WorldWideScience

Sample records for pigment-protein photosynthetic complexes

  1. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  2. Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids; separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content

  3. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Buck, D. R. [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  4. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    Science.gov (United States)

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  5. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  6. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-09-14

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  7. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    International Nuclear Information System (INIS)

    Baker, Lewis A.; Habershon, Scott

    2015-01-01

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  8. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study.

    Science.gov (United States)

    Grudzinski, Wojciech; Janik, Ewa; Bednarska, Joanna; Welc, Renata; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Gruszecki, Wieslaw I

    2016-05-19

    Resonance Raman analysis of the photosynthetic complex LHCII, immobilized in a polyacrylamide gel, reveals that one of the protein-bound xanthophylls, assigned as violaxanthin, undergoes light-induced molecular reconfiguration. The phototransformation is selectively observed in a trimeric structure of the complex and is associated with a pronounced twisting and a trans-cis molecular configuration change of the polyene chain of the carotenoid. Among several spectral effects accompanying the reconfiguration there are ones indicating a carotenoid triplet state. Possible physiological importance of the light-induced violaxanthin reconfiguration as a mechanism associated with making the pigment available for enzymatic deepoxidation in the xanthophyll cycle is discussed.

  9. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  10. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  11. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    International Nuclear Information System (INIS)

    Kangur, L; Leiger, K; Freiberg, A

    2008-01-01

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes

  12. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kangur, L; Leiger, K; Freiberg, A [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia)

    2008-07-15

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes.

  13. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides

    International Nuclear Information System (INIS)

    Hunter, C.N.; Pennoyer, J.D.; Niederman, R.A.

    1982-01-01

    The B875 and B800-850 light-harvesting pigment-protein complexes of Rhodopseudomonas sphaeroides are characterized further by lithium dodecyl sulfate/polyacrylamide gel electrophoresis at 4 degrees C. Bacteriochlorophyll a was shown in reconstruction studies to remain complexed with its respective binding proteins during this procedure. From distributions in these gels, a quantitative description for the arrangement of the complexes is proposed. Assembly of the complexes was examined in delta-aminolevulinate-requiring mutant H-5 after a shift from high- to low-light intensity. After 10 h of delta-[ 3 H]aminolevulinate labeling, the specific radioactivity of bacteriochlorophyll in a fraction containing putative membrane invaginations reached the maximal level, while that of the mature photosynthetic membrane was at only one-third this level. This suggests that membrane invaginations are sites of preferential bacteriochlorophyll synthesis in which completed pigment-proteins exist transiently. Analysis of the 3 H distribution after electrophoretic separation further suggests that photosynthetic membranes grow mainly by addition of B800-850 to preformed membrane consisting largely of B875 and photochemical reaction centers. These results corroborate the above model for the structural organization of the light-harvesting system and indicate that the structurally and functionally discrete B800-850 pool is not completely assembled until all B875 sites for B800-850 interactions are occupied

  14. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  15. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  16. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  17. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  18. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  19. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    Science.gov (United States)

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-09-01

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  20. Response of the photosynthetic system to altered protein composition and changes in environmental conditions

    NARCIS (Netherlands)

    Tóth, T.

    2014-01-01

    The photosynthetic thylakoid membrane has a hierarchically ordered structure containing pigment-protein complexes that capture solar radiation and convert it into chemical energy. Its highly dynamic structure is capable to continuously respond to the altered environmental conditions, e.g., light

  1. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    Science.gov (United States)

    2012-07-10

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution) revealed...1282 (2011) & Photosynthesis Res.. 111,63-69(2012)) Bacterial photosynthetic antenna polypeptide (LH) was synthesized as a water-soluble fusion...binding protein and its effect on the stability of reconstituted light-harvesting core antenna complex” , Photosynthesis Res.. 111,63-69(2012)(Doi

  2. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.

    Science.gov (United States)

    Sato, Yoshihiro; Doolittle, Brian

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  3. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton

    International Nuclear Information System (INIS)

    Sato, Yoshihiro; Doolittle, Brian

    2014-01-01

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency

  4. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshihiro, E-mail: sato.yoshihiro77@nihon-u.ac.jp, E-mail: ysato.colby@gmail.com; Doolittle, Brian [Department of Physics and Astronomy, Colby College, Waterville, Maine 04901 (United States)

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  5. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach.

    Science.gov (United States)

    Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio

    2015-04-01

    Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Effect of Simulated Acid Rain on the Germination, Growth, Elements, Protein and Photosynthetic Pigments Contents in Tomato (Lycopersicon esculentum

    Directory of Open Access Journals (Sweden)

    M. Askary

    2014-04-01

    Full Text Available Uncontrolled use of fossil fuels in industries and the transport sector has led to an increase in concentrations of gaseous pollutants such as sulphur dioxide (SO2, nitrogen dioxide (NO2 and their derivatives and ozone (O3. In addition to dry and wet deposition of these gases has been the major route of influx in ionic form into the ecosystem. This investigation was evaluated the effects of simulated acid rain (SAR with different pH (6.8 as control, 6.5, 6, 5.5, 5, 4.5, 4, 3.5, 3 and 2.5 on germination, growth, elements, protein, photosynthetic pigments contents of Lycopersicon esculentum in hydroponic culture. Experiments were conducted at research laboratory of arak university in summer of 1391. Results were showed that from pH=6.8 until pH=5/5 significantly increased P and K and protein content, root and shoot dry and wet weight. SAR exposure with high acidity (pH=5/5 until pH=2.5 significantly suppressed germination, growth index, measured elements as P and K, protein and photosynthetic pigments, while significant increased sulphur contect from 150% to 550% compared to controls. Maximal amounts sulphur were measured in pH=2/5. Acid rain in low pH were decrease plant growth and make protein and incearsed sulphur content in leaf. As regards, low acidity promoted the growth of tomato plants and high acidity inhibit, Therefore, it is recommended that tomato plants cultures in soils with low acidity.

  7. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Picture series of surface chlorophyll,. SST, wind ... photosynthetic pigments during the time of inten- sification of ... calculation of Ekman pumping (We) using finite- differencing to ..... Legeckis R 1986 A satellite time series sea surface tempera-.

  8. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3. Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Efrain Rodriguez-Rubio Jose Stuardo. Volume 111 Issue 3 September 2002 pp 227-236 ...

  9. Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment-Protein Complexes at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Herascu, N.; Ahmouda, S.; Picorel, R.; Seibert, M.; Jankowiak, R.; Zazubovich, V.

    2011-12-22

    Effects of the distributions of excitation energy transfer (EET) rates (homogeneous line widths) on the nonphotochemical (resonant) spectral hole burning (SHB) processes in photosynthetic chlorophyll-protein complexes (reaction center [RC] and CP43 antenna of Photosystem II from spinach) are considered. It is demonstrated that inclusion of such a distribution results in somewhat more dispersive hole burning kinetics. More importantly, however, inclusion of the EET rate distributions strongly affects the dependence of the hole width on the fractional hole depth. Different types of line width distributions have been explored, including those resulting from Foerster type EET between weakly interacting pigments as well as Gaussian ones, which may be a reasonable approximation for those resulting, for instance, from so-called extended Foerster models. For Gaussian line width distributions, it is possible to determine the parameters of both line width and tunneling parameter distributions from SHB data without a priori knowledge of any of them. Concerning more realistic asymmetric distributions, we demonstrate, using the simple example of CP43 antenna, that one can use SHB modeling to estimate electrostatic couplings between pigments and support or exclude assignment of certain pigment(s) to a particular state.

  10. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    Science.gov (United States)

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Science.gov (United States)

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  12. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  13. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    Science.gov (United States)

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  14. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  15. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  16. Visualization of Excitonic Structure in the Fenna-Matthews-Olson Photosynthetic Complex by Polarization-Dependent Two-Dimensional Electronic Spectroscopy

    International Nuclear Information System (INIS)

    Fleming, Graham; Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Wen, Jianzhong; Blankenship, Robert E.; Fleming, Graham R.

    2008-01-01

    Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Inter-chromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography in combination with predictions of transition energies and couplings in the chromophore site basis. Here, we demonstrate that coarse-grained excitonic structural information in the form of projection angles between transition dipole moments can be obtained from polarization-dependent two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal rather than the photon echo signal is considered. The method provides an experimental link between atomic and electronic structure and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, energy transfer connecting two particular exciton states in the protein is isolated as being the primary contributor to a cross peak in the nonrephasing 2D spectrum at 400 fs under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequences to separate and monitor individual relaxation pathways

  17. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    Science.gov (United States)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  18. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  19. Effects of gibberellic acid on growth and photosynthetic pigments of ...

    African Journals Online (AJOL)

    The aim of this study was to improve growth performance by enhancing the photosynthetic pigments and enzyme carbonic anhydrase (CA) activity of Hibiscus sabdariffa L. (cv. Sabahia 17) under NaCl stress. Under non-saline condition, application of GA3 enhanced growth parameters (shoot length, shoot fresh weight (FW) ...

  20. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    Science.gov (United States)

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to…

  1. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    Science.gov (United States)

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  3. Endosulfan induced changes in growth rate, pigment composition and photosynthetic activity of mosquito fern Azolla microphylla

    Directory of Open Access Journals (Sweden)

    Raja W.

    2012-11-01

    Full Text Available This paper is the first in a series reporting a study on the effects of different concentrations of insecticide, Endosulfan (0-600ppm was premeditated on 5th day after insecticide exposure with respect to growth rate, pigment composition and photosynthetic activity of Azolla microphylla under laboratory conditions which become non-target organism in the rice fields. Endosulfan inhibited the relative growth rate, pigment content and photosynthetic O2 evolution. Phycocyanin was main target followed by carotenoid and total chlorophyll. Significant increase in pigment, flavonoid and Anthocyanin was noticed after six days of treatment. In contrast to the photosynthetic activity, the rate of respiration in Azolla microphylla was increased significantly. Our results show that Endosulfan at normally recommended field rates and intervals are seldom deleterious to the beneficial and Eco friendly Azolla microphylla and their activities and thus in turn suppress plant growth and development. Phytotoxity of Azolla microphylla can be minimized by restrictions on application, timing, method and rate of application.

  4. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species.

    Science.gov (United States)

    Benavente-Valdés, Juan Roberto; Aguilar, Cristóbal; Contreras-Esquivel, Juan Carlos; Méndez-Zavala, Alejandro; Montañez, Julio

    2016-06-01

    Microalgae are a major natural source for a vast array of valuable compounds as lipids, proteins, carbohydrates, pigments among others. Despite many applications, only a few species of microalgae are cultured commercially because of poorly developed of cultivation process. Nowadays some strategies of culture have been used for enhancing biomass and value compounds yield. The most strategies applied to microalgae are classified into two groups: nutrimental and physical. The nutrimental are considered as change in media composition as nitrogen and phosphorous limitation and changes in carbon source, while physical are described as manipulation in operational conditions and external factors such as application of high-light intensities, medium salinity and electromagnetic fields. The exposition to electromagnetic field is a promising technique that can improve the pigments and biomass yield in microalgae culture. Therefore, is important to describe the advantages and applications of the overall process. The aim of this review was to describe the main culture strategies used to improve the photosynthetic and lipids content in chlorophyceae species.

  5. The peculiarities of the accumulation of Cs-137 and the content of photosynthetic pigments and protein in plants of natural associations of south-east Belarus

    International Nuclear Information System (INIS)

    Gaponenko, V. I.; Kravchenko, V. A; Matsko, V. P.; Grushevskaya, O. M.

    1994-01-01

    The peculiarities of accumulation of Cs-137 by various components of meadow associations of Polesky State radioecological reserve (PSRER) were studied. The specific radioactivity of soil totalled 12000-290000 Bq/kg, and specific radioactivity of overground phytomass was 200-252000 Bq/kg. The inverse dependence between the specific radioactivity and the coefficient of accumulation of plants was observed, and the direct dependence between the acidity of salt extract (1H KCL) and the coefficient of accumulation. The content of photosynthetic pigments of Agropyron repens L. was less in the phase of florescence and fruitage than at the beginning of vegetation. That is said about the principal decrease of the content of chlorophyll b comparing with chlorophyll a and the both green pigments comparing with carotenoids. The fourth month's period of vegetation of plants in the conditions of increased radiation background was not observed the changing neither by the of chlorophyll a and b and carotinoids nor by the content of total protein that was testified about the high stability of pigmental system. (author)

  6. Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method.

    Science.gov (United States)

    Shrestha, Kushal; Jakubikova, Elena

    2015-08-20

    Light-harvesting antennas are protein-pigment complexes that play a crucial role in natural photosynthesis. The antenna complexes absorb light and transfer energy to photosynthetic reaction centers where charge separation occurs. This work focuses on computational studies of the electronic structure of the pigment networks of light-harvesting complex I (LH1), LH1 with the reaction center (RC-LH1), and light-harvesting complex II (LH2) found in purple bacteria. As the pigment networks of LH1, RC-LH1, and LH2 contain thousands of atoms, conventional density functional theory (DFT) and ab initio calculations of these systems are not computationally feasible. Therefore, we utilize DFT in conjunction with the energy-based fragmentation with molecular orbitals method and a semiempirical approach employing the extended Hückel model Hamiltonian to determine the electronic properties of these pigment assemblies. Our calculations provide a deeper understanding of the electronic structure of natural light-harvesting complexes, especially their pigment networks, which could assist in rational design of artificial photosynthetic devices.

  7. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.

    Science.gov (United States)

    Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari

    2016-03-01

    The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    Science.gov (United States)

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.

  9. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    Science.gov (United States)

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  10. Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii.

    Science.gov (United States)

    Collins, Aaron M; Xin, Yueyong; Blankenship, Robert E

    2009-08-01

    The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-gamma-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Q(y) transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.

  11. A Cyanobacterial Chlorophyll Synthase-HliD Complex Associates with the Ycf39 Protein and the YidC/Alb3 Insertase[W][OPEN

    Science.gov (United States)

    Chidgey, Jack W.; Linhartová, Markéta; Komenda, Josef; Jackson, Philip J.; Dickman, Mark J.; Canniffe, Daniel P.; Koník, Peter; Pilný, Jan; Hunter, C. Neil; Sobotka, Roman

    2014-01-01

    Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls. PMID:24681617

  12. Using a Microscale Approach to Rapidly Separate and Characterize Three Photosynthetic Pigment Species from Fern

    Science.gov (United States)

    Ayudhya, Theppawut Israsena Na; Posey, Frederick T.; Tyus, Jessica C.; Dingra, Nin N.

    2015-01-01

    A rapid separation of three photosynthetic pigments (chlorophyll "a" and "b" and xanthophyll) from fern ("Polystichum acrostichoides") is described using microscale solvent extraction and traditional thin layer chromatography that minimizes use of harmful chemicals and lengthy procedures. The experiment introduces…

  13. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.

    Science.gov (United States)

    Welc, Renata; Luchowski, Rafal; Grudzinski, Wojciech; Puzio, Michal; Sowinski, Karol; Gruszecki, Wieslaw I

    2016-12-29

    The main physiological function of LHCII (light-harvesting pigment-protein complex of photosystem II), the largest photosynthetic antenna complex of plants, is absorption of light quanta and transfer of excitation energy toward the reaction centers, to drive photosynthesis. However, under strong illumination, the photosynthetic apparatus faces the danger of photodegradation and therefore excitations in LHCII have to be down-regulated, e.g., via thermal energy dissipation. One of the elements of the regulatory system, operating in the photosynthetic apparatus under light stress conditions, is a conversion of violaxanthin, the xanthophyll present under low light, to zeaxanthin, accumulated under strong light. In the present study, an effect of violaxanthin and zeaxanthin on the molecular organization and the photophysical properties of LHCII was studied in a monomolecular layer system with application of molecular imaging (atomic force microscopy, fluorescence lifetime imaging microscopy) and spectroscopy (UV-Vis absorption, FTIR, fluorescence spectroscopy) techniques. The results of the experiments show that violaxanthin promotes the formation of supramolecular LHCII structures preventing dissipative excitation quenching while zeaxanthin is involved in the formation of excitonic energy states able to quench chlorophyll excitations in both the higher (B states) and lower (Q states) energy levels. The results point to a strategic role of xanthophylls that are not embedded in a protein environment, in regulation of the photosynthetic light harvesting activity in plants.

  15. Artificial neural network model for photosynthetic pigments identification using multi wavelength chromatographic data

    Science.gov (United States)

    Prilianti, K. R.; Hariyanto, S.; Natali, F. D. D.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2016-04-01

    The development of rapid and automatic pigment characterization method become an important issue due to the fact that there are only less than 1% of plant pigments in the earth have been explored. In this research, a mathematical model based on artificial intelligence approach was developed to simplify and accelerate pigment characterization process from HPLC (high-performance liquid chromatography) procedure. HPLC is a widely used technique to separate and identify pigments in a mixture. Input of the model is chromatographic data from HPLC device and output of the model is a list of pigments which is the spectrum pattern is discovered in it. This model provides two dimensional (retention time and wavelength) fingerprints for pigment characterization which is proven to be more accurate than one dimensional fingerprint (fixed wavelength). Moreover, by mimicking interconnection of the neuron in the nervous systems of the human brain, the model have learning ability that could be replacing expert judgement on evaluating spectrum pattern. In the preprocessing step, principal component analysis (PCA) was used to reduce the huge dimension of the chromatographic data. The aim of this step is to simplify the model and accelerate the identification process. Six photosynthetic pigments i.e. zeaxantin, pheophytin a, α-carotene, β-carotene, lycopene and lutein could be well identified by the model with accuracy up to 85.33% and processing time less than 1 second.

  16. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    International Nuclear Information System (INIS)

    Hsin, J; Sener, M; Schulten, K; Struempfer, J; Qian, P; Hunter, C N

    2010-01-01

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  17. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, J; Sener, M; Schulten, K [Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Struempfer, J [Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Qian, P; Hunter, C N, E-mail: kschulte@ks.uiuc.ed [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom)

    2010-08-15

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  18. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  19. Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification

    Science.gov (United States)

    Prilianti, K. R.; Setiawan, Y.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2014-02-01

    Environmental and health problem caused by artificial colorant encourages the increasing usage of natural colorant nowadays. Natural colorant refers to the colorant that is derivate from living organism or minerals. Extensive research topic has been done to exploit these colorant, but recent data shows that only 0.5% of the wide range of plant pigments in the earth has been exhaustively used. Hence development of the pigment characterization technique is an important consideration. High-performance liquid chromatography (HPLC) is a widely used technique to separate pigments in a mixture and identify it. In former HPLC fingerprinting, pigment characterization was based on a single chromatogram from a fixed wavelength (one dimensional) and discard the information contained at other wavelength. Therefore, two dimensional fingerprints have been proposed to use more chromatographic information. Unfortunately this method leads to the data processing problem due to the size of its data matrix. The other common problem in the chromatogram analysis is the subjectivity of the researcher in recognizing the chromatogram pattern. In this research an automated analysis method of the multi wavelength chromatographic data was proposed. Principal component analysis (PCA) was used to compress the data matrix and Maximum Likelihood (ML) classification was applied to identify the chromatogram pattern of the existing pigments in a mixture. Three photosynthetic pigments were selected to show the proposed method. Those pigments are β-carotene, fucoxanthin and zeaxanthin. The result suggests that the method could well inform the existence of the pigments in a particular mixture. A simple computer application was also developed to facilitate real time analysis. Input of the application is multi wavelength chromatographic data matrix and the output is information about the existence of the three pigments.

  20. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  1. Protein dynamics revealed in the excitonic spectra of single LH2 complexes

    International Nuclear Information System (INIS)

    Valkunas, Leonas; Janusonis, Julius; Rutkauskas, Danielis; Grondelle, Rienk van

    2007-01-01

    The fluorescence emission spectrum of single peripheral light-harvesting (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila exhibits remarkable dynamics on a time scale of several minutes. Often the spectral properties are quasi-stable; sometimes large spectral jumps to the blue or to the red are observed. To explain the dynamics, every pigment is proposed to be in two conformational substates with different excitation energies, which originate from the conformational state of the protein as a result of pigment-protein interaction. Due to the excitonic coupling in the ring of 18 pigments, the two-state assumption generates a substantial amount of distinct spectroscopic states, which reflect part of the inhomogeneous distributed spectral properties of LH2. To describe the observed dynamics, spontaneous and light-induced transitions are introduced between the two states. For each 'realization of the disorder', the spectral properties are calculated using a disordered exciton model combined with the modified Redfield theory to obtain realistic spectral line shapes. The single-molecule fluorescence peak (FLP) distribution, the distribution dependence on the excitation intensity, and the FLP time traces are well described within the framework of this model

  2. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  3. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  4. Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis.

    Science.gov (United States)

    Kumar, Deepak; Kannaujiya, Vinod K; Richa; Pathak, Jainendra; Sundaram, Shanthy; Sinha, Rajeshwar P

    2018-05-01

    Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.

  5. Photosynthetic pigments and stomatal conductance in ecotypes of copoazu (Theobroma grandi orum Willd. Ex. Spreng K. Schum..

    Directory of Open Access Journals (Sweden)

    Juan Carlos Suárez-Salazar

    2016-12-01

    Full Text Available The objective of this work was to evaluate the variability of photosynthetic pigment content and daily stomatal conductance was evaluated in relation to environmental variables in Copoazú (Theobroma grandi orum ecotypes. The ecotypes used were part of the germoplasm bank of the University of the Amazon (Colombia. The study was carried out during the year 2015. Four leaves of the average stratum of four plants were collected for each ecotype, to extract and read at different levels of absorbance and determine the content of photosynthetic pigments. During the hours of 04:00 a.m. to 6:00 p.m., the stomatal conductance (gs was monitored for environmental variables (relative humidity, air temperature, radiation and vapor pressure de cit (VPD. An analysis of variance was made using the Tukey test, correlations and regressions were made between gs and environmental variables. The contents of chlorophyll a, b, total and carotenoids among ecotypes were different (P<0.0001, the ecotype UA-31 presented the highest values, contrasting with the ecotype UA-37. Concerning gs, the interaction ecotype*hour showed signi cant differences (P<0.0001 .The ecotypes that presented the highest values of gs were UA-67 and UA-039, (P<0.0001, radiation (-0.91, P<0.0001 and DPV (-0.94; P<0.0001 0.0001.The results suggest that ecotypes UA-039 and UA-31 were the most suitable in terms of gaseous exchange and content of photosynthetic pigments.

  6. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    International Nuclear Information System (INIS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q y transition dipole moments in Chl b homodimers is larger by about 9 ∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b

  7. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  8. Photoinhibition and photosynthetic pigment reorganisation dynamics in light/darkness cycles as photoprotective mechanisms of Porphyra umbilicalis against damaging effects of UV radiation

    Directory of Open Access Journals (Sweden)

    José Aguilera

    2008-03-01

    Full Text Available Porphyra umbilicalis L. Kutzing collected from the upper intertidal zone at Helgoland, North Sea, was exposed to different spectral ranges of UV radiation under both 12/12 h light/dark cycles and continuous irradiation. In light/dark cycles, oscillations of the optimal quantum yield (Fv /Fm were observed during the experiments, reaching maximal values at the end of the light phase followed by lower values during the dark phase. Decreased Fv /Fm was observed in thalli illuminated with photosynthetic active radiation (PAR plus UV-A and PAR+UV-A+UV-B, compared with the PAR control, indicating a certain degree of UV-induced photoinhibition. In addition, a decrease in the percentage of change of the linear initial slope and maximum electron transport rate (ETR estimated from ETR vs. irradiance curves was induced by UV radiation during the light phase. Recovery during the 12 h dark phase was almost completed in UV-A treated plants. PAR+UV-A seemed not to affect the photosynthesis, measured as O2 production. However, a decrease in O2 production was observed in the PAR+UV-A+UV-B treatment, but it recovered to initial values after 48 h of culture. No changes in total content of photosynthetic pigments were observed. However, thallus absorptance and the in vivo absorption cross-section in the PAR range (400-700 nm normalised to Chl a (a* parameter fluctuated during light/dark cycles and were positively correlated with changes in the optimum quantum yield, thus indicating that daily pigment reorganisation in the light-harvesting complex may play a key role in the photosynthetic performance of the algae. Both UV-A and UV-B treatments under continuous irradiation induced a significant reduction in the optimal quantum yield, ETR efficiency and photosynthetic oxygen production during the first 36 h to values around 30% of the initial ones. Thus, different protective mechanisms against UV stress can be observed in P. umbilicalis: dynamic photoinhibition when

  9. Ionizing radiation induced changes in phenotype, photosynthetic pigments and free polyamine levels in Vigna radiata (L.) Wilczek

    International Nuclear Information System (INIS)

    Sengupta, Mandar; Chakraborty, Anindita; Raychaudhuri, Sarmistha Sen

    2013-01-01

    Effects of gamma rays on the free polyamine (PA) levels were studied in Vigna radiata (L.) Wilczek. Seeds exposed to different doses of gamma rays were checked for damage on phenotype, germination frequency and alteration in photosynthetic pigments. Free polyamine levels were estimated from seeds irradiated in dry and water imbibed conditions. Polyamine levels of seedlings grown from irradiated seeds, and irradiated seedlings from unexposed seeds were also measured. Damage caused by gamma irradiation resulted in decrease in final germination percentage and seedling height. Photosynthetic pigments decreased in a dose dependent manner as marker of stress. Polyamines decreased in irradiated dry seeds and in seedlings grown from irradiated seeds. Radiation stress induced increase in free polyamines was seen in irradiated imbibed seeds and irradiated seedlings. Response of polyamines towards gamma rays is dependent on the stage of the life cycle of the plant. - Highlights: ► Gamma irradiation of Vigna radiata (L.) Wilczek seeds and seedlings. ► Decrease in germination frequency. ► Increase in seedling injury with increased dosage of gamma rays. ► Decrease in chlorophyll and carotenoid pigments. ► Change in free polyamine levels

  10. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; Sznee, Kinga; Heinnickel, Mark L.; Dekker, Jan P.; Frese, Raoul N.; Prinz, Fritz B.; Grossman, Arthur R.

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.

  11. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  12. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Nicolardi, Valentina; Cai, Giampiero; Parrotta, Luigi; Puglia, Michele; Bianchi, Laura; Bini, Luca; Gaggi, Carlo

    2012-01-01

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  13. Synchrotron small-angle x-ray scattering investigation on integral membrane protein light-harvesting complex LH2 from photosynthetic bacterium rhodopseudomonas acidophila

    International Nuclear Information System (INIS)

    Du Luchao; Weng Yuxiang; Hong Xinguo; Xian Dingchang; Kobayashi Katsumi

    2006-01-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2. (authors)

  14. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex

    International Nuclear Information System (INIS)

    Caram, Justin R.; Lewis, Nicholas H. C.; Fidler, Andrew F.; Engel, Gregory S.

    2012-01-01

    Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we use the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic/molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.

  15. Changes in epicuticular flavonoids and photosynthetic pigments as a plant response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, P.; Harborne, J. B. [Universidad de Magallances, Punta Arenas (Chile)

    1996-07-01

    Treatment of Gnaphalium vira-vira plants with UV-B radiation caused changes in plant growth and in plant chemistry. The leaf surface contained two O-methylated flavones, araneol and 7-O-methylaraneol. HPLC analysis showed that 20 days of UV-B radiation increased the synthesis of 7-O-methylaraneol at the expense of araneol. Spectrophotometric analysis of the photosynthetic pigments showed that UV-B radiation also increases the pigment content in treated plants. Another U V alteration is epidermal hair damage, as observed in SEM pictures of treated leaves. This combination of physiological and phytochemical effects may be interpreted as a plant response to UV-B stress.

  16. Changes in epicuticular flavonoids and photosynthetic pigments as a plant response to UV-B radiation

    International Nuclear Information System (INIS)

    Cuadra, P.; Harborne, J.B.

    1996-01-01

    Treatment of Gnaphalium vira-vira plants with UV-B radiation caused changes in plant growth and in plant chemistry. The leaf surface contained two O-methylated flavones, araneol and 7-O-methylaraneol. HPLC analysis showed that 20 days of UV-B radiation increased the synthesis of 7-O-methylaraneol at the expense of araneol. Spectrophotometric analysis of the photosynthetic pigments showed that UV-B radiation also increases the pigment content in treated plants. Another U V alteration is epidermal hair damage, as observed in SEM pictures of treated leaves. This combination of physiological and phytochemical effects may be interpreted as a plant response to UV-B stress

  17. Photosynthetic accessory pigments: evidence for the influence of phycoerythrin on the submarine light field

    International Nuclear Information System (INIS)

    Hoge, F.E.; Swift, R.N.

    1990-01-01

    Oceanic phytoplankton chlorophyll is known to produce a very significant influence on the optical properties of the ocean. The chlorophyll-driven optical properties are in fact so strong as to allow global satellite mapping of the pigment concentration in the upper ocean using upwelled waterleaving radiances. In this paper, extensive experimental evidence is presented to strongly suggest that upwelled water-leaving spectral radiances (and therefore the submarine light field source) also include physical scattering and absorption effects of photosynthetic accessory pigments such as phycoerythrin. In the water column, the presence of phycoerythrin was measured over wide regions of the ocean using well-established airborne laser-induced spectral fluorescence techniques. Active-passive correlation spectroscopy methods revealed that concurrently measured water-leaving spectral radiances in the ∼ 600 nm spectral region were highly correlated with the laser-induced phycoerythrin pigment fluorescence. The analysis was performed on data sets in which the phycoerythrin and chlorophyll fluorescence were not coherent in order to permit the unambiguous evaluation of results. (author)

  18. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Yadavalli

    Full Text Available BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role

  19. The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900-1980.

    Science.gov (United States)

    Albertsson, Per-Ake

    2003-01-01

    The role of photosynthetic pigments in the development of separation methods in biochemistry during the period 1900-1980 is described beginning with M. Tswett who introduced separation of chlorophylls and carotenoids on columns and coined the term chromatography in 1906. In Uppsala, T. Svedberg developed the ultracentrifuge in the 1920s. A. Tiselius improved electrophoresis in the 1930s and developed chromatography of proteins in the 1940s and 1950s. Others of 'The Uppsala school in separation science' include J. Porath, P. Flodin and S. Hjertén who further developed various gel chromatographic methods. Hjertén introduced free zone electrophoresis in narrow tubes, a forerunner of capillary electrophoresis. Two proteins, phycoerythrin and phycocyanin, were used as test substances in all these methodological studies. Aqueous two-phase partitioning as a separation method was introduced in 1956 by the author. In this work, chloroplast particles were used, and the method was applied for the separation and purification of intact chloroplasts, inside-out thylakoid vesicles and plasma membranes. My research was carried out in cooperation with G. Blomquist, G. Johansson, C. Larsson, B. Andersson and H.-E. Akerlund during a 20-year period, 1960-1980.

  20. Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions

    Directory of Open Access Journals (Sweden)

    VANDIMILLI A. LIMA

    Full Text Available ABSTRACT Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN and blue (BN both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade. The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

  1. Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions.

    Science.gov (United States)

    Lima, Vandimilli A; Pacheco, Fernanda V; Avelar, Rafaella P; Alvarenga, Ivan C A; Pinto, José Eduardo B P; Alvarenga, Amauri A DE

    2017-01-01

    Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN) and blue (BN) both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade). The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

  2. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Growth and Photosynthetic Pigments Accumulation of Jute Mallow (Corchorus olitorius Linn. in Response to Different Levels of Magnesium Application

    Directory of Open Access Journals (Sweden)

    Ezekiel Dare OLOWOLAJU

    2017-06-01

    Full Text Available The hereby study investigated the effect of Magnesium application at different levels on the morphological parameters and photosynthetic pigment accumulation of Corchorus olitorius. Seeds of C. olitorius were utilized in the experiment. These seeds were sown in 2 big bowls and were supplied with 200 ml of water every day until they were fully established. After three weeks of sowing, the seedlings were transplanted into plastic pots. The treatments were: distilled water (control; nutrient solution in which the concentration of Magnesium was increased by the factor of 5 (N5, nutrient solution in which the concentration of Magnesium was increased by the factor of 10 (N10 and nutrient solution lacking Magnesium source (NMg. The seedlings were then divided into 4 regimes, with each regime containing each treatment. From the results obtained, it was observed that there was a significant effect at (P≥0.05 on the Corchorus olitorius growth parameters and photosynthetic pigment accumulation among the treatments. There was an increase in the shoot height, number of leaves, number of flowers, leaf area and the photosynthetic pigment accumulation in the seedlings treated with magnesium increased by the factor of 5 (N5 than by other treatments. The control recorded the lowest values for these parameters. It can be concluded that for an optimum growth of Corchorus olitorius, it can be inferred that the plant can do well in nutrient solution having Magnesium source (at moderate level.

  4. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  5. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments

    DEFF Research Database (Denmark)

    Kjaer, Christina; Stockett, Mark H.; Pedersen, Bjarke Møller

    2016-01-01

    The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects......), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here...

  6. Seasonal dynamics of the photosynthetic pigments content in Populus tremula L. leaves at the adaptation on an open-pit coal mine revegetating dump

    Directory of Open Access Journals (Sweden)

    Yu. V. Zagurskaya

    2017-02-01

    Full Text Available Seasonal dynamics of the basic photosynthetic pigments (a and b chlorophylls, carotenoids content in the samples of aspen Populus tremula during natural regeneration on a revegetating pit dump of a worked-out coal pit has been studied. The studies were conducted every ten days during the vegetation period in 2015 (June–September on the territory of «Yuzhniy» dump of «Kedrovskiy» open-pit coal mine (Kemerovo region. The pigment content was identified by the means of spectrophotometric detection. The content of photosynthetic pigments in aspen leaves was calculated on oven-dry weight of the leaves, as moisture aspen leaves can greatly vary, and the determination of accuracy of dry matter content higher than the for specific gravity of the sheet. No changes in visible absorption spectrum of acetone extracts indicating pheophytin formation in chlorophylls have been identified. For all variants the larger amount of b chlorophyll was contained in control samples. The largest differences in a/b chlorophylls and chlorophylls/carotenoids ratio were observed in the end of vegetation period. The ratio between a and b chlorophylls of aspen leaves in both cases by the end of the season was considerably lower. The adaptation of aspen photosynthetic system to the revegetating dump conditions was performed due to decrease in the total pigment content and the percent of b chlorophyll in their composition.

  7. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  8. Evidence for the Existence of One Antenna-Associated, Lipid-Dissolved and Two Protein-Bound Pools of Diadinoxanthin Cycle Pigments in Diatoms[C][W

    Science.gov (United States)

    Lepetit, Bernard; Volke, Daniela; Gilbert, Matthias; Wilhelm, Christian; Goss, Reimund

    2010-01-01

    We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls. PMID:20935178

  9. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    Science.gov (United States)

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  10. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].

    Science.gov (United States)

    Fetisova, Z G

    2004-01-01

    In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.

  11. EFFECTS OF NITROGEN NUTRIENT ON THE PHOTOSYNTHETIC PIGMENTS ACCUMULATION AND YIELD OF SOLANUM LYCOPERSICUM

    Directory of Open Access Journals (Sweden)

    Adekunle Ajayi ADELUSI

    2015-12-01

    Full Text Available This study investigated photosynthetic pigment accumulation and yield of Solanum lycopersicum so as to ascertain the maximum concentration of nitrogen needed for optimum production. Seeds of S. lycopersicum tagged with VG-TH-017 were firstly raised in nursery bed. At the end of 28th day after sowing, the seedlings with uniform height were transplanted into experimental pots with 4 seedlings per pot under greenhouse. All the experimental pots were 40 in total, 4 levels of nitrogen (KNO3 and NH4NO3 treatment (n, N, 5N, 10N with 10 replicates. All the plants in the four treatments received 200ml of distilled water at 6a.m. in the morning every day. At 6p.m. in the evening, 100 ml of the differential treatments were applied. The photosynthetic pigments were determined spectrophotometrically. The number of flowers and fruits per plant per pot were counted and recorded. The fruit lengths and fruit diameters in each treatment were determined with the use of a Vernier Caliper. The fruits biomass were also determined. The 10N-plants and 5N-plants had leaves with deep-green colouration indicating an increase in chlorophyll content as well as an increase in the photosynthetic capacity. The highest number of flowers and early flowering discovered in 10N-plants and 5N-plants. The best yield was obtained in the treatments for the 5N-plants in which the concentration of nitrogen in the nutrient solution had been increased to a factor of 5. It is therefore suggested that when the seeds of tomato plants VG-TH-017 are to be grown, the 5N treatment is the most suitable level of application.

  12. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  13. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  14. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A. S.

    2015-12-01

    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  15. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  16. Effects of nitrate and phosphate availabilities on growth, photosynthesis and pigment and protein contents in colour strains of Hypnea musciformis (Wulfen in Jacqu. J.V. Lamour. (Gigartinales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Aline P. Martins

    2011-05-01

    Full Text Available In Brazil, Hypnea musciformis is the main raw material for carrageenan production and the knowledge of nitrogen and phosphorus metabolism in algae is critical for the success of cultivation because these elements can limit seaweed productivity. Thus, the objective of this study was to evaluate the effects of nitrate (zero to 100 μM and nitrate plus phosphate (zero to 25 μM availabilities on the growth, the contents of photosynthetic pigments (phycobiliproteins and chlorophyll a and proteins, and the photosynthesis and respiration of the brown (BR and light green (LG strains of H. musciformis. The results revealed metabolic differences between the colour strains of H. musciformis for nitrogen metabolism: upon nitrate addition, the LG strain stored nitrogen mainly as proteins, while the BR strain stored it as proteins and pigments. Moreover, the respiration of the LG strain and the photosynthesis of the BR strain increased with nitrate concentrations, indicating that the BR strain fixed more photosynthetic carbon than the LG strain.

  17. Effects of nitrate and phosphate availabilities on growth, photosynthesis and pigment and protein contents in colour strains of Hypnea musciformis (Wulfen in Jacqu. J.V. Lamour. (Gigartinales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Aline P. Martins

    2011-04-01

    Full Text Available In Brazil, Hypnea musciformis is the main raw material for carrageenan production and the knowledge of nitrogen and phosphorus metabolism in algae is critical for the success of cultivation because these elements can limit seaweed productivity. Thus, the objective of this study was to evaluate the effects of nitrate (zero to 100 μM and nitrate plus phosphate (zero to 25 μM availabilities on the growth, the contents of photosynthetic pigments (phycobiliproteins and chlorophyll a and proteins, and the photosynthesis and respiration of the brown (BR and light green (LG strains of H. musciformis. The results revealed metabolic differences between the colour strains of H. musciformis for nitrogen metabolism: upon nitrate addition, the LG strain stored nitrogen mainly as proteins, while the BR strain stored it as proteins and pigments. Moreover, the respiration of the LG strain and the photosynthesis of the BR strain increased with nitrate concentrations, indicating that the BR strain fixed more photosynthetic carbon than the LG strain.

  18. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  19. Ameliorative effect of salicylic acid and theophylline on photosynthetic pigment content in gamma irradiated french bean varieties, using "6"0Co as a source

    International Nuclear Information System (INIS)

    Shukla, Pradeep K.; Vishwakarma, Kapil Kumar; Shukla, Saumya; Sharma, Richa; Ramteke, P.W.; Misra, Pragati

    2017-01-01

    Irradiation of seeds may cause genetic variability that enable plant breeders to select new genotypes with improved qualitative and quantitative characteristics. An experiment was conducted to study the protective role of salicylic acid and theophylline on photosynthetic pigments of gamma exposed french bean. Seeds of four French bean were treated by different doses of gamma radiation using "6"0Co as source. The results showed that the application of salicylic acid and theophylline significantly increased chlorophyll a content, chlorophyll b content, total chlorophyll content and carotenoid content. Salicylic acid was more effective than theophylline in overcoming the radiation effects and therefore, showed more protection to the photosynthetic pigments. (author)

  20. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  1. Marennine, Promising Blue Pigments from a Widespread Haslea Diatom Species Complex

    Directory of Open Access Journals (Sweden)

    Romain Gastineau

    2014-05-01

    Full Text Available In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.

  2. Transient grating spectroscopy in photosynthetic purple bacteria Rhodobacter sphaeroides 2.4.1

    Energy Technology Data Exchange (ETDEWEB)

    Sugisaki, Mitsuru, E-mail: mitsuru@sci.osaka-cu.ac.j [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Fujiwara, Masazumi; Fujii, Ritsuko [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Nakagawa, Katsunori; Nango, Mamoru [CREST-JST and Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Cogdell, Richard J. [Glasgow Biomedical Research Centre, IBLS, University of Glasgow, 126 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Hashimoto, Hideki [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2009-12-15

    The vibronic coherence of photosynthetic pigment-protein complexes has been investigated by means of transient grating spectroscopy using sub 20 fs optical pulses. In the present work, we focus our attention on the LH2 antenna complexes from Rhodobacter sphaeroides 2.4.1 because the information about their structure investigated by the electron and atomic force microscopy is available and the electric levels of pigments are well resolved, resulting in clear absorption spectrum. The vibronic coherent oscillations with a period of a few tens of femtoseconds have been clearly observed. We found that the temporal change of the coherent oscillations reflects the vibrational relaxation in the ground state. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. The spectral density has been determined from the Raman measurement of spheroidene. Good agreement between the calculation and the experimental results has been achieved in the linear absorption spectrum and transient grating signal, which strongly supports the validity of our model.

  3. The Effect of Static Magnetic Forces on Water Contents and Photosynthetic Pigments in Sweet Basil Ocimum basilicum L. (Lamiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Taia, Wafaa K; Kotbi, Abeer M [Alexandria Univ., Faculty of Science, Botany Dept., Alexandria (Egypt); AlZahrani, Hassan S [Faculty of Science, King AbdulAziz Univ., Biology Dept., Jeddah (Saudi Arabia)

    2007-07-01

    Three different magnetic regimes; aerial, surface and buried; each with three different forces, have been used to investigate their effects on the water contents and photosynthetic pigments of sweet basil plants (Ocimum basilicum L.). Two groups of sweet basil seeds, Ocimum basilicum L. have been cultivated, one under normal conditions and the second has been subdivided into three portion (aerial, surface and buried) to examine the effect of different magnetic forces coming from the three directions on the resulted plants. At all directions of magnets, water contents have been significantly affected by the magnetic forces. Chlorophyll A and carotene contents have been affected, as well, according to the three magnetic forces coming from soil surface regime only. Chlorophyll B did not significantly affected by differences magnetic forces in the three regimes, but it is affected by magnetism wherever its direction or force. But all the photosynthetic pigments contents (Chlorophyll A, B and Carotenes) decreased significantly than the control in the three magnetic regimes., but without any effect according to differences in the magnetic force in the aerial and burried regimes of magnetism. It was concluded that magnetism affects both water absorption and retention , the most influenced regime was the aerial magnets followed by the surface and buried ones. This result can be interpreted by the ionization of water which makes water ions respond to magnetic forces. Photosynthetic pigments have been decreased significantly by the exposure to magnetic fields, irrespective to its direction or force and this may be due to the effect of magnetic fields on the reduction in plastids inside the cells. (author)

  4. The Effect of Static Magnetic Forces on Water Contents and Photosynthetic Pigments in Sweet Basil Ocimum basilicum L. (Lamiaceae)

    International Nuclear Information System (INIS)

    Taia, Wafaa K; Kotbi, Abeer M; AlZahrani, Hassan S

    2007-01-01

    Three different magnetic regimes; aerial, surface and buried; each with three different forces, have been used to investigate their effects on the water contents and photosynthetic pigments of sweet basil plants (Ocimum basilicum L.). Two groups of sweet basil seeds, Ocimum basilicum L. have been cultivated, one under normal conditions and the second has been subdivided into three portion (aerial, surface and buried) to examine the effect of different magnetic forces coming from the three directions on the resulted plants. At all directions of magnets, water contents have been significantly affected by the magnetic forces. Chlorophyll A and carotene contents have been affected, as well, according to the three magnetic forces coming from soil surface regime only. Chlorophyll B did not significantly affected by differences magnetic forces in the three regimes, but it is affected by magnetism wherever its direction or force. But all the photosynthetic pigments contents (Chlorophyll A, B and Carotenes) decreased significantly than the control in the three magnetic regimes., but without any effect according to differences in the magnetic force in the aerial and burried regimes of magnetism. It was concluded that magnetism affects both water absorption and retention , the most influenced regime was the aerial magnets followed by the surface and buried ones. This result can be interpreted by the ionization of water which makes water ions respond to magnetic forces. Photosynthetic pigments have been decreased significantly by the exposure to magnetic fields, irrespective to its direction or force and this may be due to the effect of magnetic fields on the reduction in plastids inside the cells. (author)

  5. Carotenoid-protein complexes and their stability towards oxygen and radiation

    International Nuclear Information System (INIS)

    Ramakrishnan, T.V.; Francis, F.J.

    1980-01-01

    Carotenoid-protein complexes isolated from fresh mangoes were found to be more stable to oxygen and radiation when dissolved in water as compared with β-carotene in petroleum ether. Part of the pigment could be released from the complex by gamma irradiation. Observations on the stability of the carotenoid (98% β-carotene) in the complex indicated that the pigment is either associated with the lipid prosthetic group of the protein or loosely attached to the protein by weak hydrophobic bonds. (author)

  6. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  7. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity.

    Science.gov (United States)

    Mazur, Radosław; Sadowska, Monika; Kowalewska, Łucja; Abratowska, Agnieszka; Kalaji, Hazem M; Mostowska, Agnieszka; Garstka, Maciej; Krasnodębska-Ostręga, Beata

    2016-09-02

    Heavy metal exposure affect plant productivity by interfering, directly and indirectly, with photosynthetic reactions. The toxic effect of heavy metals on photosynthetic reactions has been reported in wide-ranging studies, however there is paucity of data in the literature concerning thallium (Tl) toxicity. Thallium is ubiquitous natural trace element and is considered the most toxic of heavy metals; however, some plant species, such as white mustard (Sinapis alba L.) are able to accumulate thallium at very high concentrations. In this study we identified the main sites of the photosynthetic process inhibited either directly or indirectly by thallium, and elucidated possible detoxification mechanisms in S. alba. We studied the toxicity of thallium in white mustard (S. alba) growing plants and demonstrated that tolerance of plants to thallium (the root test) decreased with the increasing Tl(I) ions concentration in culture media. The root growth of plants exposed to Tl at 100 μg L(-1) for 4 weeks was similar to that in control plants, while in plants grown with Tl at 1,000 μg L(-1) root growth was strongly inhibited. In leaves, toxic effect became gradually visible in response to increasing concentration of Tl (100 - 1,000 μg L(-1)) with discoloration spreading around main vascular bundles of the leaf blade; whereas leaf margins remained green. Subsequent structural analyses using chlorophyll fluorescence, microscopy, and pigment and protein analysis have revealed different effects of varying Tl concentrations on leaf tissue. At lower concentration partial rearrangement of the photosynthetic complexes was observed without significant changes in the chloroplast structure and the pigment and protein levels. At higher concentrations, the decrease of PSI and PSII quantum yields and massive oxidation of pigments was observed in discolored leaf areas, which contained high amount of Tl. Substantial decline of the photosystem core proteins and disorder of the

  8. Fluoranthene induced changes in photosynthetic pigments, biochemical compounds and enzymatic activities in two microalgal species: Chlorella vulgaris Beijerinck and Desmodesmus subspicatus Chodat

    Directory of Open Access Journals (Sweden)

    Miral Patel

    2014-02-01

    Full Text Available The photosynthetic pigments, biochemical and enzymatic activities in two freshwater microalgal species, Chlorella vulgaris and Desmodesmus subspicatus at different fluoranthene concentrations were compared with the control conditions. During 16-days of incubation period when treated with fluoranthene, both microalgal species exhibited variable amount of photosynthetic pigment, biochemical compounds and enzymatic activities. The addition of fluoranthene at concentrations ranged from 1.5 mg l-1; to 10 mg l-1; to microalgal cultures led to changes in all different metabolites but the patterns varied from species to species. Among the two species tested, pigment, biochemical and enzymatic contents were remarkably declined from 7 % to 95% in C. vulgaris. Moreover, all metabolites in D. subspicatus also diminishing significantly by 3% to 88% of fluoranthene doses (10ppm. These results suggest that fluoranthene-induced changes of pigments, biochemical and enzymatic variations in test microalgae, D. subspicatus and C. vulgaris, might reveal its resistance and ability to metabolize PAHs. At the same time, the PAH impact changes on different metabolic activities were higher at 12 and 16 days than at 4 and 8 days in treated microalgae. DOI: http://dx.doi.org/10.3126/ije.v3i1.9941 International Journal of Environment Vol.3(1 2014: 41-55

  9. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    represented a diverse international and multidisciplinary group, with over 160 individuals attending from a total of 17 different countries. Attendees came from a wide range of fields assuring that the widest possible interdisciplinary exchanges. They included prominent biochemists, biophysicists, plant physiologists, chemical physicists, as well as theoretical and computational physical chemists, who presented their research findings or to hear the latest advances in this very dynamic field. In the choice of speakers, a balance was created between established scientists and young, emerging researchers, given this opportunity to showcase their results. Sessions were held on electronic and vibrational coherence including coherent sharing of excitations among donor and acceptor molecules during excitation energy transfer, nonphotochemical quenching, acclimation to light environments, evolution, adaptation and biodiversity of light-harvesting pigment-protein complexes, their structure and membrane organization, spectroscopy and dynamics, as well as artificial antenna systems. A joint session was also held with the participants from the Cyanobacterial Satellite Conference. A special issue of Photosynthesis Research devoted to light harvesting (Volume 121, Issue No. 1, July 2014) has recently appeared which contains peer-reviewed original research contributions arising from talks and posters presented at the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems. Edited by the Organizers of the Workshop, Robert E. Blankenship, Harry A. Frank and Robert A. Niederman, it includes topics ranging from the isolation of new bacteriochlorophyll species from green bacteria, temperature effects on the excited states of the newly discovered chlorophyll (Chl) ƒ, new architectures for enhancing energy capture by biohybrid light-harvesting complexes, forces governing the formation of light-harvesting rings, spectroscopy of carotenoids of algae and diatoms and the supramolecular

  10. Influence of exogenous urea on photosynthetic pigments, (14)CO 2 uptake, and urease activity in Elodea densa-environmental implications.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Nekrasova, Galina; Prasad, M N V

    2013-09-01

    This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L(-1)) on photosynthetic pigments (measured spectrophotometrically), uptake of (14)CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler's reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L(-1)) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L(-1)) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L(-1), respectively. However, exogenous urea in high concentration (1,000 mg L(-1)) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.

  11. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    Science.gov (United States)

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  12. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  13. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  14. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  15. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  16. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    Science.gov (United States)

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  18. The peculiarities of 137Cs accumulation by plants of meadow phytocenosis and content of photosynthetic pigments and protein in the plant leaves

    International Nuclear Information System (INIS)

    Gaponenko, V.; Kravchenko, V.; Matsko, V.

    1994-01-01

    In connection with the Chernobyl accident the problem of resistance of different plant systems, including photosynthesis, in conditions of increased background radiation and radioactive soil contamination was investigated. The dynamics of pigments and proteins in the leaves of meadow phytocenosis at different contamination levels of Polesski State was studied. The reverse correlation was discovered between the coefficients of radionuclide accumulation by plants and the specific radioactivity of soil. A prevailing decrease in concentration of chlorophyll 'b' as compared to chlorophyll 'a' was discovered as well as a decrease in both green pigments as compared to carotenoids at the end of vegetation. At the lowest specific 137 Cs radioactivity in fresh leaf tissues of Agropyron repens L. the content of pigments in leaves was biggest. A positive correlation between specific radioactivity of overground phytomass (Bq/kg) and protein concentration in leaves was revealed. An analogous relationship has appeared too for one year old and two year old needles of Pinus Silvestris L. (author)

  19. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Shakir, Shakirullah Khan; Kanwal, Memoona; Murad, Waheed; Zia ur Rehman; Shafiq ur Rehman; Daud, M K; Azizullah, Azizullah

    2016-03-01

    Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.

  20. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-01-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 ∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs

  1. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  2. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  3. STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2 IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Tatas H.P. Brotosudarmo

    2010-12-01

    Full Text Available Photosynthesis provides an example of a natural process that has been optimized during evolution to harness solar energy efficiently and safely, and finally to use it to produce a carbon-based fuel. Initially, solar energy is captured by the light harvesting pigment-protein complexes. In purple bacteria these antenna complexes are constructed on a rather simple modular basis. Light absorbed by these antenna complexes is funnelled downhill to reaction centres, where light drives a trans-membrane redox reaction. The light harvesting proteins not only provide the scaffolding that correctly positions the bacteriochlorophyll a and carotenoid pigments for optimal energy transfer but also creates an environment that can modulate the wavelength at which different bacteriochlorophyll molecules absorb light thereby creating the energy funnel. How these proteins can modulate the absorption spectra of the bacteriochlorophylls will be discussed in this review.

  4. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  5. Isolation and Partial Characterization of the Pink and Blue Pigments of Pocilloporid and Acroporid Corals.

    Science.gov (United States)

    Dove, S G; Takabayashi, M; Hoegh-Guldberg, O

    1995-12-01

    The compounds responsible for the pink and blue colors of two families of hermatypic corals (Pocilloporidae, Acroporidae) from the southern Great Barrier Reef were isolated and biochemically characterized. Isolation of the pink pigment from Pocillopora damicornis (named pocilloporin, {lambda}max = 560 nm, 390 nm) revealed that it was a hydrophilic protein dimer with a native molecular weight of approximately 54 kD and subunits of 28 kD. The subunits are not linked by disulfide bonds. Attempts to dissociate the chromophore from the protein proved unsuccessful. Denaturing the protein with heat (60{deg}C) or 5% sodium dodecyl sulfate (SDS) removed the 560-nm absorbance peak without introducing a detectable bathochromic shift. In acetone, ethanol, ether, and chloroform, the pigment precipitates out of solution, leaving a colorless supernatant. These properties suggest that the protein and chromophore are covalently linked. Ion analysis revealed that the pigment does not have metal ions chelated to it. Coral pigments were also isolated from pink morphs of other pocilloporids, Seriatopora hystrix ({lambda}max = 560 nm) and Stylophora pistillata ({lambda}max = 560 nm); and from bluish regions of the acroporids, Acropora formosa (blue; {lambda}max = 590 nm) and Acropora digitifera (purple; {lambda}max = 580 nm). With the exception of A. formosa, all the corals examined had pigments with the same native (54 kD) and subunit (28 kD) molecular weights as those of P. damicornis. A. formosa pigment has a native molecular weight of about 82.6 kD and three subunits of 28 kD. The pigments isolated from each of these coral species have properties similar to those described for P. damicornis. Isolation and biochemical purification of the pigment enabled the exploration of the function of the pink pigment. Three possibilities were eliminated. The compound does not act as (i) a photoprotectant for shielding the photosynthetic pigments of symbiotic zooxanthellae against excessive

  6. Temporal variation in photosynthetic pigments and UV-absorbing compounds in shallow populations of two Hawaiian reef corals

    Science.gov (United States)

    Kuffner, I.B.

    2005-01-01

    As we seek to understand the physiological mechanisms of coral bleaching, it is important to understand the background temporal variation in photosynthetic pigments and photoprotective compounds that corals exhibit. In this study, reef flat populations of two hermatypic coral species, Montipora capitata (Dana, 1846) and Porites compressa Dana, 1846, were sampled monthly in Kane'ohe Bay, Hawai'i, from January 1998 to March 1999. Surface ultraviolet radiation (UVR) was measured continually during this time period at the same location. High-performance liquid chromatography (HPLC) analysis of photosynthetic pigments and mycosporine-like amino acids (MAAs) revealed temporal changes in concentrations and proportions of these compounds in tissues of both species of coral. Chlorophyll a (chl a), chlorophyll c2 (chl c2), peridinin, and diadinoxanthin concentrations changed on a skeletal weight (M. capitata) or surface area (P. compressa) basis, significantly correlating with seasonal changes in solar input (number of days from the winter solstice). In P. compressa, diadinoxanthin increased in proportion to the total pigment pool during summer months, suggesting an up-regulation of a xanthophyll cycle. In M. capitata, the ratio of chl a: chl c2 decreased during winter months, suggesting photoacclimation to lower light levels. It is surprising that there was not a clear seasonal pattern in total MAA concentration for either species, with the exception of shinorine in P. compressa. The relative stability of MAA concentrations over the course of the year despite a pronounced seasonal trend in UVR suggests either that MAAs are not performing a photoprotective role in these species or that concentrations are kept at a threshold level in the presence of a dynamic light environment. ?? 2005 by University of Hawai'i Press All rights reserved.

  7. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  8. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  9. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a Mediterranean forest.

    Science.gov (United States)

    Soler, M; Úbeda, X

    2018-01-15

    Few studies to date have examined the effect of the high temperatures attained during wildfire events on the pigments present in forest foliage. Here, we seek to analyse the main photosynthetic pigments in the leaves of the oak, cork oak and eucalyptus following a wildfire. We also subject leaves of these last two species to a range of contact temperatures (100-500 °C) in the laboratory using a muffle furnace. The samples were left in the muffle for two hours at 100, 150, 200, 250, 300, 350, 400 and 500 °C, in line with other soil study models (Úbeda et al., 2009; Düdaite et al., 2013). At temperatures above 250 °C, chromatography fails to detect any pigments. A minimal increase in temperature degrades chlorophyll, the process being more rapid in eucalyptus than in cork oak, while it increases pheophytin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic ProteinsW⃞

    Science.gov (United States)

    Kubis, Sybille; Baldwin, Amy; Patel, Ramesh; Razzaq, Azam; Dupree, Paul; Lilley, Kathryn; Kurth, Joachim; Leister, Dario; Jarvis, Paul

    2003-01-01

    The import of nucleus-encoded proteins into chloroplasts is mediated by translocon complexes in the envelope membranes. A component of the translocon in the outer envelope membrane, Toc34, is encoded in Arabidopsis by two homologous genes, atTOC33 and atTOC34. Whereas atTOC34 displays relatively uniform expression throughout development, atTOC33 is strongly upregulated in rapidly growing, photosynthetic tissues. To understand the reason for the existence of these two related genes, we characterized the atTOC33 knockout mutant ppi1. Immunoblotting and proteomics revealed that components of the photosynthetic apparatus are deficient in ppi1 chloroplasts and that nonphotosynthetic chloroplast proteins are unchanged or enriched slightly. Furthermore, DNA array analysis of 3292 transcripts revealed that photosynthetic genes are moderately, but specifically, downregulated in ppi1. Proteome differences in ppi1 could be correlated with protein import rates: ppi1 chloroplasts imported the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit and 33-kD oxygen-evolving complex precursors at significantly reduced rates, but the import of a 50S ribosomal subunit precursor was largely unaffected. The ppi1 import defect occurred at the level of preprotein binding, which is consistent with a role for atToc33 during preprotein recognition. The data suggest that atToc33 is involved preferentially in the import of photosynthetic proteins and, by extension, that atToc34 is involved in the import of nonphotosynthetic chloroplast proteins. PMID:12897258

  11. Bio-Inspired Assembly of Artificial Photosynthetic Antenna Complexes for Development of Nanobiodevices

    Science.gov (United States)

    2011-06-24

    complexes involved in the primary reactions of bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its...role in the primary process of purple bacterial photosynthesis that is, capturing light energy, transferring it to the RC where it is used in...immobilization LH2 LH1-RC AFM image of a bacterial photosynthetic membrane . Artificial domains of LH2 & LH1-RC with patterning substrate Modern

  12. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  13. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  14. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  15. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  16. Pigment exchange in the light collecting complex of Rhodospirillum rubrum purple bacteria and Fourier transform Raman spectroscopy on metallo-bacterio-pheophytins a

    International Nuclear Information System (INIS)

    Naveke, Arne

    1998-03-01

    Light collecting complexes (antennas) in membranes of photosynthetic bacteria and plants capture solar light during photosynthesis and transmit the excitation energy to the reaction centre where it is transformed into energy which can be used by the organism. Antennas and reaction centres are made of polypeptides and pigments (bacterio-chlorophylls) which have a crucial role in solar energy capture, but also in subsequent energy transfers. Whereas three-dimensional structures of some antennas and reaction centres are already known with a high resolution, there is almost no quantitative data on interactions between polypeptides and pigments which however confer their specificity to these complexes. A possibility to obtain such data is to introduce chemically modified pigments within antennas and reaction centres. In this research thesis, some metallo-bacteriopheophytins a have been synthesized and studied by Fourier transform Raman spectroscopy. Vibrations modes have been studied. A process of exchange of the bacterio-chlorophyll a in the LHI antenna of the Rhodospirillum rubrum purple bacteria has been developed to obtain a good efficiency in antennas containing zinc-bacterio-pheophytin a and nickel-bacterio-pheophytin a, as well as bacterio-pheophytin a. Absorption spectra are discussed as well as the occurring relationships between complexes, and the extent of the occurring exchange [fr

  17. [Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].

    Science.gov (United States)

    Kyrychenko, A M

    2014-01-01

    This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period.

  18. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  19. Photoinduced changes in photosystem II pigments

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Atanaska S; Busheva, Mira C; Stoitchkova, Katerina V; Tzonova, Iren K, E-mail: katys@phys.uni-sofia.b

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ss-carotene (ss-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ss-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  20. Photoinduced changes in photosystem II pigments

    Science.gov (United States)

    Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  1. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy

    NARCIS (Netherlands)

    Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.E.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P.

    2009-01-01

    Life on Earth depends on photosynthesis. Photosynthetic systems evolved early in Earth history and have been stable for 2.5 billion years, providing prima facie evidence for the significance of pigments in plant functions. Photosynthetic pigments fill multiple roles from increasing the range of

  2. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  3. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  4. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý, Josef

    2013-06-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19 kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms. © 2013 Elsevier B.V. All rights reserved.

  5. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments.

    Science.gov (United States)

    Smith, Edward G; D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg

    2017-07-12

    The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral- Symbiodinium association across steep environmental gradients. © 2017 The Authors.

  6. Biogenesis of light harvesting proteins.

    Science.gov (United States)

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  8. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    Science.gov (United States)

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  9. Protein translocons in photosynthetic organelles of Paulinella chromatophora

    Directory of Open Access Journals (Sweden)

    Przemysław Gagat

    2014-12-01

    Full Text Available The rhizarian amoeba Paulinella chromatophora harbors two photosynthetic cyanobacterial endosymbionts (chromatophores, acquired independently of primary plastids of glaucophytes, red algae and green plants. These endosymbionts have lost many essential genes, and transferred substantial number of genes to the host nuclear genome via endosymbiotic gene transfer (EGT, including those involved in photosynthesis. This indicates that, similar to primary plastids, Paulinella endosymbionts must have evolved a transport system to import their EGT-derived proteins. This system involves vesicular trafficking to the outer chromatophore membrane and presumably a simplified Tic-like complex at the inner chromatophore membrane. Since both sequenced Paulinella strains have been shown to undergo differential plastid gene losses, they do not have to possess the same set of Toc and Tic homologs. We searched the genome of Paulinella FK01 strain for potential Toc and Tic homologs, and compared the results with the data obtained for Paulinella CCAC 0185 strain, and 72 cyanobacteria, eight Archaeplastida as well as some other bacteria. Our studies revealed that chromatophore genomes from both Paulinella strains encode the same set of translocons that could potentially create a simplified but fully-functional Tic-like complex at the inner chromatophore membranes. The common maintenance of the same set of translocon proteins in two Paulinella strains suggests a similar import mechanism and/or supports the proposed model of protein import. Moreover, we have discovered a new putative Tic component, Tic62, a redox sensor protein not identified in previous comparative studies of Paulinella translocons.

  10. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  11. Pigment binding sites occupancy and functional architecture of the Photosystem II antenna complex Lhcb5

    NARCIS (Netherlands)

    Ballottari, M.; Mozzo, M.; Croce, R.; Morosinotto, T.; Bassi, R.

    2009-01-01

    Lhcb5 is an antenna protein that is highly conserved in plants and green algae. It is part of the inner layer of photosystem II antenna system retained in high light acclimated plants. To study the structure-function relation and the role of individual pigments in this complex, we (i) "knocked out"

  12. Investigations on photosynthetic pigments of Lemnaceae, pt. 14: The effect of UV-B radiation on deetiolating and autotrophically growing plants of Lemna gibba L

    International Nuclear Information System (INIS)

    Wejnar, R.; Döhler, D.

    1992-01-01

    In deetiolating plants of Lemma gibba L., the biosynthesis of photosynthetically active pigments (chlorophyll a and b, beta-carotene, lutein, violaxanthin and neoxanthin) was reduced by UV-B radiation (2,5 W cnt * m -2 ) in dependence on the exposure time (8-96-h). The biosynthesis of chlorophyll b was more inhibited than that of chlorophyll a, that of the chlorophylls more than that of the carotenoids and that of beta-carotene more than that of the xanthophylls notably lutein. In autotrophic plants. UV-B radiation (42, 72 and 120 h) causes a strong reduction of the pigment content. The alteration of the ratios between the pigments was the same as in deetiolating plants. In deetiolating as well as in autotropically cultivated plants of Lemma gibba, the termination of the UV-B radiation is followed by an approach to the original ratios

  13. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle.

    Science.gov (United States)

    Liguori, Nicoletta; Natali, Alberto; Croce, Roberta

    2016-12-15

    Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.

  14. The stereochemistry of chlorophyll-c₃ from the haptophyte Emiliania huxleyi: the (13²R)-enantiomers of chlorophylls-c are exclusively selected as the photosynthetically active pigments in chromophyte algae.

    Science.gov (United States)

    Mizoguchi, Tadashi; Kimura, Yuki; Yoshitomi, Taichi; Tamiaki, Hitoshi

    2011-11-01

    Chlorophyll(Chl)-c pigments in algae, diatoms and some prokaryotes are characterized by the fully conjugated porphyrin π-system as well as the acrylate residue at the 17-position. The precise structural characterization of Chl-c(3) from the haptophyte Emiliania huxleyi was performed. The conformations of the π-conjugated peripheral substituents, the 3-/8-vinyl, 7-methoxycarbonyl and 17-acrylate moieties were evaluated, in a solution, using nuclear Overhauser enhancement correlations and molecular modeling calculations. The rotation of the 17-acrylate residue was considerably restricted, whereas the other three substituents readily rotated at ambient temperature. Moreover, the stereochemistry at the 13²-position was determined by combination of chiral high-performance liquid chromatography (HPLC) with circular dichroism (CD) spectroscopy. Compared with the CD spectra of the structurally related, synthetic (13²R)- and (13²S)-protochlorophyllide(PChlide)-a, naturally occurring Chl-c₃ had exclusively the (13²R)-configuration. To elucidate this natural selection of a single enantiomer, we analyzed the three major Chl-c pigments (Chl-c₁, c₂ and c₃) in four phylogenetically distinct classes of Chl-c containing algae, i.e., heterokontophyta, dinophyta, cryptophyta and haptophyta using chiral HPLC. All the photosynthetic organisms contained only the (13²R)-enantiomerically pure Chls-c, and lacked the corresponding enantiomeric (13²S)-forms. Additionally, Chl-c₂ was found in all the organisms as the common Chl-c. These results throw a light on the biosynthesis as well as photosynthetic function of Chl-c pigments: Chl-c₂ is derived from 8-vinyl-PChlide-a by dehydrogenation of the 17-propionate to acrylate residues as generally proposed, and the (13²R)-enantiomers of Chls-c function as photosynthetically active, light-harvesting pigments together with the principal Chl-a and carotenoids. 2011 Elsevier B.V. All rights reserved.

  15. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    Science.gov (United States)

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  16. Biosynthesis of hydroxylated polybrominated diphenyl ethers and the correlation with photosynthetic pigments in the red alga Ceramium tenuicorne.

    Science.gov (United States)

    Lindqvist, Dennis; Dahlgren, Elin; Asplund, Lillemor

    2017-01-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified in a variety of marine organisms from different trophic levels indicating a large spread in the environment. There is much evidence pointing towards natural production as the major source of these compounds in nature. However, much is still not known about the natural production of these compounds. Seasonal trend studies have shown large fluctuations in the levels of OH-PBDEs in Ceramium tenuicorne from the Baltic Sea. Yet, even though indications of stimuli that can induce the production of these compounds have been observed, none, neither internal nor external, has been assigned to be responsible for the recorded fluctuations. In the present study the possible relationship between the concentration of pigments and that of OH-PBDEs in C. tenuicorne has been addressed. Significant correlations were revealed between the concentrations of all OH-PBDEs quantified and the concentrations of both chlorophyll a and Σxanthophylls + carotenoids. All of which displayed a concentration peak in mid-July. The levels of OH-PBDEs may be linked to photosynthetic activity, and hence indirectly to photosynthetic pigments, via bromoperoxidase working as a scavenger for hydrogen peroxide formed during photosynthesis. Yet the large apparent investment in producing specific OH-PBDE congeners point towards an targeted production, with a more specific function than being a waste product of photosynthesis. The OH-PBDE congener pattern observed in this study is not agreeable with some currently accepted models for the biosynthesis of these compounds, and indicates a more selective route than previously considered in C. tenuicorne. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Gradients of the content of photosynthetic pigments and radiation as manifestations of the health condition of Norway spruce (Picea abies [L.] Karst.)

    International Nuclear Information System (INIS)

    Zemánek, T.; Martinková, M.; Štěrbová, D.

    2004-01-01

    The distribution and quantities of chlorophyll a + b and carotenoids were determined in a sample tree of Picea abies in order to evaluate its health condition. The content of photosynthetic pigments (PhP) was determined by spectrophotometric analysis. The sample tree was situated at the Rajec nad Svitavou locality, the Drahany Upland, Czech Republic (altitude 625 to 640 m). It was shown that the inner coordination of the content of PhP in the crown in relation to the age of needles and their insolation was sufficient. Thus, the tree did not show impaired health condition and its growth retardation resulted from the short crown. The extent of the photosynthetic apparatus and stability of the tree would be increased particularly after elongation of the lower part of a crown, the so-called compensating part

  18. Gradients of the content of photosynthetic pigments and radiation as manifestations of the health condition of Norway spruce (Picea abies [L.] Karst.)

    International Nuclear Information System (INIS)

    Zemánek, T.; Martinková, M.; Štěrbová, D.

    2004-01-01

    The distribution and quantities of chlorophyll a + b and carotenoids were determined in a sample tree of Picea abies in order to evaluate its health condition. The content of photosynthetic pigments (PhP) was determined by spectrophotometric analysis. The sample tree was situated at the Rajec nad Svitavou locality, the Drahany Upland, Czech Republic (altitude 625 to 640 m). It was shown that the inner coordination of the content of PhP in the crown in relation to the age of needles and their insolation was sufficient. Thus, the tree did not show impaired health condition and its growth retardation resulted from the short crown. The extent of the photosynthetic apparatus and stability of the tree would be increased particularly after elongation of the lower part of a crown, the so-called compensating part. (author)

  19. Light-induced vegetative anthocyanin pigmentation in Petunia

    Science.gov (United States)

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris×(Petunia axillaris×Petunia hybrida cv. ‘Rose of Heaven’)]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (Amax). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors. PMID:19380423

  20. An evaluation of water deficit tolerance screening in pigmented indica rice genotypes

    International Nuclear Information System (INIS)

    Chutipaijit, S.; Sompornpailin, K.

    2011-01-01

    Eight pigmented genotypes of indica subspecies were geminated and then treated by mannitol-induced water deficit stress. A change of growth characteristics, photosynthetic pigments, lipid peroxidation, DNA content, proline content and anthocyanin accumulation in stressed seedling (100 mM mannitol) and control plant (0 mM mannitol) were calculated. Growth performances, photosynthetic pigment concentrations , and DNA contents in all rice genotypes were dropped whereas proline, anthocyanin contents and the lipid peroxidation levels were enriched. The stabilization in total photosynthetic pigment concentrations of stressed-seedlings were positively correlated to the proline or anthocyanin accumulation. In contrast, MDA content, the increases in the percentages of drought-stressed seedlings were negatively correlated to the proline or anthocyanin accumulation. The changes in biochemical, physiological and growth parameters were subjected to Wards cluster analysis for water deficit tolerance. These cultivars could be classified into two groups, water deficit sensitive, SY, KD, KLD and TD49 and water deficit tolerance, KS, KK1, KK2 and BSR. (author)

  1. Separation, identification and quantification of photosynthetic ...

    African Journals Online (AJOL)

    Thirty one photosynthetic pigments (chlorophylls, carotenoids and degradation products) from the seaweeds, Codium dwarkense, (Chlorophyta), , Laurencia obtusa , (Rhodophyta) and , Lobophora variegata, (Phaeophyta), were separated in a single-step procedure by reversed phase high-performance liquid ...

  2. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  3. Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells.

    Science.gov (United States)

    Liu, Juntai; Friebe, Vincent M; Swainsbury, David J K; Crouch, Lucy I; Szabo, David A; Frese, Raoul N; Jones, Michael R

    2018-04-17

    Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.

  4. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  5. Complexation of cesium 137 by the cap pigments of the bay boletus (Xerocomus badius)

    International Nuclear Information System (INIS)

    Aumann, C.; Clooth, G.; Steffan, B.; Steglich, W.

    1989-01-01

    Why is 137 Cs strongly enriched in bay boletus but hardly at all in cepe? This question, which arose after the reactor accident at Chernobyl, can now be answered. It was already known that bay boletus contains the unusual pigments badione A and norbadione A in the brown pileus and that these pigments are absent in cepe. The cap pigments are present in the mushroom as potassium complexes. However, the pigments can also bind cesium. Norbadione forms a 1:1 complex with CsCl. This complex can be dissociated by exposure to a strongly acidic cation exchanger. (orig.)

  6. Population density and photosynthetic pigment content in symbiotic dinoflagellates in the Brazilian scleractinian coral Montastrea cavernosa (Linnaeus, 1767

    Directory of Open Access Journals (Sweden)

    Cristiane F. Costa

    2004-06-01

    Full Text Available The seasonal dynamics of cell density and photosynthetic pigment contents of the zooxanthellae hosted by Montastrea cavernosa were investigated on coastal reefs off Picãozinho (06º42'05"/07º07'30"S and 34º48'37"/34º50'00" W, Northeast Brazil between September 1999 and 2000. A distinct pattern of these parameters was found: cell numbers were greater during the rainy season (autumn/winter while photosynthetic pigments were greater during the dry season (summer. Both parameters showed drastic reductions during heavy rains (June and July 1999. We speculate that this pattern is largely influenced by the rain cycles which, owing to their magnitude and frequency, affect the water clarity and the seasonal physiological condition of the cells.A dinâmica sazonal na densidade de células e na concentração de pigmentos fotossintetizantes das zooxantelas de Montastrea cavernosa foram analisados no período setembro/1999 a setembro/2000 nos Recifes do Picãozinho (06º42'05"/07º07'30" S e 34º48'37"/34º50'00" W, Nordeste do Brasil. Verificou-se que existe um padrão distinto entre estes parâmetros, com maior quantidade de células no período chuvoso e maior concentração de pigmentos fotossintetizantes na época de estiagem. Ambos os parâmetros apresentaram, no entanto, uma nítida redução em seus valores nos meses de maiores índices pluviométricos (junho e julho /1999. Especulamos que tal fato deve estar relacionado com o regime de chuvas que pode variar em magnitude e freqüência, afetando a qualidade ótica da água e o estado fisiológico das células.

  7. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... microL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...

  8. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    Science.gov (United States)

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PHOTOSYNTHETIC PIGMENT AND GENETIC DIFFERENCES BETWEEN TWO SOUTHERN OCEAN MORPHOTYPES OF EMILIANIA HUXLEYI (HAPTOPHYTA)1.

    Science.gov (United States)

    Cook, Suellen S; Whittock, Lucy; Wright, Simon W; Hallegraeff, Gustaaf M

    2011-06-01

    The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11-0.24 μm, type A; 0.06-0.12 μm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19'-hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was huxleyi var. aurorae var. nov. S. S. Cook et Hallegr. © 2011 Phycological Society of America.

  10. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  11. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    OpenAIRE

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...

  12. Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues.

    Science.gov (United States)

    Palmer, Caroline V; Roth, Melissa S; Gates, Ruth D

    2009-02-01

    Reports of coral disease have increased dramatically over the last decade; however, the biological mechanisms that corals utilize to limit infection and resist disease remain poorly understood. Compromised coral tissues often display non-normal pigmentation that potentially represents an inflammation-like response, although these pigments remain uncharacterized. Using spectral emission analysis and cryo-histological and electrophoretic techniques, we investigated the pink pigmentation associated with trematodiasis, infection with Podocotyloides stenometre larval trematode, in Porites compressa. Spectral emission analysis reveals that macroscopic areas of pink pigmentation fluoresce under blue light excitation (450 nm) and produce a broad emission peak at 590 nm (+/-6) with a 60-nm full width at half maximum. Electrophoretic protein separation of pigmented tissue extract confirms the red fluorescence to be a protein rather than a low-molecular-weight compound. Histological sections demonstrate green fluorescence in healthy coral tissue and red fluorescence in the trematodiasis-compromised tissue. The red fluorescent protein (FP) is limited to the epidermis, is not associated with cells or granules, and appears unstructured. These data collectively suggest that the red FP is produced and localized in tissue infected by larval trematodes and plays a role in the immune response in corals.

  13. Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII.

    Science.gov (United States)

    Lopes Dos Santos, Adriana; Gourvil, Priscillia; Rodríguez, Francisco; Garrido, José Luis; Vaulot, Daniel

    2016-02-01

    The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino-2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light-harvesting role of this pigment in clade VII as in Tetraselmis. © 2015 Phycological Society of America.

  14. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  15. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  16. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    NARCIS (Netherlands)

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light.

  17. [The impact of melafen on the expression of chloroplastic chaperone protein HSP70B and photosynthetic pigments in cells of Chlamydomonas reinhardtii].

    Science.gov (United States)

    Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2009-01-01

    The effects of growth regulator of the new generation-melamine salt of bis(oxymethyl)phosphine acid (melafen)--on culture growth, pigment and protein content, and the induction of protective chloroplastic chaperone HSP70B in Chlamydomonas reinhardtii CW15 cells were studied. Melafen exhibited 10-30% growth inhibition at 10(-9)-10(-2)% concentration. At 10(-9)-10(-4)% of melafen electrophoretic concentration, the pattern of cellular proteins was similar to the control. The alterations in protein content of algae cells were detected only at 10(-2)% concentration. The content of chlorophyll and carotenoids in melafen-treated cells was 17-40% lower than in the control. Melafen at 10(-9)-109-2)% concentration inhibited HSP70B induction by 39-43% compared to untreated cells. The potential mechanism of melafen effect might involve its influence on nuclear gene expression.

  18. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  19. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  20. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω 70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  1. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  2. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  3. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis.

    Science.gov (United States)

    Georgieva, Katya; Röding, Anja; Büchel, Claudia

    2009-09-15

    The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the

  4. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees.

    Science.gov (United States)

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Abiri, Rambod

    2015-01-01

    Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m(-1) led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future.

  5. Radiation quality effects on pigment-protein complex of maize and pine

    International Nuclear Information System (INIS)

    Milivojevic, D.B.

    1990-01-01

    Maize hybrid ZP-704 and Pinus nigra seedlings were grown under the same low irradiance (2.0 µmol/s m²) of white (WR), blue (BR) or red (RR) irradiation and adapted similarly. Radiation quality differences during chloroplast development had a greater effect on the ratio of PSII:PSI complexes than on chlorophyll (Chl) a:b ratio. RR in mesophyll chloroplasts induced primarily an increased accumulation of Chl a, b, xanthophylls, light-harvesting complex proteins LHC1 and LHC3, and PSII-bound polypeptides. BR-treated plants were more efficient in the synthesis of β-carotene, Chl-proteins and PSI-bound polypeptides. BR resulted in the production of sun type chloroplasts while RR gave shade type chloroplasts and WR resulted in intermediate chloroplasts

  6. Physiological and biochemical studies on the yellowing of spruce trees in higher altitudes. Pt. 1. Protection of pigments in the light-harvesting Chl-a/b-protein against photooxidation - the role of apoprotein and pigment organisation

    Energy Technology Data Exchange (ETDEWEB)

    Siefermanns-Harms, D.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    The light-harvesting Chl-a/b-protein complex (LHC) from Spinacea oleracia, Lactuca sativa and Picea abies is stable under strong white light (> 350 nm, 1000 w/m/sub 2/). Therefore, LHC preparations were used to examine requirements for the protection of LHC-bound pigments from photooxidation. - The presence of carotenoids in the LHC and their arrangement in close proximity with the chlorophylls are not sufficient for pigment protection under light. - An intact LHC apoprotein is required to protect the pigments from photooxidation. Evidently, the intact LHC apoprotein represents a barrier for O/sub 2/ limiting O/sub 2/ access to the microenvironment of the pigments. - The composition of the pigment fraction destroyed under light depends on the state of the LHC. If only the integrity of the apoprotein is impaired, both, chlorophylls and carotenoids are subjected to photooxidation.

  7. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction.

    Science.gov (United States)

    Smolinska, Beata; Leszczynska, Joanna

    2017-05-01

    The study was conducted to evaluate metabolic answer of Lepidium sativum L. on Hg, compost, and citric acid during assisted phytoextraction. The chlorophyll a and b contents, total carotenoids, and activity of peroxidase were determined in plants exposed to Hg and soil amendments. Hg accumulation in plant shoots was also investigated. The pot experiments were provided in soil artificially contaminated by Hg and/or supplemented with compost and citric acid. Hg concentration in plant shoots and soil substrates was determined by cold vapor atomic absorption spectroscopy (CV-AAS) method after acid mineralization. The plant photosynthetic pigments and peroxidase activity were measured by standard spectrophotometric methods. The study shows that L. sativum L. accumulated Hg in its aerial tissues. An increase in Hg accumulation was noticed when soil was supplemented with compost and citric acid. Increasing Hg concentration in plant shoots was correlated with enhanced activation of peroxidase activity and changes in total carotenoid concentration. Combined use of compost and citric acid also decreased the chlorophyll a and b contents in plant leaves. Presented study reveals that L. sativum L. is capable of tolerating Hg and its use during phytoextraction assisted by combined use of compost and citric acid lead to decreasing soil contamination by Hg.

  8. Effect of solar radiation on photosynthesis and pigmentation in the cyanobacterium microcoleus chtihonoplastes

    International Nuclear Information System (INIS)

    Annan, J.N.; Galyuon, I. K. A.; Donkor, V.A.

    2007-01-01

    The effects of solar radiation on the photosynthetic oxygen production and pigmentation were investigated in the marine filamentous cyanobacterium. Microcoleus chthonoplastes harvested from the intertidal zone of the Biriwa coast in Ghana. The organism was exposed to unfiltered solar radiation (UV-B. UV-A and PAR) and solar radiation filtered through optical filters. WG320 (UV-A and PAR), GG400 (PAR only), and UG5 (only UV-B and UV-A), Photosynthetic oxygen production was impaired. The reduction in the rate of photosynthetic oxygen production took over 2 hours to occur. The photoinhibition due to unfiltered solar radiation and combined UV-A and PAR were most severe. Absorption spectra of the crude extracts of M. chthonoplastes, indicated the presence of chlorophyll a, carotenoids, phycoerythrin and phycocyanin as the photosynthetic pigments, which were significantly bleached under the various solar radiation wavelengths. Generally, the phycobilins were affected most. Fluorescence measurements showed peaks that decreased significantly in amplitude and also underwent a shift towards shorter wavelengths, with prolonged exposure time, indicating that energy transfer from the accessory pigments was adversely affected. The implication is that increased solar radiation may have severe consequences on the marine ecosystem. (au)

  9. Effects of ultraviolet light on photosynthesis and pigments of Antarctic marine phytoplankton

    International Nuclear Information System (INIS)

    Stephens, F.C.

    1989-01-01

    This field study was conducted at Palmer Station, Anvers Island, Antarctica, during November-December, 1987. The main objectives were to quantify the effects on photosynthetic rates and pigmentation of short-term and long-term exposures of Antarctic phytoplankton to different levels of UV radiation. Phytoplankton and ice algae were exposed to four levels of UV radiation in outdoor incubation chambers: near ambient UV; UV enhanced by approximately 5% over ambient levels; reduced UV-B; and essentially no UV. Results of 4-hour studies showed that rates of phytoplankton photosynthesis were generally inversely related to UV exposure. Higher photosynthetic rates were maintained over a greater range of irradiance levels when UV was removed in photosynthesis-irradiance studies. Photosynthetic pigments did not change with variations in either visible or UV light. After adaptation for 24 hours, photosynthetic rate measured under conditions of essentially no UV was approximately twice that measured under near ambient UV conditions. Results of photosynthesis-irradiance experiments indicate that photosynthetic efficiencies (α), maximum photosynthetic rates (P max ) and the index of inhibition (I b ) were inversely related to UV levels, probably due at least in part to the loss of chlorophyll a

  10. Variability of photosynthetic parameters of Pinus sibirica Du Tour needles under changing climatic factors

    Directory of Open Access Journals (Sweden)

    A.P. Zotikova

    2013-12-01

    Full Text Available The air temperature and relative humidity and the intensity of photosynthetically active radiation are the basic ecological factors determining geographical distribution of a species. Wood plant adaptation depends on the intensity of physiological and biochemicalprocesses of plants as a response to changing environmental factors. Investigations to reveal (detect the variability of modification andgenetic components of the photosynthetic parameters in needles of the Siberian cedar (Pinus sibirica Du Tour mountain ecotypes, distributed in central part of the Altai Mountains, were carried out. Also, the survey was extended to some experiments with these ecotypes introduced to mild climate and flat regions from south-western of Siberia. The length and thickness of needles, the size of chloroplasts, content of the photosynthetic pigments, and the functional activity of chloroplastsat the level of photo system II were the evaluated traits. Growing under mountainous conditions (at about 2000m elevation, the two-year-old needles were shorter and thicker and contained very large in size chloroplasts while the content of chlorophylls and carotinoids was twice lower than that in the local ecotype growing in the lowlands. On the other hand, more green and yellow pigments were found in needles of mountain ecotypes planted in the lowlands compared to the local lowland ectype trees. A decrease in pool of the photosynthetic pigments in the highlands ecotypes is probably due to decreased biosynthesis andincreased photo-destruction caused by severe light and temperature conditions. These parameters are likely to be associated withmodifications due to intense insolation, low temperature, ozone concentration, UV radiation, and other negative factors that are morepronounced at high elevation. Despite the large pool of accumulated photosynthetic pigments, the functional activity of chloroplasts in themountain ecotype at the level

  11. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DOpigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Separation and determination of minor photosynthetic pigments by reversed-phase HPLC with minimal alteration of chlorophylls.

    Science.gov (United States)

    Nakamura, A; Watanabe, T

    2001-04-01

    Reversed-phase HPLC conditions for separation of chlorophyll (Chl) a, Chl a' (the C132-epimer of Chl a), pheophytin (Pheo) a (the primary electron acceptor of photosystem (PS) II), and phylloquinone (PhQ) (the secondary electron acceptor of PS 1), have been developed. Pigment extraction conditions were optimized in terms of pigment alteration and extraction efficiency. Pigment composition analysis of light-harvesting complex II, which would not contain Chl a' nor Pheo a, showed the Chl a'/Chl a ratio of 3-4 x 10(-4) and the Pheo a/Chl a ratio of 4-5 x 10(-4), showing that the conditions developed here were sufficiently inert for Chl analysis. Preliminary analysis of thylakoid membranes with this analytical system gave the PhQ/Chl a' ratio of 0.58 +/- 0.03 (n = 4), in line with the stoichiometry of one molecule of Chl a' per PS I.

  13. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    Science.gov (United States)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and

  14. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  15. Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape.

    Science.gov (United States)

    Singh, Shailendra P; Montgomery, Beronda L

    2013-07-01

    Salt impairs cellular morphology and photosynthetic pigment accumulation in the cyanobacterium Fremyella diplosiphon. Recent findings indicated that the impact of salt on cellular morphology was attributable to salt-associated effects on osmotic regulation, as the impact on morphology was reversible when cells were treated with an osmoticum in the presence of salt. The impact of salt on photosynthetic pigment accumulation was associated with ionic effects of salt on the cells, as pigment levels remained low when salt-treated cells were incubated together with an osmoticum or an antioxidant, the latter to mitigate the impact of a salt-associated accumulation of reactive oxygen species. Here, we provide evidence that the transcripts for genes encoding the phycobiliproteins are not reduced in the presence of salt. These results suggest that the negative impact of salt-mediated changes on pigment accumulation occurs post-transcriptionally. A greater understanding of the mechanisms which impact growth of strains such as F. diplosiphon, which harbor pigments that allow low-light and shade-tolerated growth, may facilitate the development or adaptation of such strains as useful for remediation of salt-impacted soils or biofuel production.

  16. Combined effects of Psoralens and ultraviolet-B on growth, pigmentation and biochemical parameters of Abelmoschus esculentus L.

    Science.gov (United States)

    Kumari, Rima; Singh, Suruchi; Agrawal, S B

    2009-05-01

    The effects of pre-treatment of Psoralens (furocoumarin compounds) and supplemental ultraviolet-B (sUV-B) were studied on plant growth, photosynthetic and non-photosynthetic pigments, protein, phenylalanine ammonia lyase (PAL) activity and antioxidative defense potential as well as their ultimate effects on biomass production in Abelmoschus esculentus L. (Okra) plants. Psoralens are capable of absorbing radiant energy and stimulating the pigmentation of human skin when photo-activated in presence of UV-A or UV-B making them beneficial in the treatment of vitilago. Pre-treatment of Psoralens against sUV-B (pUV-B), stimulates higher production of UV-B protective pigments (flavonoids and carotenoids) and helps in maintaining its biomass against UV-B stress. Antioxidative defense system in the test plant was activated by combined treatment of Psoralens and sUV-B as evidenced by the enhanced activity of enzymatic (ascorbate peroxidase-APX, superoxide dismutase-SOD, POX) and non-enzymatic (ascorbic acid and phenol) antioxidants. Individual treatments of Psoralens and sUV-B showed inhibitory effect on various morphological traits i.e. reduction in plant height, leaf area and ultimately on biomass production. Our results clearly indicated that adverse effect of sUV-B on biomass production was ameliorated by pre- treatment with Psoralens.

  17. Fish pigmentation and the melanocortin system.

    Science.gov (United States)

    Cal, Laura; Suarez-Bregua, Paula; Cerdá-Reverter, José Miguel; Braasch, Ingo; Rotllant, Josep

    2017-09-01

    The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  20. Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo

    Science.gov (United States)

    Mancini, Joshua A.

    Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles

  1. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells.

    OpenAIRE

    Jiang, M; Pandey, S; Tran, V T; Fong, H K

    1991-01-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensi...

  2. Relationships between pigment composition variation and reflectance for plant species from a coastal savannah in California

    Science.gov (United States)

    Ustin, Susan L.; Sanderson, Eric W.; Grossman, Yaffa; Hart, Quinn J.

    1993-01-01

    Advances in imaging spectroscopy have indicated that remotely sensed reflectance measurements of the plant canopy may be used to identify and qualify some classes of canopy biochemicals; however, the manner in which differences in biochemical compositions translate into differences is not well understood. Most frequently, multiple linear regression routines have been used to correlate narrow band reflectance values with measured biochemical concentrations. Although some success has been achieved with such methods for given data sets, the bands selected by multiple regression are not consistent between data sets, nor is it always clear what physical or biological basis underlies the correlation. To examine the relationship between biochemical concentration and leaf reflectance signal we chose to focus on the visible spectrum where the primary biochemical absorbances are due to photosynthetic pigments. Pigments provide a range of absorbance features, occur over a range of concentrations in natural samples, and are ecophysiologically important. Concentrations of chlorophyll, for example, have been strongly correlated to foliar nitrogen levels within a species and to photosynthetic capacity across many species. In addition pigments effectively absorb most of the photosynthetically active radiation between 400-700 nm, a spectral region for which silicon detectors have good signal/noise characteristics. Our strategy has been to sample a variety of naturally occurring species to measure leaf reflectance and pigment compositions. We hope to extend our understanding of pigment reflectance effects to interpret small overlapping absorbances of other biochemicals in the infrared region. For this reason, selected samples were also tested to determine total nitrogen, crude protein, cellulose, and lignin levels. Leaf reflectance spectra measured with AVIRIS bandwidths and wavelengths were compared between species and within species and for differences between seasons, for changes

  3. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.

    Science.gov (United States)

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J P

    2005-06-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

  4. Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan

    Science.gov (United States)

    Aikawa, Shimpei; Hattori, Hiroshi; Gomi, Yasushi; Watanabe, Kentaro; Kudoh, Sakae; Kashino, Yasuhiro; Satoh, Kazuhiko

    Ice algae are the major primary producers in seasonally ice-covered oceans during the cold season. Diurnal change in solar radiation is inevitable for ice algae, even beneath seasonal sea ice in lower-latitude regions. In this work, we focused on the photosynthetic response of ice algae under diurnally changing irradiance in Saroma-ko Lagoon, Japan. Photosynthetic properties were assessed by pulse-amplitude modulation (PAM) fluorometry. The species composition remained almost the same throughout the investigation. The maximum electron transport rate ( rETRmax), which indicates the capacity of photosynthetic electron transport, increased from sunrise until around noon and decreased toward sunset, with no sign of the afternoon depression commonly observed in other photosynthetic organisms. The level of non-photochemical quenching, which indicates photoprotection activity by dissipating excess light energy via thermal processes, changed with diurnal variations in irradiance. The pigment composition appeared constant, except for xanthophyll cycle pigments, which changed irrespective of irradiance. These results indicate that ice algae tune their photosynthetic system harmonically to achieve efficient photosynthesis under diurnally changing irradiance, while avoiding damage to photosystems. This regulation system may be essential for productive photosynthesis in ice algae.

  5. Anchored LH2 complexes in 2D polarization imaging.

    Science.gov (United States)

    Tubasum, Sumera; Sakai, Shunsuke; Dewa, Takehisa; Sundström, Villy; Scheblykin, Ivan G; Nango, Mamoru; Pullerits, Tõnu

    2013-09-26

    Protein is a soft material with inherently large structural disorder. Consequently, the bulk spectroscopies of photosynthetic pigment protein complexes provide averaged information where many details are lost. Here we report spectroscopy of single light-harvesting complexes where fluorescence excitation and detection polarizations are both independently rotated. Two samples of peripheral antenna (LH2) complexes from Rhodopseudomonas acidophila were studied. In one, the complexes were embedded in polyvinyl alcohol (PVA) film; in the other, they were anchored on the glass surface and covered by the PVA film. LH2 contains two rings of pigment molecules-B800 and B850. The B800 excitation polarization properties of the two samples were found to be very similar, indicating that orientation statistics of LH2s are the same in these two very different preparations. At the same time, we found a significant difference in B850 emission polarization statistics. We conclude that the B850 band of the anchored sample is substantially more disordered. We argue that both B800 excitation and B850 emission polarization properties can be explained by the tilt of the anchored LH2s due to the spin-casting of the PVA film on top of the complexes and related shear forces. Due to the tilt, the orientation statistics of two samples become similar. Anchoring is expected to orient the LH2s so that B850 is closer to the substrate. Consequently, the tilt-related strain leads to larger deformation and disorder in B850 than in B800.

  6. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  7. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    Science.gov (United States)

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  8. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-10-01

    Full Text Available Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively. The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.

  9. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Plumley, F.G.; Schmidt, G.W.

    1987-01-01

    A method for in vitro reconstitution of the chlorophyll a/b light-harvesting complex from LiDodSO/sub 4//heat-denatured or acetone-extracted photosynthetic membranes has been developed. Characterization of the minimum components necessary for the functional organization or pigments in these membrane complexes reveals that xanthophylls are essential structural components.

  10. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    Science.gov (United States)

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  11. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  12. Aerosolized droplet mediated self-assembly of photosynthetic pigment analogues and deposition onto substrates.

    Science.gov (United States)

    Shah, Vivek B; Biswas, Pratim

    2014-02-25

    Self-assembled photosynthetic molecules have a high extinction coefficient and a broad absorption in the infrared region, and these properties can be used to improve the efficiency of solar cells. We have developed a single-step method for the self-assembly of synthetic chlorin molecules (analogues of native bacteriochlorophylls) in aerosolized droplets, containing a single solvent and two solvents, to synthesize biomimetic light-harvesting structures. In the single-solvent approach, assembly is promoted by a concentration-driven process due to evaporation of the solvent. The peak absorbance of Zn(II) 3-(1-hydroxyethyl)-10-phenyl-13(1)-oxophorbine (1) in methanol shifted from 646 nm to 725 nm (∼ 80 nm shift) after assembly, which is comparable to the shift observed in the naturally occurring assembly of bacteriochlorophyll c. Although assembly is thermodynamically favorable, the kinetics of self-assembly play an important role, and this was demonstrated by varying the initial concentration of the pigment monomer. To overcome kinetic limitations, a two-solvent approach using a volatile solvent (tetrahydrofuran) in which the dye is soluble and a less volatile solvent (ethanol) in which the dye is sparingly soluble was demonstrated to be effective. The effect of molecular structure is demonstrated by spraying the sterically hindered Zn(II) 3-(1-hydroxyethyl)-10-mesityl-13(1)-oxophorbine (2), which is an analogue of 1, under similar conditions. The results illustrate a valuable and facile aerosol-based method for the formation of films of supramolecular assemblies.

  13. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  14. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments.

    Science.gov (United States)

    Liu, Jun; Last, Robert L

    2017-09-19

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

  15. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael; Holst, Gerhard

    2001-01-01

    Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls, and bacteri......Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls...

  16. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  17. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?

    Science.gov (United States)

    Montané, M H; Kloppstech, K

    2000-11-27

    Light-harvesting complex proteins (LHCs) and early light-induced proteins (ELIPs) are essential pigment-binding components of the thylakoid membrane and are encoded by one of the largest and most complex higher plant gene families. The functional diversification of these proteins corresponded to the transition from extrinsic (phycobilisome-based) to intrinsic (LHC-based) light-harvesting antenna systems during the evolution of chloroplasts from cyanobacteria, yet the functional basis of this diversification has been elusive. Here, we propose that the original function of LHCs and ELIPs was not to collect light and to transfer its energy content to the reaction centers but to disperse the absorbed energy of light in the form of heat or fluorescence. These energy-dispersing proteins are believed to have originated in cyanobacteria as one-helix, highly light-inducible proteins (HLIPs) that later acquired four helices through two successive gene duplication steps. We suggest that the ELIPs arose first in this succession, with a primary function in energy dispersion for protection of photosynthetic pigments from photo-oxidation. We consider the LHC I and II families as more recent and very successful evolutionary additions to this family that ultimately attained a new function, thereby replacing the ancestral extrinsic light-harvesting system. Our model accounts for the non-photochemical quenching role recently shown for higher plant psbS proteins.

  18. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    OpenAIRE

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light. A wide range of plant properties respond to the spectral composition of irradiance, such as photosynthesis, photomorphogenesis, phototropism and photonastic movements. These responses affect plant pr...

  19. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

    Science.gov (United States)

    Roach, Thomas; Miller, Ramona; Aigner, Siegfried; Kranner, Ilse

    2015-01-01

    Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in

  20. Plasmonic bio-sensing for the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco

    2017-01-01

    We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.

  1. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  2. The long-range organization of a native photosynthetic membrane

    NARCIS (Netherlands)

    Frese, R.N.; Siebert, C.A.; Niederman, R.A.; Hunter, C.N.; Otto, C.; van Grondelle, R.

    2004-01-01

    Photosynthesis relies on the delicate interplay between a specific set of membrane-bound pigment-protein complexes that harvest and transport solar energy, execute charge separation, and conserve the energy. We have investigated the organization of the light-harvesting (LH) and reaction-center (RC)

  3. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    International Nuclear Information System (INIS)

    Murphy, Thomas E.; Berberoglu, Halil

    2011-01-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m 2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  4. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.

    Science.gov (United States)

    Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian

    2015-07-01

    For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.

  5. Photosynthetic pigments and model compounds studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Jensen, N.-H.

    1980-05-01

    The photosynthetic pigments chlorophyll a and alltrans-β-carotene as well as the quinone model compound duroquinone have been studied in solution by pulse radiolysis combined with time-resolved absorption and resonance Raman spectroscopy. In benzene solution the excited triplet states of the subtrates were produced either directly in the case of duroquinone or by triplet energy transfer from triplet naphthalene in the case of chlorophyll a and β-carotene. All relevant rate constants involved in the reactions of the excited states in benzene were determined, including i) the rate constants for energy transfer from triplet naphthalene to chlorophyll a with k = (3.6+-0.6).10 9 M -1 s -1 and β-carotene with k = (10.7+-1.2).10 9 M -1 s -1 ii) the rate constants of triplet annihilation of chlorophyll a: (1.4+-0.3).10 9 M -1 s -1 , β-carotene: (3.6+-0.4).10 9 M -1 s -1 , duroquinone: (3.0+-0.6).10 9 M -1 s -1 . For β-carotene it is suggested that triplet-triplet annihilation produces the optically forbidden excited 1 Asub(g) state. The first-order components of the triplet decays were strongly dependent upon irradiation dose in the case of naphthalene and duroquinone but apparently only slightly dependent on or independent or irradiation dose in the case of chlorophyll a and β-carotene. Apparent bimolecular rate constants for triplet quenching by radiolytically produced free radicals are determined. The triplet state of duroquinone is quenched by ground state duroquinone with a rate constant of (1.2+-0.3).10 6 M -1 s -1 . The excited triplet state of all-trans-β-carotene has been investigated by time-resolved resonance Raman spectroscopy. Six transient Raman bands at 965 cm -1 , 1009 cm -1 , 1125 cm -1 , 1188 cm -1 , 1236 cm -1 and 1496 cm -1 were observed. The spectra suggest that the C = C band order is decreased and that the molecule may be substantially twisted, presumably at the 15,15 1 band, in the triplet state. The radical anion of chlorophyll a with

  6. Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions.

    Science.gov (United States)

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Köhler, Jürgen; Freiberg, Arvi

    2013-10-10

    The high sensitivity of optical spectra of pigment-protein complexes to temperature and pressure is well known. In the present study, we have demonstrated the significant influence of the environments commonly used in bulk and single-molecule spectroscopic studies at low temperatures on the LH2 photosynthetic antenna complex from Rhodopseudomonas acidophila. A transfer of this LH2 complex from a bulk-buffer solution into a spin-coated polymer film results in a 189 cm(-1) blue shift of the B850 excitonic absorption band at 5 K. Within the molecular exciton model, the origin of this shift could be disentangled into three parts, namely to an increase of the local site energies, a contraction of the exciton band, and a decrease of the displacement energy.

  7. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  8. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  10. Photosynthetic incorporation of 14C by Stevia rebaudiana

    International Nuclear Information System (INIS)

    Ferraresi, M. de L.; Ferraresi Filho, O.; Bracht, A.

    1985-01-01

    The photosynthetic incorporation of 14 by Stevia rebaudiana specimens was investigated. The 14 C incorporation, when the isotope was furnished to the plant in form of 14 CO 2 , was rapid. After 24 hours, the radioactivity has been incorporated into a great number of compounds including pigments, terpenes, glucose, cellulose and also stevioside and its derivatives. (M.A.C.) [pt

  11. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    Science.gov (United States)

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  12. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  13. Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring

    Science.gov (United States)

    Peeken, Ilka

    The development of phytoplankton biomass and composition was investigated on three occasions along a longitudinal transect (6°W) between 60°S and 47°S from October 13 to November 21, 1992 by measurement of photosynthetic pigments with high performance liquid chromatography (HPLC). Measured accessory pigment concentrations were multiplied by conversion factors to derive the proportions of phytoplankton groups contributing to the biomass indicator chlorophyll a. Phytoplankton blooms developed in the Polar Frontal region (PFr) and were dominated (80%) by diatoms. Other groups contributing to the phytoplankton included prymnesiophytes, green algae, autotrophic dinoflagellates, cryptophytes, pelagophytes and micromonadophytes, and their distributions varied with time. In contrast, phytoplankton biomass remained low in the southern Antarctic Circumpolar Current (ACC) and was dominated by flagellates, particularly green algae and prymnesiophytes. Green algae contributed more to total biomass than in previous investigations, partly attributed to "Chlorella-like" type organisms rather than prasinophytes. Cryptophytes decreased during the investigation, possibly due to salp grazing. No bloom was observed at the retreating ice-edge, presumably due to strong wind mixing. Only a slight increase in phytoplankton biomass, composed primarily of diatoms, was found at the ACC-Weddell Gyre front. Cluster analysis revealed that different phytoplankton communities characterised the different water masses of the PFr and southern ACC; the history of different water masses in the PFr could be reconstructed on this basis.

  14. Column chromatography as a useful step in purification of diatom pigments.

    Science.gov (United States)

    Tokarek, Wiktor; Listwan, Stanisław; Pagacz, Joanna; Leśniak, Piotr; Latowski, Dariusz

    2016-01-01

    Fucoxanthin, diadinoxanthin and diatoxanthin are carotenoids found in brown algae and most other heterokonts. These pigments are involved in photosynthetic and photoprotective reactions, and they have many potential health benefits. They can be extracted from diatom Phaeodactylum tricornutum by sonication, extraction with chloroform : methanol and preparative thin layer chromatography. We assessed the utility of an additional column chromatography step in purification of these pigments. This novel addition to the isolation protocol increased the purity of fucoxanthin and allowed for concentration of diadinoxanthin and diatoxanthin before HPLC separation. The enhanced protocol is useful for obtaining high purity pigments for biochemical studies.

  15. Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls.

    Science.gov (United States)

    Bassi, R; Caffarri, S

    2000-01-01

    Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light.

  16. Cell viability, pigments and photosynthetic performance of Arctic phytoplankton in contrasting ice-covered and open-water conditions during the spring-summer transition

    KAUST Repository

    Alou-Font, E

    2015-12-02

    © Inter-Research 2016. We examined phytoplankton biomass and community composition (mostly based on pigments) as well as cell viability with the cell digestion assay in surface waters of the Canadian Beaufort Sea during the spring-summer transition. Our aim was to understand phytoplankton responses to the large environmental changes (irradiance, temperature and nutrients) occurring during this period. Two categories of stations were visited in May and June 2008: ice-covered (IC), exposed to low irradiances, and open-water (OW), exposed to higher irradiances. We observed a large variation in the percentage of living cells (%LC) relative to the total community. No relationship was found between %LC and nitrate concentration (the nutrient potentially limiting in this environment). The in situ irradiance influenced the status of the cells at OW stations. Mean surface mixed layer irradiances >600 μmol photons m-2 s-1 were associated with low cell viability and a decline in photosynthetic performance (Fv/Fm). For IC stations, %LC declined at temperatures above 0°C, whereas for OW stations, it increased, suggesting that ice melting resulted in the release into surface waters of unhealthy cells from the bottom ice in one case, and that seasonal warming favored the communities present in open waters. A chlorophyll degradation pigment tentatively identified as pyropheophorbide a-\\'like\\' showed a significant negative relationship between its concentration (relative to chlorophyll a) and the %LC and Fv/Fm. Our results suggest that the melting conditions influence the distribution of this pigment and that it may be useful as a marker for low cell viability of ice algae being released into surface waters.

  17. Cell viability, pigments and photosynthetic performance of Arctic phytoplankton in contrasting ice-covered and open-water conditions during the spring-summer transition

    KAUST Repository

    Alou-Font, E; Roy, S; Agusti, Susana; Gosselin, M

    2015-01-01

    © Inter-Research 2016. We examined phytoplankton biomass and community composition (mostly based on pigments) as well as cell viability with the cell digestion assay in surface waters of the Canadian Beaufort Sea during the spring-summer transition. Our aim was to understand phytoplankton responses to the large environmental changes (irradiance, temperature and nutrients) occurring during this period. Two categories of stations were visited in May and June 2008: ice-covered (IC), exposed to low irradiances, and open-water (OW), exposed to higher irradiances. We observed a large variation in the percentage of living cells (%LC) relative to the total community. No relationship was found between %LC and nitrate concentration (the nutrient potentially limiting in this environment). The in situ irradiance influenced the status of the cells at OW stations. Mean surface mixed layer irradiances >600 μmol photons m-2 s-1 were associated with low cell viability and a decline in photosynthetic performance (Fv/Fm). For IC stations, %LC declined at temperatures above 0°C, whereas for OW stations, it increased, suggesting that ice melting resulted in the release into surface waters of unhealthy cells from the bottom ice in one case, and that seasonal warming favored the communities present in open waters. A chlorophyll degradation pigment tentatively identified as pyropheophorbide a-'like' showed a significant negative relationship between its concentration (relative to chlorophyll a) and the %LC and Fv/Fm. Our results suggest that the melting conditions influence the distribution of this pigment and that it may be useful as a marker for low cell viability of ice algae being released into surface waters.

  18. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.

    Science.gov (United States)

    Wen, Fuyu; Li, Can

    2013-11-19

    Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the

  19. The power of pigments, calibrating chemoclines with chlorophylls and carotenoids.

    Science.gov (United States)

    Junium, C. K.; Uveges, B. T.

    2017-12-01

    Phototrophic organisms produce a diversity of pigments that serve a broad range of specific biochemical functions. Pigments are either directly associated with the photosynthetic apparatus, the most notable being chlorophyll a, or are accessory pigments such as the carotenoid lutein. Their functions can also be categorized into roles that are related to light harvesting (e.g. fucoxanthin) or for photoprotection (e.g. scytonemin). The abundances of these two classes of pigments from environmental samples can provide specific information about photointensity and how it relates to environmental changes. For example, a deepening of the chemo/nutricline can result in the increased production of light gathering relative to photoprotective pigments. Here we apply a relatively simple approach that utilizes the abundance of photosynthetic relative to photoprotective pigments to help constrain changes in the water column position of the chemocline. To test the efficacy of this approach we have utilized the sedimentary record of the anoxic Lake Kivu in the East African Rift. Recent Lake Kivu sediments are punctuated by a series of sapropels that may be associated with overturn of the lake, and release of carbon dioxide and sulfide during potential limnic eruptions. Carbon and nitrogen isotopes decrease significantly at the onset of sapropel deposition and suggest that 13C-depleted dissolved inorganic carbon was upwelled into surface waters and was accompanied by high concentrations of ammonium, that allowed for 15N-depletion during incomplete nitrogen utilization. The pigment record, specifically the ratio of the photoprotective carotenoids lutein and zeaxanthin to chlorophyll a increases significantly at the onset of sapropel deposition. This suggests that the chemocline shallowed, displacing phototrophic communities toward the surface of the lake where light intensities required production of photoprotective pigments. This approach can easily be applied to a wide variety of

  20. Ground based remote sensing and physiological measurements provide novel insights into canopy photosynthetic optimization in arctic shrubs

    Science.gov (United States)

    Magney, T. S.; Griffin, K. L.; Boelman, N.; Eitel, J.; Greaves, H.; Prager, C.; Logan, B.; Oliver, R.; Fortin, L.; Vierling, L. A.

    2014-12-01

    Because changes in vegetation structure and function in the Arctic are rapid and highly dynamic phenomena, efforts to understand the C balance of the tundra require repeatable, objective, and accurate remote sensing methods for estimating aboveground C pools and fluxes over large areas. A key challenge addressing the modelling of aboveground C is to utilize process-level information from fine-scale studies. Utilizing information obtained from high resolution remote sensing systems could help to better understand the C source/sink strength of the tundra, which will in part depend on changes in photosynthesis resulting from the partitioning of photosynthetic machinery within and among deciduous shrub canopies. Terrestrial LiDAR and passive hyperspectral remote sensing measurements offer an effective, repeatable, and scalable method to understand photosynthetic performance and partitioning at the canopy scale previously unexplored in arctic systems. Using a 3-D shrub canopy model derived from LiDAR, we quantified the light regime of leaves within shrub canopies to gain a better understanding of how light interception varies in response to the Arctic's complex radiation regime. This information was then coupled with pigment sampling (i.e., xanthophylls, and Chl a/b) to evaluate the optimization of foliage photosynthetic capacity within shrub canopies due to light availability. In addition, a lab experiment was performed to validate evidence of canopy level optimization via gradients of light intensity and leaf light environment. For this, hyperspectral reflectance (photochemical reflectance index (PRI)), and solar induced fluorescence (SIF)) was collected in conjunction with destructive pigment samples (xanthophylls) and chlorophyll fluorescence measurements in both sunlit and shaded canopy positions.

  1. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution...Introduction] In a bacterial photosynthesis , light-harvesting complex 2 (LH2) and lightharvesting-reaction center complex (LH1-RC) play the key...Artificial Leaf 6CO2 + 6H2O C6H12O6 (Glucose) +6O2 Natural Leaf Photosynthesis and redox proteins are well-organized into thylakoid membrane in natural leaf

  2. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  3. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Leaf development and photosynthetic properties of three tropical tree species with delayed greening

    NARCIS (Netherlands)

    Cai, Z.Q.; Slot, M.; Fan, Z.X.

    2005-01-01

    Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in

  5. Photoprotection by carotenoids of Plantago media photosynthetic apparatus in natural conditions.

    Science.gov (United States)

    Golovko, Tamara; Dymova, Olga; Zakhozhiy, Ilya; Dalke, Igor; Tabalenkova, Galina

    2012-01-01

    The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.

  6. Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils.

    Science.gov (United States)

    Kaur, Parminder; Bali, Shagun; Sharma, Anket; Vig, Adarsh Pal; Bhardwaj, Renu

    2017-05-01

    The present study has been carried out to examine the role of earthworms in phytoremediation of Cd and its effect on growth, pigment content, expression of genes coding key enzymes of pigments, photosynthetic efficiency and osmoprotectants in Brassica juncea L. plants grown under cadmium (Cd) metal stress. The effect of different Cd concentrations (0.50, 0.75, 1.0, 1.25 mM) was studied in 30 and 60-day-old plants grown in soils containing earthworms. It was observed that earthworm inoculation showed stimulatory effect on phytoremediation capacity and Cd uptake has increased by 49% (in 30-day-old plants) and 35% (in 60-day-old plants) in shoots and 13.3% (in 30-day-old plants) and 10% (in 60-day-old plants) in roots in 30 and 60-day-old plants in Cd (1.25 mM) treatments. Plant growth parameters such as root and shoot length, relative water content and tolerance index were found to increase in the presence of earthworms. Recovery in photosynthetic pigments (chlorophyll and carotenoid) and gas exchange parameters, i.e. net photosynthetic rate (P n ), stomatal conductance (G s ), intercellular CO 2 concentration (C i ) and transpiration rate (E t ), was observed after earthworm's supplementation. Modulation in expression of key enzymes for pigment synthesis, i.e. chlorophyllase, phytoene synthase, chalcone synthase and phenylalanine ammonia lyase, was also observed. The results of our study revealed that earthworms help to mitigate the toxic effects produced by Cd on plant growth and photosynthetic efficiency along with enhanced phytoremediation capacity when co-inoculated with Cd in soil.

  7. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  8. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    Science.gov (United States)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  9. Egyptian Journal of Biology - Vol 4 (2002)

    African Journals Online (AJOL)

    Separation, identification and quantification of photosynthetic pigments from three Red Sea seaweeds using reversed-phase high-performance liquid chromatography ... Protection induced by external Ca application on proline accumulation, ion balance, photosynthetic pigments, protein and ABA concentration of mustard ...

  10. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.

    Science.gov (United States)

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M

    2011-03-01

    We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Diversity and functional properties of bistable pigments.

    Science.gov (United States)

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  12. Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence

    Directory of Open Access Journals (Sweden)

    Mittal S.

    2011-05-01

    Full Text Available High light intensity may induce severe photodamage to chloroplast and consequently cause decreases in the yield capacity of plants and destruction of pigments, causing an overall yellowing of the foliage. Thus, study related to light adaptation becomes necessary to understand adaptation processes in higher plants on the basis of which they are characterized as full sunlight or shade plants. Chlorophyll can be regarded as an intrinsic fluorescent probe of the photosynthetic system. The ecophysiological parameter related to plant performance and fitness i.e. in-situ chlorophyll fluorescence measurements were determined for different plant species in the medicinal plant garden of Banasthali University, Rajasthan. Miniaturized Pulse Amplitude Modulated Photosynthetic Yield Analyzers are primarily designed for measuring effective quantum yield (ΔF/Fm’ of photosystem II under momentary ambient light in the field. Photosynthetic yield measurements and light-response curves suggested a gradation of sun-adapted to shade-adapted behaviour of these plants in following order Withania somnifera> Catharanthus roseus> Datura stamonium> Vasica minora> Vasica adulta> Rauwolfia serpentina. As indicated by light response curves and pigment analysis, Datura stramonium, Withania somnifera and Catharanthus roseus competed well photosynthetically and are favoured while Rauwolfia serpentina, Vasica minora, Vasica adulta and Plumbago zeylanica were observed to be less competent photosynthetically. These light response curves and resultant cardinal points study gave insight into the ecophysiological characterization of the photosynthetic capacity of the plant and provides highly interesting parameters like electron transport rate, photo-inhibition, photosynthetically active photon flux density and yield on the basis of which light adaptability was screened for seven medicinally important plants.

  13. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  14. Ultraviolet radiation effects on pigmentation in the cyanobacterium ''Phormidium uncinatum''

    International Nuclear Information System (INIS)

    Donkor, V.A.; Haeder, D.P.

    1997-01-01

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the β- were more rapid than that of the α- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author)

  15. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Sener, Melih; Hsin, Jen; Trabuco, Leonardo G.; Villa, Elizabeth; Qian, Pu; Hunter, C. Neil; Schulten, Klaus

    2009-01-01

    The light-harvesting apparatus of the purple bacterial photosynthetic unit consists of a pool of peripheral light-harvesting complexes that transfer excitation energy to a reaction center (RC) via the surrounding pigment-protein complex LH1. Recent electron microscopy and atomic force microscopy studies have revealed that RC-LH1 units of Rhodobacter (Rba.) sphaeroides form membrane-bending dimeric complexes together with the polypeptide PufX. We present a structural model for these RC-LH1-PufX dimeric complexes constructed using the molecular dynamics flexible fitting method based on an EM density map. The arrangement of the LH1 BChls displays a distortion near the proposed location of the PufX polypeptide. The resulting atomic model for BChl arrays is used to compute the excitonic properties of the dimeric RC-LH1 complex. A comparison is presented between the structural and excitonic features of the S-shaped dimeric BChl array of Rba. sphaeroides and the circular BChl arrangement found in other purple bacteria

  16. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis

    Science.gov (United States)

    Pajusalu, Mihkel; Kunz, Ralf; Rätsep, Margus; Timpmann, Kõu; Köhler, Jürgen; Freiberg, Arvi

    2015-11-01

    Bacterial light-harvesting pigment-protein complexes are very efficient at converting photons into excitons and transferring them to reaction centers, where the energy is stored in a chemical form. Optical properties of the complexes are known to change significantly in time and also vary from one complex to another; therefore, a detailed understanding of the variations on the level of single complexes and how they accumulate into effects that can be seen on the macroscopic scale is required. While experimental and theoretical methods exist to study the spectral properties of light-harvesting complexes on both individual complex and bulk ensemble levels, they have been developed largely independently of each other. To fill this gap, we simultaneously analyze experimental low-temperature single-complex and bulk ensemble optical spectra of the light-harvesting complex-2 (LH2) chromoproteins from the photosynthetic bacterium Rhodopseudomonas acidophila in order to find a unique theoretical model consistent with both experimental situations. The model, which satisfies most of the observations, combines strong exciton-phonon coupling with significant disorder, characteristic of the proteins. We establish a detailed disorder model that, in addition to containing a C2-symmetrical modulation of the site energies, distinguishes between static intercomplex and slow conformational intracomplex disorders. The model evaluations also verify that, despite best efforts, the single-LH2-complex measurements performed so far may be biased toward complexes with higher Huang-Rhys factors.

  17. Differences in pigmentation between life cycle stages in Scrippsiella lachrymosa (dinophyceae).

    Science.gov (United States)

    Persson, Agneta; Smith, Barry C; Cyronak, Tyler; Cooper, Emily; DiTullio, Giacomo R

    2016-02-01

    Various life cycle stages of cyst-producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst-producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.2 ± 0.5 pg · cell(-1) ), whereas gamete pigment content was 22% lower. The pigment content of zygotes was 82% lower than vegetative cells, even though they appeared darker under the microscope. Zygotes of S. lachrymosa contained significantly higher cellular concentrations of β-carotene (0.65 ± 0.15 pg · cell(-1) ) than all other life stages. Photoprotective pigments and the de-epoxidation ratio of xanthophylls-cycle pigments in S. lachrymosa were significantly elevated in zygotes and cysts compared to other stages. This suggests a role for accessory pigments in combating intracellular oxidative stress during sexual reproduction or encystment. Resting cysts contained some pigments even though chloroplasts were not visible, suggesting that the brightly colored accumulation body contained photosynthetic pigments. The differences in pigmentation between life stages have implications for interpretation of pigment data from field samples when sampled during dinoflagellate blooms. © 2015 Phycological Society of America.

  18. Ecophysiological studies on photosynthesis and pigment adaptation of light and shade leaves; Oekophysiologische Untersuchungen zur Photosynthese und Pigment-Adaptation bei Licht- und Schattenblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, M.

    2005-07-01

    Photosynthetic function and pigment adaptation, as well as several other leaf parameters of light and shade adapted leaves of trees were studied under different environmental conditions. These measurements were performed primarily on a solitary standing beech during a summer drought stress period and an autumnal partial regeneration of physiological activity. Mainly investigated were beech leaves, sun leaves growing at the south side of the tree and shade leaves from the interior of the crown, since beech leaves show the strongest physiological light and shade adaptation responses among all deciduous trees. Similar adaptation studies were also performed with red, light-exposed, anthocyanin-containing leaves of the herbaceous purple foliage plant Perilla (beefsteak plant, Chinese basil) and some other plant species with either slightly or more red leaves, in order to check whether the accumulation of anthocyanins in the upper leaf epidermis of sun exposed-leaves blocks the high-light induced formation of sun-type chloroplasts. The latter are known to possess a much higher photosynthetic capacity and a different pigment composition as compared to shade-type chloroplasts of shaded green leaves. Special consideration was given to the natural drought stress effects usually occurring in the summer period (ca. end of July to end of August), caused by a combination of unfavourable weather conditions, such as a longer heat stress, with strong solar radiation and a very low rain precipitation lying clearly below the annual mean. The obtained research results provided new facts for a better understanding of the physiology of photosynthesis in sun and shade leaves of beech at both normal physiological conditions (June) and at environmental stress conditions (July, August), as well as the effect of anthocyanins on the formation of sun-type chloroplasts and their photosynthetic pigments (chlorophylls and carotenoids) in light-exposed purple foliage. (orig.)

  19. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  20. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.

    Science.gov (United States)

    Park, Kyeung-Il; Hoshino, Atsushi

    2012-03-15

    The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Bioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials

    Science.gov (United States)

    2010-05-10

    the primary reactions of bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure...most stable and well organized. The best results were only obtained with the subset Random immobilization LH2 LH1-RC AFM image of a bacterial ...Green and Technology, Zero-Carbon Energy Kyoto 2009, Springer, p.129-134 (2010). Reviews: 13 1. K. Iida, T. Dewa, *M. Nango, “Assembly of Bacterial

  2. Phytoplankton pigment patterns and community composition in the northern South China Sea during winter

    Science.gov (United States)

    Zhai, Hongchang; Ning, Xiuren; Tang, Xuexi; Hao, Qiang; Le, Fengfeng; Qiao, Jing

    2011-03-01

    Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chi a)-like type, divinyl chlorophyll a (DV Chi a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.

  3. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    Science.gov (United States)

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  4. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  5. Field studies on the photosynthesis of two desert Chilean plants: Prosopis chilensis and Prosopis tamarugo.

    Science.gov (United States)

    Lehner, G; Delatorre, J; Lütz, C; Cardemil, L

    2001-11-01

    Photosynthetic parameters were investigated in relation to light intensity (PAR and UV-B) in two Chilean Prosopis sp., Prosopis chilensis and Prosopis tamarugo in their natural habitats. The objective of this work was to compare the photosynthetic responses and to determine the degree of adaptation of both species to visible- and UV-radiation stress. One of the study sites was Refresco in the Atacama Desert, where P. tamarugo is an endemic plant and P. chilensis was introduced, and the other was Peldehue in the valley of Central Chile where only P. chilensis is present. Due to latitude, light intensity (UV-B and PAR) is higher in Refresco than in Peldehue. The parameters investigated in both species were photosystem II fluorescence, CO(2) assimilation, stomatal conductance, photosynthetic pigment composition, flavonoid absorption patterns and composition of chlorophyll-protein complexes. Fluorescence studies, CO(2) assimilation and stomatal conductance studies demonstrated that photosynthetic activity is more efficient and stable throughout the day in P. tamarugo than in P. chilensis in Refresco. Chlorophyll-protein complexes also seemed to be more stable in P. tamarugo than in P. chilensis. Photosynthetic pigment analyses indicated possible photodamage in P. chilensis trees in Refresco, but not in Peldehue. Such photodamage was absent in P. tamarugo. There was a considerable change in the flavonoid pattern between noon and afternoon hours in both species at both study sites. The physiological implications of these changes indicate that P. tamarugo is more adapted to high solar radiation than P. chilensis.

  6. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Ritschel, Gerhard; Roden, Jan; Eisfeld, Alexander; Strunz, Walter T

    2011-01-01

    A master equation derived from non-Markovian quantum state diffusion is used to calculate the excitation energy transfer in the photosynthetic Fenna-Matthews-Olson pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that explicitly contain the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient and as a result the transfer dynamics can be calculated within about 1 min on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion approach, we show how the inclusion of vibrational modes influences the transfer. (paper)

  7. The fine tuning of carotenoid–chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet–triplet energy transfer in the complex balance of the energy transfer processes

    International Nuclear Information System (INIS)

    Di Valentin, Marilena; Carbonera, Donatella

    2017-01-01

    Triplet–triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin–chlorophyll a -protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis. (topical review)

  8. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Directory of Open Access Journals (Sweden)

    Juan L Torres-Pérez

    Full Text Available Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  9. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    Science.gov (United States)

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  10. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  11. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    Science.gov (United States)

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ultrastructural Comparison of Processing of Protein and Pigment in the Ink Gland of Four Species of Sea Hares

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Prince

    2015-01-01

    Full Text Available The ink glands of four sea hare species (Aplysia californica, A. parvula, A. juliana, and Dolabrifera dolabrifera were compared to determine where ink protein is synthesized, how it is incorporated into protein storage vesicles, and the degree of variation in the structure of the ink gland. Ink protein was synthesized in RER cells and stored in amber and white vesicles. Lack of competent RER cells in the ink gland of D. dolabrifera was correlated with the absence of ink protein. Ink protein had similar characteristics in all three Aplysia species but, again, it was absent in D. dolabrifera. Its uptake involved pinocytosis by protein vesicle cell membranes. Granulate cells showed little variation in structure among the four species, the opposite was the case for RER cells. The conversion of the red algal pigment, phycoerythrin, to phycoerythrobilin (PEB occurs in the digestive gland but the change of PEB to aplysioviolin (APV, the form of pigment released by the ink gland, occurs in the ink gland itself by both granulate cells and pigment vesicles. The literature describes five types of vesicles based upon color and contents in the ink gland of these four species. We report only three types of vesicle: colored (purple, protein (white and amber, and transparent (includes clear vesicles.

  13. Smoke Priming, a Potent Protective Agent Against Salinity: Effect on Proline Accumulation, Elemental Uptake, Pigmental Attributes and Protein Banding Patterns of Rice (Oryza Sativa

    Directory of Open Access Journals (Sweden)

    Jamil, Muhammad

    2013-02-01

    Full Text Available The exogenous application of plant derived smoke solution through seed pre treatment is consider to create tolerance in the plant against salinity, for this purpose different dilution of plant derived smoke solution as 1:5000 Buhania, 1:1000 Buhania, 1:1000 Cymbopogon, 1:500 Cymbopogon were used against 0 mM, 50, 100 and 150mM NaCl solution in the medium. The effect was observed on total proline accumulation, heavy metals uptake, photosynthetic pigments and protein polypeptide bands intensity in two rice varieties as Basmati 385 (B-385 and Shaheen Basmati (S. Basmati. Proline concentration increases while chlorophyll “a” chlorophyll “b” and carotene level decreases with increasing salinity. On other hand zinc concentration increases while cadmium and lead concentration decrease in the crop under saline conditions. Intensity of protein polypeptides bands decreases gradually with increasing salinity level but plants from the seeds soaked with smoke solution alleviate the drastic affect of salinity, and intensity of bands is quite good by comparing with non primed seeds. It is concluded that seed priming with plant derived smoke solution show beneficial effect on crop to protect them from salinity.

  14. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    Science.gov (United States)

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  15. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    Science.gov (United States)

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  17. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3 Mutants in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Imilce A Rodriguez-Fernandez

    Full Text Available The Adaptor Protein (AP-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with

  18. The Solvent Effectiveness on Extraction Process of Seaweed Pigment

    Directory of Open Access Journals (Sweden)

    Warkoyo Warkoyo

    2011-09-01

    Full Text Available Eucheuma cottonii seaweed is a species of seaweed cultured in Indonesian waters, because its cultivation is relatively easy and inexpensive. It has a wide variety of colors from green to yellow green, gray, red and brown, indicating photosynthetic pigments, such as chlorophyll and carotenoids. An important factor in the effectiveness of pigment extraction is the choice of solvent. The correct type of solvent in the extraction method of specific natural materials is important so that a pigment with optimum quality that is also benefical to the society can be produced. The target of this research is to obtain a high quality solvent type of carotenoid pigment. This research was conducted using a randomized block design with three (3 replications involving two factors namely solvent type (4 levels: aceton, ethanol, petroleum benzene, hexan & petroleum benzene and seaweed color (3 levels: brown, green and red. Research results indicated that each solvent reached a peak of maximal absorbance at  410-472 nm, namely carotenoids. The usage of acetone solvent gave the best pigment quality. Brown, green and red seaweed have pigment content of 1,28 mg/100 g; 0,98 mg/100 g; 1,35 mg/100 g and rendement of 6,24%; 4,85% and 6,65% respectively.

  19. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    Science.gov (United States)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  20. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  1. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions.

    Science.gov (United States)

    Barz, W P; Francia, F; Venturoli, G; Melandri, B A; Verméglio, A; Oesterhelt, D

    1995-11-21

    The pufX gene is essential for photoheterotrophic growth of the purple bacterium Rhodobacter sphaeroides. In order to analyze the molecular function of the PufX membrane protein, we constructed a chromosomal pufX deletion mutant and phenotypically compared it to a pufX+ control strain and to two suppressor mutants which are able to grow photosynthetically in the absence of pufX. Using this genetic background, we confirmed that PufX is required for photoheterotrophic growth under anaerobic conditions, although all components of the photosynthetic apparatus were present in similar amounts in all strains investigated. We show that the deletion of PufX is not lethal for illuminated pufX- cells, suggesting that PufX is required for photosynthetic cell division. Since chromatophores isolated from the pufX- mutant were found to be unsealed vesicles, the role of PufX in photosynthetic energy transduction was studied in vivo. We show that PufX is essential for light-induced ATP synthesis (photophosphorylation) in anaerobically incubated cells. Measurements of absorption changes induced by a single turnover flash demonstrated that PufX is not required for electron flow through the reaction center and the cytochrome bc1 complex under anaerobic conditions. During prolonged illumination, however, PufX is essential for the generation of a sufficiently large membrane potential to allow photosynthetic growth. These in vivo results demonstrate that under anaerobic conditions PufX plays an essential role in facilitating effective interaction of the components of the photosynthetic apparatus.

  2. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  3. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Unravelling the shape and structural assembly of the photosynthetic GAPDH-CP12-PRK complex from Arabidopsis thaliana by small-angle X-ray scattering analysis.

    Science.gov (United States)

    Del Giudice, Alessandra; Pavel, Nicolae Viorel; Galantini, Luciano; Falini, Giuseppe; Trost, Paolo; Fermani, Simona; Sparla, Francesca

    2015-12-01

    Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.

  5. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  6. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    Science.gov (United States)

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  7. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a

    Science.gov (United States)

    Ogren, John I.; Tong, Ashley L.; Gordon, Samuel C.; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E.; Cao, Jianshu

    2018-01-01

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein–protein interactions and lipid–protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid–protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference

  8. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  9. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    Directory of Open Access Journals (Sweden)

    Thomas S Bibby

    Full Text Available BACKGROUND: Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. METHODS: All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. CONCLUSION/SIGNIFICANCE: Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1 the phycobilisome (PBS genes of Synechococcus; (2 the pcb genes of Prochlorococcus; and (3 the iron-stress-induced (isiA genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found

  10. Destruction of pigments and lipids in isolated chloroplasts under the effect of visible radiation

    International Nuclear Information System (INIS)

    Merzlyak, M.N.; Pogosyan, S.I.

    1988-01-01

    The results of experiments on the effect of light radiation on lipid and pigment destruction in isolated chloroplasts are generalized. Substrates and products of oxidation destruction of lipid and pigments, the role of photosynthetic electron transport in photodestruction, the participation of activated oxygen and free-radical intermediate forms in it are considered. The role of antioxidants, carotenoids and enzymatic systems in protection of chloroplast membranes from destructive light effect is discussed. A general scheme of possible ways of photodestruction in chloroplasts is presented. 53 refs

  11. Study the Effect of Different Phosphorus Fertilizers on Physiological Characteristic of Photosynthetic Pigments and Soluble Sugars of Safflower under Water Deficit Condition

    Directory of Open Access Journals (Sweden)

    S Heshmati

    2016-10-01

    Full Text Available Introduction Drought stress is one of the most important and effective factors in agricultural practices in arid and semi-arid regions of the world. The arid and semi-arid regions comprise more than 70% of the total area of Iran. Reduction in chlorophyll concentrations has been attributed to the increase in chlorophyll degradation in water deficit conditions and impairment in the enzymes activity responsible for the synthesis of photosynthetic pigments. Under drought stress, maintenance of photosynthetic capacities and leaf chlorophyll are physiological parameters which influence drought stress tolerant of crop. Phosphorus is one the most essential elements for plant growth after nitrogen. However, the availability of this nutrient for plants is limited by different chemical reactions especially in arid and semi-arid soils. Plant growth-promoting bacteria (PGPB are soil and rhizosphere bacteria that can benefit plant growth by different mechanisms. Given the negative environmental impact of chemical fertilizers and their increasing costs, the use of PGPB as natural fertilizers is advantageous for the development of sustainable agriculture. Inoculation of plants with native beneficial microorganisms may increase drought tolerance of plants growing in arid or semi-arid areas. Materials and Methods In order to study the effect of biologic and chemical phosphorous fertilizer on photosynthetic pigments of safflower cultivar (IL111, under water deficit condition, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University. The experimental design was split-factorial arrangement in randomized complete block design with three replicates. The main factors were the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field

  12. A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter.

    Science.gov (United States)

    Merry, Ryan; Jerrard, Jacob; Frebault, Julia; Verhoeven, Amy

    2017-09-01

    During winter evergreens maintain a sustained form of thermal energy dissipation that results in reduced photochemical efficiency measured using the chlorophyll fluorescence parameter Fv/Fm. Eastern white pine (Pinus strobus L.) and white spruce [Picea glauca (Moench) Voss] have been shown to differ in their rate of recovery of Fv/Fm from winter stress. The goal of this study was to monitor changes in photosynthetic protein abundance and phosphorylation status during winter recovery that accompany these functional changes. An additional goal was to determine whether light-dependent changes in light harvesting complex II (LHCII) phosphorylation occur during winter conditions. We used a combination of field measurements and recovery experiments to monitor chlorophyll fluorescence and photosynthetic protein content and phosphorylation status. We found that pine recovered three times more slowly than spruce, and that the kinetics of recovery in spruce included a rapid and slow component, while in pine there was only a rapid component to recovery. Both species retained relatively high amounts of the light harvesting protein Lhcb5 (CP26) and the PsbS protein during winter, suggesting a role for these proteins in sustained thermal dissipation. Both species maintained high phosphorylation of LHCII and the D1 protein in darkness during winter. Pine and spruce differed in the kinetics of the dephosphorylation of LHCII and D1 upon warming, suggesting the rate of dephosphorylation of LHCII and D1 may be important in the rapid component of recovery from winter stress. Finally, we demonstrated that light-dependent changes in LHII phosphorylation do not continue to occur on subzero winter days and that needles are maintained in a phosphorylation pattern consistent with the high light conditions to which those needles are exposed. Our results suggest a role for retained phosphorylation of both LHCII and D1 in maintenance of the photosynthetic machinery in a winter conformation

  13. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  14. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  15. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shu-Hao [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre, E-mail: kais@purdue.edu [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar)

    2014-12-21

    The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.

  16. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  17. Pigments content in Сhlorella vulgaris under the influence of the sodium selenite and the ions of metals

    Directory of Open Access Journals (Sweden)

    O. I. Bodnar

    2016-01-01

    Full Text Available We investigated the content of pigments in Chlorella vulgaris Beij. (Chlorophyta under the influence of sodium selenite in concentrations based on Se4+ 0.5, 5.0, 10.0 and 20.0 mg/dm3 during one, three and seven days and under the influence of the simultaneous action of selenite in concentrations 10 mg Se4+/dm3 and ions of Zn2+, Mn2+, Co2+,Cu2+, Fe3+ in concentrations 5.00, 0.25, 0.05, 0.008 and 0.002 mg/dm3over seven days. This research was carried out to establish the conditions for obtaining algal lipidis substance enriched with selenium and biogenic metals in the aquaculture. The content of pigments was determined spectrophotometrically, the cellular walls were separatedby centrifuge in the percoll gradient and investigated microscopically. The pigments content in the Ch. vulgaris increased by 1.5–2.5 times in comparison with the control sample under the influence of 10 mg Se4+/dm3 with and without metal ions, in all variants of experimental influence due to binding of SeО32– with proteins and lipids. We found that selenium was included in all lipid fractions (triacylglycerols, dyacylglycerols, phospholipids, nonetherified fatty acids; the maximum amount of selenium-containing lipids wasrecorded in chloroplasts. The increase in the contents of carotenoids caused by the actions of experimental factors played an exceptional role in the mechanism of antioxidant protection that prevents destruction of chlorophyll and, accordingly, increases its amount in cells. Changes in the functioning of the photosynthetic apparatus of Ch. vulgaris affect the whole complex of metabolic transformation. Thus, the successful cultivation of chlorella, enriched with selenium and biogenic metals, is possible within seven days under the influence of 10 mg Se4+/dm3 and the above-mentioned concentration of metal ions.

  18. Dimers of light-harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy

    NARCIS (Netherlands)

    Liu, Lu-Ning; Aartsma, Thijs J.; Frese, Raoul N.

    Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein complexes to be arranged in a densely packed energy-transducing network. Protein packing may play a determining role in the formation

  19. Insight into the structure of photosynthetic LH2 aggregate from spectroscopy simulations.

    Science.gov (United States)

    Rancova, Olga; Sulskus, Juozas; Abramavicius, Darius

    2012-07-12

    Using the electrostatic model of intermolecular interactions, we obtain the Frenkel exciton Hamiltonian parameters for the chlorophyll Qy band of a photosynthetic peripheral light harvesting complex LH2 of a purple bacteria Rhodopseudomonas acidophila from structural data. The intermolecular couplings are mostly determined by the chlorophyll relative positions, whereas the molecular transition energies are determined by the background charge distribution of the whole complex. The protonation pattern of titratable residues is used as a tunable parameter. By studying several protonation state scenarios for distinct protein groups and comparing the simulated absorption and circular dichroism spectra to experiment, we determine the most probable configuration of the protonation states of various side groups of the protein.

  20. A novel photosynthetic strategy for adaptation to low-iron aquatic environments

    Science.gov (United States)

    Chauhan, D.; Folea, I.M.; Jolley, C.C.; Kouril, R.; Lubner, C.E.; Lin, S.; Kolber, D.; Wolfe-Simon, Felisa; Golbeck, J.H.; Boekema, E.J.; Fromme, P.

    2011-01-01

    Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments. ?? 2010 American Chemical Society.

  1. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W. (Univ. of Southern California, Los Angeles (United States)); Pandey, S. (Doheny Eye Inst., Los Angeles, CA (United States))

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha} protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.

  2. Electron microscopy of cyanobacterial membrane proteins

    NARCIS (Netherlands)

    Folea, Ioana Mihaela

    2008-01-01

    The main focus of this thesis is photosynthetic protein complexes, and their organization within the membrane of cyanobacteria. In cyanobacteria large proteins catalyze the light reactions of photosynthesis. One of the key proteins is photosystem II. We have found for the first time by electron

  3. Effects of acetylsalicylic acid on fresh weight pigment and protein content of bean leaf discs (Phaseolus vulgaris L.).

    Science.gov (United States)

    Canakçi, S

    2003-01-01

    The effects of 100, 250, and 500 ppm acetylsalicylic acid solutions treatments on weight alteration, pigment and protein amounts in discs from the primary leaves of one month old bean (Phaseolus vulgaris L.) seedlings produced tinder greenhouse conditions are presented. The experiments show that: 100 ppm ASA had no significant influence (P > 0.05) but 250 and 500 ppm ASA caused an increase on weight loss (P 0.05), none of the ASA treatments caused a statistically significant influence on carotenoid amount (P > 0.05); 100 and 250 ppm ASA treatments did not cause a significant influence on protein amount (P > 0.05). however 500 ppm ASA treatment caused an increase on protein injury (P < 0.05). Consequently, it is supposed that wet weight loss, pigment and protein injury have somewhat increased on leaf discs. depending on the toxic effect of high acetylsalicylic acid concentrations.

  4. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi.

    Science.gov (United States)

    Xia, Jianxin; Wang, Yanlong; Li, Fuqiu; Wang, Jinfeng; Mu, Yan; Mei, Xianglin; Li, Xue; Zhu, Wenjing; Jin, Xianhua; Yu, Kai

    2016-09-01

    Malignant melanoma (MM) is a type of malignant tumor, which originates from neural crest melanocytes. MM progresses rapidly and results in a high mortality rate. The present study aims to investigate the expression of microphthalmia transcription factor (MITF), the S100 protein, and HMB-45 in MM and pigmented nevi. A total of 32 MM samples (including three skin metastasis, three lymph node metastasis and two spindle cell MM samples), two Spitz nevus samples, four pigmented nevus samples and two blue nevus samples were collected. The expression levels of S100 protein, HMB-45, and MITF were observed via immunostaining. The S100 protein exhibited high positive rates in MM and pigment disorders (96.7 and 100%, respectively), but with low specificity. The S100 protein was also expressed in fibroblasts, myoepithelial cells, histocytes and Langerhans cells in normal skin samples. HMB-45 had high specificity. Its positive expression was only confined to MM cells and junctional nevus cells. Furthermore, HMB-45 was not expressed in melanocytes in the normal tissue samples around the tumor or in the benign intradermal nevus cells. MITF exhibited high specificity and high sensitivity. It was expressed in the nuclei of melanocytes, MM cells and nevus cells. It was observed to be strongly expressed in metastatic MM and spindle cell MMs. Thus, MITF may present as a specific immunomarker for the diagnosis and differential diagnosis of MM.

  5. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia; Amad, Maan H.; Thimma, Manjula; Aldanondo, Naroa; Kumaran, Mande; Irigoien, Xabier

    2014-01-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  6. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  7. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  8. The effect of zinc on the growth, content of the photosynthetic pigments, and thiol groups of the freshwater alga Pseudokirchneriella subcapitata (Korshikov) Hindak

    International Nuclear Information System (INIS)

    Filova, A.; Molnarova, M.

    2015-01-01

    In these experiments were studied the effects of zinc chloride (Zn 2+ ) on the alga Pseudokirchneriella subcapitata (Korshikov) Hindak. The changes in the growth stimulation/inhibition, content of the photosynthetic pigments, and thiol groups were the aim of the article. The zinc concentration 0.036 mg.l -1 supported the algal growth. The first toxic effect of Zn on the growth was observed at the zinc concentration 0.072 mg.l -1 . However, the significant inhibitory effect on the growth was showed in the algal suspensions with 0.360 and 4.320 mg Zn.l -1 . Inhibition of the algal growth was in the range 65 - 70% compared to control (0% inhibition). The content of chlorophyll a was significant inhibited at the zinc concentration 0.0240 mg.l -1 , but at the higher used concentration was inhibited with the extremely significations. With increased zinc content in the algal medium the thiol (-SH) groups content increased and in the highest zinc concentrations (2.160 and 4.320 mg.l -1 ) overreached control three times. (authors)

  9. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  10. The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233.

    Science.gov (United States)

    Long, Chuannan; Liu, Mengmeng; Chen, Xia; Wang, Xiaofang; Ai, Mingqiang; Cui, Jingjing; Zeng, Bin

    2018-02-01

    The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata . The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp , pks , mppr1 , fasA , and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

  11. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  12. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Directory of Open Access Journals (Sweden)

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  13. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    Science.gov (United States)

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  14. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    Science.gov (United States)

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  15. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  16. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  17. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  18. Influence of photo- and chromatic acclimation on pigment composition in the sea

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2000-06-01

    Full Text Available The aim of this work was to find statistical relationships between the concentrations of accessory pigments in natural populations of marine phytoplankton and the absolute levels and spectral distributions of underwater irradiance. To this end, empirical data sets from some 600 stations in different parts of the seas and oceans were analysed. These data were obtained from the authors' own research and from the Internet's bio-optical data base. They included the vertical distributions of the concentrations of various pigments (identified chromatographically and the vertical and spectral distributions of the underwater irradiance measured in situ or determined indirectly from bio-optical models. The analysis covered a total of some 4000 points illustrating the dependence of pigment concentration on underwater irradiance characteristics, corresponding to different depths in the sea. The analysis showed that the factor governing the occurrence of photoprotecting carotenoids (PPC is short-wave radiation λ a concentration and the magnitude of the absorbed radiative energy per unit mass of chlorophyll a from the spectral interval λ z = 60 m (or less near the surface to account for vertical mixing. This absorbed short-wave radiation (λ *(z. Analysis of the relationships between the concentrations of particular photosynthetic pigments (PSP, i.e. chlorophyll b, chlorophyll c, photosynthetic carotenoids (PSC, and the underwater irradiance characteristics indicated that these concentrations were only slightly dependent on the absolute level of irradiance E0(λ, but that they depended strongly on the relative spectral distribution of this irradiance f(λ= E0(λ/PAR0. The relevant approximate statistical relationships between the relative concentrations of particular PSP and the function of spectral fitting Fj, averaged in the layer Δz, were derived. Certain statistical relationships between the pigment composition of the phytoplankton and the irradiance

  19. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    Science.gov (United States)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  20. Resonance Raman spectroscopy of xanthophylls in pigment mutant thylakoid membranes of pea.

    Science.gov (United States)

    Andreeva, Atanaska; Stoitchkova, Katerina; Busheva, Mira; Apostolova, Emilia; Várkonyi, Zsuzsanna; Garab, Gyözö

    Low-temperature resonance Raman spectroscopy was used to study the changes in the molecular structure and configuration of the major xanthophylls in thylakoid membranes isolated from mutants of pea with modified pigment content and altered structural organization of their pigment-protein complexes. The Raman spectra contained four known groups of bands, nu(1)-nu(4), which could be assigned to originate mainly from the long wavelength absorbing lutein and neoxanthin upon 514.5 nm and at 488 nm excitations, respectively. The overall configuration of these bound xanthophyll molecules in the mutants appeared to be similar to the wild type, and the configuration in the wild type was almost identical with that in the isolated main chlorophyll a/b light harvesting protein complex of photosystem II (LHCII). Significant differences were found mainly in the region of nu(4) (around 960 cm(-1)), which suggest that the macroorganization of PS II-LHCII supercomplexes and/or of the LHCII-only domains are modified in the mutants compared to the wild type. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  1. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  2. Biophotovoltaics: Natural pigments in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hug, Hubert; Bader, Michael; Mair, Peter; Glatzel, Thilo

    2014-01-01

    Highlights: • Natural pigments are photosensitizers in dye-sensitized solar cells (DSSCs). • Efficiency is still lower compared to synthetic pigments. • The use of natural pigments such as carotenoids and polyphenols is cheap. • General advantages of DSSCs are flexibility, color and transparency. • Usage under diffuse light and therefore, indoor applications are possible. - Abstract: Dye-sensitized solar cells (DSSCs) which are also called Graetzel cells are a novel type of solar cells. Their advantages are mainly low cost production, low energy payback time, flexibility, performance also at diffuse light and multicolor options. DSSCs become more and more interesting since a huge variety of dyes including also natural dyes can be used as light harvesting elements which provide the charge carriers. A wide band gap semiconductor like TiO 2 is used for charge separation and transport. Such a DSSC contains similarities to the photosynthetic apparatus. Therefore, we summarize current available knowledge on natural dyes that have been used in DSSCs which should provide reasonable light harvesting efficiency, sustainability, low cost and easy waste management. Promising natural compounds are carotenoids, polyphenols and chlorophylls

  3. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  4. The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers.

    Science.gov (United States)

    Allen, J P; Williams, J C

    2011-01-01

    In photosynthetic organisms, such as purple bacteria, cyanobacteria, and plants, light is captured and converted into energy to create energy-rich compounds. The primary process of energy conversion involves the transfer of electrons from an excited donor molecule to a series of electron acceptors in pigment-protein complexes. Two of these complexes, the bacterial reaction center and photosystem II, are evolutionarily related and structurally similar. However, only photosystem II is capable of performing the unique reaction of water oxidation. An understanding of the evolutionary process that lead to the development of oxygenic photosynthesis can be found by comparison of these two complexes. In this review, we summarize how insight is being gained by examination of the differences in critical functional properties of these complexes and by experimental efforts to alter pigment-protein interactions of the bacterial reaction center in order to enable it to perform reactions, such as amino acid and metal oxidation, observable in photosystem II.

  5. The effect of chloramphenicol, actinomycin D and 5-bromouracil on the synthesis of photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    S. Ficek

    2015-01-01

    Full Text Available The present study concerned the effect of chloramphenicol (100 μg/ml, actinomycin D (30 μg/ml, and 5-bromouracil (190 μg/ml on the accumulation of chlorophyll α, chlorophyll b, β-carotene and four fractions of xanthophylls (with the domination of: lutein, zeaxanthin, violaxanthin and neoxanthin in the primary bean leaves. The pigment content was determined in etiolated leaves after exposure to light for different lengths of time. It results from this study that chloramphenicol inhibits β-carotene synthesis more than do other pigments. The formation of xanthophylls and chlorophyll b is relatively less sensitive to the action of this antibiotic. Actinomycin D is also a somewhat more effective inhibitor of the accumulation of β-carotene than other pigments. In 5-bromouracil-treated leaves the accumulation of all carotenoids is inhibited almost to the same extent. These results suggest that the accumulation of chlorophyll b and xanthophylls is a little less dependent upon the activity of 70 S ribosomes in chloroplasts than the accumulation of chlorophyll α and β-carotene.

  6. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  7. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  8. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex.

    Science.gov (United States)

    Jackson, Philip J; Hitchcock, Andrew; Swainsbury, David J K; Qian, Pu; Martin, Elizabeth C; Farmer, David A; Dickman, Mark J; Canniffe, Daniel P; Hunter, C Neil

    2018-02-01

    The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc 1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes.

    Science.gov (United States)

    Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej

    2012-05-25

    The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested

  10. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.

    Science.gov (United States)

    Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel

    2015-03-19

    The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.

  11. Characterization of the photosynthetic conditions and pigment profiles of the colour strains of Hypnea musciformis from field-collected and in vitro cultured samples

    Directory of Open Access Journals (Sweden)

    Daniela R. P. Fernandes

    2012-08-01

    Full Text Available Hypnea musciformis (Wulfen JV Lamour. is a species of great economic interest as it produces Κ-carrageenan and has shown biological activities against HIV and HSV viruses. This species displays different colour strains in its natural habitat, which may have implications for the biotechnological potential of the species. The aim of this study was to characterize the photosynthetic apparatus and pigment profile of three colour strains of H. musciformis (green, brown and red in their natural habitat and in culture. Chlorophyll a fluorescence of photosystem II was measured with a pulse-amplitude modulated fluorometer and pigments were quantified by spectrofluorimetry (chlorophyll a and spectrophotometry (phycobiliproteins. In the natural habitat, we detected significant differences between the colour strains for the following photochemical parameters: the green strain had a higher effective quantum yield (ΦPSII than the red strain and a higher maximum relative electron transport rate (rETRmax than the brown and red strains. Saturation irradiances were 1000 µE.m-2.s-1 (green and 500 µE.m-2.s-1 (brown and red. Concerning in vitro culture, the green strain presented the lowest ΦPSII, rETRmax, and α rETR, while the brown strain presented the highest values for these same parameters. The chlorophyll a content of the cultured green strain was the lowest. The phycoerythrin contents of the three colour strains were unchanged by either natural of in vitro conditions: lower in green, intermediate in brown and higher in the red strain, ensuring the chromatic identity of the strains. Our results suggest that the green strain has a better performance when exposed to high irradiance, but a lower efficiency under low irradiance compared to the brown and red strains.

  12. Assembly of photosynthetic reaction center with ABA tri-block polymersomes: highlights on the protein localization.

    KAUST Repository

    Tangorra, Roberto Rocco

    2015-07-07

    The reconstitution of the integral membrane protein photosynthetic reaction center (RC) in polymersomes, i. e. artificial closed vesicles, was achieved by the micelle-to-vesicle transition technique, a very mild protocol based on size exclusion chromatography often used to drive the incorporation of proteins contemporarily to liposomes formation. An optimized protocol was used to successfully reconstitute the protein in a fully active state in polymersomes formed by the tri-block copolymers PMOXA22-PDMS61-PMOXA22. The RC is very sensitive to its solubilizing environment and was used to probe the positioning of the protein in the vesicles. According to charge-recombination experiments and to the enzymatic activity assay, the RC is found to accommodate in the PMOXA22 region of the polymersome, facing the water bulk solution, rather than in the PDMS61 transmembrane-like region. Furthermore, polymersomes were found to preserve protein integrity efficiently as the biomimetic lipid bilayers but show a much longer temporal stability than lipid based vesicles.

  13. Assembly of photosynthetic reaction center with ABA tri-block polymersomes: highlights on the protein localization.

    KAUST Repository

    Tangorra, Roberto Rocco; Operamolla, Alessandra; Milano, Francesco; Hassan Omar, Omar; Henrard, John; Comparelli, Roberto; Italiano, Francesca; Agostiano, Angela; De Leo, Vincenzo; Marotta, Roberto; Falqui, Andrea; Farinola, Gianluca; Trotta, Massimo

    2015-01-01

    The reconstitution of the integral membrane protein photosynthetic reaction center (RC) in polymersomes, i. e. artificial closed vesicles, was achieved by the micelle-to-vesicle transition technique, a very mild protocol based on size exclusion chromatography often used to drive the incorporation of proteins contemporarily to liposomes formation. An optimized protocol was used to successfully reconstitute the protein in a fully active state in polymersomes formed by the tri-block copolymers PMOXA22-PDMS61-PMOXA22. The RC is very sensitive to its solubilizing environment and was used to probe the positioning of the protein in the vesicles. According to charge-recombination experiments and to the enzymatic activity assay, the RC is found to accommodate in the PMOXA22 region of the polymersome, facing the water bulk solution, rather than in the PDMS61 transmembrane-like region. Furthermore, polymersomes were found to preserve protein integrity efficiently as the biomimetic lipid bilayers but show a much longer temporal stability than lipid based vesicles.

  14. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    RANJANA TRIPATHI

    2012-11-01

    Full Text Available Tripathi R, Dhuldhaj UP, Singh S. 2012. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune. Nusantara Bioscience 4: 134-137. Effect of temperature variation on biomass accumulation, pigment composition and protein content were studied for the cyanobacterium Nostoc commune, isolated from Antarctica. Results confirmed the psychrotrophic behavior (optimum growth temperature 25◦C of the cyanobacterium. Low temperature increased the duration of lag phase and exponential growth phase. Maximum increase in biomass was recorded on 24th day at 25◦C and on 12th day at 50C. The downshift from 25 to 5◦C had almost negligible effect on chl a content. Maximal protein content was recorded for cultures growing at 50C on 12th day. The carotenoids/chl a ratio was maximum (2.48 at 50C on 9th day. It remained almost constant for cultures growing at 5 and 350C. There was an induction in protein synthesis following downshift in temperature from 25 to 5◦C.

  15. Comparative Study on the Effect of Water Stress and Rootstock on Photosynthetic Function in Pistachio (Pistacia vera L. Trees

    Directory of Open Access Journals (Sweden)

    Abolfazl Ranjbar

    2017-12-01

    Full Text Available The aim of this study is to evaluate the  effects of water deficit stress on chlorophyll fluorescence (CF characteristics of photosystem II (PSII and pigment contents in two rootstock seedlings (Pistacia atlantica L. and P. khinjuk L.. Three levels of soil water potential (Ψs was used, including WWD (-0.05 MPa, MWD (-0.7 MPa and SWD (-1.5 MPa. It was found that water stress increased the minimal fluorescence (F0, quantum yield baseline (F0/Fm and decreased the maximal fluorescence (Fm and maximum quantum yield of PSII photochemistry (Fv/Fm parameters in dark adapted leaves. In light adapted leaves, a significant increase in non-photochemical quenching (NPQ and thermal dissipation of light energy to heat (D and a decrease in electron transport rate (ETR and photochemical efficiency of photosystem II (ΦPSII occurred. The results demonstrated a decline in photosynthetic pigments (Chla, (Chlb and carotenoids (Car content with increasing water stress, whereas there was no significant effect on Chl (a/b and Car/(a+b ratios. Our data revealed there was no different in terms of performance between the two rootstocks in the alteration rate of pigment contents and photosynthetic features against soil water deficit conditions.

  16. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  17. A quantum mechanical analysis of the light-harvesting complex 2 (LH2) from purple photosynthetic bacteria: insights into the electrostatic effects of transmembrane helices.

    Science.gov (United States)

    Pichierri, Fabio

    2011-02-01

    We perform a quantum mechanical study of the peptides that are part of the LH2 complex from Rhodopseudomonas acidophila, a non-sulfur purple bacteria that has the ability of producing chemical energy from photosynthesis. The electronic structure calculations indicate that the transmembrane helices of these peptides are characterized by dipole moments with a magnitude of about 150D. When the full nonamer assembly made of 18 peptides is considered, then a macrodipole of magnitude 806D is built up from the vector sum of each monomer dipole. The macrodipole is oriented normal to the membrane plane and with the positive tip toward the cytoplasm thereby indicating that the electronic charge of the protein scaffold is polarized toward the periplasm. The results obtained here suggest that the asymmetric charge distribution of the protein scaffold contributes an anisotropic electrostatic environment which differentiates the absorption properties of the bacteriochlorophyll pigments, B800 and B850, embedded in the LH2 complex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  19. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Kristin Collier Valle

    Full Text Available Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  20. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium.

    Science.gov (United States)

    Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin

    2016-10-01

    The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.

  1. Differential Mobility of Pigment-Protein Complexes in Granal and Agranal Thylakoid Membranes of C-3 and C-4 Plants

    Czech Academy of Sciences Publication Activity Database

    Kirchhoff, H.; Sharpe, R.M.; Herbstová, Miroslava; Yarbrough, R.; Edwards, G.E.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 497-507 ISSN 0032-0889 Institutional support: RVO:60077344 Keywords : Photosystem-II * Photosynthetic membranes * Electron tomography Subject RIV: ED - Physiology Impact factor: 7.394, year: 2013

  2. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Ding, Lanping; Ma, Yuanyuan; Huang, Bingxin; Chen, Shanwen

    2013-01-01

    This study simulated outdoor environmental living conditions and observed the growth rates and changes of several photosynthetic pigments (Chl a, Car, PE, and PC) in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) by setting up different ranges of salinity (25, 30, 35, 40, 45, and 50) and temperature (15, 20, 25, and 30°C). At conditions of culture, the results are as follows. (1) Changes in salinity and temperature have significant effects on the growth of H. cervicornis. The growth rates first increase then decrease as the temperature increases, while growth tends to decline as salinity increases. The optimum salinity and temperature conditions for growth are 25 and 25°C, respectively. (2) Salinity and temperature have significant or extremely significant effects on photosynthetic pigments (Chl a, Car, PE, and PC) in H. cervicornis. The results of this study are advantageous to ensure propagation and economic development of this species in the southern sea area of China.

  3. Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model.

    Science.gov (United States)

    Raszewski, Grzegorz; Diner, Bruce A; Schlodder, Eberhard; Renger, Thomas

    2008-07-01

    Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His(198), the axial ligand of the special-pair chlorophyll P(D1), and D1-Thr(179), an amino-acid residue nearest to the accessory chlorophyll Chl(D1), on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns Chl(D1). Compared to isolated reaction centers, the site energy of Chl(D1) is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on Chl(D1) rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by approximately 10 nm than the low-energy exciton state of the two special-pair chlorophylls P(D1) and P(D2) which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for Chl(D1) and P(D1), reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are

  4. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    OpenAIRE

    Hong Yang; Yun-Tao Cao; Hao Song; Shao-Feng Hua; Chun-Gu Xia; Wei-Bao Kong

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  5. Učinak glicerola i glukoze na povećanje biomase, udjela lipida i topljivih ugljikohidrata u miksotrofnoj kulturi alge Chlorella vulgaris

    OpenAIRE

    Kong, Wei-Bao; Yang, Hong; Cao, Yun-Tao; Song, Hao; Hua, Shao-Feng; Xia, Chun-Gu

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  6. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  7. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  8. SOUR CHERRY (Prunus cerasus L. GENETIC VARIABILITY AND PHOTOSYNTHETIC EFFICIENCY DURING DROUGHT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-12-01

    Full Text Available Sour cherry is an important fruit in Croatian orchards. Cultivar Oblačinska is predominant in existing orchards with noted intracultivar phenotypic heterogeneity. In this study, the genetic variability of 22 genotypes of cvs. Oblačinska, Maraska and Cigančica, as well as standard cvs. Kelleris 14, Kelleris 16, Kereška, Rexelle and Heimann conserved were investigated. Two types of molecular markers were used: microsatellite markers (SSR in order to identify intercultivar, and AFLP in order to identify intracultivar variabilities. A set of 12 SSR markers revealed small genetic distance between cvs. Maraska and Oblačinska while cv. Cigančica is affined to cv. Oblačinska. Furthermore, cvs. Oblačinska, Cigančica and Maraska were characterized compared to standard ones. AFLP markers didn`t confirm significant intracultivar variability of cv. Oblačinska although the variability has been approved at the morphological, chemical and pomological level. Significant corelation between SSR and AFLP markers was found. Identification of sour cherry cultivars tolerant to drought will enable the sustainability of fruit production with respect to the climate change in the future. For this purpose, the tolerance of seven sour cherry genotypes (cvs. Kelleris 16, Maraska, Cigančica and Oblačinska represented by 4 genotypes: OS, 18, D6 and BOR to drought conditions was tested in order to isolate genotypes with the desired properties. In the greenhouse experiment, cherry plants were exposed to drought stress. The leaf relative water content, OJIP test parameters which specify efficiency of the photosynthetic system based on measurements of chlorophyll a fluorescence, and concentrations of photo-synthetic pigments during the experiment were measured as markers of drought tolerance. Photosynthetic performance index (PIABS comprises three key events in the reaction centre of photosystem II affecting the photosynthetic activity: the absorption of energy

  9. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  10. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.

    Science.gov (United States)

    Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki

    2008-01-01

    Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

  11. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    Science.gov (United States)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stable Benzacridine Pigments by Oxidative Coupling of Chlorogenic Acid with Amino Acids and Proteins: Toward Natural Product-Based Green Food Coloring.

    Science.gov (United States)

    Iacomino, Mariagrazia; Weber, Fabian; Gleichenhagen, Maike; Pistorio, Valeria; Panzella, Lucia; Pizzo, Elio; Schieber, Andreas; d'Ischia, Marco; Napolitano, Alessandra

    2017-08-09

    The occasional greening of sweet potatoes and other plant tissues observed during cooking or other food processing has been shown to arise from the autoxidative coupling of chlorogenic acid (CGA, 5-caffeoylquinic acid) with amino acid components, leading to trihydroxybenzacridine pigments. To explore the potential of this reaction for food coloring, we report herein the optimized biomimetic preparation of trihydroxybenzacridine pigments from CGA and amino acids such as glycine and lysine, their straightforward purification by gel filtration chromatography, the UHPLC-MS/MS analysis of the purified pigment fraction, and a detailed characterization of the pH-dependent trihydroxybenzacridine chromophore. Similar green pigments were also obtained by analogous reaction of CGA with a low-cost protein, bovine serum albumin, and by simply adding CGA to chicken egg white (CEW) under stirring. Neither the purified pigments from amino acids nor the pigmented CEW exerted significant toxicity against two human cell lines, Caco-2 and HepG2, at doses compatible with common use in food coloring. Additions of the pure pigments or pigmented CEW to different food matrices imparted intense green hues, and the thermal stability of these preparations proved satisfactory up to 90 °C. The potential application of the greening reaction for the sensing of fish deterioration is also disclosed.

  13. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  14. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  15. Micro-pigmentation: implications for patients and professionals.

    Science.gov (United States)

    Collingridge, Kim; Calcluth, Julie

    In the UK, reconstructive breast surgery is routinely offered to patients undergoing surgery for breast cancer. The results can be excellent, but without a nipple-areola complex the patient can feel incomplete. In response to patient need, an innovative nurse-led micro-pigmentation service has been developed in the authors' NHS trust, which provides women (and men) an opportunity to complete their reconstruction process. With the use of coloured pigments, micro-pigmentation creates a permanent image of a nipple-areola complex, which improves the aesthetic appearance of the surgically-created breast. As with the development of any new nurse-led innovation, the micro-pigmentation service has professional and client implications. Breast cancer can be devastating and may induce many psychological concerns, not least about body image and sexuality. This article addresses these issues, along with professional matters, such as autonomous practice, role expansion and the blurring of clinical boundaries. These factors are considered in relation to the nursing management of the micro-pigmentation service, where patient autonomy is encouraged to promote acceptance of self-image and closure on the breast cancer experience.

  16. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as a sole carbon substrate, but its effect is inferior to that of the mixture of glycerol and glucose. The effect of glycerol and glucose could enhance the algal cell growth rate, biomass content and volumetric productivity, and overcome the lower biomass production on glycerol as the sole organic carbon source in mixotrophic culture medium. The utilization of complex organic carbon substrate can stimulate the biosynthesis of lipids and soluble carbohydrates as the raw materials for biodiesel and bioethanol production, and reduce the anabolism of photosynthetic pigments and proteins. This study provides a promising niche for reducing the overall cost of biodiesel and bioethanol production from microalgae as it investigates the by-products of algal biodiesel production and algal cell hydrolysis as possible raw materials (lipids and carbohydrates and organic carbon substrates (soluble carbohydrates and glycerol for mixotrophic cultivation of microalgae.

  17. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  18. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    Science.gov (United States)

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  19. New insights into the complex photoluminescence behaviour of titanium white pigments

    NARCIS (Netherlands)

    van Driel, B.A.; Artesani, A.; van den Berg, Klaas Jan; Dik, J.; Mosca, S.; Rossenaar, B.; Hoekstra, J.; Davies, A.; Nevin, A.; Valentini, G.; Comelli, D.

    2018-01-01

    This work reports the analysis of the time-resolved photoluminescence behaviour on the nanosecond and microsecond time scale of fourteen historical and contemporary titanium white pigments. The pigments were produced with different production methods and post-production treatments, giving rise to

  20. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    Science.gov (United States)

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  1. Extraction and radiochromatographic division of the early photosynthetic products of C3 plants

    International Nuclear Information System (INIS)

    Manolov, P.; Rangelov, B.; Borichenko, N.

    1978-01-01

    A complete method for extraction, radiochromatographic separation and 14 C balance of the early photosynthetic products in C 3 plants (peach, apple, plum, grapevine and beans) was worked out on the basis of comparative tests of methods presented in literature and of results obtained by investigations carried out. It was established that in view of accomplishing high quality chromatogram an appropriate way to purify the extracts is to eliminate the lipids, pigments, soluble proteins and high molecular carbohydrates in a two-phase system of methanol (chlorophorm)-water (6:5, 5:5) and to block the cations by 0.1 M EDTA. Two-directional ascending chromatography was applied on FN 4 paper rinsed with 0,01 M EDTA and 2 M CH 3 COOH and solvents: for the first direction - 98% ethamol 1 M ammonium acetate pH 7,5: 0,1 M EDTA (75/30 l) by repeated ascending and for the second direction - butanol (propyonic acid) water (10/5/7) by threefold rinsing. Twenty-four 14 C compounds were separated and identified, namely: sucrose diphosphates, uridine diphosphate-glucose, glucose-6-phosphate, glucose-1-phosphate, fructose-6-phosphate, phosphoglyceric acid, phosphoglycolic acid, phosphoenolpyruvic acid, dihydroacetone phosphate, aspartate glutamate, glycine, serine, alanine, citrate, malate, glycerate, glycolate, sorbitol, fructose, glucose, sucrose, maltose and rafinose. For a full 14 C balance of the samples the radioactivity of starch, α-1,4-glucosyleglucans, lipids, pigments and residues was determined. (author)

  2. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f.

    Science.gov (United States)

    Majumder, Erica L-W; Wolf, Benjamin M; Liu, Haijun; Berg, R Howard; Timlin, Jerilyn A; Chen, Min; Blankenship, Robert E

    2017-11-01

    Far-Red Light (FRL) acclimation is a process that has been observed in cyanobacteria and algae that can grow solely on light above 700 nm. The acclimation to FRL results in rearrangement and synthesis of new pigments and pigment-protein complexes. In this study, cyanobacteria containing chlorophyll f, Synechococcus sp. PCC 7335 and Halomicronema hongdechloris, were imaged as live cells with confocal microscopy. H. hongdechloris was further studied with hyperspectral confocal fluorescence microscopy (HCFM) and freeze-substituted thin-section transmission electron microscopy (TEM). Under FRL, phycocyanin-containing complexes and chlorophyll-containing complexes were determined to be physically separated and the synthesis of red-form phycobilisome and Chl f was increased. The timing of these responses was observed. The heterogeneity and eco-physiological response of the cells was noted. Additionally, a gliding motility for H. hongdechloris is reported.

  3. Emerging greener extraction systems for fungal pigments isolation

    OpenAIRE

    Lebeau , Juliana; Venkatachalam , Mekala; Fouillaud , Mireille; Dufossé , Laurent; Caro , Yanis

    2016-01-01

    International audience; Filamentous fungi produce a mixture of various metabolites such as pigments, fatty acids, proteins and other cellular metabolites. Thus, extraction and isolation of the pigmented molecules of interest are necessary steps before proceeding to any further utilization of these metabolites for commercial applications. Pigments can be stored within the biomass, excreted in the fermentation broth or both, suggesting that extraction methods need to be developed accordingly to...

  4. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  5. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg

    2004-01-01

    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  6. PIXE analysis of proteins from a photochemical center

    Science.gov (United States)

    Solís, C.; Oliver, A.; Andrade, E.

    1998-03-01

    In oxygen evolving photosynthetic organisms, light is absorbed and its energy used for the conversion of chemical products in two photosystems: PSI and PSII. Each photosystem is composed of a protein core which binds a pigment antenna and a Reaction Center (RC). RC of PSI is considered an "Iron-Sulfur" type. There are six components that participate in the charge separation after light absorption occurs in PSI: the center chlorophyll P700, two acceptors A 0 and A 1 and three FeS centers F X, F A and F B. However, the exact number of polypeptides, their exact molecular weight, their relative abundances and the active components associated to those polypeptides remain still to be completely characterized. In particular the FeS centers have been difficult to detect in a direct way in a gel band, because the amount of centers involved is under the detection limits of the conventional techniques. This study has been under-taken to explore the capability of particle induced X-ray emission (PIXE) to detect in a qualitative way the presence of Fe in some of the protein bands obtained by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) from the PSI complex. The complex was isolated from membranes of thermophilic cyanobacteria: Synechochoccus sp. The polyacrylamide gel electrophoresis of the complex shows eight subunits of 66, 60-65, 14, 13, 9, 8 and 7 KDa. In-air PIXE was performed at 2 MeV and proved to be an adequate tool for direct identification of the iron present in the gel bands.

  7. Photosynthetic Reaction Centres-from Basic Research to Application

    Directory of Open Access Journals (Sweden)

    László NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view; e.g., 1 technical-in order to improve the utilization of the solar energy; 2 food production-to improve the photosynthetic production of plants in agriculture; 3 ecology-keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  8. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  9. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    Science.gov (United States)

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  10. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Directory of Open Access Journals (Sweden)

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  11. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy.

    Science.gov (United States)

    Stamouli, Amalia; Kafi, Sidig; Klein, Dionne C G; Oosterkamp, Tjerk H; Frenken, Joost W M; Cogdell, Richard J; Aartsma, Thijs J

    2003-04-01

    The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.

  12. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment

    Czech Academy of Sciences Publication Activity Database

    Štroch, Michal; Materová, Z.; Vrábl, D.; Karlický, Václav; Šigut, Ladislav; Nezval, J.; Špunda, Vladimír

    2015-01-01

    Roč. 96, nov (2015), s. 90-96 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2010007 Grant - others:EHP(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : barley (Hordeum vulgare L.) * chlorophyll fluorescence * photosynthesis * photosynthetic pigments * UV-A radiation * UV-B radiation Subject RIV: BO - Biophysics Impact factor: 2.928, year: 2015

  13. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  14. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  15. Computational drug designing of fungal pigments as potential aromatase inhibitors

    Directory of Open Access Journals (Sweden)

    Nighat Fatima

    2014-12-01

    Full Text Available The existing aromatase inhibitors produced unwelcome effects impose the discovery of novel drugs with privileged selectivity, a reduced amount of toxicity and humanizing potency. In this study, we illuminate the binding mode of polyketide azaphilanoid pigments monascin, ankaflavin, monascorubrin and monascorubramine isolated from Monascus fungus to the aromatase by molecular docking. The 3-dimensional structure of aromatase enzyme (PDB: 4KQ8 was obtained from the Protein Data Bank. PatchDock docking software was used to analyze structural complexes of the aromatase with monascus pigments. Comparatively, the AutoGrid model presented the most briskly constructive binding mode of monascin to aromatase. Docked energies in kcal/mol are: monascin;-13.2; monascorubramine:-12.8, monascorubrin:-12.3; ankaflavin: -10.5. These outcomes exposed these ligands could be potential drugs to treat hormone dependent breast cancer.

  16. Low-cost sensor integrators for measuring the transmissivity of complex canopies to photosynthetically active radiation

    International Nuclear Information System (INIS)

    Newman, S.M.

    1985-01-01

    A system has been designed, tested and evaluated for measuring the transmissivities of complex canopies to photosynthetically active radiation (PAR). The system consists of filtered silicon photocells in cosine corrected mounts with outputs integrated by the use of chemical coulometers. The reading accumulated by the coulometers was taken electronically by the use of microcomputers. The low-cost sensor integrators, which do not require batteries, performed as expected and proved ideal for the study of agroforestry systems in remote areas. Information on the PAR transmissivity of a temperate agroforestry system in the form of an intercropped orchard is also presented. (author)

  17. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    International Nuclear Information System (INIS)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-01-01

    Highlights: • Cobalt (Co"2"+) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co"2"+ concentration. • K-band was proven to be suitable parameter for investigation of Co"2"+ toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co"2"+. - Abstract: The effect of two concentrations of cobalt (Co"2"+) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co"2"+ especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q_A"− and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co"2"+ concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  18. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Theoretical description of protein field effects on electronic excitations of biological chromophores

    International Nuclear Information System (INIS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  20. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  1. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.

    Science.gov (United States)

    Barz, W P; Verméglio, A; Francia, F; Venturoli, G; Melandri, B A; Oesterhelt, D

    1995-11-21

    The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides because it is required for multiple-turnover electron transfer under anaerobic conditions [see accompanying article; Barz, W. P., Francia, F., Venturoli, G., Melandri, B. A., Verméglio, A., & Oesterhelt, D. (1995) Biochemistry 34, 15235-15247]. In order to understand the molecular role of PufX, light-induced absorption spectroscopy was performed using a pufX- mutant, a pufX+ strain, and two suppressor mutants. We show that the reaction center (RC) requires PufX for its functionality under different redox conditions than the cytochrome bc1 complex: When the kinetics of flash-induced reduction of cytochrome b561 were monitored in chromatophores, we observed a requirement of PufX for turnover of the cytochrome bc1 complex only at high redox potential (Eh > 140 mV), suggesting a function of PufX in lateral ubiquinol transfer from the RC. In contrast, PufX is required for multiple turnover of the RC only under reducing conditions: When the Q pool was partially oxidized in vivo using oxygen or electron acceptors like dimethyl sulfoxide or trimethylamine N-oxide, the deletion of PufX had no effect on light-driven electron flow through the RC. Flash train experiments under anaerobic in vivo conditions revealed that RC photochemistry does not depend on PufX for the first two flash excitations. Following the third and subsequent flashes, however, efficient charge separation requires PufX, indicating an important role of PufX for fast Q/QH2 exchange at the QB site of the RC. We show that the Q/QH2 exchange rate is reduced approximately 500-fold by the deletion of PufX when the Q pool is nearly completely reduced, demonstrating an essential role of PufX for the access of ubiquinone to the QB site. The fast ubiquinone/ubiquinol exchange is partially restored by suppressor mutations altering the macromolecular antenna structure. These results suggest an indirect role of PufX in

  2. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  3. Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR.

    Science.gov (United States)

    Dumas, Louis; Zito, Francesca; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles; Alric, Jean

    2018-06-01

    Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b 6 f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast. © 2018 American Society of Plant Biologists. All rights reserved.

  4. One-electron oxidation of photosynthetic pigments in micelles. Bacteriochlorophyll a, chlorophyll a, chlorophyll b, and pheophytin a

    International Nuclear Information System (INIS)

    Chauvet, J.P.

    1981-01-01

    Chlorophyll a, chlorophyll b, and bacteriochlorophyll a in aqueous micellar solutions of Trition X 100 (2%) are readily oxidized by pulse-radiolytically generated N 3 ., Br 2 - ., and (SCN) 2 - . radicals at nearly diffusion-controlled rates. The kinetic study suggests that pigment molecules occupy multiple sites in the micelle. Pheophytin a is only oxidized by N 3 . and Br 2 - . radicals. The absolute spectra and the molar extinction coefficients of chlorophyll a, bacteriochlorophyll a, chlorophyll b, and pheophytin a cations have been determined. The chlorophyll a cation has been observed in the presence of pigment aggregates

  5. Factors affecting UV-B-induced changes in Arabidopsis thaliana L. gene expression: The role of development, protective pigments and the chloroplast signal

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Mackerness, S.A.H.

    1998-01-01

    Gene expression is known to change in response to UV-B radiation. In this paper, we have investigated three factors in Arabidopsis leaves that are likely to influence these changes: development, protective pigments and the 'chloroplast signal'. During late leaf development the major change in pigment composition, after exposure to UV-B radiation, is an increase in UV-absorbing pigments. Chl and Chl a/b ratio do not change substantially. Similarly Chl fluorescence is not altered. In contrast, RNA transcripts of photosynthetic proteins are reduced more in older leaves than in young leaves. To determine the role of flavonoids in UV-B protection, plants of Arabidopsis mutant tt-5, which have reduced flavonoids and sinapic esters, were exposed to UV-B and RNA transcript levels determined. The tt-mutants were more sensitive to UV-B radiation than wild-type. To examine the role of the chloroplast signal in regulating UV-B induced changes in gene expression, Arabidopsis gun mutants (genome uncoupled) have been used. The results show that UV-B-induced down-regulation still takes place in gun mutants and strongly suggests that the chloroplast signal is not required. Overall, this study clearly demonstrates that UV-B-induced changes in gene expression are influenced by both developmental and cellular factors but not chloroplastic factors

  6. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Uldall Nørregaard, Patrick; Ljubic, Anita

    2016-01-01

    Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional...... pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW) while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively). Cultivation of Chlorella species in industrial process water...... composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella...

  7. Investigation of the mechanisms of using metal complexation and cellulose nanofiber/sodium alginate layer-by-layer coating for retaining anthocyanin pigments in thermally processed blueberries in aqueous media.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Simonsen, John; Zhao, Yanyun

    2015-03-25

    This study investigated the mechanisms of anthocyanin pigment retention using Fe(3+)-anthocyanin complexation and cellulose nanofiber (CNF)/sodium alginate (SA) layer-by-layer (LBL) coatings on thermally processed blueberries in aqueous media. Anthocyanin pigments were polymerized through complexation with Fe(3+) but readily degraded by heat (93 °C for 7 min) in the aqueous media because of poor stability. CNF/SA LBL coating was successful to retain anthocyanin pigments in thermally processed blueberries. Fruits coated with CNF containing CaCl2 followed by treatment in a SA bath formed a second hydrogel layer onto the CNF layer (LBL coating system) through cross-linking between Ca(2+) and alginic acid. Methyl-cellulose-modified CNF improved the interactions between CNF, the fruit surface, and the SA layer. This study demonstrated that the CNF/SA LBL coating system was effective to retain anthocyanin pigments on thermally processed whole blueberries, whereas no combined benefit of complexation with coating was observed. Results explained the mechanisms of the new approaches for developing colorful and nutritionally enhanced anthocyanin-rich fruit products.

  8. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans

    Science.gov (United States)

    Liu, Hui; Probert, Ian; Uitz, Julia; Claustre, Hervé; Aris-Brosou, Stéphane; Frada, Miguel; Not, Fabrice; de Vargas, Colomban

    2009-01-01

    The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the “rare biosphere.” This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19′-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere. PMID:19622724

  9. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  10. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    Science.gov (United States)

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  11. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  12. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  13. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius "Diabolo".

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, Jifeng; Sui, Xin; Xu, Nan

    2016-01-01

    Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC) in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius "Diabolo" was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius "Diabolo" in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius "Diabolo."

  14. Plasmonic hybrid nanostructure with controlled interaction strength

    Science.gov (United States)

    Grzelak, Justyna K.; Krajnik, Bartosz; Thoreson, Mark D.; Nyga, Piotr; Shalaev, Vladimir M.; Mackowski, Sebastian

    2014-03-01

    In this report we discuss the influence of plasmon excitations in a silver island film on the fluorescence of photosynthetic complex, peridinin-chlorophyll-protein (PCP). Control of the separation between these two components is obtained by fabricating a wedge layer of silica across the substrate, with a thickness from 0 to 46 nm. Continuous variation of the silica thickness allows for gradual change of interaction strength between plasmon excitations in the metallic film and the excited states of pigments comprising photosynthetic complexes. While the largest separation between the silver film and photosynthetic complexes results in fluorescence featuring a mono-exponential decay and relatively narrow distribution of intensities, the PCP complexes placed on thinner silica spacers show biexponential fluorescence decay and significantly broader distribution of total fluorescence intensities. This broad distribution is a signature of stronger sensitivity of fluorescence enhancement upon actual parameters of a hybrid nanostructure. By gradual change of the silica spacer thickness we are able to reproduce classical distance dependence of fluorescence intensity in plasmonic hybrid nanostructures on ensemble level. Experiments carried out for different excitation wavelengths indicate that the interaction is stronger for excitations resonant with plasmon absorption in the metallic layer.

  15. Bacteriorhodopsin-based photochromic pigments for optical security applications

    Science.gov (United States)

    Hampp, Norbert A.; Fischer, Thorsten; Neebe, Martin

    2002-04-01

    Bacteriorhodopsin is a two-dimensional crystalline photochromic protein which is astonishingly stable towards chemical and thermal degradation. This is one of the reasons why this is one of the very few proteins which may be used as a biological pigment in printing inks. Variants of the naturally occurring bacteriorhodopsin have been developed which show a distinguished color change even with low light intensities and without the requirement of UV-light. Several pigments with different color changes are available right now. In addition to this visual detectable feature, the photochromism, the proteins amino acid sequence can be genetically altered in order to code and identify specific production lots. For advanced applications the data storage capability of bacteriorhodopsin will be useful. Write-once-read-many (WORM) recording of digital data is accomplished by laser excitation of printed bacteriorhodopsin inks. A density of 1 MBit per square inch is currently achieved. Several application examples for this biological molecule are described where low and high level features are used in combination. Bacteriorhodopsin-based inks are a new class of optical security pigments.

  16. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  17. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Structural Determinats Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Adjele; Kinney, James N.; Zwart, Petrus H.; Punginelli, Claire; D' Haene, Sandrine; Perreau, Francois; Klein, Michael G.; Kirilovsky, Diana; Kerfeld, Cheryl

    2010-04-01

    The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the Orange Carotenoid Protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wildtype and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides highresolution detail of the carotenoidprotein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.

  19. The mechanism of anthracene interaction with photosynthetic apparatus: A study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aksmann, Anna; Shutova, Tatiana; Samuelsson, Goeran; Tukaj, Zbigniew

    2011-01-01

    Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation.

  20. Functional Mitochondrial Complex I Is Required by Tobacco Leaves for Optimal Photosynthetic Performance in Photorespiratory Conditions and during Transients1

    Science.gov (United States)

    Dutilleul, Christelle; Driscoll, Simon; Cornic, Gabriel; De Paepe, Rosine; Foyer, Christine H.; Noctor, Graham

    2003-01-01

    The importance of the mitochondrial electron transport chain in photosynthesis was studied using the tobacco (Nicotiana sylvestris) mutant CMSII, which lacks functional complex I. Rubisco activities and oxygen evolution at saturating CO2 showed that photosynthetic capacity in the mutant was at least as high as in wild-type (WT) leaves. Despite this, steady-state photosynthesis in the mutant was reduced by 20% to 30% at atmospheric CO2 levels. The inhibition of photosynthesis was alleviated by high CO2 or low O2. The mutant showed a prolonged induction of photosynthesis, which was exacerbated in conditions favoring photorespiration and which was accompanied by increased extractable NADP-malate dehydrogenase activity. Feeding experiments with leaf discs demonstrated that CMSII had a lower capacity than the WT for glycine (Gly) oxidation in the dark. Analysis of the postillumination burst in CO2 evolution showed that this was not because of insufficient Gly decarboxylase capacity. Despite the lower rate of Gly metabolism in CMSII leaves in the dark, the Gly to Ser ratio in the light displayed a similar dependence on photosynthesis to the WT. It is concluded that: (a) Mitochondrial complex I is required for optimal photosynthetic performance, despite the operation of alternative dehydrogenases in CMSII; and (b) complex I is necessary to avoid redox disruption of photosynthesis in conditions where leaf mitochondria must oxidize both respiratory and photorespiratory substrates simultaneously. PMID:12529534

  1. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    Science.gov (United States)

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  2. The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Latif Helmy H.

    2010-01-01

    Full Text Available In this study two cultivars of radish Raphanus sativus cv. longipinnatus (white radish and Raphanus sativus cv. Cherry Belle (red radish were treated with different concentrations of nickel sulphate (0.0-50-100-150-200 ppm. The fresh and dry weight of shoots and roots, photosynthetic pigments, some antioxidant enzymes, total carbohydrates, total proteins and the SDS-PAGE protein profile of both cultivars were determined after 32 days. The results showed that increasing nickel sulphate concentrations decreased the fresh and dry weights of the shoots and roots, photosynthetic pigments, total carbohydrates and total protein in both cultivars. Higher concentrations of nickel sulphate increased the activity of catalase, peroxidase and polypenol oxidase. Electrophoresis banding profiles of proteins revealed qualitative and quantitative changes, and also the appearance or disappearance of some bands of the two cultivars. .

  3. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Gaba, V.; Canaani, O.; Malkin, S.; Mattoo, A.K.; Edelman, M.

    1989-01-01

    A component of the photosystem II reaction center, the 32-kDa protein, is rapidly turned over in the light. The mechanism of its light-dependent metabolism is largely unknown. We quantified the rate of 32-kDa protein degradation over a broad spectral range (UV, visible, and far red). The quantum yield for degradation was highest in the UVB (280-320 nm) region. Spectral evidence demonstrates two distinctly different photosensitizers for 32-kDa protein degradation. The data implicate the bulk photosynthetic pigments (primarily chlorophyll) in the visible and far red regions, and plastoquinone (in one or more of its redox states) in the UV region. A significant portion of 32-kDa protein degradation in sunlight is attributed to UVB irradiance

  5. Changes in the state of carotenoid pigments during greening of etiolated barley seedlings

    International Nuclear Information System (INIS)

    Dilova, S.

    1974-01-01

    Changes in the metabolism of carotenoid pigments during greening of etiolated barley seedlings have been studied. The experiments were carried out with six-day-old etiolated plants, having a well-developed first leaf, grown on 1/2 Knop nutrient solution. The plants were illuminated with light, 10 000 lux intensity. Samples for analysis were taken at nil, 2, 4, 6, 8 and 12 hours. The extraction of the pigments was effected with the aid of the fractionation method according to Chernomorski and Sapozhnikov. The specific radioactivity of the individual carotenoid pigments was measured. To this end the plants were placed on a solution of sodium acetate ( 14 C) for 18 hours before illumination. The radiochemical purification of the pigments was carried out on an aluminium oxide column, after their chromatographic separation on paper. The results obtained from the experiments show that the illumination of the plants leads to a 2.4-fold increase in the total amount of carotenoids. The amount of the carotene increases approximately about 8 times over a 24-hour period and that of the xanthophylles - almost two times. A rhythm is observed in the formation of lutein and violaxanthin, which is discussed in connection with the participation of these pigments in the formation and the activity of the photosynthetic apparatus. The data on the changes in the state of the individual pigments indicate differences in accordance with their nature. The distinct manifestation of the heterogeneity of the carotene is observed in the case where the photosynthesis apparatus is fully formed. Obviously, the manifestation of the heterogeneity of that pigment is related to the formation of chloroplast and changes in the environment. Data on changes in the specific radioactivity of the easily-extractable fractions of the lutein and the violaxanthin show that the newly-synthesized molecules are more easily extractable. (author)

  6. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples.

    Science.gov (United States)

    Hu, Xueyun; Tanaka, Ayumi; Tanaka, Ryouichi

    2013-06-19

    When conducting plant research, the measurement of photosynthetic pigments can provide basic information on the physiological status of a plant. High-pressure liquid chromatography (HPLC) is becoming widely used for this purpose because it provides an accurate determination of a variety of photosynthetic pigments simultaneously. This technique has a drawback compared with conventional spectroscopic techniques, however, in that it is more prone to structural modification of pigments during extraction, thus potentially generating erroneous results. During pigment extraction procedures with acetone or alcohol, the phytol side chain of chlorophyll is sometimes removed, forming chlorophyllide, which affects chlorophyll measurement using HPLC. We evaluated the artifactual chlorophyllide production during chlorophyll extraction by comparing different extraction methods with wild-type and mutant Arabidopsis leaves that lack the major isoform of chlorophyllase. Several extraction methods were compared to provide alternatives to researchers who utilize HPLC for the analysis of chlorophyll levels. As a result, the following three methods are recommended. In the first method, leaves are briefly boiled prior to extraction. In the second method, grinding and homogenization of leaves are performed at sub-zero temperatures. In the third method, N, N'-dimethylformamide (DMF) is used for the extraction of pigments. When compared, the first two methods eliminated almost all chlorophyllide-forming activity in Arabidopsis thaliana, Glebionis coronaria, Pisum sativum L. and Prunus sargentii Rehd. However, DMF effectively suppressed the activity of chlorophyllase only in Arabidopsis leaves. Chlorophyllide production in leaf extracts is predominantly an artifact. All three methods evaluated in this study reduce the artifactual production of chlorophyllide and are thus suitable for pigment extraction for HPLC analysis. The boiling method would be a practical choice when leaves are not too

  7. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Science.gov (United States)

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  8. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Shameka J Shelby

    Full Text Available The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE. A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999, purified and phosphorylated. Ni(2+-NTA pull downs were performed using 6xHis-rMERTK(571-999 in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999 and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α, VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS, siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  9. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    Science.gov (United States)

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.

  10. VU-B radiation inhibits the photosynthetic electron transport chain in chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Cai, W.; Li, X.; Chen, L.

    2016-01-01

    UV radiation of sunlight is one of harmful factors for earth organisms, especially for photoautotrophs because they require light for energy and biomass production. A number of works have already been done regarding the effects of UV-B radiation at biochemical and molecular level, which showed that UV-B radiation could inhibit photosynthesis activity and reduce photosynthetic electron transport. However quite limited information can accurately make out inhibition site of UV-B radiation on photosynthetic electron transport. In this study, this issue was investigated through measuring oxygen evolution activity, chlorophyll a fluorescence and gene expression in a model unicellular green alga Chlamydomonas reinhardtii. Our results indicated that UV-B radiation could evidently decrease photosynthesis activity and inhibit electron transport by blocking electron transfer process from the first plastoquinone electron acceptors QA to second plastoquinone electron acceptors QB, but not impair electron transfer from the water oxidizing complex to QA. The psbA gene expression was also altered by UV-B radiation, where up-regulation occurred at 2, 4 and 6h after exposure and down-regulation happened at 12 and 24 h after exposure. These results suggested that UV-B could affects D1 protein normal turnover, so there was not enough D1 for binding with QB, which may affect photosynthetic electron transport and photosynthesis activity. (author)

  11. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    Science.gov (United States)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  12. Spectral effects of light-emitting diodes on photosynthetic characteristics and secondary metabolism in greenhouse plants

    DEFF Research Database (Denmark)

    Ouzounis, Theoharis

    2014-01-01

    , photo-synthetic performance, and secondary metabolism of different plants. As model plants we used rose (Rosa hybrida), chrysanthemum (Chrysanthemum morifolium), campanula (Campanula portenschlagiana), orchid (Phalaenopsis), and lettuce (Lactuca sativa). In our first experiment, by growing roses......; lettuce plants increased both their phenolic and pigment content. The effects were not observed in the same way in all plants, highlighting the fact that plant responses to blue and red LED lighting are species and/or cultivar dependent. LED-based systems are a promising alternative choice for greenhouse...

  13. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Lidija, E-mail: lbegovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Mlinarić, Selma, E-mail: smlinaric@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Antunović Dunić, Jasenka, E-mail: jantunovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Katanić, Zorana, E-mail: zkatanic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Lončarić, Zdenko, E-mail: zdenko.loncaric@pfos.hr [Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, H R -31000 Osijek (Croatia); Lepeduš, Hrvoje, E-mail: hlepedus@yahoo.com [Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000 Osijek (Croatia); Cesar, Vera, E-mail: vcesarus@yahoo.com [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia)

    2016-06-15

    Highlights: • Cobalt (Co{sup 2+}) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co{sup 2+} concentration. • K-band was proven to be suitable parameter for investigation of Co{sup 2+} toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co{sup 2+}. - Abstract: The effect of two concentrations of cobalt (Co{sup 2+}) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co{sup 2+} especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q{sub A}{sup −} and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co{sup 2+} concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  14. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.

    Science.gov (United States)

    Hendrischk, Anne-Kathrin; Frühwirth, Sebastian Walter; Moldt, Julia; Pokorny, Richard; Metz, Sebastian; Kaiser, Gebhard; Jäger, Andreas; Batschauer, Alfred; Klug, Gabriele

    2009-11-01

    Blue light receptors belonging to the cryptochrome/photolyase family are found in all kingdoms of life. The functions of photolyases in repair of UV-damaged DNA as well as of cryptochromes in the light-dependent regulation of photomorphogenetic processes and in the circadian clock in plants and animals are well analysed. In prokaryotes, the only role of members of this protein family that could be demonstrated is DNA repair. Recently, we identified a gene for a cryptochrome-like protein (CryB) in the alpha-proteobacterium Rhodobacter sphaeroides. The protein lacks the typical C-terminal extension of cryptochromes, and is not related to the Cry DASH family. Here we demonstrate that CryB binds flavin adenine dinucleotide that can be photoreduced by blue light. CryB binds single-stranded DNA with very high affinity (K(d) approximately 10(-8) M) but double-stranded DNA and single-stranded RNA with far lower affinity (K(d) approximately 10(-6) M). Despite of that, no in vitro repair activity for pyrimidine dimers in single-stranded DNA could be detected. However, we show that CryB clearly affects the expression of genes for pigment-binding proteins and consequently the amount of photosynthetic complexes in R. sphaeroides. Thus, for the first time a role of a bacterial cryptochrome in gene regulation together with a biological function is demonstrated.

  15. Mutations at the Qo-Site of the Cytochrome bc1 Complex Strongly Affect Oxygen Binding

    DEFF Research Database (Denmark)

    Husen, Peter; Solov'yov, Ilia A

    2017-01-01

    The homodimeric bc1 protein complex is embedded in membranes of mitochondria and photosynthetic bacteria, where it transports protons across the membrane to maintain an electrostatic potential used to drive ATP synthesis as part of the respiratory or photosynthetic pathways. The reaction cycle...... at the Qo-sites, and, moreover, different behavior of the two monomers of the bc1 complex is observed. The conformational differences at the Qo-sites of the two monomers are studied in detail and discussed. The anionic form of semiquinone was identified as leading to the greatest opportunity for side...

  16. Novel aspects of chlorophyll a/b-binding proteins

    NARCIS (Netherlands)

    Bassi, Roberto; Sandonà, Dorianna; Croce, Roberta

    1997-01-01

    The light-harvesting proteins (LHC) constitute a multigene family including, in higher plants, at least 12 members whose location, within the photosynthetic membrane, relative abundance and putative function appear to be very different. The major light-harvesting complex of photosystem II (LHCII) is

  17. Pigments and oligomers for inks - moving towards the best combination

    International Nuclear Information System (INIS)

    Hutchinson, I.; Smith, S.; Grierson, W.; Devine, E.

    1999-01-01

    The formulation of UV curable printing inks depends on several complex factors. If the individual components of the ink are not complementary, then performance problems can arise. One critical combination is that between the pigment and the oligomer. In a new approach to improve understanding of pigment/oligomer interactions, the resources of a pigment manufacturer and an oligomer manufacturer have been combined to investigate the problem. Initial screening of process yellow pigments and several oligomer types highlighted performance variations which were then examined in more detail

  18. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    International Nuclear Information System (INIS)

    Satoshi Matsuzaki

    2002-01-01

    Burn wavelength (λ B )-dependent nonphotochemical hole spectra are reported for the lowest energy Q y -absorption band of the Fenna-Matthews-Olson (FMO) trimer complex from Prosthecochloris aestuarii. This band at 825 nm is contributed to by three states that stem from the lowest energy state of the subunit of the trimer. The spectra reveal unusually rich and quite sharp low energy satellite structure that consists of holes at 18, 24, 36, 48, 72, 120 and 165 cm -1 as measured relative to the resonant hole at λ B . The possibility that some of these holes are due to correlated downward energy transfer from the two higher energy states that contribute to the 825 nm band could be rejected. Thus, the FMO complex is yet another example of a photosynthetic complex for which structural heterogeneity results in distributions for the values of the energy gaps between Q y -states. The results of theoretical simulations of the hole spectra are consistent with the above holes being due to intermolecular phonons and low energy intramolecular vibrations of the bacteriochlorophyll a (BChl a) molecule. The 36 cm -1 and higher energy modes are most likely due to the intramolecular BChl a modes. The simulations lead to the determination of the Huang-Rhys (S) factor for all modes

  19. Non-destructive analysis of photosynthetic pigments in cotton plants=Análise não destrutiva dos pigmentos fotossintéticos em plantas de algodoeiro.

    Directory of Open Access Journals (Sweden)

    Dalva Almeida Silva

    2011-10-01

    Full Text Available Analytical techniques used to extract chlorophyll from plant leaves are destructive and based on the use of organic solvents. This study proposes a non-destructive quantification of the photosynthetic pigment concentration in cotton leaves using two portable chlorophyll meters, the SPAD-502 and the CLOROFILOG 1030. After obtaining 200 leaf discs, each with an area of 113 mm2, the greening rate in each disc was determined by the average of five readings from both meters. Immediately after measurement, 5 mL of dimethyl sulfoxide (DMSO was added, and the samples were kept in a water bath at 70ºC for 30 min. After cooling, 3 mL of the liquid extract was used for analyses by spectrophotometry at 470, 646 and 663 nm. Mathematical models were adjusted from analytical results using the reading index obtained from both devices to predict the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids. Based on these results, it was concluded that both portable chlorophyll meters are an effective way to estimate the concentration of photosynthetic pigments in cotton leaves, thus saving time, space and the resources that are often required for these analyses.Técnicas analíticas empregadas na extração de clorofila em plantas são destrutivas e fundamentam-se no uso de solventes orgânicos. Este estudo propõe a quantificação não destrutiva da concentração de pigmentos fotossintéticos em folhas de algodoeiro utilizando os medidores portáteis de clorofila SPAD-502 e CLOROFILOG 1030. Com as folhas coletadas foram elaborados 200 discos foliares com área de 113 mm2. A determinação do índice de esverdeamento em cada disco foi realizada por meio da média de cinco leituras com ambos clorofilômetros portáteis e imediatamente após a determinação, adicionaram-se 5 mL de Dimetil sulfóxido (DMSO. Os discos foram mantidos em banho-maria a temperatura de 70ºC por um período de 30 min. Após o resfriamento do extrato líquido, uma

  20. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    Science.gov (United States)

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  1. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  2. Sensitivity of two ecotypes of Arabidopsis Thaliana (Cvi and Te) towards UV-B irradiation

    International Nuclear Information System (INIS)

    Velichkova, M.; Stanoeva, D.; Popova, A.

    2013-01-01

    he susceptibility of Arabidopsis thaliana towards the detrimental effect of UV-B irradiation was investigated using two ecotypes, Cvi and Te. The effect of UV-B treatment on primary photosynthetic reactions - energy interaction between the main pigment-protein complexes and oxygen evolution, was evaluated at low (4 0 C) and at room (22 0 C) temperature. UV-B-induced alterations of investigated photosynthetic reactions are better expressed at 22 0 C than at 4 0 C for Cvi. For Te ecotype the energy interaction was suppressed to higher extent at 22 0 C, while oxygen evolving activity was affected similarly at both temperatures. At low and room temperature, the energy interaction in the complex PSII-core antenna is affected stronger by UV-B treatment than the energy distribution between both photosystems, as revealed by fluorescence ratios of 77 K spectra. The results presented indicate that the Arabidopsis thaliana ecotype Cvi (Cape Verde Islands) is less affected by UV-B irradiation in respect to the investigated primary photosynthetic reactions than the ecotype Te (Finland)

  3. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  4. Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels.

    Science.gov (United States)

    Singh, Aradhana; Agrawal, Madhoolika

    2015-03-01

    Catharanthus roseus L. plants were grown under ambient (375 ± 30 ppm) and elevated (560 ± 25 ppm) concentrations of atmospheric CO2 at different rates of N supply (without supplemental N, 0 kg N ha(-1); recommended N, 50 kg N ha(-1); and double recommended N, 100 kg N ha(-1)) in open top chambers under field condition. Elevated CO2 significantly increased photosynthetic pigments, photosynthetic efficiency, and organic carbon content in leaves at recommended (RN) and double recommended N (DRN), while significantly decreased total nitrogen content in without supplemental N (WSN). Activities of superoxide dismutase, catalase, and ascorbate peroxidase were declined, while glutathione reductase, peroxidase, and phenylalanine-ammonia lyase were stimulated under elevated CO2. However, the responses of the above enzymes were modified with different rates of N supply. Elevated CO2 significantly reduced superoxide production rate, hydrogen peroxide, and malondialdehyde contents in RN and DRN. Compared with ambient, total alkaloids content increased maximally at recommended level of N, while total phenolics in WSN under elevated CO2. Elevated CO2 stimulated growth of plants by increasing plant height and numbers of branches and leaves, and the magnitude of increment were maximum in DRN. The study suggests that elevated CO2 has positively affected plants by increasing growth and alkaloids production and reducing the level of oxidative stress. However, the positive effects of elevated CO2 were comparatively lesser in plants grown under limited N availability than in moderate and higher N availability. Furthermore, the excess N supply in DRN has stimulated the growth but not the alkaloids production under elevated CO2.

  5. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  6. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  7. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection.

    Science.gov (United States)

    Honorato Júnior, J; Zambolim, L; Aucique-Pérez, C E; Resende, R S; Rodrigues, F A

    2015-09-01

    Coffee leaf rust (CLR), caused by Hemileia vastatrix, is a major disease affecting coffee production worldwide. In this study, an in-depth analysis of the photosynthetic performance of coffee leaves challenged or not with H. vastatrix and sprayed with either epoxiconazole (EPO) or pyraclostrobin (PYR) was performed by combining chlorophyll a fluorescence images, photosynthetic pigment pools and the activities of chitinase (CHI), β-1,3-glucanase (GLU), peroxidase (POX) and catalase (CAT). The CLR severity was higher in the control plants, but reduced in plants sprayed with both PYR and EPO. Also, the CLR severity was reduced in plants sprayed with PYR compared with plants sprayed with EPO. Plants sprayed with either EPO or PYR showed maximal photosystem II quantum efficiency (Fv/Fm) values ranging from 0.78 to 0.80, which were quite similar to those obtained with inoculated plants (values ranging from 0.74 to 0.77). The decreases in the Fv/Fm ratio values and parallel increases in the F0 values in the inoculated plants, which were not observed in the control plants (sprayed with water) and were confirmed by images of the initial fluorescence (F0) and Fv/Fm parameters in the regions of the leaf tissue containing pustules and in the asymptomatic leaf tissue, indicated that photosynthesis was negatively impacted. When effective photosystem II quantum yield (Y(II)) values approached zero with a high photosynthetic photon flux density, high values of quantum yield of regulated energy dissipation (Y(NPQ)) in association with a high carotenoid concentration were noted in the inoculated plants sprayed either with PYR or EPO. The increased CLR severity in inoculated plants in contrast to inoculated plants sprayed with either PYR or EPO was associated with greater POX activity and a reduced photosynthetic pigment concentration. POX and CAT activities were increased in inoculated plants sprayed with either EPO or PYR when compared with control plants. CHI and GLU activities

  8. Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates

    Energy Technology Data Exchange (ETDEWEB)

    Patole, S.; Vasilev, C.; El-Zubir, O.; Wang, L.; Johnson, M. P.; Cadby, A. J.; Leggett, G. J.; Hunter, C. N.

    2015-05-15

    We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll–protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll–protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

  9. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, Juha Matti [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808–866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  10. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    International Nuclear Information System (INIS)

    Escalante, Maryana; Maury, Pascale; Bruinink, Christiaan M; Werf, Kees van der; Olsen, John D; Timney, John A; Huskens, Jurriaan; Hunter, C Neil; Subramaniam, Vinod; Otto, Cees

    2008-01-01

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures

  11. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Maryana [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Maury, Pascale [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Bruinink, Christiaan M [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Werf, Kees van der [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Olsen, John D [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Timney, John A [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Huskens, Jurriaan [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hunter, C Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Subramaniam, Vinod [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Otto, Cees [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2008-01-16

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.

  12. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-12-01

    Full Text Available Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively. Cultivation of Chlorella species in industrial process water is an environmentally friendly, sustainable bioremediation method with added value biomass production and resource valorization, since the resulting biomass also presented a good source of proteins, amino acids, and carotenoids for potential use in aquaculture feed industry.

  13. Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity.

    Science.gov (United States)

    Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan

    2017-01-01

    Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N 2 -fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.

  14. Pigment Production Analysis in Human Melanoma Cells.

    Science.gov (United States)

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  15. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    Science.gov (United States)

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  16. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].

    Directory of Open Access Journals (Sweden)

    José C Ramalho

    Full Text Available Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2 s(-1, RH (75% and 380 or 700 μL CO2 L(-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49% when measured at 700 than at 380 μL CO2 L(-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down

  17. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    Science.gov (United States)

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  18. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  19. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  20. The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’

    Science.gov (United States)

    Hatier, Jean-Hugues B.; Clearwater, Michael J.; Gould, Kevin S.

    2013-01-01

    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants. PMID:23826347

  1. Chromatic regulation in cyanobacterium as studies by HPLC quantitation of photosynthetic pigments. Kogosei shikiso no HPLC teiryo ni motozuku ranso no hikari tekio process tsuiseki

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Watanabe, T. (The Univ. Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1991-08-01

    Plants higher than Cyanobacterium have two kinds of resction centers(RC) which convert photon energy to a flow of electrons and whose photosensitive spectral regions are slightly deviated from each other. In the photosynthetic process, the ratio of numbers between these two kinds of reaction centers is adaptively varied so as to allow the overall flow of electrons to proceed in a well-balanced manner. It is important to rapidly and exactly determine the ratio of RC numbers between the two photochemical systems in order to investigate such photoadaptive process. The report describes the quantitative determination using high performance liquid chromatography(HPLC) for this purpose. Pigments were extracted from Cyanobacteria which are in different adaptive processes brought by being cultured in the environments differing in the quantity of light or in the environment of varying quantity of light, and subjected to quantitave determination in consideration of the fact that the reaction centers, I and II, have the respective special kinds of chlorophyl derivatives Chl-a, Chl-a{prime}. As the results, it was confirmed that validity can be given to the estimation of the numbers of reaction centers in terms of the quantities of Chl-a and Chl-a prime and the proposed method is drastically faster and simpler than the conventional methods. 14 refs., 5 figs..

  2. Expressions of visual pigments and synaptic proteins in neonatal ...

    Indian Academy of Sciences (India)

    related macular degeneration inhuman. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Althoughbirds have a pigmented retina, few reports indicated its susceptibility to light damage. To know ...

  3. Pigment variations in Emiliania huxleyi (CCMP370) as a response to changes in light intensity or quality.

    Science.gov (United States)

    Garrido, José L; Brunet, Christophe; Rodríguez, Francisco

    2016-12-01

    Many studies on photoacclimation examine the pigment responses to changes in light intensity, but variations in light climate in the aquatic environment are also related to changes in spectral composition. We have employed a high-performance liquid chromatography method with improved resolution towards chlorophyll c and fucoxanthin-related xanthophylls to examine the pigment composition of Emiliania huxleyi CCMP 370 under different light intensities and spectral qualities. To maintain its photosynthetic performance, E. huxleyi CCMP370 promotes drastic pigment changes that can be either the interconversion of pigments in pools with the same basic chromophoric structure (Fucoxanthin type or chlorophyll c type), or the ex novo synthesis (Diatoxanthin). These changes are linked either to variations in light quality (Fucoxanthin related xanthophylls) or in light intensity (chlorophyll c 3 /Monovinyl chlorophyll c 3 , Diadinoxanthin/Diatoxanthin, β,ɛ-carotene/ β,β-carotene). Fucoxanthin and 19'-hexanoyloxyfucoxanthin proportions were highly dependent on spectral conditions. Whereas Fucoxanthin dominated in green and red light, 19'-hexanoyloxyfucoxanthin prevailed under blue spectral conditions. Our results suggest that the huge pigment diversity enhanced the photoacclimative capacities of E. huxleyi to efficiently perform under changing light environments. The ubiquity and success in the global ocean as well as the capacity of E. huxleyi to form large surface blooms might be associated to the plasticity described here. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Metabolism and Pigmentation Patterns during Metamorphosis of Plaice (Pleuronectes platessa) larvae

    DEFF Research Database (Denmark)

    Christensen, Mette Nørregaard; Korsgaard, Bodil

    1999-01-01

    Protein metabolism, growth and pigmentation patterns were studied during the process of metamorphosis in the plaice Pleuronectes platessa. Based on the morphological and concurrent metabolic observations the process of metamorphosis could be divided into three different phases: (1) premetamorphosis....... Calcium assimilation reached a plateau depicting complete ossification of the skeleton. Lipid catabolism dominated by the end of the metamorphosis process. Pigmentation appeared to develop in two marked phases. During premetamorphosis larval melanophores and xanthophores dominated the pigmentation pattern...

  5. Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales).

    Science.gov (United States)

    Schmidt, Eder C; Pereira, Beatriz; Pontes, Carime L Mansur; dos Santos, Rodrigo; Scherner, Fernando; Horta, Paulo A; de Paula Martins, Roberta; Latini, Alexandra; Maraschin, Marcelo; Bouzon, Zenilda L

    2012-04-01

    The in vivo effect of ultraviolet radiation-B (UVBR) in apical segments of Chondracanthus teedei was examined. Over a period of 7 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR + UVBR at 1.6 W m(-2) for 3 h per day. The samples were processed for electron microscopy and histochemistry; also was analyzed growth rates, mitochondrial activity, protein levels, content of photosynthetic pigments and photosynthetic performance. UVBR elicited increased cell wall thickness and accumulation of plastoglobuli, changes in mitochondrial organization and destruction of chloroplast internal organization. Compared to controls, algae exposed to PAR + UVBR showed a growth rate reduction of 55%. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to PAR + UVBR. This result agrees with the decreased photosynthetic performance observed after exposing algae to PAR + UVBR. Irradiation also elicited increased activity of the antioxidant enzyme glutathione peroxidase and decreased mitochondrial NADH dehydrogenase activity, which correlated with the decreased protein content in plants exposed to PAR + UVBR. Taken together, these findings strongly indicate that UVBR negatively affects the architecture and metabolism of the carragenophyte C. teedei.

  6. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  7. Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest

    International Nuclear Information System (INIS)

    Nichol, C.J.; Grace, J.; Shibistova, O.; Matsubara, S.

    2002-01-01

    The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 deg C) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectro radiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale

  8. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish

    Science.gov (United States)

    Ohga, Rie; Ota, Satoshi; Kawahara, Atsuo

    2015-01-01

    The type II clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9 endonuclease (CRISPR/Cas9) has become a powerful genetic tool for understanding the function of a gene of interest. In zebrafish, the injection of Cas9 mRNA and guide-RNA (gRNA), which are prepared using an in vitro transcription system, efficiently induce DNA double-strand breaks (DSBs) at the targeted genomic locus. Because gRNA was originally constructed by fusing two short RNAs CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA), we examined the effect of synthetic crRNAs and tracrRNA with Cas9 mRNA or Cas9 protein on the genome editing activity. We previously reported that the disruption of tyrosinase (tyr) by tyr-gRNA/Cas9 mRNA causes a retinal pigment defect, whereas the disruption of spns2 by spns2-gRNA1/Cas9 mRNA leads to a cardiac progenitor migration defect in zebrafish. Here, we found that the injection of spns2-crRNA1, tyr-crRNA and tracrRNA with Cas9 mRNA or Cas9 protein simultaneously caused a migration defect in cardiac progenitors and a pigment defect in retinal epithelial cells. A time course analysis demonstrated that the injection of crRNAs and tracrRNA with Cas9 protein rapidly induced genome modifications compared with the injection of crRNAs and tracrRNA with Cas9 mRNA. We further show that the crRNA-tracrRNA-Cas9 protein complex is functional for the visualization of endogenous gene expression; therefore, this is a very powerful, ready-to-use system in zebrafish. PMID:26010089

  9. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  10. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma.

    Science.gov (United States)

    Mierlo, Camille Van; Pinto, Luis Abegão; Stalmans, Ingeborg

    2015-01-01

    Iatrogenic pigment dispersion syndrome generally originates from a repetitive, mechanical trauma to the pigmented posterior epithelium of the iris. This trauma can arise after intraocular surgery, most commonly due to an abnormal contact between the intraocular lens (IOL) and the iris. Whether surgical removal of this primary insult can lead to a successful intraocular pressure (IOP) control remains unclear. Case-series. Patients with IOP elevation and clinical signs of pigment dispersion were screened for a diagnosis of iatrogenic IOL-related pigment dispersion. Three patients in which the IOL or the IOL-bag complex caused a pigment dispersion through a repetitive iris chafing were selected. In two cases, replacement of a sulcus-based single-piece IOL (patient 1) or a sub-luxated in-the-bag IOL (patient 2) by an anterior-chamber (AC) iris-fixed IOL led to a sustained decrease in IOP. In the third case, extensive iris atrophy and poor anatomical AC parameters for IOL implantation precluded further surgical intervention. IOL-exchange appears to be a useful tool in the management of iatrogenic pigment dispersion glaucoma due to inappropriate IOL implantation. This cause-oriented approach seems to be effective in controlling IOP, but should be offered only if safety criteria are met. How to cite this article: Van Mierlo C, Abegao Pinto L, Stalmans I. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma. J Curr Glaucoma Pract 2015;9(1):28-32.

  11. Identification and analysis of multi-protein complexes in placenta.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE and Liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.

  12. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, JIfeng; Sui, Xin

    2016-01-01

    the leaves of both Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC) in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius “Diabolo” was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius “Diabolo” in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius “Diabolo.” PMID:27366639

  13. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2016-06-01

    low light stress in the leaves of both Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius “Diabolo” was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius “Diabolo” in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius “Diabolo.”

  14. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    OpenAIRE

    Jing Zhang; Yujuan Suo; Daofeng Zhang; Fangning Jin; Hang Zhao; Chunlei Shi

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to...

  15. β-arrestin functionally regulates the non-bleaching pigment parapinopsin in lamprey pineal.

    Directory of Open Access Journals (Sweden)

    Emi Kawano-Yamashita

    2011-01-01

    Full Text Available The light response of vertebrate visual cells is achieved by light-sensing proteins such as opsin-based pigments as well as signal transduction proteins, including visual arrestin. Previous studies have indicated that the pineal pigment parapinopsin has evolutionally and physiologically important characteristics. Parapinopsin is phylogenetically related to vertebrate visual pigments. However, unlike the photoproduct of the visual pigment rhodopsin, which is unstable, dissociating from its chromophore and bleaching, the parapinopsin photoproduct is stable and does not release its chromophore. Here, we investigated arrestin, which regulates parapinopsin signaling, in the lamprey pineal organ, where parapinopsin and rhodopsin are localized to distinct photoreceptor cells. We found that beta-arrestin, which binds to stimulated G protein-coupled receptors (GPCRs other than opsin-based pigments, was localized to parapinopsin-containing cells. This result stands in contrast to the localization of visual arrestin in rhodopsin-containing cells. Beta-arrestin bound to cultured cell membranes containing parapinopsin light-dependently and translocated to the outer segments of pineal parapinopsin-containing cells, suggesting that beta-arrestin binds to parapinopsin to arrest parapinopsin signaling. Interestingly, beta-arrestin colocalized with parapinopsin in the granules of the parapinopsin-expressing cell bodies under light illumination. Because beta-arrestin, which is a mediator of clathrin-mediated GPCR internalization, also served as a mediator of parapinopsin internalization in cultured cells, these results suggest that the granules were generated light-dependently by beta-arrestin-mediated internalization of parapinopsins from the outer segments. Therefore, our findings imply that beta-arrestin-mediated internalization is responsible for eliminating the stable photoproduct and restoring cell conditions to the original dark state. Taken together with a

  16. X-ray structure of a blue complex pigment from the blue flowers of Centaurea cyanus

    International Nuclear Information System (INIS)

    Shiono, M.; Matsugaki, N.; Takeda, K.

    2005-01-01

    Full text: The blue pigment of the cornflower, named protocyanin, has long been investigated, but its precise structure has remained unclear. Our recent research demonstrated the components of protocyanin to be anthocyanin (AN), flavone glycoside (FL), Fe 3+ , Mg 2+ and Ca 2+ ions and we succeeded in the reconstruction of protocyanin. In this study, we revealed the X-ray structure of protocyanin. The crystal structure of the reconstructed protocyanin was determined at a resolution of 1.05 A. The refined molecule has pseudo threefold symmetry and four metal ions, Fe 3+ , Mg 2+ and two Ca 2+ , align along the pseudo three-fold axis. The four metals are coordinated to six AN molecules and six FL molecules. The inner Fe 3+ and Mg 2+ ions are each coordinated to three AN molecules respectively, while the outer two Ca 2+ ions are each coordinated to three FL molecules . Both AN and FL molecules are self-associated with each other as AN-AN and FL-FL in pair and this hydrophobic association also exists between AN and FL molecules. Protocyanin is a tetra-metal (Fe 3+ , Mg 2+ , 2Ca 2+ ) nuclear complex of twelve molecules of anthocyanin and flavone glycoside, a new type of supramolecular pigment. (author)

  17. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    Science.gov (United States)

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Loci associated with skin pigmentation identified in African populations

    Science.gov (United States)

    Crawford, Nicholas G.; Kelly, Derek E.; Hansen, Matthew E. B.; Beltrame, Marcia H.; Fan, Shaohua; Bowman, Shanna L.; Jewett, Ethan; Ranciaro, Alessia; Thompson, Simon; Lo, Yancy; Pfeifer, Susanne P.; Jensen, Jeffrey D.; Campbell, Michael C.; Beggs, William; Hormozdiari, Farhad; Mpoloka, Sununguko Wata; Mokone, Gaonyadiwe George; Nyambo, Thomas; Meskel, Dawit Wolde; Belay, Gurja; Haut, Jake; Rothschild, Harriet; Zon, Leonard; Zhou, Yi; Kovacs, Michael A.; Xu, Mai; Zhang, Tongwu; Bishop, Kevin; Sinclair, Jason; Rivas, Cecilia; Elliot, Eugene; Choi, Jiyeon; Li, Shengchao A.; Hicks, Belynda; Burgess, Shawn; Abnet, Christian; Watkins-Chow, Dawn E.; Oceana, Elena; Song, Yun S.; Eskin, Eleazar; Brown, Kevin M.; Marks, Michael S.; Loftus, Stacie K.; Pavan, William J.; Yeager, Meredith; Chanock, Stephen; Tishkoff, Sarah

    2017-01-01

    Despite the wide range of skin pigmentation in humans, little is known about its genetic basis in global populations. Examining ethnically diverse African genomes, we identify variants in or near SLC24A5, MFSD12, DDB1, TMEM138, OCA2 and HERC2 that are significantly associated with skin pigmentation. Genetic evidence indicates that the light pigmentation variant at SLC24A5 was introduced into East Africa by gene flow from non-Africans. At all other loci, variants associated with dark pigmentation in Africans are identical by descent in southern Asian and Australo-Melanesian populations. Functional analyses indicate that MFSD12 encodes a lysosomal protein that affects melanogenesis in zebrafish and mice, and that mutations in melanocyte-specific regulatory regions near DDB1/TMEM138 correlate with expression of UV response genes under selection in Eurasians. PMID:29025994

  19. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29 : Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms

    NARCIS (Netherlands)

    Giuffra, Elisabetta; Zucchelli, Giuseppe; Sandona, Dorianna; Croce, Roberta; Cugini, Daniela; Garlaschi, Flavio M.; Bassi, Roberto; Jennings, Robert C.

    1997-01-01

    The minor photosystem II antenna complex CP29(Lhcb-4) has been reconstituted in vitro with the Lhcb-4 apoprotein, overexpressed in Escherichia coli, and the native pigments. Modulation of the pigment composition during reconstitution yields binding products with markedly different chlorophyll a/b

  20. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  1. Photosynthetic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  2. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ma, Fei; Yu, Long-Jiang; Hendrikx, Ruud; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2017-01-18

    The purple bacterial core light harvesting antenna-reaction center (LH1-RC) complex is the simplest system able to achieve the entire primary function of photosynthesis. During the past decade, a variety of photosynthetic proteins were studied by a powerful technique, two-dimensional electronic spectroscopy (2DES). However, little attention has been paid to LH1-RC, although its reversible uphill energy transfer, trapping, and backward detrapping processes, represent a crucial step in the early photosynthetic reaction dynamics. Thus, in this work, we employed 2DES to study two LH1-RC complexes of Thermochromatium (Tch.) tepidum. By direct observation of detrapping, the complex reversible process was clearly identified and an overall scheme of the excitation evolution in LH1-RC was obtained.

  3. Unraveling the chemical identity of meat pigments.

    Science.gov (United States)

    Pegg, R B; Shahidi, F

    1997-10-01

    This review examines the chemistry of nitrite curing of meat and meat products as it relates to the development of cured meat color and provides a detailed account of how nitrite-free processed meats could be prepared using the preformed cooked cured-meat pigment (CCMP). Thus, a chemical description of meat color, both raw and cooked, and characterization of nitrosylheme pigments follows. Based on electron paramagnetic resonance (EPR), visible and infrared spectroscopic studies, evidence has been provided to support the hypothesis that the chemical structure of the preformed CCMP is identical to that of the pigment prepared in situ after thermal processing of nitrite-cured meat and is in fact a mononitrosylheme complex. An appendix, which describes the basic principles of EPR spectroscopy used in the context of this review, is attached.

  4. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Jing; Suo, Yujuan; Zhang, Daofeng; Jin, Fangning; Zhao, Hang; Shi, Chunlei

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus , is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD 450 ) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM . Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus , non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus .

  5. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIA BÜNDCHEN

    2016-01-01

    Full Text Available ABSTRACT The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata and two are deciduous (Cedrela fissilis and Jacaranda micrantha - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot. The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  6. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  7. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions.

    Science.gov (United States)

    Rivas, Rebeca; Frosi, Gabriella; Ramos, Diego G; Pereira, Silvia; Benko-Iseppon, Ana M; Santos, Mauro G

    2017-09-01

    Calotropis procera is a C 3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/C i analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (V c,max ) and photosynthetic rate (A max ). On the other hand, limitation of stomatal or mesophyll CO 2 diffusion did not impair fast recovery, maintaining V c,max , chloroplast CO 2 concentration (C c ) and mesophyll conductance (g m ) unchanged while electron flow used for RuBP carboxylation (J c ) and A max increased. The ability to tolerate drought stress and the fast recovery of this evergreen C 3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    Science.gov (United States)

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  9. Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent

    International Nuclear Information System (INIS)

    Radziah Ariffin

    2004-01-01

    An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

  10. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xin [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Garcia, Veder J. [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Buchanan, Bob B. [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology; Luan, Sheng [Univ. of California, Berkeley, CA (United States). Dept of Plant and Microbial Biology

    2016-08-22

    Project Title: Immunophilins in the assembly and maintenance of photosynthetic electron transport chain in Arabidopsis Applicant: The Regents of the University of California PI: Sheng Luan, University of California at Berkeley Photosynthetic light energy conversion entails coordinated function of complex molecular machines that capture and convert light energy into chemical forms through photosynthetic electron transport chain. Each molecular machine, such as photosystem II (PSII), may consist of dozens of protein subunits and small molecule cofactors. Despite advanced understanding of the structure and function of these complexes, little is known about “How individual proteins and cofactors assemble into a functional machine and how do these molecular machines maintain their structure and function under a highly hazardous lumenal environment.” Our studies on immunophilins have unexpectedly contributed to the understanding of this question. Originally defined as cellular receptors for immunosuppressants, immunophilins have been discovered in a wide range of organisms from bacteria, fungi, plants, to animals. Immunophilins function in protein folding processes as chaperones and foldases. Arabidopsis genome encodes ca. 50 immunophilins. The most striking finding is that 16 immunophilin members are targeted to chloroplast thylakoid lumen, by far the largest group in the lumenal proteome. What is the function of immunophilins in the thylakoid lumen? Our studies have demonstrated critical roles for several immunophilins in the biogenesis and maintenance of photosynthetic complexes such as PSII. These studies have made a critical link between immunophilins and the assembly of photosynthetic machines and thus opened up a new area of research in photosynthesis. Our goal is to dissect the roles of immunophilins and their partners in the assembly and maintenance of the photosynthetic electron transport chain. The specific objectives for this funding period will be: 1. To

  11. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Particle-bound phytochrome: differential pigment release by surfactants, ribonuclease and phospholipase C

    International Nuclear Information System (INIS)

    Gressel, J.; Quail, P.H.

    1976-01-01

    Surfactants and hydrolytic enzymes were used to probe the nature of the constituent(s) to which phytochrome binds in particulate fractions from red-irradiated Cucurbita, [ 14 C]-choline and [ 3 H]-uridine pre-labelled tissue was used to monitor the release of phospholipids and RNA by these agents. Ribonuclease (RNase) digestion of 20,000 x g pellets eliminates both the phytochrome and ribonucleprotein (RNP) which cosediment at 31S. Little [ 14 C]-choline occurs in the 31S fraction and the amount is not changed by RNase digestion. This is further evidence that phytochrome binds directly to the RNP in the 31S fraction rather than to any membranous material present. The distribution profile of the RNA in a second (='heavy') phytochrome fraction does not correlate with that of the pigment. This suggests that the phytochrome in this fraction is not bound to RNP. The RNA is of ribosomal origin but much less degraded than that of the 31S RNP and is resistant to RNase digestion. Phospholipase C releases 80% of the [ 14 C]-choline from the 'heavy' fraction without freeing phytochrome. This indicates that the pigment does not bind to the polar head groups of the membrane phospholipids present. Low concentrations of deoxycholate dissociate phytochrome from this fraction without releasing substantial quantities of integral membrane proteins or phospholipids. Some RNP is dislodged by the surfactant but the phytochrome and RNP are not released as a complex. The data suggest that the pigment in the 'heavy' fraction may be loosely bound to a protein constituent rather than to RNP or polar phospholipids. (auth.)

  13. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-04-01

    Full Text Available Staphyloxanthin (STX, a golden carotenoid pigment produced by Staphylococcus aureus, is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD450 of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST, and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM. Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59% and ST25 (13%. Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus, non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus.

  14. Annular and central heavy pigment deposition on the posterior lens capsule in the pigment dispersion syndrome: pigment deposition on the posterior lens capsule in the pigment dispersion syndrome.

    Science.gov (United States)

    Turgut, Burak; Türkçüoğlu, Peykan; Deniz, Nurettin; Catak, Onur

    2008-12-01

    To report annular and central heavy pigment deposition on the posterior lens capsule in a case of pigment dispersion syndrome. Case report. A 36-year-old female with bilateral pigment dispersion syndrome presented with progressive decrease in visual acuity in the right eye over the past 1-2 years. Clinical examination revealed the typical findings of pigment dispersion syndrome including bilateral Krunkenberg spindles, iris transillumination defects, and dense trabecular meshwork pigmentation. Remarkably, annular and central dense pigmentation of the posterior lens capsule was noted in the right eye. Annular pigment deposition on the posterior lens capsule may be a rare finding associated with pigment dispersion syndrome. Such a finding suggests that there may be aqueous flow into the retrolental space in some patients with this condition. The way of central pigmentation is the entrance of aqueous to Berger's space. In our case, it is probable that spontaneous detachment of the anterior hyaloid membrane aided this entrance.

  15. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  16. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  17. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    International Nuclear Information System (INIS)

    Freiberg, Arvi; Raetsep, Margus; Timpmann, Kou; Trinkunas, Gediminas

    2009-01-01

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q y electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes

  18. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)], E-mail: arvi.freiberg@ut.ee; Raetsep, Margus; Timpmann, Kou [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Trinkunas, Gediminas [Insitute of Physics, Savanoriu pr. 231, LT-02300 Vilnius (Lithuania)

    2009-02-23

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q{sub y} electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes.

  19. Melanocortin systems on pigment dispersion in fish chromatophores.

    Science.gov (United States)

    Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi

    2012-01-01

    α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.

  20. Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan.

    Science.gov (United States)

    Nakajima, Hiromitsu; Yamamoto, Yoshikazu; Yoshitani, Azusa; Itoh, Kiminori

    2013-11-01

    To understand the ecology and physiology of metal-accumulating lichens growing in Cu-polluted sites, we investigated lichens near temple and shrine buildings with Cu roofs in Japan and found that Stereocaulon japonicum Th. Fr. and Cladonia humilis (With.) J. R. Laundon grow in Cu-polluted sites. Metal concentrations in the lichen samples collected at some of these sites were determined by inductively coupled plasma mass spectroscopy (ICP-MS). UV-vis absorption spectra of pigments extracted from the lichen samples were measured, and the pigment concentrations were estimated from the spectral data using equations from the literature. Secondary metabolites extracted from the lichen samples were analyzed by high-performance liquid chromatography (HPLC) with a photodiode array detector. We found that S. japonicum and C. humilis are Cu-hyperaccumulating lichens. Differences in pigment concentrations and their absorption spectra were observed between the Cu-polluted and control samples of the 2 lichens. However, no correlation was found between Cu and pigment concentrations. We observed a positive correlation between Al and Fe concentrations and unexpectedly found high negative correlations between Al and pigment concentrations. This suggests that Al stress reduces pigment concentrations. The concentrations of secondary metabolites in C. humilis growing in the Cu-polluted sites agreed with those in C. humilis growing in the control sites. This indicates that the metabolite concentrations are independent of Cu stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Primary pigmented nodular adrenocortical disease

    Directory of Open Access Journals (Sweden)

    Marie T Manipadam

    2011-01-01

    Full Text Available Primary pigmented nodular adrenocortical disease (PPNAD is a rare cause of ACTH-independent Cushing′s syndrome and has characteristic gross and microscopic pathologic findings. We report a case of PPNAD in a 15-year-old boy, which was not associated with Carney′s complex. Bilateral adrenalectomy is the treatment of choice.

  2. Effects of iron availability on pigment signature and biogenic silica production in the coastal diatom Chaetoceros gracilis

    Digital Repository Service at National Institute of Oceanography (India)

    Biswas, H.; Bandyopadhyay, D.

    -102. 13. F. Morales, A. Abadia, R. Belkhodja and J. Abadia, Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L.) Leaves, Plant Cell Environ. 17(1994), pp. 1153 -1160. 14. A. Hager... of the artificial algal culture medium Aquil, Biol. Oceanogr. 6(1988/1989), pp. 443–461. 28. G. Rejomon, K. K. Balachandran. M. Nair, T. Joseph. P. K. Dineshkumar, C. T. Achuthankutty, K. K. C Nair, N. G. K. Pillai, Trace metal concentrations in zooplankton...

  3. Production of red pigments by Monascus ruber in culture media containing corn steep liquor

    Directory of Open Access Journals (Sweden)

    P. S. Hamano

    2006-12-01

    Full Text Available The production of red pigments by Monascus ruber was evaluated utilizing complex culture media composed of glucose or sucrose (10 g/L, corn steep liquor (5 or 10 g/L and monosodium glutamate (0, 5.0, 7.6, 11.4 or 15.2 g/L. Medium containing 10 g/L glucose, 5 g/L corn steep liquor and 7.6 g/L monosodium glutamate resulted the highest values of extracellular red pigment absorbance (20.7 U and productivity (0.35 U/h. This medium also produced better results than using semi-synthetic medium with analytical grade reagents (12.4 U and 0.21 U/h. The cell growth was similar in both media (X @ 6.5 g/L, indicating that the capacity of the cells to produce red pigments was higher in complex culture media. In addition, in the complex culture medium, less of the intracellular red pigments accumulated than in semi-synthetic medium (9.1% and 30%, respectively.

  4. Production and chemical characterization of pigments in filamentous fungi.

    Science.gov (United States)

    Souza, Patrícia Nirlane da Costa; Grigoletto, Tahuana Luiza Bim; de Moraes, Luiz Alberto Beraldo; Abreu, Lucas M; Guimarães, Luís Henrique Souza; Santos, Cledir; Galvão, Luciano Ribeiro; Cardoso, Patrícia Gomes

    2016-01-01

    Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as Aspergillus sydowii (CML2967), Aspergillus aureolatus (CML2964), Aspergillus keveii (CML2968), Penicillium flavigenum (CML2965), Penicillium chermesinum (CML2966), Epicoccum nigrum (CML2971), Lecanicillium aphanocladii (CML2970) and Fusarium sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of L. aphanocladii (CML2970), E. nigrum (CML2971), and P. flavigenum (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.

  5. Microanalysis study of archaeological mural samples containing Maya blue pigment

    International Nuclear Information System (INIS)

    Sanchez del Rio, M.; Martinetto, P.; Somogyi, A.; Reyes-Valerio, C.; Dooryhee, E.; Peltier, N.; Alianelli, L.; Moignard, B.; Pichon, L.; Calligaro, T.; Dran, J.-C.

    2004-01-01

    Elemental analysis by X-ray fluorescence and particle induced X-ray emission is applied to the study of several Mesoamerican mural samples containing blue pigments. The most characteristic blue pigment is Maya blue, a very stable organo-clay complex original from Maya culture and widely used in murals, pottery and sculptures in a vast region of Mesoamerica during the pre-hispanic time (from VIII century) and during the colonization until 1580. The mural samples come from six different archaeological sites (four pre-hispanic and two from XVI century colonial convents). The correlation between the presence of some elements and the pigment colour is discussed. From the comparative study of the elemental concentration, some conclusions are drawn on the nature of the pigments and the technology used

  6. Microanalysis study of archaeological mural samples containing Maya blue pigment

    Science.gov (United States)

    Sánchez del Río, M.; Martinetto, P.; Somogyi, A.; Reyes-Valerio, C.; Dooryhée, E.; Peltier, N.; Alianelli, L.; Moignard, B.; Pichon, L.; Calligaro, T.; Dran, J.-C.

    2004-10-01

    Elemental analysis by X-ray fluorescence and particle induced X-ray emission is applied to the study of several Mesoamerican mural samples containing blue pigments. The most characteristic blue pigment is Maya blue, a very stable organo-clay complex original from Maya culture and widely used in murals, pottery and sculptures in a vast region of Mesoamerica during the pre-hispanic time (from VIII century) and during the colonization until 1580. The mural samples come from six different archaeological sites (four pre-hispanic and two from XVI century colonial convents). The correlation between the presence of some elements and the pigment colour is discussed. From the comparative study of the elemental concentration, some conclusions are drawn on the nature of the pigments and the technology used.

  7. Microanalysis study of archaeological mural samples containing Maya blue pigment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [ESRF, BP220, F-38043 Grenoble (France)]. E-mail: srio@esrf.fr; Martinetto, P. [Laboratoire de Cristallographie, CNRS, BP166 F-30842 Grenoble (France); Somogyi, A. [ESRF, BP220, F-38043 Grenoble (France); Reyes-Valerio, C. [INAH, Mexico DF (Mexico); Dooryhee, E. [Laboratoire de Cristallographie, CNRS, BP166 F-30842 Grenoble (France); Peltier, N. [Laboratoire de Cristallographie, CNRS, BP166 F-30842 Grenoble (France); Alianelli, L. [INFM-OGG c/o ESRF, BP220, F-38043 Grenoble Cedex (France); Moignard, B. [C2RMF, 6 Rue des Pyramides, F-75041 Paris Cedex 01 (France); Pichon, L. [C2RMF, 6 Rue des Pyramides, F-75041 Paris Cedex 01 (France); Calligaro, T. [C2RMF, 6 Rue des Pyramides, F-75041 Paris Cedex 01 (France); Dran, J.-C. [C2RMF, 6 Rue des Pyramides, F-75041 Paris Cedex 01 (France)

    2004-10-08

    Elemental analysis by X-ray fluorescence and particle induced X-ray emission is applied to the study of several Mesoamerican mural samples containing blue pigments. The most characteristic blue pigment is Maya blue, a very stable organo-clay complex original from Maya culture and widely used in murals, pottery and sculptures in a vast region of Mesoamerica during the pre-hispanic time (from VIII century) and during the colonization until 1580. The mural samples come from six different archaeological sites (four pre-hispanic and two from XVI century colonial convents). The correlation between the presence of some elements and the pigment colour is discussed. From the comparative study of the elemental concentration, some conclusions are drawn on the nature of the pigments and the technology used.

  8. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Directory of Open Access Journals (Sweden)

    Junfei Gu

    2017-06-01

    Full Text Available Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl and a normally pigmented control (Z802 were subjected to high (HL and low light (LL. Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC binding proteins, electron transport rates (ETR, photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

  9. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Science.gov (United States)

    Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang

    2017-01-01

    Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818

  10. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  11. Mathematical Modeling of Acclimation Processes of the Photosynthetic Chain

    Directory of Open Access Journals (Sweden)

    S Heidari

    2016-10-01

    Full Text Available Introduction Photosynthetic energy conversion efficiency is characteristic of a system which is determined by interactions between various components of the system. The complex process of photosynthesis has been studied as a whole system which enables in silico examination of a large number of candidate genes for genetic engineering for a higher photosynthetic energy conversion efficiency. One of the most important environmental factors which influence the photosynthesis efficiency is light regime which can cause producing ROS components. To acclimate to such fluctuations, plants have evolved adaptive mechanisms to minimize damage of the photosynthetic apparatus excess light. A fast compatibility response to high light stresses is non-photochemical quenching process (NPQ, dissipating excessive energy to heat. Light harvested state switches into a quenched state by a conformational change of light harvesting complex (LHCII that regulated by xanthophylls and the PsbS protein within seconds. Low lumen pH activates xanthophyll synthesis via a xanthophyll cycle which consists of the de-epoxidation of violaxanthin to zeaxanthin by violaxanthin de-epoxidase in high light and inversely by zeaxanthin epoxidase in low light which occurs more slowly. Materials and Methods Thale cress (Arabidopsis thaliana (Chlombia-0 were grown on soil at 25/22 °C day/night temperature, with a 16/8 h photoperiod, and 40-70% (depend of plant species relative humidity. The light intensity was 150–200 µE m-2s-1 white light. Intensity of chlorophyll fluorescence was measured with PAM-2000 fluorometer (Heinz Walz, Germany and the manufacturer’s software (PamWin v.2. Results and Discussion In the present study, a dynamic kinetics amplified mathematical model was developed based on differential equations in order to predict short-term changes in NPQ in the process of adaptation to different light conditions. We investigated the stationary and dynamic behavior of the model

  12. Carotenoids, versatile components of oxygenic photosynthesis.

    Science.gov (United States)

    Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina

    2013-10-01

    Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    Science.gov (United States)

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  14. Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Wiler Ribas Moreira

    2015-08-01

    Full Text Available Brown spot (BS, caused by the fungus Bipolaris oryzae, is one of the most important diseases contracted by rice. We investigated the effect of magnesium (Mg on the development of BS, caused by Bipolaris oryzae, and the effects of disease development on the photosynthetic performance of rice (Oryza sativa L. plants (cv. Metica-1 grown in nutrient solutions containing 0.25 or 4.0 mM of Mg. Assessments of BS severity, leaf Mg and pigment concentrations (total chlorophylls and carotenoids, were carried out at 120 h after inoculation, in addition to gas exchange parameters,. Higher leaf concentration of Mg was observed in plants supplied with 4.0 mM Mg than in those supplied with 0.25 mM. The increase in leaf Mg was accompanied by a decrease in BS severity, higher concentration of total chlorophyll and better photosynthetic performance. Plants supplied with 4.0 mM Mg had higher average values for carbon assimilation, stomatal conductance and internal leaf CO2 concentration when compared with plants supplied with 0.25 mM Mg. Conversely, the concentration of carotenoids was lower in plants supplied with the higher Mg rate. These results suggest that Mg suppresses disease severity and preserves photosynthetic performance by allowing for better stomatal conductance and, consequently, greater availability of CO2 at the carboxylation sites.

  15. Primary pigmented nodular adrenocortical disease associated with Carney complex: case report and literature review

    Directory of Open Access Journals (Sweden)

    Fabrícia Torres Gonçalves

    Full Text Available CONTEXT: Carney complex (CNC, a familial multiple neoplasm syndrome with dominant autosomal transmission, is characterized by tumors of the heart, skin, endocrine and peripheral nervous system, and also cutaneous lentiginosis. This is a rare syndrome and its main endocrine manifestation, primary pigmented nodular adrenal disease (PPNAD, is an uncommon cause of adrenocorticotropic hormone-independent Cushing's syndrome. CASE REPORT: We report the case of a 20-year-old patient with a history of weight gain, hirsutism, acne, secondary amenorrhea and facial lentiginosis. Following the diagnosing of CNC and PPNAD, the patient underwent laparoscopic bilateral adrenalectomy, and she evolved with decreasing hypercortisolism. Screening was also performed for other tumors related to this syndrome. The diagnostic criteria, screening and follow-up for patients and affected family members are discussed.

  16. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates

    Science.gov (United States)

    Lorin, Thibault; Brunet, Frédéric G.; Laudet, Vincent; Volff, Jean-Nicolas

    2018-01-01

    Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates. PMID:29599177

  17. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  18. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  19. New insights into melanosome transport in vertebrate pigment cells.

    Science.gov (United States)

    Aspengren, Sara; Hedberg, Daniel; Sköld, Helen Nilsson; Wallin, Margareta

    2009-01-01

    Pigment cells of lower vertebrates provide an excellent model to study organelle transport as they specialize in the translocation of pigment granules in response to defined chemical cues. This review will focus on the well-studied melanophore/melanocyte systems in fish, amphibians, and mammals. We will describe the roles of melanin, melanophores, and melanocytes in animals, current views on how the three motor proteins dynein, kinesin, and myosin-V are involved in melanosome transport along microtubules and actin filaments, and how signal transduction pathways regulate the activities of the motors to achieve aggregation and dispersion of melanosomes. We will also describe how melanosomes are transferred to surrounding skin cells in amphibians and mammals. Comparative studies have revealed that the ability of physiological color change is lost during evolution while the importance of morphological color change, mainly via transfer of pigment to surrounding skin cells, increases. In humans, pigment mainly has a role in protection against ultraviolet radiation, but also perhaps in the immune system.

  20. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    Science.gov (United States)

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.