 MWe, respectively. On the other hand, wheat straw, jute stalks, maize residues, lentil straw, and coconut shell are also the promising biomass resources for power generation which counted around 118 MWe. The forest residue and municipal solid waste could also contribute to the total power generation 250 MWe and 100 MWe, respectively.

  5. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  6. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  7. Economic viability of the construction and operation of a biomass gasificator for poultry houses heating

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio Luiz; Silva, Jadir Nogueira da; Tinoco, Ilda de Fatima Ferreira; Martin, Samuel; Melo, Lucas D.; Bueno, Mateus [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: fzanatta@vicosa.ufv.br

    2008-07-01

    In all poultry farms, at least in the first days of life of the chicken, it is necessary to heat the environment to obtain a good development of the chicken and good economics results. However, this additional heat generation is sometimes neglected or not well executed, because of the costs that this practice could bring. This research has the objective of analyze the costs of construction and operation of a Biomass Gasificator for Poultry Houses Heating in comparison with a direct furnace system. The fuel used in both systems was firewood of eucalyptus. For so much, economic analyzes was make considering the costs of the gasification systems implementation in substitution of the traditional system used in the company (direct furnace system). For the viability the adopted method was the partial budget and the complementary investments were analyzed through the cash flow elaboration and of determination of indicator of economic feasibility. (author)

  8. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  9. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: pilot-scale pyrolysis of synthetic hyperaccumulator biomass

    International Nuclear Information System (INIS)

    Koppolu, Lakshmi; Prasad, Ramakrishna; Davis Clements, L.

    2004-01-01

    Synthetic hyperaccumulator biomass (SHB) feed impregnated with Ni, Zn or Cu was used to conduct six experiments in a pilot-scale, spouted bed gasifier. Two runs each using corn stover with no metal added (blank runs) were also conducted. The reactor was operated in an entrained mode in an oxygen free (N 2 ) environment at 873 K and 1 atm. The apparent gas residence time in the heated zone of the pilot-scale reactor was 1.4 s at 873 K. The material balance closure for the eight experiments on an N 2 -free basis varied between 79% and 92%. Nearly 99% of the metal recovered in the product stream was concentrated in the char formed by pyrolyzing the SHB in the reactor. The metal concentration in the char varied between 6.6% and 16.6%, depending on the type of metal and whether the char was collected in the cyclone or ashbox. The metal component was concentrated by 3.2-6 times in the char, compared to the feed

  10. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.F.; Roman, S.; Bragado, D. [Departamento de Fisica Aplicada, University of Extremadura, 06071 (Spain); Calderon, M. [Departamento de Electronica e Ingenieria Electromecanica, University of Extremadura, 06071 (Spain)

    2008-08-15

    Hydrogen could be the energy carrier of the next world scene provided that its production, transportation and storage are solved. In this work the production of an hydrogen-rich gas by air/steam and air gasification of olive oil waste was investigated. The study was carried out in a laboratory reactor at atmospheric pressure over a temperature range of 700 - 900 C using a steam/biomass ratio of 1.2 w/w. The influence of the catalysts ZnCl{sub 2} and dolomite was also studied at 800 and 900 C. The solid, energy and carbon yield (%), gas molar composition and high heating value of the gas (kJ NL{sup -} {sup 1}), were determined for all cases and the differences between the gasification process with and without steam were established. Also, this work studies the different equilibria taking place, their predominance in each process and how the variables considered affect the final gas hydrogen concentration. The results obtained suggest that the operating conditions were optimized at 900 C in steam gasification (a hydrogen molar fraction of 0.70 was obtained at a residence time of 7 min). The use of both catalysts resulted positive at 800 C, especially in the case of ZnCl{sub 2} (attaining a H{sub 2} molar fraction of 0.69 at a residence time of 5 min). (author)

  11. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    Science.gov (United States)

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  12. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil

    International Nuclear Information System (INIS)

    Maneerung, Thawatchai; Kawi, Sibudjing; Wang, Chi-Hwa

    2015-01-01

    Highlights: • CaO catalyst was successfully developed from wood gasification bottom ash. • CaCO 3 in bottom ash can be converted to CaO catalyst by calcination. • CaO catalysts derived from bottom ash exhibited high activity towards transesterification. • CaO catalysts derived from bottom ash can be reutilized up to four times. - Abstract: The main aim of this research is to develop environmentally and economically benign heterogeneous catalysts for biodiesel production via transesterification of palm oil. For this propose, calcium oxide (CaO) catalyst has been developed from bottom ash waste arising from woody biomass gasification. Calcium carbonate was found to be the main component in bottom ash and can be transformed into the active CaO catalyst by simple calcination at 800 °C without any chemical treatment. The obtained CaO catalysts exhibit high biodiesel production activity, over 90% yield of methyl ester can be achieved at the optimized reaction condition. Experimental kinetic data fit well the pseudo-first order kinetic model. The activation energy (E a ) of the transesterification reaction was calculated to be 83.9 kJ mol −1 . Moreover, the CaO catalysts derived from woody biomass gasification bottom ash can be reutilized up to four times, offering the efficient and low-cost CaO catalysts which could make biodiesel production process more economic and environmental friendly

  13. FY 1991 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study/investigational study of technology/study of the integrated coal gasification combined cycle power system; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen, sekitan gaska fukugo hatsuden system kento hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, the following were conducted: element study of a 200t/d entrained bed coal gasification pilot plant, survey of technology of the coal gasification power generation, study of the practical scale IGCC, etc. The FY 1991 results were summarized. In the gasification test using 2t/d furnace equipment, evaluation test on the test coal for pilot plant was made. In the study of gas turbine combustor for demonstration machine use, measuring duct was fabricated for measurement of combustion gas temperature/pressure, etc. In the simulational study of the total system of combined cycle power generation, review/modification of part of the simulation model and detailing of the model were conducted by comparison with the data on pilot plant operation. In the technology study, joint technology conferences were held for discussions between Japan and Australia, Japan and the U.S., and Japan and Canada. As to the practical scale IGCC, the initially planned output capacity and thermal efficiency were studied based on the knowledge/information obtained through the R and D on the 200t/d pilot plant. (NEDO)

  14. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  15. Report on the gasification technology sub-committee of the coal gasification committee in fiscal 1992; 1992 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper reports the coal gasification committee and the gasification technology sub-committee in fiscal 1992. The paper summarizes the report mainly on the data distributed at the gasification technology sub-committee meetings in fiscal 1992. In developing the coal utilizing hydrogen manufacturing technology, the trial operation was started on the pilot plant in fiscal 1991, wherein two comprehensive trial operations were carried out on gasification of 10 kg/cm{sup 2} to extract troubles throughout the whole system, smooth temperature rise and pressure rise were performed, and coal and oxygen were supplied into a furnace to have verified ignition of the coal. Furthermore, one trial operation for gasification of 30 kg/cm{sup 2} was executed. Fiscal 1992 will continue the gasification test of 30 kg/cm{sup 2}. In addition, a test on measures to improve efficiency purposed for gasification efficiency enhancement is carried out, and so is a coal type diversification test purposed to expand coal type applicability. A study was performed by using a small device as a pilot plant supporting study. Prototype fabrication, development, and in-plant tests were made on materials for plant devices (refractories and ceramics). The paper also describes the current status of HYCOL pilot plant operation study. Discussions were given also on heat balance of a gasification furnace. (NEDO)

  16. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Scacchia, Federica

    2005-01-01

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  17. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  18. Status of health and environmental research relative to coal gasification 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  19. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  20. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S P [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R L; Craig, K R [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  1. Thermal gasification of biomass technology development in the U.S.A

    International Nuclear Information System (INIS)

    Babu, S.P.; Bain, R.L.; Craig, K.R.

    1996-01-01

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  2. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.P. [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R.L.; Craig, K.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  3. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  4. Computational simulation of the biomass gasification process in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Rojas Mazaira, Leorlen Y.; Gamez Rodriguez, Abel; Andrade Gregori, Maria Dolores; Armas Cardona, Raul

    2009-01-01

    In an agro-industrial country as Cuba many residues of cultivation like the rice and the cane of sugar take place, besides the forest residues in wooded extensions. Is an interesting application for all this biomass, the gasification technology, by its high efficiency and its positive environmental impact. The computer simulation appears like a useful tool in the researches of parameters of operation of a gas- emitting, because it reduces the number of experiments to realise and the cost of the researches. In the work the importance of the application of the computer simulation is emphasized to anticipate the hydrodynamic behavior of fluidized bed and of the process of combustion of the biomass for different residues and different conditions of operation. A model using CFD for the simulation of the process of combustion in a gas- emitting of biomass sets out of fluidized bed, the hydrodynamic parameters of the multiphasic flow from the elaboration of a computer simulator that allows to form and to vary the geometry of the reactor, as well as the influence of the variation of magnitudes are characterized such as: speed, diameter of the sand and equivalent reason. Experimental results in cylindrical channels appear, to complete the study of the computer simulation realised in 2D. (author)

  5. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  6. FY 1994 report on the Coal Gasification Committee; 1994 nendo sekitan gasuka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper reported activities of the Coal Gasification Committee in FY 1994. The 1st Coal Gasification Committee Meeting was held on May 18,1994, the 2nd Meeting on October 28, 1994, and the 3rd Meeting on February 21, 1995. Report/discussion were made about activities of each section meeting and the progress of the development of coal gasification technology. For the 50 t/d HYCOL pilot plant, disassembly examination was conducted. As a result of the examination, the high-temperature gas corrosion caused by gas product against metal members was negligible, but against members in the wet corrosion environment, SCC, intergranular corrosion and pitting corrosion were generated. About members used in the high-temperature environment, it was made clear that Ir was applicable to thermowell, high chromia-base sintered products were applicable to non-cooling hearth tapping materials, and high chromia-base indeterminate-formed materials were applicable to water-cooled fireproofing wall. Based on the data obtained through the operational study of a 50 t/d pilot plant, conceptual design was made of a coal gasification hydrogen production plant of a scale of demonstration plant. (NEDO)

  7. Biomass gasification and fuel cells: system with PEM fuel cell; Gaseificacao de biomassa e celula a combustivel: sistema com celula tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, Alexandre; Lobkov, Dmitri D.; Lopes, Daniel Gabriel; Rodrigues, Jean Robert Pereira [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica], e-mail: asordi@fem.unicamp.br, e-mail: lobkov@fem.unicamp.br, e-mail: danielg@fem.unicamp.br, e-mail: jrobert@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin], e-mail: Lh2ennio@ifi.unicamp.br

    2006-07-01

    The objective of this paper is to present the operation flow diagram of an electricity generation system based on the biomass integrated gasification fuel cell of the type PEMFC (Proton Exchange Membrane Fuel Cell). The integration between the gasification and a fuel cell of this type consists of the gas methane (CH4) reforming contained in the synthesis gas, the conversion of the carbon monoxide (CO), and the cleaning of the gaseous flow through a PSA (Pressure Swing Adsorption) system. A preliminary analysis was carried out to estimate the efficiency of the system with and without methane gas reforming. The performance was also analyzed for different gasification gas compositions, for larger molar fractions of hydrogen and methane. The system electrical efficiency was 29% respective to the lower heating value of the gasification gas. The larger the molar fraction of hydrogen at the shift reactor exit, the better the PSA exergetic performance. Comparative analysis with small gas turbines exhibited the superiority of the PEMFC system. (author)

  8. Assessment of the gasification characteristics of some agricultural and forest industry residues using a laboratory gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R O; Goss, J R

    1979-01-01

    Gasification means here the reaction of solid fuels with air to yield a low calorific value gas, suitable as a fuel. The solid fuels considered are agricultural and forest industry residues. A laboratory-scale downdraft gasifier was used to study the gasification properties of certain biomass fuels. The grate is the most critical part of the gasifier. Two designs were tested: a rotating eccentric grate and a perforated steel basket. The latter was specifically designed for use with granular fuels such as mulled walnut shells. Batch tests were performed with different biomass fuels and at varying fuel consumption rates. The composition of the generated gas and the mass and heat balances were determined. Substantial closure errors are reported. These are considered to be the result of tars in the gas which were not accounted for. Yields varied from 75.5% in the case of walnut shells to 46% for rice hulls. With a biomass fuel consisting of a mixture of two sizes of walnut shells, yields in excess of 80% were recorded at high fuel consumption rates. Some practical aspects concerning the gasification of biomass fuels and problems associated with cotton gin trash, rice hulls, and wood residues are discussed.

  9. Gasification of waste. Summary and conclusions of twenty-five years of development

    Energy Technology Data Exchange (ETDEWEB)

    Rensfelt, Erik [TPS Termiska Processer AB, Nykoeping (Sweden); Oestman, Anders [Kemiinformation AB, Stockholm (Sweden)

    2000-04-01

    An overview of nearly thirty years development of waste gasification and pyrolysis technology is given, and some major general conclusions are drawn. The aim has been to give new developers an overview of earlier major attempts to treat MSW/RDF with thermochemical processes, gasification or pyrolysis. Research work in general is not covered, only R and D efforts that have led to substantial testing in pilot scale or demonstration. For further details, especially related to ongoing R and D, readers are referred to other recent reviews. The authors' view is that gasification of RDF with appropriate gas cleaning can play an important role in the future, for environmentally acceptable and efficient energy production. A prerequisite is that some of the major mistakes can be avoided, such as: (1) too rapid scale-up without experimental base, (2) unsuitable pretreatment of MSW to RDF and poor integration with material recycling, and (3) too limited gas/flue gas cleaning.

  10. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  11. An ecological and economic assessment of absorption-enhanced-reforming (AER) biomass gasification

    International Nuclear Information System (INIS)

    Heffels, Tobias; McKenna, Russell; Fichtner, Wolf

    2014-01-01

    Highlights: • Analysis of biomass gasification with new absorption enhanced reforming technology. • Energy- and mass balances for three different process configurations to produce heat, SNG and/or hydrogen. • Ecological (based on LCA) and economic (based on production costs) assessment of the technology. • Comparison of results with existing operational plants producing similar products. - Abstract: Biomass gasification with absorption enhanced reforming (AER) is a promising technology to produce a hydrogen-rich product gas that can be used to generate electricity, heat, substitute natural gas (SNG) and hydrogen (5.0 quality). To evaluate the production of the four products from an ecological and economic point of view, three different process configurations are considered. The plant setup involves two coupled fluidized beds: the steam gasifier and the regenerator. Subsequently the product gas can be used to operate a CHP plant (configuration one), be methanised (configuration two) or used to produce high-quality hydrogen (configuration three). Regarding ecological criteria, the global warming potential, the acidification potential and the cumulative energy demand of the processes are calculated, based on a life-cycle assessment approach. The economic analysis is based on the levelized costs of energy generation (LCOE). The AER-based processes are compared to conventional and renewable reference processes, which they might stand to substitute. The results show that the AER processes are beneficial from an ecological point of view as they are less carbon intensive (mitigating up to 800gCO 2 -eq.kW -1 h el -1 ), require less fossil energy input (only about 0.5kWh fossil kW -1 h el -1 ) and have a comparable acidification potential (300–900mgSO 2 -eq.kW -1 h el -1 ) to most reference processes. But the results depend heavily on the extent to which excess heat can be used to replace conventional heating processes, and hence on the exact location of the plant

  12. Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysis presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.

  13. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modelling of gasification using deferent kinds of biomass in a downdraft reactor

    International Nuclear Information System (INIS)

    Rabell Ferran, Santiago J.; Brito Sauvanell, Angel L

    2011-01-01

    In this work is exposed the methodology of realization of a equilibrium model, capable to predict the composition of the generated gas, its caloric value, the cold and hot efficiency and the quantity of air per quantity of biomass in a downdraft reactor. For this model's realization it was considered that all the chemical reactions that happen in the gasification area are in thermodynamic equilibrium, doesn't considered tar formation, and alone it is considered the methane formation(CH4), it is not considered formation of CxHy. To make more practical and more accessible the model was carried out a software in Excel. The work use as fuel, wood, paddy husk, paper and solid waste. The behavior of generated gases was studied with the variation of the content of humidity. Were determined the calorific value of generated gas, and the value of the cold and hot efficiency for each biomass varying the content of humidity of the same one, where it shows for 20% of humidity, for the wood a value of 5,65MJ/Nm3, for the paddy husk is of 3,88 MJ/Nm3, for the paper it is of 5,83 MJ/Nm3, and for the waste it is of 4,36 MJ/Nm3; and the cold and hot efficiency for wood 30,16%, and 60,37%; for paddy husk 25,43% and 40,83%, paper 33,40% and 63,28%; and waste 22,18% and 41,35% respectively. It was also determined the gravimetric relationship of necessary air/ biomass for each biomass. (author)

  15. The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2015-01-01

    This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO 2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions. Utilising excess heat for power generation or steam delivery for industrial use contributes to lower emissions from the system, whereas delivery of district heating can contribute to either increased or decreased emissions. The production technology of the replaced heat and the carbon intensity of the reference power production were decisive for the benefits of the heat deliveries. Finally, the storage of CO 2 separated from the syngas upgrading and from the flue gases of the gasifier can nearly double the GHG emission reduction potential of the bio-SNG system. - Highlights: • Greenhouse gas emission evaluation of gasification-based bio-SNG system is made. • The impact of biomass supply chains and utilisation of excess heat is in focus. • Locally produced woodchips result in lowest overall greenhouse gas emissions. • Regionally produced pellets have small impact on overall greenhouse gas emissions. • Storing separated CO 2 from the bio-SNG process reduces the GHG impact significantly.

  16. Technical evaluation of biomass gasification technology integrated with combined cycle using bagasse as fuel; Avaliacao tecnica da tecnologia de gaseificacao de biomassa integrada a ciclos combinados utilizando bagaco como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Silva; Venturini, Osvaldo Jose; Lora, Electo Silva [Universidade Federal de Itajuba (NEST/UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida], email: pablo.silvaortiz@gmail.com; Campo, Andres Perez [Universidade Automona de Bucaramanga (UNAB) (Colombia). Fac. de Engenharia Fisico- Mecanica, Engenharia em Energia

    2010-07-01

    Biomass Integrated Gasification Combined Cycle (BIGCC) was identified as an advanced technology with potential to be competitive for electricity generation. The BIGCC technology uses biomass and the sub products of some industrial sectors processing, like sugar cane, as feedstock. The current Brazilian energy matrix is mainly based on renewable generation sources, making it important to assess these gasification technologies in the production of sugar, ethanol and electricity. In this work, a technical evaluation of the technologies incorporated in BIGCC power plants is done: the gasification process and the combined cycle power plant. On the other hand, the generated costs of these systems are analyzed, and the potential for implementation in Brazil plants from sugar cane bagasse is studied, in which a 10% increase in efficiency is obtained. (author)

  17. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  19. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    Science.gov (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk

    Energy Technology Data Exchange (ETDEWEB)

    Waldheim, Lars; Larsson, Eva K [TPS Termiska Processer, Nykoeping (Sweden)

    2008-12-15

    This subproject is limited to applications with gas turbines or engines from approximately 1 MWe and firing of gas in a boiler either as indirect cofiring or as separate firing of gas from waste gasification. Gasification with gas engine, BIG-ICE (Biomass Integrated Gasification Internal-Combustion Engine) is realized in approximately 10 plants in Europe between 1 and 7 MWe. The gas needs to be cleaned from particles and tar before it is fed to the engine. A number of different gasifiers and gas cleaning technologies are applied in these prototypes, and in certain cases a second generation is being built. Gas engines from GE Jenbacher are most common, but there are also other producers with engines for low-calorific-value gas. The exhausts from engines must, unlike gas turbines, be cleaned catalytically, but emissions of hydrocarbons in particular are still higher than from gas turbines. It is possible to increase the electricity generation by applying a 'bottoming cycle' in the form of a steam or an ORC cycle. Such a plant with ORC has been started in Austria this year. During the 1990's expectations were high concerning the development of biomass gasification with gas turbine in a combined cycle BIG-CC (Biomass Integrated Gasification Combined Cycle) towards commercialisation. Two demonstration plants were built for the same gas turbine model, Siemens SGT 100 (earlier Typhoon); Vaernamo with pressurised gasification and ARBRE in Eggborough, England, with atmospheric gasification. The atmospheric technology has basically the same demands on gas cleaning as in the engine application, but downstream the gas is compressed to the pressure required by the gas turbine. In pressurised gasification, the gasifier pressure is set by the gas turbine. The gas is not cooled below 350-400 deg C and is cleaned in a high-temperature filter. Despite successful demonstration in Vaernamo, no more plants have been built. The ARBRE plant was never put into regular operation because of

  1. Preparation for full scale demonstration of an air staged gasifier plant. Technical project development; For combined heat and power production with wood chips; Forberedelse til fuldskala demonstration af trinopdelt forgasningsanlaeg. Teknisk projektudvikling. Delrapport

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.

    2011-04-15

    The project has aimed to further develop the technology for staged biomass gasification and establish an organizational and financial model to ensure that the technology can be introduced on the market. This report describes the technique in an upcoming demonstration plant. A complete planning and design of a demonstration plant with a capacity of 300 kW electric power and 700 kW heat was prepared. That is four times more than the pilot plant at Graested District Heating (Castor plant) can produce. A full scale demonstration plant with bio-gasification technology for wood chips will be established and put into operation in 2012. (ln)

  2. Experimental Gasification of Biomass in an Updraft Gasifier with External Recirculation of Pyrolysis Gases

    Directory of Open Access Journals (Sweden)

    Adi Surjosatyo

    2014-01-01

    Full Text Available The updraft gasifier is a simple type of reactor for the gasification of biomass that is easy to operate and has high conversion efficiency, although it produces high levels of tar. This study attempts to observe the performance of a modified updraft gasifier. A modified updraft gasifier that recirculates the pyrolysis gases from drying zone back to the combustion zone and gas outlet at reduction zone was used. In this study, the level of pyrolysis gases that returned to the combustion zone was varied, and as well as measurements of gas composition, lower heating value and tar content. The results showed that an increase in the amount of pyrolysis gases that returned to the combustion zone resulted in a decrease in the amount of tar produced. An increase in the amount of recirculated gases tended to increase the concentrations of H2 and CH4 and reduce the concentration of CO with the primary (gasification air flow held constant. Increasing the primary air flow tended to increase the amount of CO and decrease the amount of H2. The maximum of lower heating value was 4.9 MJ/m3.

  3. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  4. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, sandra@iee.usp.br, blora@iee.usp.br

    2006-07-01

    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  5. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  6. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  7. Gasification characteristics of auto shredder residue

    International Nuclear Information System (INIS)

    Navee, S.; Ramzan, N.

    2011-01-01

    Given the large volume of used tyre waste generated each year it is imperative that suitable re-use and disposal techniques are developed for dealing with this problem; presently these include rethreading, reprocessing for use as safe playground and sports surfaces, use as noise reduction barriers and utilisation as a fuel source. This paper reports on pilot scale studies designed to investigate the suitability of automotive waste for energy recovery via gasification. The study was carried out into auto shredder residue, which is a mixture of three distinct waste streams: tyres, rubber/plastic and general automotive waste. The tests included proximate, ultimate and elemental analysis, TGA, as well as calorific value determinations. In addition, the waste was tested in a desktop gasifier, and analysis was carried out to determine the presence and type of combustible gases. It was concluded that tyre waste and rubber/plastic waste are quite suitable fuels for gasification. (author)

  8. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  9. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    Science.gov (United States)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  10. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    Highlights: ► This study evaluates the effects of co-gasification of MSW with MSW bottom ash. ► No significant difference between MSW treatment with and without MSW bottom ash. ► PCDD/DFs yields are significantly low because of the high carbon conversion ratio. ► Slag quality is significantly stable and slag contains few hazardous heavy metals. ► The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by

  11. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  12. FY 1988 report on the committee of the Coal Gasification Committee; 1988 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    The paper reported activities of the committee of the Coal Gasification Committee in FY 1988. In the 1st committee meeting, report/discussion were made on the outline of the FY 1988 research plan on the coal gasification technology development. The distributed data were those on the development of entrained bed coal gasification power generation plant (the state of the development of a 200t/d gasification power generation pilot plant), the results of the operation using entrained bed coal gasification equipment, development of coal utilization hydrogen production technology (design/construction of pilot plant) and development of coal utilization hydrogen production technology (support study of pilot plant, study using small equipment). In the 2nd committee meeting, report/discussion were made on activities of sections such as the gasification power generation section and gasification technology section and the state of progress of the coal gasification technology development. The distributed data were those on the development of an entrained bed coal gasification power generation plant, support study of the development of an entrained bed coal gasification power generation plant, etc. (NEDO)

  13. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Directory of Open Access Journals (Sweden)

    Amirabedin Ehsan

    2014-12-01

    Full Text Available Trigeneration or Combined Cooling, Heat and Power (CCHP which is based upon combined heat and power (CHP systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  14. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  15. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  16. Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds.

    Science.gov (United States)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm³. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm³, as compared to nearly double (4.95 MJ/Nm³) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm³ was recorded for higher oxidation zone temperature values.

  17. FY 1989 report on the section meeting of gasification technology of the Coal Gasification Committee; 1989 nendo sekitan gasuka iinkai gasuka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The paper reported activities of the Coal Gasification Committee in FY 1989. The 1st Coal Gasification Committee Meeting was held on July 21,1989, and report/discussion were made about an outline of the FY 1989 research plan. In the 2nd Meeting, report/discussion were made about activities of each of the section meetings and the progress of the development of coal gasification technology. In FY 1998, as the 4th design/construction of pilot plant, manufacture/installation were conducted of a part (equipment of coal supply system/char recycle system) of the gasification process equipment/facilities. As to recycle gas facilities, manufacture of equipment/facilities was conducted. Concerning a part of the pipe rack/central control panel/electric panel, manufacture/installation of equipment were made. In the support study of a pilot plant (trial development of materials for plant use equipment), refractory was studied in terms of the evaluation of durability of furnace materials against liquefaction residue slag, study of furnace materials responsive to liquefaction residue and gasification of high ash melting point coal, etc. (NEDO)

  18. Syngas production from downdraft gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2013-01-01

    Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H 2 and CH 4 . Average syngas lower heating value of 5.2 MJ/Nm 3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm 3 and 5.5 MJ/Nm 3 , and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

  19. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  20. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  1. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas......Wh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214$/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity...

  2. Report for fiscal 1994 by gasification technology subcommittee, Coal Gasification Committee; 1994 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As the result of a RUN-9 operation in the research on technologies for hydrogen production from coal and for pilot plants, it is found that the Muswellbrook, Datong, and Blair Athol coals are all suitable for gasification in pilot plants. Their handlability is considerably improved when the grain sizes after crushing are allowed to remain coarse (with the Blair Athol coal still retaining some disadvantage). A concept design is prepared for a HYCOL (hydrogen from coal) process demonstration plant. The reference coal is an imported coal similar to the Taiheiyo coal, and the hydrogen production target is set at 1-million m{sup 3}N/d (590t/d in terms of Taiheiyo coal) and hydrogen purity at 95% or higher. The whole process consists of coal gasification (with oxygen serving as gasification agent), dedusting, conversion to CO, desulfurization and decarboxylation (recovery of sulfur), and methanation. The gasification furnace is a 1-chamber entrained bed type with a 2-stage gyration flow. Dried and pulverized coal is conveyed aboard an air flow into the gasification furnace, where it is thrown into partial combustion reaction with the gasification agent for gasification in a high-temperature zone (1,500-1,600 degrees C), and the ash is taken out as slag. The generated gas is cooled in a heat recovery boiler, dedusted in a cyclone dust filter, and then forwarded to the washing unit. (NEDO)

  3. Small scale combined woodgas power plant

    International Nuclear Information System (INIS)

    Gulbis, V.

    2003-01-01

    As a first attempt to introduce biomass gasification technology in Latvia at the Faculty of Engineering of Latvia University of Agriculture an integral small scale combined heat and power (CHP) system based on a used Russian-made diesel-alternator set with electrical output 100 kWe was developed. The diesel is converted to dual fuel gas engine, using producer gas as the main fuel and gas oil as pilot fuel. To get sufficiently clean (tar content ≤ 250 mg/m 3 ) woodgas for using in IC engine a downdraft type of gasifier was chosen designed and constructed on the IMBERT gasifier principles. The test runs of the first experimental model showed that the engine does not develop expected power because of high resistance of gasifier and gas cleaning system does not work sufficiently enough. There was rather high level of tar content in woodgas because the temperature in the reduction zone was low. Calculations were carried out and new technological scheme of gasification system was worked out, introducing innovative ideas aimed on improving the working parameters (author)

  4. Biomass-based gasifiers for internal combustion (IC) engines—A ...

    Indian Academy of Sciences (India)

    biomass is converted into a combustible producer gas. ..... with gasification efficiency, increased with the increase in gas flow rate. .... Livingston W R 2007 Report on Biomass ash characteristics and behaviour in combustion, gasification.

  5. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-01

    The main constituents rendering the engine use of gas produced from biomass are the tar content of the gases (condensing hydrocarbons), which cause problems for pipings, nozzles, and control of combustion. Purification methods, based on catalytic cracking of tars are investigated in the research in order to eliminate these problems. The target of the project is to demonstrate the developed gasification/gas purification process with engine test using PDU-scale equipment. Impurities of biomasses and biomass wastes (alkalis, chlorine, heavy metals), and the ash melting properties restrict in many cases the combined utilisation of biomasses and coal in power plant boilers. The second main task of this research is to investigate the removal of the problematic gas and ash components from the product gas. The sufficient degree of purification should be achieved by as simple and as cheap purification methods as possible. The main tasks of the first year of the project were (a) determination of the dimensioning characteristics of ambient pressure PDU scale cell-catalyst reactor (tests with laboratory-scale equipment), designing and construction of the reactor, (b) to investigate the operation of a cell-catalyst in purification of pre-cracked down-draft gasification gas, (c) acquisition of dimensioning data for dolomite-cracker based on fluidized bed principle, and (d) gasification of the Dutch building demolition waste and Danish straw, and the purification tests with the gases

  6. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    Science.gov (United States)

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inventory of future power and heat production technologies. Partial report Gasification with gas turbine/engine for power plants; Incl. English lang. appendix of 24 p. titled 'Status of large-scale biomass gasification for power production'; Inventering av framtidens el och vaermeproduktionstekniker. Delrapport Foergasning med gasturbin/motor foer kraftvaerk

    Energy Technology Data Exchange (ETDEWEB)

    Waldheim, Lars; Larsson, Eva K. (TPS Termiska Processer, Nykoeping (Sweden))

    2008-12-15

    This subproject is limited to applications with gas turbines or engines from approximately 1 MWe and firing of gas in a boiler either as indirect cofiring or as separate firing of gas from waste gasification. Gasification with gas engine, BIG-ICE (Biomass Integrated Gasification Internal-Combustion Engine) is realized in approximately 10 plants in Europe between 1 and 7 MWe. The gas needs to be cleaned from particles and tar before it is fed to the engine. A number of different gasifiers and gas cleaning technologies are applied in these prototypes, and in certain cases a second generation is being built. Gas engines from GE Jenbacher are most common, but there are also other producers with engines for low-calorific-value gas. The exhausts from engines must, unlike gas turbines, be cleaned catalytically, but emissions of hydrocarbons in particular are still higher than from gas turbines. It is possible to increase the electricity generation by applying a 'bottoming cycle' in the form of a steam or an ORC cycle. Such a plant with ORC has been started in Austria this year. During the 1990's expectations were high concerning the development of biomass gasification with gas turbine in a combined cycle BIG-CC (Biomass Integrated Gasification Combined Cycle) towards commercialisation. Two demonstration plants were built for the same gas turbine model, Siemens SGT 100 (earlier Typhoon); Vaernamo with pressurised gasification and ARBRE in Eggborough, England, with atmospheric gasification. The atmospheric technology has basically the same demands on gas cleaning as in the engine application, but downstream the gas is compressed to the pressure required by the gas turbine. In pressurised gasification, the gasifier pressure is set by the gas turbine. The gas is not cooled below 350-400 deg C and is cleaned in a high-temperature filter. Despite successful demonstration in Vaernamo, no more plants have been built. The ARBRE plant was never put into regular

  8. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  9. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  10. Upgrading of syngas derived from biomass gasification: A thermodynamic analysis

    International Nuclear Information System (INIS)

    Haryanto, Agus; Fernando, Sandun D.; Pordesimo, Lester O.; Adhikari, Sushil

    2009-01-01

    Hydrogen yields in the syngas produced from non-catalytic biomass gasification are generally low. The hydrogen fraction, however, can be increased by converting CO, CH 4 , higher hydrocarbons, and tar in a secondary reactor downstream. This paper discusses thermodynamic limits of the synthesis gas upgrading process. The method used in this process is minimization of Gibbs free energy function. The analysis is performed for temperature ranges from 400 to 1300 K, pressure of 1-10 atm (0.1-1 MPa), and different carbon to steam ratios. The study concludes that to get optimum H 2 yields, with negligible CH 4 and coke formation, upgrading syngas is best practiced at a temperature range of 900-1100 K. At these temperatures, H 2 could be possibly increased by 43-124% of its generally observed values at the gasifier exit. The analysis revealed that increasing steam resulted in a positive effect. The study also concluded that increasing pressure from 1 to 3 atm can be applied at a temperature >1000 K to further increase H 2 yields.

  11. Upgrading of syngas derived from biomass gasification: A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto, Agus [Agricultural and Biological Engineering Department, Mississippi State University, 130 Creelman St., Mississippi State, MS 39762 (United States); Agricultural Engineering Department, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung 35145 (Indonesia); Fernando, Sandun D. [Biological and Agricultural Engineering Department, Texas A and M University, 2117 TAMU College Station, TX 77843-2117 (United States); Pordesimo, Lester O. [Agricultural and Biological Engineering Department, Mississippi State University, 130 Creelman St., Mississippi State, MS 39762 (United States); Adhikari, Sushil [Biosystems Engineering Department, Auburn University, 215 Tom Corley Building, Auburn, AL 36849-5417 (United States)

    2009-05-15

    Hydrogen yields in the syngas produced from non-catalytic biomass gasification are generally low. The hydrogen fraction, however, can be increased by converting CO, CH{sub 4}, higher hydrocarbons, and tar in a secondary reactor downstream. This paper discusses thermodynamic limits of the synthesis gas upgrading process. The method used in this process is minimization of Gibbs free energy function. The analysis is performed for temperature ranges from 400 to 1300 K, pressure of 1-10 atm (0.1-1 MPa), and different carbon to steam ratios. The study concludes that to get optimum H{sub 2} yields, with negligible CH{sub 4} and coke formation, upgrading syngas is best practiced at a temperature range of 900-1100 K. At these temperatures, H{sub 2} could be possibly increased by 43-124% of its generally observed values at the gasifier exit. The analysis revealed that increasing steam resulted in a positive effect. The study also concluded that increasing pressure from 1 to 3 atm can be applied at a temperature >1000 K to further increase H{sub 2} yields. (author)

  12. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  13. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  14. FY 1991 report on the Coal Gasification Committee; 1991 nendo sekitan gasuka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The paper reported activities of the Coal Gasification Committee, gasification power generation section and gasification technology section in FY 1991. The 1st Coal Gasification Committee Meeting was held on July 16,1991, and report/discussion were made about an outline of the FY 1991 research plan on the development of coal gasification technology. The 2nd Meeting was held on March 12, 1992, and report/discussion were made about activities of each section meeting and the progress of the development of coal gasification technology. In the section meeting of coal gasification power generation, report/discussion were made about the progress and study object of the development of entrained bed coal gasification power plant and support study for the development of the plant. In the 1st section meeting of coal gasification technology, as to the developmental plan on coal utilization hydrogen production technology, report/discussion were made about design/construction/operational study of pilot plant and support study for pilot plant (study using small equipment, study of trial manufacture of plant use equipment/materials). In the 2nd section meeting, report/discussion were made about the results of the development of coal utilization hydrogen production technology. (NEDO)

  15. Lab-scale development of a high temperature aerosol particle sampling probe system for field measurements in thermochemical conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, M.; Malik, A.; Pagels, J.; Sanati, M. [Lund Univ., Lund (Sweden). Div. of Ergonomics and Aerosol Technology

    2010-07-01

    Thermochemical conversion of biomass requires both combustion in an oxygen rich environment and gasification in an oxygen deficient environment. Therefore, the mass concentration of fly ash from combustion processes is dominated by inorganic compounds, and the particulate matter obtained from gasification is dominated by carbonaceous compounds. The fine fly ash particles can initiate corrosion and fouling and also increases emissions of fine particulates to the atmosphere. This study involved the design of a laboratory scale setup consisting of a high temperature sampling probe and an aerosol generation system to study the formation of fine particle from biomass gasification processes. An aerosol model system using potassium chloride (KCl) as the ash compound and Di Octyl Sebacate oil (DOS) as the volatile organic part was used to test the high temperature sampling probe. Tests conducted at 200 degrees C showed good reproducibility of the aerosol generator. The tests also demonstrated suitable dilution ratios which enabled the denuder to absorb all of the gaseous organic compounds in the set up, thus enabling measurement of only the particle phase. Condensable organic concentrations of 1-68 mg/m{sup 3} were easily handled by the high temperature sampling probe system, indicating that the denuder worked well. Additional tests will be performed using an Aerosol Mass Spectrometer (AMST) to verify that the denuder can capture all of the gaseous organic compounds also when condensed onto agglomerated soot particles. 6 refs., 1 tab., 9 figs.

  16. Layout of an internally heated gas generator for the steam gasification of coal

    International Nuclear Information System (INIS)

    Feistel, P.P.; Duerrfeld, R.; Heck, K.H. van; Juentgen, H.

    1975-01-01

    Industrial-scale steam gasification of coal using heat from high temperature reactors requires research and development on allothermal gas generators. Bergbau-Forschung GmbH, Essen, does theoretical and experimental work in this field. The experiments deal with reaction kinetics, heat transfer and material tests. Their significance for the layout of a full-scale gas generator is shown. Including material specifications, the feasibility of a gasifier, characterized by a fluid bed volume of 318 m 3 and a heat transferring area of 4000 m 2 , results. The data, now available, are used to determine the gasification throughput from the heat balance, i.e. the equality of heat consumed and heat transferred. Throughputs of about 50 t/hr of coal are possible for a single gas generator, the helium outlet temperature of the HTR being 950 0 C/ Bergbau-Forschung has commissioned a medium-scale pilot plant (200 kg/hr). (Auth.)

  17. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2011-01-01

    The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas engine is estimated on the basis of the analysis of its theoretical thermodynamic cycle. Three different setups of the plant are being examined. In the first one the ORC module is driven only by the heat recovered from engine exhaust gas and cooling water. Waste heat from a gasifier is used for gasification air preheating. In the second configuration a thermal oil circuit is applied. The oil transfers heat from engine and raw gas cooler into the ORC. In the third configuration it is proposed to apply a double cascade arrangement of the ORC unit with a two-stage low temperature evaporation of working fluid. This novel approach allows utilization of the total waste heat from the low temperature engine cooling circuit. Two gas engines of different characteristics are taken into account. The results obtained were compared in terms of electric energy generation efficiency of the system. The lowest obtained value of the efficiency was 23.6% while the highest one was 28.3%. These are very favorable values in comparison with other existing small and medium scale biomass-fuelled power generation plants. - Highlights: →The study presents performance analysis of a biomass-fuelled local power plant. →Downdraft wood gasifier, gas engine and ORC module are modelled theoretically. →Method for estimation of the producer gas fired engine performance is proposed. →Two gas engines of different characteristics are taken into account. →Different arrangements of the bottoming ORC cycle ere examined.

  18. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  19. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    that the combustion of biomass and fossil fuel references for electricity production takes place in a combined heat and power plant, but as a sensitivity analysis, we also consider combustion in a condensing mode power plant where only electricity is produced. Our results show that the production of 1 k...... on gasification technology appears to be more environmentally friendly than straw direct combustion in all impact categories considered. The comparison with coal results in the same conclusion as that reached in the comparison with straw direct combustion. The comparison with natural gas shows that using straw...... about whether or not heat recovery is considered....

  20. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  1. The development of solid fuel gasification systems for cost-effective power generation with low environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M; Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J; Ranta, J; Hepola, J; Kangasmaa, K [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1997-10-01

    Relatively low carbon conversion is a disadvantage related to the air-blown fluidised-bed coal-biomass co-gasification process. Low carbon conversion is due to different reactivities and ash sintering behaviour of coal and biomass which leads to compromises in definition of gasification process conditions. In certain cases co-gasification may also lead to unexpected deposit formations or corrosion problems in downstream components especially when high alkali metal or chlorine containing biomass feedstocks are co-gasified with coal. During the reporting period, the work focused on co-gasification of coal and wood waste. The objectives of the present work were to find out the optimum conditions for improving the carbon conversion and to study the formation of different gas impurities. The results based on co-gasification tests with a pressurised fluidised-bed gasifies showed that in co-gasification even with only 15 % coal addition the heavy tar concentration was decreased significantly and, simultaneously, an almost total carbon conversion was achieved by optimising the gasification conditions. The study of filter fines recirculation and solid residues utilisation was started by characterizing filter dust. The work was carried out with an entrained-flow reactor in oxidising, inert and reducing gas conditions. The aim was to define the conditions required for achieving increased carbon conversion in different reactor conditions

  2. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 2. Summary of tests and researches on pilot plant operation; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant unten shiken kenkyu no gaiyo hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the achievements in fiscal 1993. The current fiscal year has performed the test operation on the pilot plant as a whole by using the coal D in continuation from the previous fiscal year. For the gasification furnace facilities, an air variation test was conducted for charging coal into the gasification furnace by using recovered oxygen, wherein satisfactory control was verified on oxygen concentration in the air supplied into the gasification furnace. In the gas refining facilities (dry desulfurizing facilities), the total sulfur concentration at 300 to 650 ppm in the gas produced from the coal gasification furnace was refined to 30 to 100 ppm, having achieved the initial target value. The gas refining facilities (dry dust collecting facilities) have achieved satisfactory result that the entrance dust concentration at 66 to 270 mg/Nm{sup 3} was reduced to the exit dust concentration at 1 to 3 mg/Nm{sup 3}. With respect to the gas turbine facilities, the planned values of output and thermal efficiency were satisfied, having derived good performance characteristics. (NEDO)

  3. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  4. Predictions of the product compositions for combustion or gasification of biomass and others hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Hendrick Maxil Zarate; Itai, Yuu; Nogueira, Manoel Fernandes Martins; Moraes, Sinfronio Brito; Rocha, Brigida Ramati Pereira da [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Faculdade de Engenharia Mecanica]. E-mails: hendrick@ufpa.br; yuuitai@ufpa.br; mfmn@ufpa.br; sbrito@ufpa.br; brigida@ufpa.br

    2008-07-01

    Processes involving combustion and gasification are object of study of many researchers. To simulate these processes in a detailed way, it is necessary to solve equations for chemical kinetics whose resolution many times is difficult due lack of information in the literature a simples way to bypass tis problem is due the chemical equilibrium. Prediction of the flu gases composition through chemical equilibrium is an important step in the mathematical modelling for gasification and combustion processes. Some free programs exists to solve problems that involve the chemical equilibrium, such as STANJAN, CEA, GASEQ, CANTERA and others.These programs have difficulty for cases involving fuel such as: biomass, vegetable oils, biodiesel, natural gas, etc., because they do not have database with the fuel composition and is hard to supply their HHV and their elementary analysis. In this work, using numeric methods, a program was developed to predict the gases composition on equilibrium after combustion and gasification processes with the for constant pressure or volume. In the program the chemical formula of the fuel is defined as C{sub x}H{sub y}O{sub z}N{sub w}S{sub v}A{sub u} that reacts with an gaseous oxidizer composed by O{sub 2}, N{sub 2}, Ar, He, CO{sub 2} e H{sub 2}O to have as final result the composition of the products CO{sub 2}, CO, H{sub 2}O, H{sub 2}, H, OH, O{sub 2}, O, N{sub 2}, NO, SO{sub 2}, CH{sub 4}, Ar, He, and ash. To verify the accuracy of the calculated values, it was compared with the program CEA (developed by NASA) and with experimental data obtained from literature. (author)

  5. Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds

    Directory of Open Access Journals (Sweden)

    Samson Mekbib Atnaw

    2014-01-01

    Full Text Available Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs, shells, fibers, trunks, and oil palm fronds (OPF. EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3 for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values.

  6. Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds

    Science.gov (United States)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values. PMID:24578617

  7. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  8. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are compiled. In fiscal 1995, 1328 hours and 3 minutes (8 gasification operations) was recorded with gasification furnace facility, 899 hours and 53 minutes with the gas clean-up facility, 831 hours and 27 minutes with the gas turbine facility (11 startups for the generation of 6657 MWh), and 1958 hours and 2 minutes with the treatment furnace and 1331 hours and 10 minutes with the denitration unit of the safety/environment-related facility. The details of starts and stops were described in graphs which covered Runs D13, D14-1, D14-2, E1, D15, and A14. Operating procedures were studied and compiled for the plant start/stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and the safety/environment-related facility. (NEDO)

  9. Thermodynamic comparison of the FICFB and Viking gasification concepts

    International Nuclear Information System (INIS)

    Gassner, Martin; Marechal, Francois

    2009-01-01

    Two biomass gasification concepts, i.e. indirectly heated, fast internally circulating fluidised bed (FICFB) gasification with steam as gasifying agent and two-stage, directly heated, fixed bed Viking gasification are compared with respect to their performance as gas generators. Based on adjusted equilibrium equations, the gas composition and the energy requirements for gasification are accurately modelled. Overall energy balances are assessed by an energy integration with the heat cascade concept and considering energy recovery in a steam Rankine cycle. A detailed inventory of energy and exergy losses of the different process sections is presented and potential process improvements due to a better utility choice or feed pretreatment like drying or pyrolysis are discussed. While Viking gasification performs better as an isolated gas generator than state-of-the-art FICFB gasification, there is large potential for improvement of the FICFB system. Furthermore, a concluding analysis of the gasification systems in an integrated plant for synthetic natural gas production shows that FICFB gasification is more suitable overall due to a more advantageous energy conversion related to the producer gas composition.

  10. Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process

    International Nuclear Information System (INIS)

    Seo, Myung Won; Yun, Young Min; Cho, Won Chul; Ra, Ho Won; Yoon, Sang Jun; Lee, Jae Goo; Kim, Yong Ku; Kim, Jae Ho; Lee, See Hoon; Eom, Won Hyun; Lee, Uen Do; Lee, Sang Bong

    2014-01-01

    The BTL (biomass-to-liquid) process is an attractive process that produces liquid biofuels from biomass. The FT (Fisher–Tropsch) process is used to produce synfuels such as diesel and gasoline from gasified biomass. However, the H 2 S (hydrogen sulfide), COS (carbonyl sulfide) and CO 2 (carbon dioxide) in the syngas that are produced from the biomass gasifiers cause a decrease of the conversion efficiency and deactivates the catalyst that is used in the FT process. To remove the acid gases, a pilot-scale methanol absorption tower producing diesel at a rate of 1 BPD (barrel per day) was developed, and the removal characteristics of the acid gases were determined. A total operation time of 500 h was achieved after several campaigns. The average syngas flow rate at the inlet of methanol absorption tower ranged from 300 to 800 L/min. The methanol absorption tower efficiently removed H 2 S from 30 ppmV to less than 1 ppmV and COS from 2 ppmV to less than 1 ppmV with a removal of CO 2 from 20% to 5%. The outlet gas composition adhered to the guidelines for FT reactors. No remaining sulfurous components were found, and the tar component was analyzed in the spent methanol after long-term operations. - Highlights: • The gas cleaning system in a pilot-scale BTL (biomass-to-liquid) process is reported. • Although methanol absorption tower is conventional process, its application to BTL process is attempted. • The methanol absorption tower efficiently removed H 2 S, COS and CO 2 in the syngas. • The sulfurous and tar components in the methanol are analyzed

  11. Report on a survey in fiscal 1999. Part 2. Survey on the biomass-derived energy conversion technology; 1999 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Biomass energy is positioned as a promising environment harmonizing energy in the 21st century because it does not break down the CO2 balance in the global scale. The present survey has investigated quantity of biomass resources utilizable as energy resources, investigated and analyzed the biomass-derived energy conversion technology, searched for a promising practically usable technology, and discussed the means to achieve the technological introduction. The foreword chapter describes that now is the good time to recognize importance of and introduce the biomass-derived technology. First and second chapters estimate energy potential and utilizable quantity of wastes-based biomass in Indonesia, Malaysia, the Philippines, and Brazil. Chapter 3 investigates feasibility of methane fermentation and ethanol fermentation as a promising bio-chemical conversion process. Chapter 4 has performed feasibility studies on biomass electric power generation, methanol synthesis by gasification, thermal decomposition and gasification as promising thermo-chemical conversion processes. Chapter 5 proposed a biomass electric power generation system, a biomass-gasified methanol synthesizing system, and a dimethyl ether production system. (NEDO)

  12. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.

    Science.gov (United States)

    Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert

    2017-11-01

    This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Coal gasification coal by steam using process heat from high-temperature nuclear reactors

    International Nuclear Information System (INIS)

    Heek, K.H. van; Juentgen, H.; Peters, W.

    1982-01-01

    This paper outlines the coal gasification process using a high-temperature nuclear reactor as a source of the process heat needed. Compared to conventional gasification processes coal is saved by 30-40%, coal-specific emissions are reduced and better economics of gas production are achieved. The introductory chapter deals with motives, aims and tasks of the development, followed by an explanation of the status of investigations, whereby especially the results of a semi-technical pilot plant operated by Bergbau-Forschung are given. Furthermore, construction details of a full-scale commercial gasifier are discussed, including the development of suitable alloys for the heat exchanger. Moreover problems of safety, licensing and economics of future plants have been investigated. (orig.) [de

  14. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A review of the primary measures for tar elimination in biomass gasification processes

    International Nuclear Information System (INIS)

    Devi, Lopamudra; Ptasinski, K.J.; Janssen, F.J.J.G.

    2003-01-01

    Tar formation is one of the major problems to deal with during biomass gasification. Tar condenses at reduced temperature, thus blocking and fouling process equipments such as engines and turbines. Considerable efforts have been directed on tar removal from fuel gas. Tar removal technologies can broadly be divided into two approaches; hot gas cleaning after the gasifier (secondary methods), and treatments inside the gasifier (primary methods). Although secondary methods are proven to be effective, treatments inside the gasifier are gaining much attention as these may eliminate the need for downstream cleanup. In primary treatment, the gasifier is optimized to produce a fuel gas with minimum tar concentration. The different approaches of primary treatment are (a) proper selection of operating parameters, (b) use of bed additive/catalyst, and (c) gasifier modifications. The operating parameters such as temperature, gasifying agent, equivalence ratio, residence time, etc. play an important role in formation and decomposition of tar. There is a potential of using some active bed additives such as dolomite, olivine, char, etc. inside the gasifier. Ni-based catalyst are reported to be very effective not only for tar reduction, but also for decreasing the amount of nitrogenous compounds such as ammonia. Also, reactor modification can improve the quality of the product gas. The concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance. Some aspects of primary methods and the research and development in this area are reviewed and cited in the present paper

  16. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  17. Updraft gasification of poultry litter at farm-scale--A case study.

    Science.gov (United States)

    Taupe, N C; Lynch, D; Wnetrzak, R; Kwapinska, M; Kwapinski, W; Leahy, J J

    2016-04-01

    Farm and animal wastes are increasingly being investigated for thermochemical conversion, such as gasification, due to the urgent necessity of finding new waste treatment options. We report on an investigation of the use of a farm-scale, auto-thermal gasification system for the production of a heating gas using poultry litter (PL) as a feedstock. The gasification process was robust and reliable. The PL's ash melting temperature was 639°C, therefore the reactor temperature was kept around this value. As a result of the low reactor temperature the process performance parameters were low, with a cold gas efficiency (CGE) of 0.26 and a carbon conversion efficiency (CCE) of 0.44. The calorific value of the clean product gas was 3.39 MJ m(-3)N (LHV). The tar was collected as an emulsion containing 87 wt.% water and the extracted organic compounds were identified. The residual char exceeds thresholds for Zn and Cu to obtain European biochar certification; however, has potential to be classified as a pyrogenic carbonaceous material (PCM), which resembles a high nutrient biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two ...

  19. A review of biomass energy potential

    International Nuclear Information System (INIS)

    Hoi Why Kong.

    1995-01-01

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  20. Co-gasification of coal and wood to reduce environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Pino; Martino Paolucci; Francesco Geri; F. Tunzio; G. Spazzafumo [APAT - National Agency for Environmental Protection and Technical Services, Rome (Italy)

    2005-07-01

    After presenting the paper 'Co-firing and Co-gasification Wood and Coal' at the First International Conference on Clean Coal Technologies, the authors thought about studying in depth the gasification process of woody biomass and coal. This would lead, once all the technical difficulties related to hybrid feeding were solved, to bear a system which mainly presents two advantages. The first advantage is derived by knowing that woody biomass contains a mass percentage of sulphur which is hundred times smaller as much when compared to coal. The second advantage derives from the fact that, given a capturing and sequestration system for the carbon dioxide, it is feasible to control the biomass/coal ratio at the feeding state. In doing so, emissions of carbon dioxide which are not captured will quantitatively be equal to the ones that would derive from the plain combustion of the biomass. 3 refs., 4 figs.

  1. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  2. Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments

    Directory of Open Access Journals (Sweden)

    Daniele Castello

    2017-10-01

    Full Text Available Supercritical water gasification (SCWG is an emerging technology for the valorization of (wet biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed.

  3. Fiscal 1994 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for the establishment of the technology of integrated coal gasification combined cycle power generation was operated for testing, and the results are put together. Operating hours recorded were 1347 hours and 7 minutes for the gasification furnace facility (7 gasification operations), 752 hours and 22 minutes for the gas clean-up facilities, 425 hours and 20 minutes for the gas turbine facility (6 startups for generating 2616.1 MWh), and 1852 hours for the treatment furnace and 1304 hours and 32 minutes for the denitration system in the safety/environment-related facility. Detailed graphs were drawn for the description of starts and stops in Run D8, Run D9 (1-3), Run D10, Run D11, and in Run D12. Operating procedures were studied and then compiled for the plant start-stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and for the safety/environment related facility. (NEDO)

  4. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    Science.gov (United States)

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  5. Environmental assessment of post-consumer wood and forest residues gasification: The case study of Barcelona metropolitan area

    International Nuclear Information System (INIS)

    Puy, Neus; Rieradevall, Joan; Bartroli, Jordi

    2010-01-01

    An energy and environmental analysis of post-consumer wood and forest residues gasification in metropolitan areas is carried out to determine the most critical stages of their life cycle. Life Cycle Impact Assessment (LCIA) methodology is used to identify the environmental load of three defined scenarios: (1) Post-consumer wood from recycling points; (2) Post-consumer wood from bulky wastes; and (3) Forest residues. The stages considered are biomass pre-treatment, transport and gasification. Biomass pre-treatment comprise different steps: separation, chipping, sifting, post-chipping for all the scenarios; except for the drying step which is only entailed to Scenario 3. The midpoint impact categories taken into account are: abiotic depletion (AD), global warming (GW), ozone layer depletion (ODP), human toxicity (HT), acidification (A) and eutrophication (E). Results show that, due to the high physical requirements for biomass gasification, the most appropriate biomass is that of Scenario 1, since forest residues require a drying stage, which involves high energy consumption and high environmental impact. Energy consumption in biomass pre-treatment and transport stages is low compared to the energy obtained from gasification, which represents the 5% in Scenario 1; 7% in Scenario 2; and 13% in Scenario 3. Biomass pre-treatment is associated to an important contribution in AD and ODP impact categories, calculated as 71% and 98% of the overall impact. The transport stage is of no significant influence either in the scenarios or in the impact categories (less than 24% of the overall impact). Finally, gasification represents an impact of 3-78% of the different impact categories. (author)

  6. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  7. Study tour to biomass gasifiers in Germany

    International Nuclear Information System (INIS)

    Knoef, H.A.M.

    2000-12-01

    A study trip to a biomass gasification plant in Germany took place from 13-15 November 2000. The goal of the trip was to obtain information on German developments, experience, and possibilities in the field of biomass gasification. The participants were representatives of Dutch parties in the energy sector: waste sector, manufacturers, producers, policy makers and consultants. The most important feature was the visit to plants that were in operation. Due in particular to the new EEG (Emeuerbare-Energien-Gesetz/Renewable Energy) legislation, German policy makers have created an initial market for sustainable energy with a degree of success. The key feature is that EEG makes projects 'bankable' by guaranteeing a return delivery compensation. An EEG-type scheme designed to accelerate the development of sustainable energy could be an interesting instrument also for the Netherlands. The plan was to visit four plants and have a number of presentations in a period of three days. Preference was for relatively new plants with differing concepts. The following plants were visited and/or presented: 200-kWe CHP wood gasification plant, based on AHT technology, located at Domsland in Eckenfoerde; a 10,000 tonnes/year wood gasification plant, based on 'cupola furnace' technology of blast furnaces, located at Holzhausen near Leipzig; a 1-MWe wood gasification plant, based on Carbo-V technology, located at Freiberg; and finally a 23-MWe CBP wood gasification plant, also based on Juch technology, located at Siebenlehn. In clearly appears that Germany is ahead of the Netherlands in the realisation of gasification plants. Still, there are certain problems with the reliability of operation. The plants selected were relatively new (with the possible exception of Espenhain) and they are having too many teething problems. Sound insight has been obtained into the various concepts of decentralised energy generation from biomass and how this can be fitted into the existing infrastructure

  8. Analysis of tars produced in biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Wang, Y.; Kinoshita, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1993-12-31

    Parametric tests on tar formation, varying temperature, equivalence ratio, and residence time, are performed on a bench-scale, indirectly-heated fluidized bed gasifier. Prepared tar samples are analyzed in a gas chromatograph (GC) with a flame ionization detector, using a capillary column. Standards containing dominant tar species have been prepared for GC calibration. The identified peaks include single-ring hydrocarbons, such as benzene, to five-ring hydrocarbons, such as perylene; depending on the gasification conditions, the identified species represent about 70 to 90% (mass basis) of the tar constituents. Under all conditions tested, benzene and naphthalene were the most dominant species. Temperature and equivalence ratio have significant effect on tar yield and tar composition. Tar yield decreases with increasing temperature or equivalence ratio. The test results suggest that lower temperature favors the formation of more aromatic tar species with diversified substituent groups, while higher temperature favors the formation of fewer aromatic tar species without substituent groups. Higher temperature or equivalence ratio favors the formation of polyaromatic compounds. Oxygen-containing compounds exist in significant quantities only at temperature below 800{degrees}C and decrease with increasing temperature, equivalence ratio, or residence time.

  9. Re-thinking china's densified biomass fuel policies: Large or small scale?

    International Nuclear Information System (INIS)

    Shan, Ming; Li, Dingkai; Jiang, Yi; Yang, Xudong

    2016-01-01

    Current policies and strategies related to the utilization of densified biomass fuel (DBF) in China are mainly focused on medium- or large-scale manufacturing modes, which cannot provide feasible solutions to solve the household energy problems in China's rural areas. To simplify commercial processes related to the collection of DBF feedstock and the production and utilization of fuel, a novel village-scale DBF approach is proposed. Pilot demonstration projects have shown the feasibility and flexibility of this new approach in realizing sustainable development in rural China. Effective utilization of DBF in rural China will lead to gains for global, regional, and local energy savings, environmental protection, sustainable development, and related social benefits. It could also benefit other developing countries for better utilization of biomass as a viable household energy source. This proposal therefore delivers the possibility of reciprocal gains, and as such deserves the attention of policy makers and various stakeholders. - Highlights: •A field survey of Chinese densified biomass fuel (DBF) development is conducted. •The current situation and problems related to China's DBF industry are analyzed. •A novel and viable village-scale DBF utilization mode is proposed. •Further actions are suggested to boost the utilization of DBF in rural China.

  10. Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1985-09-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

  11. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  12. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  13. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-01-01

    Highlights: ► Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. ► System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m 3 d) −1 were analyzed. ► A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and HRT of 15d. ► With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. ► The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m 3 d) −1 , with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m 3 (m 3 d) −1 . A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m 3 d) −1 . This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  14. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    Science.gov (United States)

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  16. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  17. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  18. Catalysis for Mixed Alcohol Synthesis from Biomass Derived Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-08-292

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, J.

    2013-04-01

    The Dow Chemical Company (Dow) developed and tested catalysts for production of mixed alcohols from synthesis gas (syngas), under research and development (R&D) projects that were discontinued a number of years ago. Dow possesses detailed laboratory notebooks, catalyst samples, and technical expertise related to this past work. The National Renewable Energy Laboratory (NREL) is conducting R&D in support of the United States Department of Energy (DOE) to develop methods for economically producing ethanol from gasified biomass. NREL is currently conducting biomass gasification research at an existing 1/2 ton/day thermochemical test platform. Both Dow and NREL believe that the ability to economically produce ethanol from biomass-derived syngas can be enhanced through collaborative testing, refinement, and development of Dow's mixed-alcohol catalysts at NREL's and/or Dow's bench- and pilot-scale facilities. Dow and NREL further agree that collaboration on improvements in catalysts as well as gasifier operating conditions (e.g., time, temperature, upstream gas treatment) will be necessary to achieve technical and economic goals for production of ethanol and other alcohols.

  19. Closing the Loop - Utilization of Secondary Resources by Low Temperature Thermal Gasification

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape

    and drawbacks of low temperature gasification compared to anaerobic digestion and incineration are briefly discussed in this regard. Development and implementation of a method to screen for new fuel candidates for LT‐CFB gasification is conducted, and 22 new potential fuel candidates are characterized...... management compared to several of the currently applied management options. Proper management of sewage sludge holds a substantial potential for recovery of highly concentrated phosphorus (P) with good plant availability in ashes and chars from the thermal conversion. It is therefore decided to progress...... dust‐fired coal boilers, fossil fuels can be directly substituted with renewable fuels while reusing existing energy infrastructure. Currently, two operational LT‐CFB gasifiers exist: A pilot scale facility with a thermal capacity (TH) of 100 kW and a demonstration unit of 6 MWTH. Both units...

  20. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    establishing characteristic properties of selected biomass feedstock from Tanzania. The characteristic properties are necessary input to thermochemical process designers and researchers. Furthermore, since the properties are origin-specific, this will provide baseline data for technology transfer from north to south. The characteristic properties that were established were chemical composition, and thermal degradation behaviour. Furthermore, laboratory scale high temperature gasification of the biomasses was undertaken. Chemical composition characteristics was established to palm waste, coffee husks, cashew nut shells (CNS), rice husks and bran, bagasse, sisal waste, jatropha seeds, and mango stem. Results showed that the oxygen content ranged from 27.40 to 42.70% where as that of carbon and hydrogen ranged from 35.60 to 56.90% and 4.50 to 7.50% respectively. On the other hand, the elemental composition of nitrogen, sulphur and chlorine was marginal. These properties are comparable to findings from other researchers. Based on the results of thermal degradation characteristics, it was evident that the cashew nut shells (CNS) was the most reactive amongst the analyzed materials since during the devolatilization stage the first derivative TG (DTG) peak due to hemicellulose degradation reached (-5.52%/minute) compared palm stem whose first peak was -4.81%/minute. DTG first peak for the remaining materials was indistinct. Results from the laboratory gasification experiments that were done to the coffee husks showed that gasification at higher temperature (900 deg C) had an overall higher gasification rate. For instance, during the inert nitrogen condition, 7% of coffee husk remained for the case of 900 deg C whereas the residue mass for the gasification at 800 and 700 deg C was 10 and 17% respectively. Steam injection to the biomass under high temperature gasification evolved the highest volumetric concentration of carbon monoxide. The CO peak evolution at 900 deg C steam only was