WorldWideScience

Sample records for pig aerosol models

  1. Experimental aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs.

    Science.gov (United States)

    Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C

    2015-01-01

    Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs.

  2. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis.

    Science.gov (United States)

    Williams, Ann; Hatch, Graham J; Clark, Simon O; Gooch, Karen E; Hatch, Kim A; Hall, Graham A; Huygen, Kris; Ottenhoff, Tom H M; Franken, Kees L M C; Andersen, Peter; Doherty, T Mark; Kaufmann, Stefan H E; Grode, Leander; Seiler, Peter; Martin, Carlos; Gicquel, Brigitte; Cole, Stewart T; Brodin, Priscille; Pym, Alexander S; Dalemans, Wilfried; Cohen, Joe; Lobet, Yves; Goonetilleke, Nilu; McShane, Helen; Hill, Adrian; Parish, Tanya; Smith, Debbie; Stoker, Neil G; Lowrie, Douglas B; Källenius, Gunilla; Svenson, Stefan; Pawlowski, Andrzej; Blake, Karen; Marsh, Philip D

    2005-01-01

    The TB Vaccine Cluster project funded by the EU Fifth Framework programme aims to provide novel vaccines against tuberculosis that are suitable for evaluation in humans. This paper describes the studies of the protective efficacy of vaccines in a guinea pig aerosol-infection model of primary tuberculosis. The objective was to conduct comparative evaluations of vaccines that had previously demonstrated efficacy in other animal models. Groups of 6 guinea pigs were immunized with vaccines provided by the relevant EU Vaccine Cluster partners. Survival over 17 or 26 weeks was used as the principal measure of vaccine efficacy following aerosol challenge with H37Rv. Counts of mycobacteria in lungs and spleens, and histopathological changes in the lungs, were also used to provide evidence of protection. A total of 24 vaccines were evaluated in 4 experiments each of a different design. A heterologous prime-boost strategy of DNA and MVA, each expressing Ag85A and a fusion protein of ESAT-6 and Ag85B in adjuvant, protected the guinea pigs to the same extent as BCG. Genetically modified BCG vaccines and boosted BCG strategies also protected guinea pigs to the same extent as BCG but not statistically significantly better. A relatively high aerosol-challenge dose and evaluation over a protracted time post-challenge allowed superior protection over BCG to be demonstrated by BCG boosted with MVA and fowl pox vectors expressing Ag85A.

  3. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    Full Text Available BACKGROUND: It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models. METHODOLOGY/PRINCIPAL FINDINGS: By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates. CONCLUSIONS/SIGNIFICANCE: These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  4. Transgenesis for pig models

    Science.gov (United States)

    Yum, Soo-Young; Yoon, Ki-Young; Lee, Choong-Il; Lee, Byeong-Chun

    2016-01-01

    Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice has been raised. Currently, advanced genome-editing technologies enable us to generate specific gene-deleted and -inserted pig models. In the future, the development of pig models with gene editing technologies could be a valuable resource for biomedical research. PMID:27030199

  5. Pig model for diabetes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a transgenic pig comprising a mutated IAPP gene and displaying a phenotype associated with diabetes. The invention also relates to a transgenic blastocyst, embryo, fetus, donor cell and/or cell nucleusderived from said transgenic pig. The invention further relates...... to use of the transgenic pig as a model system for studying therapy, treatment and/or prevention of diabetes....

  6. Modal aerosol dynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  7. Guinea pig model of tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Pushpa Gupta; U.D.Gupta

    2009-01-01

    Animal models are being developed for testing different vaccine candidates as well as testing of new antituber-cular since a long time.Mice,guinea pigs and rabbits are animals which are frequently used.Though each model has got its merits as well as demerits and each of them differ from human tuberculosis in one aspect or the other but none of the model completely mimics the human disease.Out of the different animal species, guinea pig model is one of the better models as it is very sensitive to M.tuberculosis infection but it has certain limitations like paucity of immunological reagents.However,it is the best model for tuberculosis research.

  8. Modelling the distribution of pig production and diseases in Thailand

    OpenAIRE

    Thanapongtharm, Weerapong

    2015-01-01

    This thesis, entitled “Modelling the distribution of pig production and diseases in Thailand”, presents many aspects of pig production in Thailand including the characteristics of pig farming system, distribution of pig population and pig farms, spatio-temporal distribution and risk of most important diseases in pig at present, and the suitability area for pig farming. Spatial distribution and characteristics of pig farming in Thailand were studied using time-series pig population data to des...

  9. Metabolomic phenotyping of a cloned pig model

    Directory of Open Access Journals (Sweden)

    Callesen Henrik

    2011-08-01

    Full Text Available Abstract Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5 was for the first time elucidated by nuclear magnetic resonance (NMR-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6 by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. Conclusions From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.

  10. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model

    DEFF Research Database (Denmark)

    Jacobsen, Mariann Juul; Nielsen, Jens Peter; Nielsen, Ragnhild

    1996-01-01

    An aerosol infection model for inoculation of pigs with Actinobacillus pleuropneumoniae is described, With this model the virulence of three A. pleuropneumoniae biotype 1 strains representing serotypes 2, 5b and 6, and one Danish biotype 2 were compared using 13-week-old pigs for inoculation...... lesions was 10(9) CFU/ml. Repeated experiments confirmed these results showing similar virulence of serotypes 2, 5b and 6 whereas the biotype 2 strain proved less virulent, The aerosol infection model allowed a comparison of the number of A. pleuropneumoniae CFU/liter air which were necessary to induce...... lung lesions in susceptible pigs, This indicates that the model will be well suited for virulence studies of A. pleuropneumoniae serotypes in pigs....

  11. Aerosol measurement program strategy for global aerosol backscatter model development

    Science.gov (United States)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  12. Aerosol measurement program strategy for global aerosol backscatter model development

    Science.gov (United States)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  13. Review of models applicable to accident aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.

    1983-07-01

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  14. Genetically Modified Pig Models for Human Diseases

    Institute of Scientific and Technical Information of China (English)

    Nana Fan; Liangxue Lai

    2013-01-01

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome.Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  15. Modeling aerosol processes at the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G. [Environmental and Occupational Health Sciences Inst., NJ (United States)

    1998-12-31

    This work presents an approach for modeling photochemical gaseous and aerosol phase processes in subgrid plumes from major localized (e.g. point) sources (plume-in-grid modeling), thus improving the ability to quantify the relationship between emission source activity and ambient air quality. This approach employs the Reactive Plume Model (RPM-AERO) which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, sodium, chloride and crustal material of aerosols are treated and attributed to the PM size distribution. A modified version of the Carbon Bond IV chemical mechanism is included to model the formation of organic aerosol, and the inorganic multicomponent atmospheric aerosol equilibrium model, SEQUILIB is used for calculating the amounts of inorganic species in particulate matter. Aerosol dynamics modeled include mechanisms of nucleation, condensation and gas/particle partitioning of organic matter. An integrated trajectory-in-grid modeling system, UAM/RPM-AERO, is under continuing development for extracting boundary and initial conditions from the mesoscale photochemical/aerosol model UAM-AERO. The RPM-AERO is applied here to case studies involving emissions from point sources to study sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions.

  16. New guinea pig model of Cryptococcal meningitis.

    Science.gov (United States)

    Kirkpatrick, William R; Najvar, Laura K; Bocanegra, Rosie; Patterson, Thomas F; Graybill, John R

    2007-08-01

    We developed a guinea pig model of cryptococcal meningitis to evaluate antifungal agents. Immunosuppressed animals challenged intracranially with Cryptococcus neoformans responded to fluconazole and voriconazole. Disease was monitored by serial cerebrospinal fluid (CSF) cultures and quantitative organ cultures. Our model produces disseminating central nervous system disease and responds to antifungal therapy.

  17. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......, Ontario, Canada), NebuChamber (Astra, Södirtälje, Sweden) and Nebuhaler (Astra) adapted for babies. The dose of fluticasone proportionate delivered by the Babyhaler (Glaxco Wellcome, Oxbridge, Middlesex, UK) was 80% of that predicted, probably because of incomplete priming of this spacer. Of the above...

  18. Condensing Organic Aerosols in a Microphysical Model

    Science.gov (United States)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  19. Modelling Aerosol Dispersion in Urban Street Canyons

    Science.gov (United States)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  20. Aerosol modeling in CNRM-CM: evaluation of recent developments on natural aerosols and implications for aerosol radiative forcing

    Science.gov (United States)

    Nabat, Pierre; Michou, Martine; Watson, Laura; Saint-Martin, David

    2017-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on the radiative budget and climate. Their representation in climate models is consequently essential to estimate their radiative forcing and their role in the climate system. However, up to now, the evaluation of these aerosol schemes is often limited to the integrated atmospheric aerosol content given by the aerosol optical depth (AOD). In the climate model CNRM-CM, the TACTIC (Tropospheric Aerosols for ClimaTe in CNRM-CM, Michou et al., 2015) aerosol scheme includes the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Recent developments have been carried out to improve the representation of natural aerosols, namely the inclusion of the parameterization of Grythe et al. (2014) for sea-salt emissions, the revision of the size distribution of sea-salt aerosols, and the increase of the number of bins to represent dust aerosols. The objective of this work is to evaluate the contribution of these developments to the representation of aerosols in CNRM-CM, using not only AOD from satellite data, but also aerosol vertical distribution and concentrations from in-situ measurements. Simulations have thus been carried out using different configurations of the aerosol scheme over the period 2000-2015, to allow for an evaluation against available measurements. The results show a relatively good performance of the model, but also reveal some discrepancies in the aerosol vertical distribution. The impact on the radiative budget of these changes in aerosol loads has been estimated, and shows the importance of the representation of natural aerosols for the estimation of aerosol radiative forcing.

  1. Pathology and Pathophysiology of Inhalational Anthrax in a Guinea Pig Model

    Science.gov (United States)

    Savransky, Vladimir; Sanford, Daniel C.; Syar, Emily; Austin, Jamie L.; Tordoff, Kevin P.; Anderson, Michael S.; Stark, Gregory V.; Barnewall, Roy E.; Briscoe, Crystal M.; Lemiale-Biérinx, Laurence; Park, Sukjoon; Ionin, Boris

    2013-01-01

    Nonhuman primates (NHPs) and rabbits are the animal models most commonly used to evaluate the efficacy of medical countermeasures against anthrax in support of licensure under the FDA's “Animal Rule.” However, a need for an alternative animal model may arise in certain cases. The development of such an alternative model requires a thorough understanding of the course and manifestation of experimental anthrax disease induced under controlled conditions in the proposed animal species. The guinea pig, which has been used extensively for anthrax pathogenesis studies and anthrax vaccine potency testing, is a good candidate for such an alternative model. This study was aimed at determining the median lethal dose (LD50) of the Bacillus anthracis Ames strain in guinea pigs and investigating the natural history, pathophysiology, and pathology of inhalational anthrax in this animal model following nose-only aerosol exposure. The inhaled LD50 of aerosolized Ames strain spores in guinea pigs was determined to be 5.0 × 104 spores. Aerosol challenge of guinea pigs resulted in inhalational anthrax with death occurring between 46 and 71 h postchallenge. The first clinical signs appeared as early as 36 h postchallenge. Cardiovascular function declined starting at 20 h postexposure. Hematogenous dissemination of bacteria was observed microscopically in multiple organs and tissues as early as 24 h postchallenge. Other histopathologic findings typical of disseminated anthrax included suppurative (heterophilic) inflammation, edema, fibrin, necrosis, and/or hemorrhage in the spleen, lungs, and regional lymph nodes and lymphocyte depletion and/or lymphocytolysis in the spleen and lymph nodes. This study demonstrated that the course of inhalational anthrax disease and the resulting pathology in guinea pigs are similar to those seen in rabbits and NHPs, as well as in humans. PMID:23357384

  2. Modelling of aerosol processes in plumes

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G. [Norwegian Institute of Air Research, Kjeller (Norway)

    2001-07-01

    A modelling platform for studying photochemical gaseous and aerosol phase processes from localized (e.g., point) sources has been presented. The current approach employs a reactive plume model which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, nitrate, ammonium material of aerosols are treated and attributed to the PM size distribution. A modified version of the carbon bond IV chemical mechanism is included to model the formation of organic aerosol. Aerosol dynamics modeled include mechanisms of nucleation, condensation, dry deposition and gas/particle partitioning of organic matter. The model is first applied to a number of case studies involving emissions from point sources and sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions. In addition, the model is compared with field data from power plant plumes with satisfactory predictions against gaseous species and total sulphate mass measurements. Finally, the plume model is applied to study secondary organic matter formation due to various emission categories such as vehicles and the oil production sector.

  3. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  4. Modeling the Biological Diversity of Pig Carcasses

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen

    This thesis applies methods from medical image analysis for modeling the biological diversity of pig carcasses. The Danish meat industry is very focused on improving product quality and productivity by optimizing the use of the carcasses and increasing productivity in the abattoirs. In order...... for extracting and modeling meaningful information from the vast amount of information available from non-invasive imaging data. The lean meat percentage (LMP) is a common standard for measuring the quality of pig carcasses. Measuring the LMP using CT and using this as a reference for calibration of online...... equipment is investigated, without the need for a calibration against a less accurate manual dissection. The rest of the contributions regard the construction and use of point distribution models (PDM). PDM’s are able to capture the shape variation of a population of shapes, in this case a 3D surface...

  5. Pig model vs sheep model in undergraduate periodontal surgical training.

    OpenAIRE

    Larsen, Patryk Daniel; Tronsen, Eyvind; Bøen, Kim Reisæter

    2013-01-01

    Objective: The objective of this study was to further develop the sheep model for periodontal surgical training to undergraduate students, and compare it to the more commonly used pig model. Method: Periodontal measurements as pocket depth and gingival width were measured on a total number of 10 sheep and 9 pigs, and a pre-established list of surgical procedures were performed on both types of specimen in different areas of the dentition; gingivectomy, modified access flap w...

  6. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  7. MATRIX-VBS: implementing an evolving organic aerosol volatility in an aerosol microphysics model

    OpenAIRE

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    We have implemented an existing aerosol microphysics scheme into a box model framework and extended it to represent gas-particle partitioning and chemical ageing of semi-volatile organic aerosols. We then applied this new research tool to investigate the effects of semi-volatile organic species on the growth, composition and mixing state of aerosol particles in case studies representing several different environments. The volatility-basis set (VBS) framework is implemented into the aerosol mi...

  8. Modeling heterogeneous chemical processes on aerosol surface

    Institute of Scientific and Technical Information of China (English)

    Junjun Deng; Tijian Wang; Li Liu; Fei Jiang

    2010-01-01

    To explore the possible impact of heterogeneous chemical processes on atmospheric trace components,a coupled box model including gas-phase chemical processes,aerosol thermodynamic equilibrium processes,and heterogeneous chemical processes on the surface of dust,black carbon(BC)and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface,and analyze the primary factors affecting the heterogeneous processes.Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2,HO2,O3,NO2,NO3,HNO3 and SO2,and aerosols such as SO42-,NO3-and NH4+.Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model.However,the impact of temperature on heterogeneous chemical processes is considerably less.The"renoxification"of HNO3 will affect the components of the troposphere such as nitrogen oxide and ozone.

  9. Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs.

    Science.gov (United States)

    Niederwerder, Megan C; Nietfeld, Jerome C; Bai, Jianfa; Peddireddi, Lalitha; Breazeale, Barbara; Anderson, Joe; Kerrigan, Maureen A; An, Baoyan; Oberst, Richard D; Crawford, Kimberly; Lager, Kelly M; Madson, Darin M; Rowland, Raymond R R; Anderson, Gary A; Hesse, Richard A

    2016-11-01

    We determined tissue localization, shedding patterns, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus (PEDV) following inoculation of 4-week-old feeder pigs. Thirty-three pigs were randomly assigned to 1 of 3 groups for the 42-day study: inoculated (group A; n = 23), contact transmission (group B; n = 5), and aerosol transmission (group C; n = 5). Contact transmission occurred rapidly to group B pigs whereas productive aerosol transmission failed to occur to group C pigs. Emesis was the first clinical sign noted at 3 days postinoculation (dpi) followed by mild to moderate diarrhea lasting 5 more days. Real-time PCR detected PEDV in fecal and nasal swabs, oral fluids, serum, and gastrointestinal and lymphoid tissues. Shedding occurred primarily during the first 2 weeks postinoculation, peaking at 5-6 dpi; however, some pigs had PEDV nucleic acid detected in swabs collected at 21 and 28 dpi. Antibody titers were measurable between 14 and 42 dpi. Although feces and intestines collected at 42 dpi were PEDV negative by PCR and immunohistochemistry, respectively, small intestines from 70% of group A pigs were PCR positive. Although disease was relatively mild and transient in this age group, the results demonstrate that 4-week-old pigs are productively infected and can sustain virus replication for several weeks. Long-term shedding of PEDV in subclinically affected pigs should be considered an important source for PEDV transmission.

  10. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......, Ontario, Canada), NebuChamber (Astra, Södirtälje, Sweden) and Nebuhaler (Astra) adapted for babies. The dose of fluticasone proportionate delivered by the Babyhaler (Glaxco Wellcome, Oxbridge, Middlesex, UK) was 80% of that predicted, probably because of incomplete priming of this spacer. Of the above...

  11. Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene

    OpenAIRE

    Goto, Daisuke; Takemura, Toshihiko; Nakajima, Teruyuki

    2008-01-01

    A global three-dimensional aerosol transport-radiation model, coupled to an atmospheric general circulation model (AGCM), has been extended to improve the model process for organic aerosols, particularly secondary organic aerosols (SOA), and to estimate SOA contributions to direct and indirect radiative effects. Because the SOA formation process is complicated and unknown, the results in different model simulations include large differences. In this work, we simulate SOA production assuming v...

  12. Metabolomic phenotyping of a cloned pig model

    DEFF Research Database (Denmark)

    Clausen, Morten Rahr; Christensen, Kirstine Lykke; Hedemann, Mette Skou

    2011-01-01

    and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal...... outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n...... = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could...

  13. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-01-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. The assimilation is more efficient over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 14.5 Tg yr−1, 119 Tg yr−1 for organic matter, 17 Pg yr−1 for sea salt, 82.7 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45%, +40%, +26%, +13% and −39% respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  14. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-05-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and one aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. These improvements are larger over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 15 Tg yr−1, 119 Tg yr−1 for particulate organic matter, 17 Pg yr−1 for sea salt, 83 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45 %, +40 %, +26 %, +13 % and −39 % respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  15. Aerosol modeling at regional scale over Paris area.

    OpenAIRE

    Hodzic, Alma

    2005-01-01

    Aerosol modeling is a challenging scientific problem aimed at improving our knowledge in the complex processes involved in aerosol emissions, multiphase chemistry and transport. Current chemistry-transport models include sophisticated aerosol parameterizations and need to be evaluated against! observations to assess their performances. However, the evalu! ation of the space-time variability of simulated aerosol concentrations is fairly lacunar, mostly based on episode situations and ground me...

  16. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-01-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  17. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-06-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  18. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    Science.gov (United States)

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2017-07-05

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  19. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    Science.gov (United States)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  20. Building a Sectional Aerosol Model in CAM5

    Science.gov (United States)

    Yu, P.; Toon, O. B.

    2013-12-01

    Aerosols are widely distributed around the globe. In the current study I use a sectional aerosol microphysics model (CARMA) coupled with the NCAR global climate model, CAM5, to simulate the spatial-temporal distribution of various types of aerosols including organics, black carbon, sulfate, sea salt and dust. Organics and black carbon surface concentrations are simulated within ~50% over the U.S, and Europe compared with observations; the amount of modeled sulfate and organics are equal in UTLS region as observed by the Pre-AVE field campaign; aerosol extinction in the UTLS observed by SAGEII can be explained by secondary organic aerosols combined with sulfate aerosol. For treating secondary organic aerosols, the volatility-basis-set method improves the budget at surface level relative to the traditional two-product partitioning method; black carbon global budget is largely improved especially in high latitudes by introducing new emission database.

  1. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    Science.gov (United States)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  3. Global modeling of nitrate and ammonium aerosols using EQSAM3

    Science.gov (United States)

    Xu, L.; Penner, J. E.

    2009-12-01

    Atmospheric aerosols, particles suspending in air, are important as they affect human health, air quality, and visibility as well as climate. Sulfate, nitrate, ammonium, chloride and sodium are among the most important inorganic aerosol species in the atmosphere. These compounds are hygroscopic and absorb water under almost all ambient environmental conditions. The uptake of water alters the aerosol size, and causes water to become the constituent with the largest atmospheric aerosol mass, especially when the aerosols grow into fog, haze or clouds. Furthermore, several global model studies have demonstrated that rapid increases in nitrogen emissions could produce enough nitrate in aerosols to offset the expected decline in sulfate forcing by 2100 for the extreme IPCC A2 scenario (Bauer et al., 2007). Although nitrate and ammonium were identified as significant anthropogenic sources of aerosols by a number of modeling studies, most global aerosol models still exclude ammonium-nitrate when the direct aerosol forcing is studied. In this study, the computationally efficient equilibrium model, EQSAM3, is incorporated into the UMICH-IMPACT-nitrate model using the hybrid dynamical solution method (Feng and Penner, 2007). The partitioning of nitrate and ammonium along with the corresponding water uptake is evaluated by comparing the model to the EQUISOLVE II method used in Feng and Penner (2007). The model is also evaluated by comparison with the AERONET data base and satellite-based aerosol optical depths.

  4. Successful Treatment of Severe Tungiasis in Pigs Using a Topical Aerosol Containing Chlorfenvinphos, Dichlorphos and Gentian Violet

    Science.gov (United States)

    Mutebi, Francis; von Samson-Himmelstjerna, Georg; Feldmeier, Hermann; Waiswa, Charles; Bukeka Muhindo, Jeanne; Krücken, Jürgen

    2016-01-01

    Background In endemic communities, zoonotic tungiasis, a severe skin disease caused by penetrating female sand fleas, is a public health hazard causing significant human and animal morbidity. No validated drugs are currently available for treatment of animal tungiasis. Due to the reservoir in domestic animals, integrated management of human and animal tungiasis is required to avert its negative effects. Methods and principal findings A topical aerosol containing chlorfenvinphos 4.8%, dichlorphos 0.75% and gentian violet 0.145% licensed to treat tick infestations, myiasis and wound sepsis in animals in the study area, was tested for its potential tungicidal effects in a randomized controlled field trial against pig tungiasis in rural Uganda. Animals with at least one embedded flea were randomized in a treatment (n = 29) and a control (n = 26) group. One week after treatment, 58.6% of the treated pigs did not show any viable flea lesion whereas all control pigs had at least one viable lesion. After treatment the number of viable lesions (treated median = 0, overall range = 0–18 vs. control median = 11.5, range = 1–180) and the severity score for estimating acute pathology in pig tungiasis (treated median = 1, range = 0–3.5 vs. control median = 7, range = 0–25) were significantly lower in treated than in control pigs (p < 0.001). In the treatment group the median number of viable flea lesions decreased from 8.5 to 0 (p < 0.001). Similarly, the median acute severity score dropped from 6 to 1 (p < 0.001). Every pig in the treatment group showed a decrease in the number of viable fleas and tungiasis-associated acute morbidity while medians for both increased in the control group. Conclusions The study demonstrates that a topical treatment based on chlorfenvinphos, dichlorphos and gentian violet is highly effective against pig tungiasis. Due to its simplicity, the new approach can be used for the treatment of individual animals as well as in mass campaigns. PMID

  5. Monitoring of intense neuromuscular blockade in a pig model

    DEFF Research Database (Denmark)

    Madsen, Matias V; Donatsky, Anders M; Jensen, Bente Rona

    2014-01-01

    .15 min after injection. We established a pig model for monitoring intense NMB with surface stimulation electrodes and acceleromyography. We verified total relaxation of the diaphragm and the abdominal muscles at the PTC 0-1 by suction test and with surface electromyography. This pig model is suitable...... for studies with experimental abdominal surgery with monitoring of intense NMB, and where relaxation of the diaphragm and the abdominal muscles are required....

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  7. How robust are models of precipitation response to aerosols?

    Science.gov (United States)

    Carslaw, Ken; Johnson, Jill; Cui, Zhiqiang

    2016-04-01

    Models of cloud-aerosol interaction and effects on precipitation are complex and therefore slow to run, so our understanding mostly relies on case studies and a very limited exploration of model uncertainties. Here we address the concept of cloud model robustness. A robust model is one that is reliable under different conditions in spite of uncertainties in the underlying processes. To assess model robustness, we quantify how the accumulated precipitation from a mixed-phase convective cloud responds to changes in aerosol accounting for the combined uncertainties in ten microphysical processes. Sampling across the full uncertainty space is achieved using statistical emulators, which essentially enable tens of thousands of cloud-resolving model simulations to be performed. Overall, precipitation increases with aerosol when aerosol concentrations are low and decreases when aerosol concentrations are high. However, when we account for uncertainties across the ten-dimensional parameter space of microphysical processes, the direction of response can no longer be defined with confidence except under some rather narrow aerosol conditions. To assess robustness of the modelled precipitation response to aerosols, we select a set of model "variants" that display a particular response in one aerosol environment and use this subset of models to predict precipitation response in other aerosol environments. Despite essentially tight model tuning, the model has very little reliability in predicting precipitation responses in different aerosol environments. Based on these results, we argue that the neglect of model uncertainty and a narrow case-study approach using highly complex cloud models may lead to false confidence in our understanding of aerosol-cloud-precipitation interactions.

  8. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  9. Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF

    Directory of Open Access Journals (Sweden)

    M. Wang

    2011-06-01

    Full Text Available Much of the large uncertainty in estimates of anthropogenic aerosol effects on climate arises from the multi-scale nature of the interactions between aerosols, clouds and dynamics, which are difficult to represent in conventional general circulation models (GCMs. In this study, we use a multi-scale aerosol-climate model that treats aerosols and clouds across multiple scales to study aerosol indirect effects. This multi-scale aerosol-climate model is an extension of a multi-scale modeling framework (MMF model that embeds a cloud-resolving model (CRM within each vertical column of a GCM grid. The extension allows a more physically-based treatment of aerosol-cloud interactions in both stratiform and convective clouds on the global scale in a computationally feasible way. Simulated model fields, including liquid water path (LWP, ice water path, cloud fraction, shortwave and longwave cloud forcing, precipitation, water vapor, and cloud droplet number concentration are in reasonable agreement with observations. The new model performs quantitatively similar to the previous version of the MMF model in terms of simulated cloud fraction and precipitation. The simulated change in shortwave cloud forcing from anthropogenic aerosols is −0.77 W m−2, which is less than half of that (−1.79 W m−2 calculated by the host GCM (NCAR CAM5 with traditional cloud parameterizations and is also at the low end of the estimates of other conventional global aerosol-climate models. The smaller forcing in the MMF model is attributed to a smaller (3.9 % increase in LWP from preindustrial conditions (PI to present day (PD compared with 15.6 % increase in LWP in stratiform clouds in CAM5. The difference is caused by a much smaller response in LWP to a given perturbation in cloud condensation nuclei (CCN concentrations from PI to PD in the MMF (about one-third of that in CAM5, and, to a lesser extent, by a smaller relative increase in CCN

  10. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2014-09-01

    Full Text Available The TwO-Moment Aerosol Sectional microphysics model (TOMAS has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic, mixed elemental carbon (hydrophilic, hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2 differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found

  11. Developing implantable neuroprosthetics: a new model in pig.

    Science.gov (United States)

    Borton, David; Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto

    2011-01-01

    A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultra-low power (12.5 mW) 16-channel intracortical/epicranial device transmitting broadband (40 kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity.

  12. Animal models of toxicology testing: the role of pigs.

    Science.gov (United States)

    Helke, Kristi L; Swindle, Marvin Michael

    2013-02-01

    In regulatory toxicological testing, both a rodent and non-rodent species are required. Historically, dogs and non-human primates (NHP) have been the species of choice of the non-rodent portion of testing. The pig is an appropriate option for these tests based on metabolic pathways utilized in xenobiotic biotransformation. This review focuses on the Phase I and Phase II biotransformation pathways in humans and pigs and highlights the similarities and differences of these models. This is a growing field and references are sparse. Numerous breeds of pigs are discussed along with specific breed differences in these enzymes that are known. While much available data are presented, it is grossly incomplete and sometimes contradictory based on methods used. There is no ideal species to use in toxicology. The use of dogs and NHP in xenobiotic testing continues to be the norm. Pigs present a viable and perhaps more reliable model of non-rodent testing.

  13. Evaluation of chronic immune system stimulation models in growing pigs.

    Science.gov (United States)

    Rakhshandeh, A; de Lange, C F M

    2012-02-01

    Two experiments (EXPs) were conducted to evaluate models of immune system stimulation (ISS) that can be used in nutrient metabolism studies in growing pigs. In EXP I, the pig's immune response to three non-pathogenic immunogens was evaluated, whereas in EXP II the pig's more general response to one of the immunogens was contrasted with observations on non-ISS pigs. In EXP I, nine growing barrows were fitted with a jugular catheter, and after recovery assigned to one of three treatments. Three immunogens were tested during a 10-day ISS period: (i) repeated injection of increasing amounts of Escherichia coli lipopolysaccharide (LPS); (ii) repeated subcutaneous injection of turpentine (TURP); and (iii) feeding grains naturally contaminated with mycotoxins (MYCO). In EXP II, 36 growing barrows were injected repeatedly with either saline (n = 12) or increasing amounts of LPS (n = 24) for 7 days (initial dose 60 μg/kg body weight). Treating pigs with TURP and LPS reduced feed intake (P < 0.02), whereas feed intake was not reduced in pigs on MYCO. Average daily gain (ADG; kg/day) of pigs on LPS (0.50) was higher than that of pigs on TURP (0.19), but lower than that of pigs on MYCO (0.61; P < 0.01). Body temperature was elevated in pigs on LPS and TURP, by 0.8°C and 0.7°C, respectively, relative to pre-ISS challenge values (39.3°C; P < 0.02), but remained unchanged in pigs on MYCO. Plasma concentrations of interleukin-1β were increased in pigs treated with LPS and TURP (56% and 55%, respectively, relative to 22.3 pg/ml for pre-ISS; P < 0.01), but not in MYCO-treated pigs. Plasma cortisol concentrations remained unchanged for pigs on MYCO and TURP, but were reduced in LPS-treated pigs (30% relative to 29.8 ng/ml for pre-ISS; P < 0.05). Red blood cell glutathione concentrations were lower in TURP-treated pigs (13% relative to 1.38 μM for pre-ISS; P < 0.05), but were unaffected in pigs on LPS and MYCO. In EXP I, TURP caused severe responses including skin ulceration and

  14. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  15. MODELING REGIONAL SYSTEMS OF BREEDING PIGS

    Directory of Open Access Journals (Sweden)

    Svinarev I. Y.

    2015-12-01

    Full Text Available The article contains the experience of the development of the methodology and the computer program for calculation of regional and local systems of pigs hybridization at the example of the Rostov region (Russia. Crossing the GP lines for F1 should be organized in multiplier farm, which may be separate farms and to be part of large commercial farms. For the production of F1 in a multiplier farm, we must breed a purebred specialized paternal and a maternal line, selected on the effect of combining ability. For the successful functioning of the system of hybridization, it is necessary to build a genetic pyramid, including breeding and genetic centers (nucleus farm, multiplier farm, reproducing the baseline. The article gives a detailed calculation of sow population of levels of P, GP, GGP for maternal and paternal breeds of pigs. The program uses user-defined parameters of pigs productivity, of the simulated population, and the parameters characterizing the intensity of selection of young animals. To ensure annual production of 1,822 million pigs in the Rostov region it is necessary to provide the availability of brood stock in the amount of 89 thousand heads, 6 800 heads in the structure of grandparent flocks (GP, 730 heads in the structure of the Grand-Grand-parent stock (GGP, excluding sows second maternal and paternal breeds

  16. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    Science.gov (United States)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  17. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  18. HETEAC: The Aerosol Classification Model for EarthCARE

    Directory of Open Access Journals (Sweden)

    Wandinger Ulla

    2016-01-01

    Full Text Available We introduce the Hybrid End-To-End Aerosol Classification (HETEAC model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties.

  19. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model

    Directory of Open Access Journals (Sweden)

    N. Bellouin

    2012-08-01

    Full Text Available The Hadley Centre Global Environmental Model (HadGEM includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC, and the new Global Model of Aerosol Processes (GLOMAP-mode. GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and cloud susceptibilities, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of −0.49 W m−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol

  20. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    Directory of Open Access Journals (Sweden)

    T. Korhola

    2013-08-01

    Full Text Available In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100% and overestimation of light extinction (up to 20%. The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  1. A guinea pig model of Zika virus infection.

    Science.gov (United States)

    Kumar, Mukesh; Krause, Keeton K; Azouz, Francine; Nakano, Eileen; Nerurkar, Vivek R

    2017-04-11

    Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemic of Zika virus (ZIKV). Here we report that immunocompetent guinea pigs are susceptible to infection by a contemporary American strain of ZIKV. Dunkin-Hartley guinea pigs were inoculated with 10(6) plaque-forming units of ZIKV via subcutaneous route and clinical signs were observed. Viremia, viral load in the tissues, anti-ZIKV neutralizing antibody titer, and protein levels of multiple cytokine and chemokines were analyzed using qRT-PCR, plaque assay, plaque reduction neutralization test (PRNT) and multiplex immunoassay. Upon subcutaneous inoculation with PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in the whole blood and serum using qRT-PCR and plaque assay. Anti-ZIKV neutralizing antibody was detected in the infected animals using PRNT. ZIKV infection resulted in a dramatic increase in protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV replication was observed in spleen and brain, with the highest viral load in the brain. This data demonstrate that after subcutaneous inoculation, the contemporary ZIKV strain is neurotropic in guinea pigs. The guinea pig model described here recapitulates various clinical features and viral kinetics observed in ZIKV-infected patients, and therefore may serve as a model to study ZIKV pathogenesis, including pregnancy outcomes and for evaluation of vaccines and therapeutics.

  2. An ecologically relevant guinea pig model of fetal behavior.

    Science.gov (United States)

    Bellinger, S A; Lucas, D; Kleven, G A

    2015-04-15

    The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multicolored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To ensure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism.

  3. The miniature pig as an animal model in biomedical research.

    Science.gov (United States)

    Vodicka, Petr; Smetana, Karel; Dvoránková, Barbora; Emerick, Teresa; Xu, Yingzhi Z; Ourednik, Jitka; Ourednik, Václav; Motlík, Jan

    2005-05-01

    Crucial prerequisites for the development of safe preclinical protocols in biomedical research are suitable animal models that would allow for human-related validation of valuable research information gathered from experimentation with lower mammals. In this sense, the miniature pig, sharing many physiological similarities with humans, offers several breeding and handling advantages (when compared to non-human primates), making it an optimal species for preclinical experimentation. The present review offers several examples taken from current research in the hope of convincing the reader that the porcine animal model has gained massively in importance in biomedical research during the last few years. The adduced examples are taken from the following fields of investigation: (a) the physiology of reproduction, where pig oocytes are being used to study chromosomal abnormalities (aneuploidy) in the adult human oocyte; (b) the generation of suitable organs for xenotransplantation using transgene expression in pig tissues; (c) the skin physiology and the treatment of skin defects using cell therapy-based approaches that take advantage of similarities between pig and human epidermis; and (d) neurotransplantation using porcine neural stem cells grafted into inbred miniature pigs as an alternative model to non-human primates xenografted with human cells.

  4. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  5. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  6. Richpig: a semantic model to assess enrichment materials for pigs

    NARCIS (Netherlands)

    Bracke, M.B.M.

    2008-01-01

    A computer-based model was constructed to assess enrichment materials (EMats) for intensively-farmed weaned, growing and fattening pigs on a scale from 0 to 10. This model, called RICHPIG, was constructed in order to support the further implementation of EC Directive 2001/93/EC, which states that "p

  7. Pathogenesis of Aerosolized Eastern Equine Encephalitis Virus Infection in Guinea Pigs

    Science.gov (United States)

    2009-01-01

    Steele5 Address: 1Division of Microbiology , Tulane National Primate Research Center, Covington, Louisiana, USA, 2Center for Vaccine Research, University...included rare positive cells that appeared to be osteoblasts in the skulls of four guinea pigs, small foci of positive subgingival or periodontal connective

  8. A comprehensive breath plume model for disease transmission via expiratory aerosols.

    Directory of Open Access Journals (Sweden)

    Siobhan K Halloran

    Full Text Available The peak in influenza incidence during wintertime in temperate regions represents a longstanding, unresolved scientific question. One hypothesis is that the efficacy of airborne transmission via aerosols is increased at lower humidities and temperatures, conditions that prevail in wintertime. Recent work with a guinea pig model by Lowen et al. indicated that humidity and temperature do modulate airborne influenza virus transmission, and several investigators have interpreted the observed humidity dependence in terms of airborne virus survivability. This interpretation, however, neglects two key observations: the effect of ambient temperature on the viral growth kinetics within the animals, and the strong influence of the background airflow on transmission. Here we provide a comprehensive theoretical framework for assessing the probability of disease transmission via expiratory aerosols between test animals in laboratory conditions. The spread of aerosols emitted from an infected animal is modeled using dispersion theory for a homogeneous turbulent airflow. The concentration and size distribution of the evaporating droplets in the resulting "Gaussian breath plume" are calculated as functions of position, humidity, and temperature. The overall transmission probability is modeled with a combination of the time-dependent viral concentration in the infected animal and the probability of droplet inhalation by the exposed animal downstream. We demonstrate that the breath plume model is broadly consistent with the results of Lowen et al., without invoking airborne virus survivability. The results also suggest that, at least for guinea pigs, variation in viral kinetics within the infected animals is the dominant factor explaining the increased transmission probability observed at lower temperatures.

  9. An Aerosol Condensation Model for Sulfur Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  10. INVESTIGATION ON MODEL OF INFLAMMATORY PLEURAL EFFUSION IN GUINEA PIGS

    Institute of Scientific and Technical Information of China (English)

    冯源; 殷凯生; 王祥

    2002-01-01

    Objective To establish an animal model of inflammatory pleural effusion.Methods Forty guinea pigs were divided into two groups: experimental group with 7 subgroups and control group. In the experimental group the right chest cavity of each guinea pig was injected with 0.8~1.0 ml of 1% carrageenan, and guinea pigs of each subgroup were killed and observed respectively on day 1, 2, 3, 5, 7, 10 and day 14 after injection.Results Occurring on day 1(within 24 hours), pleural effusion reached the maximum on day 2~3 after injection, so did the neutrophil count in pleural effusion and inflammation of both pleura and lungs and then gradually decreased. The fibrosis and adhesion of pleura appeared on day 7 and were obvious on day 10. The encysted pleurisy was formed on day 14.Conclusion The carrageenan is an ideal pleural inflammatory inducer. This animal model is useful for studying pleural effusion.

  11. Multicomponent aerosol dynamics model UHMA: model development and validation

    Directory of Open Access Journals (Sweden)

    H. Korhonen

    2004-01-01

    Full Text Available A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory, as well as recent parameterizations for binary H2SO4-H2O and ternary H2SO4-NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3–4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  12. Multicomponent aerosol dynamics model UHMA: model development and validation

    Directory of Open Access Journals (Sweden)

    H. Korhonen

    2004-01-01

    Full Text Available A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory, as well as recent parameterizations for binary H2SO4–H2O and ternary H2SO4–NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3–4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  13. Multicomponent aerosol dynamics model UHMA: model development and validation

    Science.gov (United States)

    Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.

    2004-05-01

    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory), as well as recent parameterizations for binary H2SO4-H2O and ternary H2SO4-NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3-4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  14. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  15. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-09-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  16. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-06-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  17. Effects of aerosols on tropospheric oxidants: A global model study

    Science.gov (United States)

    Tie, Xuexi; Brasseur, Guy; Emmons, Louisa; Horowitz, Larry; Kinnison, Douglas

    2001-10-01

    The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)). In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H2O2 is reduced when sulfate aerosols are formed due to the reaction of SO2 + H2O2 in cloud droplets. The gas-phase reaction SO2 + OH converts OH to HO2, but the reduction of OH and enhancement of HO2 are insignificant (<3%). (2) The heterogeneous reaction of HO2 on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO2) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N2O5 reaction on the surface of sulfate aerosols leads to an 80% reduction of NOx at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However

  18. Sparse aerosol models beyond the quadrature method of moments

    Science.gov (United States)

    McGraw, Robert

    2013-05-01

    This study examines a class of sparse aerosol models derived from linear programming (LP). The widely used quadrature method of moments (QMOM) is shown to fall into this class. Here it is shown how other sparse aerosol models can be constructed, which are not based on moments of the particle size distribution. The new methods enable one to bound atmospheric aerosol physical and optical properties using arbitrary combinations of model parameters and measurements. Rigorous upper and lower bounds, e.g. on the number of aerosol particles that can activate to form cloud droplets, can be obtained this way from measurement constraints that may include total particle number concentration and size distribution moments. The new LP-based methods allow a much wider range of aerosol properties, such as light backscatter or extinction coefficient, which are not easily connected to particle size moments, to also be assimilated into a list of constraints. Finally, it is shown that many of these more general aerosol properties can be tracked directly in an aerosol dynamics simulation, using SAMs, in much the same way that moments are tracked directly in the QMOM.

  19. Implementing Marine Organic Aerosols Into the GEOS-Chem Model

    Science.gov (United States)

    Johnson, Matthew S.

    2015-01-01

    Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  20. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  1. Photoacoustic study of airborne and model aerosols

    NARCIS (Netherlands)

    Alebic-Juretic, A.; Zetsch, C.; Doka, O.; Bicanic, D.D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere w

  2. Aerosol model selection and uncertainty modelling by adaptive MCMC technique

    Directory of Open Access Journals (Sweden)

    M. Laine

    2008-12-01

    Full Text Available We present a new technique for model selection problem in atmospheric remote sensing. The technique is based on Monte Carlo sampling and it allows model selection, calculation of model posterior probabilities and model averaging in Bayesian way.

    The algorithm developed here is called Adaptive Automatic Reversible Jump Markov chain Monte Carlo method (AARJ. It uses Markov chain Monte Carlo (MCMC technique and its extension called Reversible Jump MCMC. Both of these techniques have been used extensively in statistical parameter estimation problems in wide area of applications since late 1990's. The novel feature in our algorithm is the fact that it is fully automatic and easy to use.

    We show how the AARJ algorithm can be implemented and used for model selection and averaging, and to directly incorporate the model uncertainty. We demonstrate the technique by applying it to the statistical inversion problem of gas profile retrieval of GOMOS instrument on board the ENVISAT satellite. Four simple models are used simultaneously to describe the dependence of the aerosol cross-sections on wavelength. During the AARJ estimation all the models are used and we obtain a probability distribution characterizing how probable each model is. By using model averaging, the uncertainty related to selecting the aerosol model can be taken into account in assessing the uncertainty of the estimates.

  3. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    Science.gov (United States)

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  4. Formation of a vesicovaginal fistula in a pig model

    DEFF Research Database (Denmark)

    Lindberg, Jennifer; Rickardsson, Emilie; Andersen, Margrethe

    2015-01-01

    Objective: To establish an animal model of a vesicovaginal fistula that can later be used in the development of new treatment modalities. Materials and methods: Six female pigs of Landrace/Yorkshire breed were used. Vesicotomy was performed through open surgery. An standardized incision between t...

  5. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  6. The pig as a model of developmental immunology.

    Science.gov (United States)

    Rothkötter, H J; Sowa, E; Pabst, R

    2002-01-01

    There are many limitations to analyse the developing immune system in humans, thus there is need for experimental animal models to study the environmental influences during the ontogeny of the immune system. However risk assessment is difficult in using rodent models alone, especially as the intrauterine period of development is much shorter than that of humans. In addition to studies in dogs, the pig provides a variety of experimental approaches for developmental immunotoxicology. The gestation period is 115 days and the occurrence of the different lines of T and B lymphocytes in the blood and organs of the porcine embryo and fetus is well documented. Fetal porcine B cells represent a naive population developing without maternal idiotypic-antiidiotypic influences. The postnatal development is highly correlated to sufficient uptake of colostrum during the first 48 hours. Although many immunotoxicological experiments have been performed, there is a limited number of original publications about these studies. With the different strains of standard pigs and miniature pigs available and the rapid growing amount of immunological reagents, the pig represents an important experimental model for cost-effective studies in developmental immunotoxicology to analyse the risk of environmental hazards.

  7. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  8. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Bauer,S.E.; Wright, D.L.; Koch, D.; Lewis, E.R.; McGraw, R.; Chang, L.-S.; Schwartz, S.E.; Ruedy, R.

    2008-10-21

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 {micro}m, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due

  9. A dynamic model of digestion and absorption in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, Andrzej

    2008-01-01

    The paper describes and evaluates the construction of a mathematical model to study the kinetics of digestion and absorption in growing pigs. The core of the model is based on a compartmental structure, which divides the gastro-intestinal tract into four anatomical segments: the stomach, two part......, starch, sugars and dietary fibre. Besides a chemical description of the feed, the model further requires information about daily dry matter intake and feeding frequency....

  10. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    Science.gov (United States)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  11. Coupled Shape Model Segmentation in Pig Carcasses

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Larsen, Rasmus; Ersbøll, Bjarne Kjær;

    2006-01-01

    In this paper we are concerned with multi-object segmentation. For each object we will train a level set function based shape prior from a sample set of outlines. The outlines are aligned in a multi-resolution scheme wrt. an Euclidean similarity transformation in order to maximize the overlap...... levels inside the outline as well as in a narrow band outside the outline. The maximum a posteriori estimate of the outline is found by gradient descent optimization. In order to segment a group of mutually dependent objects we propose 2 procedures, 1) the objects are found sequentially by conditioning...... the initialization of the next search from already found objects; 2) all objects are found simultaneously and a repelling force is introduced in order to avoid overlap between outlines in the solution. The methods are applied to segmentation of cross sections of muscles in slices of CT scans of pig backs for quality...

  12. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-05-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE is described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  13. An Aerosol Physical Chemistry Model for the Upper Troposphere

    Science.gov (United States)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  14. On the Implications of aerosol liquid water and phase separation for modeled organic aerosol mass

    Science.gov (United States)

    Current chemical transport models assume that organic aerosol (OA)-forming compounds partition mostly to a water-poor, organic-rich phase in accordance with their vapor pressures. However, in the southeast United States, a significant fraction of ambient organic compounds are wat...

  15. The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation

    Directory of Open Access Journals (Sweden)

    M. Wang

    2011-03-01

    Full Text Available Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional general circulation models (GCMs. In this study, we develop a multi-scale aerosol-climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF model that embeds a cloud-resolving model (CRM within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale.

    Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations (within a factor of 2 in most cases, although the model underestimates black carbon concentrations at the surface by a factor of 2–4. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation mode number concentrations in the middle and upper free troposphere by a factor

  16. The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation

    Science.gov (United States)

    Wang, M.; Ghan, S.; Easter, R.; Ovchinnikov, M.; Liu, X.; Kassianov, E.; Qian, Y.; Gustafson, W. I., Jr.; Larson, V. E.; Schanen, D. P.; Khairoutdinov, M.; Morrison, H.

    2011-03-01

    Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional general circulation models (GCMs). In this study, we develop a multi-scale aerosol-climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF) model that embeds a cloud-resolving model (CRM) within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP) approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale. Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations (within a factor of 2 in most cases), although the model underestimates black carbon concentrations at the surface by a factor of 2-4. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation mode number concentrations in the middle and upper free troposphere by a factor of about 2. The

  17. Calibration and validation of a physiologically based model for soman intoxication in the rat, marmoset, guinea pig and pig.

    Science.gov (United States)

    Chen, Kaizhen; Seng, Kok-Yong

    2012-09-01

    A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model has been developed for low, medium and high levels of soman intoxication in the rat, marmoset, guinea pig and pig. The primary objective of this model was to describe the pharmacokinetics of soman after intravenous, intramuscular and subcutaneous administration in the rat, marmoset, guinea pig, and pig as well as its subsequent pharmacodynamic effects on blood acetylcholinesterase (AChE) levels, relating dosimetry to physiological response. The reactions modelled in each physiologically realistic compartment are: (1) partitioning of C(±)P(±) soman from the blood into the tissue; (2) inhibition of AChE and carboxylesterase (CaE) by soman; (3) elimination of soman by enzymatic hydrolysis; (4) de novo synthesis and degradation of AChE and CaE; and (5) aging of AChE-soman and CaE-soman complexes. The model was first calibrated for the rat, then extrapolated for validation in the marmoset, guinea pig and pig. Adequate fits to experimental data on the time course of soman pharmacokinetics and AChE inhibition were achieved in the mammalian models. In conclusion, the present model adequately predicts the dose-response relationship resulting from soman intoxication and can potentially be applied to predict soman pharmacokinetics and pharmacodynamics in other species, including human.

  18. Oral vaccination of guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. bovis.

    Science.gov (United States)

    Clark, Simon; Cross, Martin L; Nadian, Allan; Vipond, Julia; Court, Pinar; Williams, Ann; Hewinson, R Glyn; Aldwell, Frank E; Chambers, Mark A

    2008-08-01

    Increased incidence of bovine tuberculosis (TB) in the United Kingdom caused by infection with Mycobacterium bovis is a cause of considerable economic loss to farmers and the government. The Eurasian badger (Meles meles) represents a wildlife source of recurrent M. bovis infections of cattle in the United Kingdom, and its vaccination against TB with M. bovis bacillus Calmette-Guérin (BCG) is an attractive disease control option. Delivery of BCG in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. Using a guinea pig pulmonary challenge model, we evaluated the protective efficacy of candidate badger oral vaccines, based on broth-grown or ball-milled BCG, delivered either as aqueous suspensions or formulated in two lipids with differing fatty acid profiles (one being animal derived and the other being vegetable derived). Protection was determined in terms of increasing body weight after aerosol challenge with virulent M. bovis, reduced dissemination of M. bovis to the spleen, and, in the case of one oral formulation, restricted growth of M. bovis in the lungs. Only oral BCG formulated in lipid gave significant protection. These data point to the potential of the BCG-lipid formulation for further development as a tool for controlling tuberculosis in badgers.

  19. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    Science.gov (United States)

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  20. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  1. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2010-03-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. In the cases where the output parameters from the model seem to compare best with atmospheric observations we observe, for the shorter wavelength pair, a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3%. In some cases we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid

  2. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2009-10-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. For the shorter wavelength pair we observe a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3% in the cases with atmospherically realistic output parameters. For some parameters we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid the signal being drowned out by noise.

  3. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  4. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  5. Cloud-Aerosol-Radiation (CAR ensemble modeling system

    Directory of Open Access Journals (Sweden)

    X.-Z. Liang

    2013-04-01

    Full Text Available A Cloud-Aerosol-Radiation (CAR ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry, aerosol properties (type, profile, optics, radiation transfers (solar, infrared, and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs. The CAR provides a unique framework to determine (via intercomparison across all schemes, reduce (via optimized ensemble simulations, and attribute specific key factors for (via physical process sensitivity analyses the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  6. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    Science.gov (United States)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  7. The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation

    Directory of Open Access Journals (Sweden)

    M. Wang

    2010-10-01

    Full Text Available Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional global climate models (GCMs. In this study, we develop a multi-scale aerosol climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF model that embeds a cloud-resolving model (CRM within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale.

    Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations, although the model underestimates black carbon concentrations at the surface. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation number concentrations in the free troposphere. Simulated cloud condensation nuclei (CCN concentrations are within the observational

  8. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs - Effects of metformin at isoenergetic feeding in a type 2-like diabetic pig model

    NARCIS (Netherlands)

    Koopmans, S.J.; Mroz, Z.; Dekker, R.A.; Corbijn, H.; Ackermans, M.; Sauerwein, H.

    2006-01-01

    Insulin-mediated glucose metabolism was investigated in streptozotocin (STZ)¿treated diabetic pigs to explore if the STZ-diabetic pig can be a suitable model for insulin-resistant, type 2 diabetes mellitus. Pigs (40 kg) were meal-fed with a low-fat (5%) diet. Hyperinsulinemic (1, 2, and 8 mU kg¿1 mi

  9. Modeling digestibility of dietary phosphorus in growing and finish pigs.

    Science.gov (United States)

    Symeou, V; Edwards, S A; Kyriazakis, I

    2012-12-01

    Low P digestibility combined with intensive pig production can lead to water pollution. The aim of this paper was to develop a model able to represent P digestion in pigs across diets and contribute towards the reduction of P excretion. Phosphorus in plant feedstuffs includes some nonphytate P (NPP) that is readily digested but is mostly as organic phytate P (oP) that is indigestible unless it is dephosphorylated. The ability of pigs to dephosphorylate oP using endogenous phytase enzymes is limited and is a function of Ca intake. The effect of Ca (g/kg diet) on the proportion of oP dephosphorylated (kg/kg) in the small intestine (SI) and large intestine (LI) was determined as 0.26 - (0.015 × dietary Ca) and 0.69 - (0.059 × dietary Ca), respectively. The dephosphorylated oP in the LI was assumed to be indigestible and was excreted. Proportion of oP dephosphosphorylation (kg/kg) by microbial and plant phytase activity (FTU) in the stomach was estimated to be 0.56 × [1 - exp(-0.001 × FTU)] and 0.38 × [1 - exp(-0.002 × FTU)], respectively. Phosphorus digestibility (kg/kg) of NPP and dephosphorylated oP in the SI was assumed to be constant at 0.8. The model was used to predict P digestibility in 2 experiments by Stein et al. (2011) and Poulsen et al. (2010) and compare the predictions with experimental outcomes. The model successfully predicted the P digestibility to a range of dietary Ca concentrations and for 2 levels of supplementation with microbial phytase. However, the predictions overestimated P digestion systematically but always within a 10% margin of the observed values. The model could be a useful tool for formulating strategies to improve the efficiency of P digestion and reduce soluble P excretion in pigs.

  10. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    Science.gov (United States)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  11. Modelling aerosol transfer in a ventilated room; Modelisation du transfert des aerosols dans un local ventile

    Energy Technology Data Exchange (ETDEWEB)

    Nerisson, Ph.

    2009-02-15

    When particulate radioactive contamination is likely to become airborne in a ventilated room, assessment of aerosol concentration in every point of this room is important, in order to ensure protection of operators and supervision of workspaces. Thus, a model of aerosol transport and deposition has been developed as part of a project started with IRSN, EDF and IMFT. A simplified Eulerian model, called 'diffusion-inertia model' is used for particle transport. It contains a single transport equation of aerosol concentration. The specific study of deposition on walls has permitted to develop a boundary condition approach, which determines precisely the particle flux towards the wall in the boundary layer, for any deposition regime and surface orientation.The final transport and deposition models retained have been implemented in a CFD code called Code-Saturne. These models have been validated according to literature data in simple geometries and tracing experiments in ventilated rooms, which have been carried out in 30 m{sup 3} and 1500 m{sup 3} laboratory rooms. (author)

  12. Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

    Directory of Open Access Journals (Sweden)

    Malak Kotb

    2012-12-01

    Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research.  Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies.  In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV.  Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe.  Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in

  13. Evaluation of a pig femoral head osteonecrosis model

    Directory of Open Access Journals (Sweden)

    Kim Harry

    2010-03-01

    Full Text Available Abstract Background A major cause of osteonecrosis of the femoral head is interruption of a blood supply to the proximal femur. In order to evaluate blood circulation and pathogenetic alterations, a pig femoral head osteonecrosis model was examined to address whether ligature of the femoral neck (vasculature deprivation induces a reduction of blood circulation in the femoral head, and whether transphyseal vessels exist for communications between the epiphysis and the metaphysis. We also tested the hypothesis that the vessels surrounding the femoral neck and the ligamentum teres represent the primary source of blood flow to the femoral head. Methods Avascular osteonecrosis of the femoral head was induced in Yorkshire pigs by transecting the ligamentum teres and placing two ligatures around the femoral neck. After heparinized saline infusion and microfil perfusion via the abdominal aorta, blood circulation in the femoral head was evaluated by optical and CT imaging. Results An angiogram of the microfil casted sample allowed identification of the major blood vessels to the proximal femur including the iliac, common femoral, superficial femoral, deep femoral and circumflex arteries. Optical imaging in the femoral neck showed that a microfil stained vessel network was visible in control sections but less noticeable in necrotic sections. CT images showed a lack of microfil staining in the epiphysis. Furthermore, no transphyseal vessels were observed to link the epiphysis to the metaphysis. Conclusion Optical and CT imaging analyses revealed that in this present pig model the ligatures around the femoral neck were the primary cause of induction of avascular osteonecrosis. Since the vessels surrounding the femoral neck are comprised of the branches of the medial and the lateral femoral circumflex vessels, together with the extracapsular arterial ring and the lateral epiphyseal arteries, augmentation of blood circulation in those arteries will improve

  14. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    Science.gov (United States)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  15. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    Science.gov (United States)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  16. Histotripsy for Pediatric Cardiac Applications: In Vivo Neonatal Pig Model

    Science.gov (United States)

    Miller, Ryan M.; Owens, Gabe; Ensing, Gregory; Ludomirsky, Achiau; Cain, Charles; Xu, Zhen

    2010-03-01

    This study investigated the in vivo feasibility of using histotripsy to non-invasively create a flow channel between the ventricles by generating a perforation of the ventricular septum, clinically referred to as a ventricular septum defect (VSD). The overall goal is to develop a non-invasive procedure to aid in the treatment of neonatal patients with complex congenital heart diseases such as Hypoplastic Left Heart Syndrome (HLHS). Histotripsy is a therapeutic ultrasound technique that produces mechanical fractionation of soft tissue through controlled cavitation. The study was conducted in a live and intact neonatal pig model. The ventricular septum in the neonatal pig heart was treated with histotripsy delivered by a spherically focused 1 MHz transducer positioned outside the chest wall. Histotripsy treatment was applied using 5-cycle ultrasound pulses at 1 kHz pulse repetition frequency with 12-18 MPa peak negative pressure. The treatment was guided and monitored with ultrasound imaging. In all nine subjects treated, a bubble cloud was generated on the ventricular septum using histotripsy, and visualized with ultrasound imaging. Within 20 seconds to 4 minutes following the initiation of a bubble cloud, a VSD was created in all nine pigs and confirmed by the detection of blood flow through the ventricular septum with color Doppler ultrasound. Gross morphology and histology on all hearts showed a demarcated perforation in the ventricular septum. This study shows that a VSD can be created in an intact neonatal animal using extracorporeal histotripsy under real-time ultrasound guidance.

  17. Model evaluation of marine primary organic aerosol emission schemes

    Directory of Open Access Journals (Sweden)

    B. Gantt

    2012-09-01

    Full Text Available In this study, several marine primary organic aerosol (POA emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll a concentration ([chl a] and 10 m wind speed (U10, have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl a] does a better job replicating surface observations. Sensitivity simulations in which the negative U10 and positive [chl a] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr−1. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol.

  18. Model evaluation of marine primary organic aerosol emission schemes

    Science.gov (United States)

    Gantt, B.; Johnson, M. S.; Meskhidze, N.; Sciare, J.; Ovadnevaite, J.; Ceburnis, D.; O'Dowd, C. D.

    2012-09-01

    In this study, several marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll a concentration ([chl a]) and 10 m wind speed (U10), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl a] does a better job replicating surface observations. Sensitivity simulations in which the negative U10 and positive [chl a] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr-1. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol.

  19. Experimental Study of Aerosol Deposition in a Realistic Lung Model

    Directory of Open Access Journals (Sweden)

    František LÍZAL

    2010-12-01

    Full Text Available The inhalation route for administration of medicaments is becoming more and more popular in recent years. The reason is non-invasiveness of the method and instantaneous absorption of drugs to the blood circulation. It is necessary to deliver exact amount of drug to the specific segment because of occurrence of diverse diseases in different segments of lungs. The aim of our work is to contribute to better understanding of transport and deposition of aerosolized drugs in lungs and hence to more effective treatment of respiratory diseases due to the targeted drug delivery. We provided measurements of aerosol deposition in segmented realistic model of lungs without a mouth cavity. Monodisperse particles marked with fluorescein were supplied to the model. The model was then disassembled to segments and each segment was rinsed with isopropanol, whereby fluorescent samples were created. Each sample was analysed by fluorometer and an amount of aerosol deposited in the segment was calculated. Experiences obtained by this study were used for creation of a new model with the mouth cavity. This model will be used for future studies with porous and fiber aerosols.

  20. Comparison of five bacteriophages as models for viral aerosol studies.

    Science.gov (United States)

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain; Duchaine, Caroline

    2014-07-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  1. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gettelman, Andrew [University Corporation for Atmospheric Research (NCAR), Boulder, CO (United States)

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  2. The pig as a large animal model for influenza a virus infection

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Larsen, Lars Erik

    infiltration of the respiratory system. This study aimed at providing a better understanding of the involvement of innate immune factors and non-coding RNA in blood leukocytes during influenza A virus infection. By using the pig as a model we were able to perform highly controlled experimental infections...... consolidate the pig as a valuable model for influenza A virus infection.......It is increasingly realized that large animal models like the pig are exceptionally human like and serve as an excellent model for disease and inflammation. Pigs are fully susceptible to human influenza, share many similarities with humans regarding lung physiology and innate immune cell...

  3. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    Directory of Open Access Journals (Sweden)

    T. Bergman

    2011-12-01

    Full Text Available We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection.

    The ability of the module to describe the global aerosol properties was evaluated by comparison against (1 measured continental and marine size distributions, (2 observed variability of continental modal number concentrations, (3 measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4 observations of AOD and other aerosol optical properties from satellites and AERONET network, (5 global aerosol budgets and concentrations from previous model studies, and (6 model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM.

    The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two. At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and

  4. Verification of the Naval Oceanic Vertical Aerosol Model During Fire

    NARCIS (Netherlands)

    Davidson, K.L.; Leeuw, G. de; Gathman, S.G.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL), for waverengths between 0,2 and 40 um. NOVAM was designed to predict, utilizing a set of routin

  5. The Naval Ocean Vertical Aerosol Model : Progress Report

    NARCIS (Netherlands)

    Leeuw, G. de; Gathman, S.G.; Davidson, K.L.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL). NOVAM was designed to predict the non-uniform and non-logarithmic extinction profiles which are

  6. Spatial distributions and seasonal cycles of aerosol climate effects in India seen in global climate-aerosol model

    Directory of Open Access Journals (Sweden)

    S. V. Henriksson

    2013-07-01

    Full Text Available Climate-aerosol interactions in India are studied by employing the global climate-aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g. Northern India in March–May and the eastern Himalayas in September–November. Rainfall increases due to the elevated heat pump (EHP mechanism and decreases due to solar dimming effects are studied. Aerosol light absorption does increase rainfall significantly in Northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative when considering all effects if assuming that aerosols have cooled the Northern Indian Ocean by 0.5 °K compared to the equator.

  7. The aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    P. Stier

    2005-01-01

    Full Text Available The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU, black carbon (BC, particulate organic matter (POM, sea salt (SS, and mineral dust (DU are included. The simulated global annual mean aerosol burdens (lifetimes for the year 2000 are for SU: 0.80 Tg(S (3.9 days, for BC: 0.11 Tg (5.4 days, for POM: 0.99 Tg (5.4 days, for SS: 10.5 Tg (0.8 days, and for DU: 8.28 Tg (4.6 days. An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14 and a composite derived from MODIS-MISR satellite retrievals (0.16. Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.

  8. First comparison of a global microphysical aerosol model with size-resolved observational aerosol statistics

    Science.gov (United States)

    Spracklen, D. V.; Pringle, K. J.; Carslaw, K. S.; Mann, G. W.; Manktelow, P.; Heintzenberg, J.

    2006-09-01

    A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10-30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the MBL. Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic marine boundary layer (MBL) aerosol, with typically 60-90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and modelled particle persistence at Cape Grim in the Southern Ocean, does not

  9. MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-02-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  10. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  11. Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model

    Directory of Open Access Journals (Sweden)

    H. Wang

    2013-01-01

    Full Text Available Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5, have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold increase in the winter (summer months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold

  12. Advantages of a miniature pig model in research on human hereditary hearing loss

    Institute of Scientific and Technical Information of China (English)

    Weiwei Guo; Shi-ming Yang

    2015-01-01

    In medical laboratory animals, the pig is the closest species to human in evolution, except for primates. As an animal model, the pig is highly concerned by many scientists, including comparative biology, developmental biology, medical genetics. Rodents as animal model for human hearing defects has are poor producibility and reliability, due to differences in anatomical structure, evolutionary rate and metabolic rate, but these happens to be the advantages of the pig model. In this paper, we will summarize the application of miniature pig in the study of human hereditary deafness.

  13. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    Directory of Open Access Journals (Sweden)

    T. Bergman

    2012-06-01

    Full Text Available We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds.

    The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework.

    The ability of the module to describe the global aerosol properties was evaluated by comparing against (1 measured continental and marine size distributions, (2 observed variability of continental number concentrations, (3 measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4 observations of aerosol optical depth (AOD and other aerosol optical properties from satellites and AERONET network, (5 global aerosol budgets and concentrations from previous model studies, and (6 model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM.

    The evaluation shows that the global aerosol

  14. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    Science.gov (United States)

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  15. Lessons Learned About Organic Aerosol Formation in the Southeast U.S. Using Observations and Modeling

    Science.gov (United States)

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA). In this work, modeling of isoprene SOA via heterogeneous uptake is explored and compared to observations from the Southern Oxidant and Aerosol Study (SOAS).

  16. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2005-01-01

    Full Text Available A GLObal Model of Aerosol Processes (GLOMAP has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic

  17. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    Science.gov (United States)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  18. MIRAGE: Model description and evaluation of aerosols and trace gases

    Science.gov (United States)

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, L. Ruby; Bian, Xindi; Zaveri, Rahul A.

    2004-10-01

    The Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled online with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass (sulfate, methane sulfonic acid (MSA), organic matter, black carbon (BC), sea salt, and mineral dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on Community Climate Model, Version 2 (CCM2), has physically based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in North American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in North American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur given in 2001 by S. J. Ghan and

  19. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in

  20. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  1. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-04-01

    Full Text Available A product-specific model for secondary organic aerosol (SOA formation and composition based on equilibrium gas-particle partitioning is evaluated. The model is applied to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is best used for an SOA precursor for which a substantial fraction of the aerosol-phase oxidation products has been identified.

  2. Correlation between clinical and histological features in a pig model of choroidal neovascularization

    DEFF Research Database (Denmark)

    Lassota, Nathan; Kiilgaard, Jens Folke; Prause, Jan Ulrik;

    2006-01-01

    To analyse the histological changes in the retina and the choroid in a pig model of choroidal neovascularization (CNV) and to correlate these findings with fundus photographic and fluorescein angiographic features.......To analyse the histological changes in the retina and the choroid in a pig model of choroidal neovascularization (CNV) and to correlate these findings with fundus photographic and fluorescein angiographic features....

  3. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  4. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  5. Immune response phenotype of allergic versus clinically tolerant pigs in a neonatal swine model of allergy.

    Science.gov (United States)

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce

    2013-07-15

    The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use.

  6. Strong sensitivity of aerosol concentrations to convective wet scavenging parameterizations in a global model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2012-01-01

    Full Text Available This study examines the influences of assumptions in convective wet scavenging parameterizations on global climate model simulations of aerosol concentrations and wet deposition. To facilitate this study, an explicit representation of the uptake of aerosol mass and number into convective cloud droplets and ice crystals by the processes of activation, collisions, freezing and evaporation is introduced into the ECHAM5-HAM model. This development replaces the prescribed aerosol cloud-droplet-borne/ice-crystal-borne fractions of the standard model. Relative to the standard model, the more consistent treatment between convective aerosol-cloud microphysical processes yields a reduction of aerosol wet removal in mixed liquid and ice phase convective clouds by at least a factor of two, and the global, annual mean aerosol burdens are increased by at least 20%. Two limiting cases regarding the wet scavenging of entrained aerosols are considered. In the first case, aerosols entering convective clouds at their bases are the only aerosols that are scavenged into cloud droplets, and are susceptible to removal by convective precipitation formation. In the second case, aerosols that are entrained into the cloud above the cloud base layer can activate, can collide with existing cloud droplets and ice crystals, and can subsequently be removed by precipitation formation. The limiting case that allows aerosols entrained above cloud base to become cloud-droplet-borne and ice-crystal-borne reduces the annual and global mean aerosol burdens by 30% relative to the other limiting case, and yields the closest agreement with global aerosol optical depth retrievals, and black carbon vertical profiles from aircraft campaigns (changes of about one order of magntiude in the upper troposphere. Predicted convective cloud droplet number concentrations are doubled in the tropical middle troposphere when aerosols entrained above cloud base are allowed to activate. These results

  7. Genetic design of pigs as experimental models in the combat between chronic diseases and healthy aging

    DEFF Research Database (Denmark)

    Bolund, Lars

    2012-01-01

    pigs. We can also produce clones of pigs, some disease prone and some fluorescing, to perform experiments in regenerative medicine where the fate of healthy fluorescent cells can be followed in the, basically identical, disease prone animals. It is also our hope that our pig models can contribute...... with and without intervention. The genome of different pig breeds have been sequenced, revealing that the pig is genetically more similar to man than conventional laboratory animals - in agreement with the similarities in organ development, physiology and metabolism. Genetically designed minipigs (Göttingen...... and Yucatan) are obtained by genetic engineering of somatic cells and animal cloning by somatic cell nuclear transfer. Primary minipig fibroblasts are genetically modified in culture by transposon-based transgenesis and/or homologous recombination with AAV-transduced constructs. The designed pig cells...

  8. Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model

    Directory of Open Access Journals (Sweden)

    H. Wang

    2013-06-01

    Full Text Available Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5, have large biases in predicting aerosols in remote regions such as the upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol–climate model that explicitly represents convection and aerosol–cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the subgrid-scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a 10-fold (5-fold increase in the winter (summer months, resulting in a much-better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold

  9. An intercomparison and evaluation of aerosol microphysical properties among AeroCom global aerosol models of a range of complexity.

    Science.gov (United States)

    Mann, Graham; Carslaw, Ken; Reddington, Carly; Pringle, Kirsty; Schulz, Michael; Asmi, Ari

    2013-04-01

    Many of the next generation of climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. Such aerosol microphysics schemes ensure that aerosol optical properties and cloud condensation nuclei concentrations are determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study, as part of the second phase of the international AeroCom initiative, examines how the particle size distribution is simulated in the current generation of global aerosol microphysics models. We use 12 models to quantify the mean and diversity of size-resolved particle concentrations on a global scale and map areas of particular model uncertainty (based on their central diversity) and identify biases through evaluation against observations. In regions of strong anthropogenic emissions, the diversity of simulated concentrations of particles larger than 30nm (N30) is large (factor 2 to 6), while the diversity of sulphate mass (factor 1.2 to 3) and N100 (factor 1.5 to 2) are lower. We attribute the higher N30 diversity in emissions regions to inter-model differences in nucleation and growth processes, and also to different size assumptions for primary emitted particles. In clean marine regions, the pattern of size-resolved diversity is opposite to polluted regions, with N30 diversity (factor 1.5 to 2) much lower than N100. At high latitudes, N30 has relatively low diversity (factor 2 to 7), compared to much higher diversity in simulated sulphate, black carbon and N100 (factor 5 to 30). The higher N30 diversity in polluted continental regions indicates that simulated CCN concentrations are more diverse among models than the >100nm sizes, which mainly determine aerosol optical properties. However, the relatively low N30 diversity in marine and remote regions gives confidence that current global aerosol microphysics

  10. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D. [Pacific Northwest National Laboratory, Richland Washington USA; Berg, Larry K. [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Kai [Pacific Northwest National Laboratory, Richland Washington USA; Easter, Richard C. [Pacific Northwest National Laboratory, Richland Washington USA; Ferrare, Richard A. [NASA Langley Research Center, Hampton Virginia USA; Hair, Johnathan W. [NASA Langley Research Center, Hampton Virginia USA; Hostetler, Chris A. [NASA Langley Research Center, Hampton Virginia USA; Liu, Ying [Pacific Northwest National Laboratory, Richland Washington USA; Ortega, Ivan [Department of Chemistry, Colorado University, Boulder Colorado USA; Sedlacek, Arthur [Brookhaven National Laboratory, Upton New York USA; Shilling, John E. [Pacific Northwest National Laboratory, Richland Washington USA; Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Springston, Stephen R. [Brookhaven National Laboratory, Upton New York USA; Tomlinson, Jason M. [Pacific Northwest National Laboratory, Richland Washington USA; Volkamer, Rainer [Department of Chemistry, Colorado University, Boulder Colorado USA; Wilson, Jacqueline [Pacific Northwest National Laboratory, Richland Washington USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  11. Computational modeling of aerosol deposition in respiratory tract: a review.

    Science.gov (United States)

    Rostami, Ali A

    2009-02-01

    This review article is intended to serve as an overview of the current status of the computational tools and approaches available for predicting respiratory-tract dosimetry of inhaled particulate matter. There are two groups of computational models available, depending on the intended use. The whole-lung models are designed to provide deposition prediction for the whole lung, from the oronasal cavities to the pulmonary region. The whole-lung models are generally semi-empirical and hence provide more reliable results but within the range of parameters used for empirical correlations. The local deposition or computational fluid dynamics (CFD)-based models, on the other hand, utilize comprehensive theoretical and computational approaches but are often limited to upper respiratory tracts. They are based on theoretical principles and are applicable to a wider range of parameters, but less accurate. One of the difficulties with modeling of aerosol deposition in human lung is related to the complexity of the airways geometry and the limited morphometric data available. Another difficulty corresponds to simulation of the realistic physiological conditions of lung environment. Furthermore, complex physical and chemical phenomena associated with dense and multicomponent aerosols complicate the modeling tasks. All of these issues are addressed in this review. The progress made in each area in the last three decades and the challenges ahead are discussed along with some suggestions for future direction. The following subjects are covered in this review: introduction, aerosol deposition mechanisms, elements of a computational model, respiratory-tract geometry models, whole-lung models, CFD based models, cigarette smoke deposition models, and conclusion.

  12. Modelling phosphorus intake, digestion, retention and excretion in growing and finishing pig: model evaluation.

    Science.gov (United States)

    Symeou, V; Leinonen, I; Kyriazakis, I

    2014-10-01

    A deterministic, dynamic model was developed, to enable predictions of phosphorus (P) digested, retained and excreted for different pig genotypes and under different dietary conditions. Before confidence can be placed on the predictions of the model, its evaluation was required. A sensitivity analysis of model predictions to ±20% changes in the model parameters was undertaken using a basal UK industry standard diet and a pig genotype characterized by British Society Animal Science as being of 'intermediate growth'. Model outputs were most sensitive to the values of the efficiency of digestible P utilization for growth and the non-phytate P absorption coefficient from the small intestine into the bloodstream; all other model parameters influenced model outputs by excretion. In general, the model predicted satisfactorily the quantitative pig responses, in terms of P digested, retained and excreted, to variation in dietary inorganic P supply, Ca and phytase supplementation. The model performed well with 'conventional', European feed ingredients and poorly with 'less conventional' ones, such as dried distillers grains with solubles and canola meal. Explanations for these inconsistencies in the predictions are offered in the paper and they are expected to lead to further model development and improvement. The latter would include the characterization of the origin of phytate in pig diets.

  13. Critical review evaluating the pig as a model for human nutritional physiology.

    Science.gov (United States)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-06-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.

  14. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    Science.gov (United States)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  15. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study the ...

  16. Modelling severe Staphylococcus aureus sepsis in conscious pigs: are implications for animal welfare justified?

    DEFF Research Database (Denmark)

    Olsen, Helle G; Kjelgaard-Hansen, Mads; Tveden-Nyborg, Pernille;

    2016-01-01

    A porcine model of haematogenous Staphylococcus aureus sepsis has previously been established in our research group. In these studies, pigs developed severe sepsis including liver dysfunction during a 48 h study period. As pigs were awake during the study, animal welfare was challenged...

  17. Global Modeling of the Oceanic Source of Organic Aerosols

    Directory of Open Access Journals (Sweden)

    Stelios Myriokefalitakis

    2010-01-01

    Full Text Available The global marine organic aerosol budget is investigated by a 3-dimensional chemistry-transport model considering recently proposed parameterisations of the primary marine organic aerosol (POA and secondary organic aerosol (SOA formation from the oxidation of marine volatile organic compounds. MODIS and SeaWiFS satellite data of Chlorophyll-a and ECMWF solar incoming radiation, wind speed, and temperature are driving the oceanic emissions in the model. Based on the adopted parameterisations, the SOA and the submicron POA marine sources are evaluated at about 5 Tg yr−1 (∼1.5 Tg C yr−1 and 7 to 8 Tg yr−1 (∼4 Tg C yr−1, respectively. The computed marine SOA originates from the dimethylsulfide oxidation (∼78%, the potentially formed dialkyl amine salts (∼21%, and marine hydrocarbon oxidation (∼0.1%. Comparison of calculations with observations indicates an additional marine source of soluble organic carbon that could be partially encountered by marine POA chemical ageing.

  18. Applications of aerosol model in the reactor containment

    Directory of Open Access Journals (Sweden)

    Mossad Slama

    2014-10-01

    For spatially homogeneous aerosol of uniform chemical composition, the aerosol dynamic equation is solved in closed volume to simulate the radionuclide particle transport in the containment. The effects of initial conditions on the aerosol distribution, boundary layer thickness and the aerosol behaviour under source reinforcement (external source are considered.

  19. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  20. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    Science.gov (United States)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  1. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    Science.gov (United States)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  2. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  3. Tolerability of inhaled N-chlorotaurine in the pig model

    Directory of Open Access Journals (Sweden)

    Scholl-Bürgi Sabine

    2009-07-01

    Full Text Available Abstract Background N-chlorotaurine, a long-lived oxidant produced by human leukocytes, can be applied in human medicine as an endogenous antiseptic. Its antimicrobial activity can be enhanced by ammonium chloride. This study was designed to evaluate the tolerability of inhaled N-chlorotaurine (NCT in the pig model. Methods Anesthetized pigs inhaled test solutions of 1% (55 mM NCT (n = 7, 5% NCT (n = 6, or 1% NCT plus 1% ammonium chloride (NH4Cl (n = 6, and 0.9% saline solution as a control (n = 7, respectively. Applications with 5 ml each were performed hourly within four hours. Lung function, haemodynamics, and pharmacokinetics were monitored. Bronchial lavage samples for captive bubble surfactometry and lung samples for histology and electron microscopy were removed. Results Arterial pressure of oxygen (PaO2 decreased significantly over the observation period of 4 hours in all animals. Compared to saline, 1% NCT + 1% NH4Cl led to significantly lower PaO2 values at the endpoint after 4 hours (62 ± 9.6 mmHg vs. 76 ± 9.2 mmHg, p = 0.014 with a corresponding increase in alveolo-arterial difference of oxygen partial pressure (AaDO2 (p = 0.004. Interestingly, AaDO2 was lowest with 1% NCT, even lower than with saline (p = 0.016. The increase of pulmonary artery pressure (PAP over the observation period was smallest with 1% NCT without difference to controls (p = 0.91, and higher with 5% NCT (p = 0.02, and NCT + NH4Cl (p = 0.05. Histological and ultrastructural investigations revealed no differences between the test and control groups. The surfactant function remained intact. There was no systemic resorption of NCT detectable, and its local inactivation took place within 30 min. The concentration of NCT tolerated by A549 lung epithelial cells in vitro was similar to that known from other body cells (0.25–0.5 mM. Conclusion The endogenous antiseptic NCT was well tolerated at a concentration of 1% upon inhalation in the pig model. Addition of

  4. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Science.gov (United States)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. D.

    2015-02-01

    This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert

  5. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  6. Simulation of atmospheric aerosols in East Asia using modeling system RAMS-CMAQ: Model evaluation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modeling system RAMS-CMAQ is applied in this paper to East Asia to simulate the temporo-spatial concentration distributions of atmospheric aerosols. For evaluating its performances, modeled concentrations of aerosols such as sulfate, nitrate, ammonium, black carbon and organic carbon were compared with observations obtained in East Asia on board of two aircrafts in the springtime of 2001. The comparison showed generally good agreement, and, in particular, that the modeling system captured most of the important observed features, including vertical gradients of the aerosols of the Asian outflow over the western Pacific. The evaluation results provide us with much confidence for further use of the modeling system to investigate the transport and transformation processes of atmospheric aerosols over East Asia and to assess their impacts on the Earth's radiation budget.

  7. Evolution History and Development Trend of Industrialized Live Pig Breeding Model in China

    Institute of Scientific and Technical Information of China (English)

    Zhongming; SHEN

    2013-01-01

    Tremendous achievements of live pig industry in China are closely related to the industrialization of the industry,and development trend of the latter is essential for maintaining sustained and stable development of animal husbandry.The paper,on the basis of defining the evolution of industrialized live pig breeding model,elaborated the industrialized operation models of live pig industry in China since 1978,i.e.household operation,large-scale operation,and industrialized operation.The external environment for the development of live pig industry was analyzed,such as global economic competition,development of experience economy,and stronger green consciousness of consumers.Then development trend of industrialized live pig breeding was analyzed as"expanding international market,consolidating domestic market,integrating resources of live pig industry for the integrated operation,promoting the industrialization model and breeding technology driven by live pig processing,applying animal welfare and the internet of things in live pig breeding industry".

  8. Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2010-07-01

    Full Text Available Tropospheric aerosol size distributions are simulated by three online global models which employ exactly the same aerosol microphysics module, but differ in many aspects such as model meteorology, natural aerosol emission, sulfur chemistry, and deposition processes. The main purpose of this study is to identify the influence of these differences on the aerosol simulation. Number concentrations of different aerosol size ranges are compared among the three models and against observations. Overall all three models are able to capture the basic features of the observed spatial distribution. The magnitude of number concentration is consistent among the three models in all size ranges, although quantitative differences are also clearly detectable. For the soluble and insoluble coarse and accumulation modes, inter-model discrepancies result primarily from the different parameterization schemes for sea salt and dust emission, and are also linked to the different strengths of the convective transport in the meteorological models. As for the nucleation mode and the soluble Aitken mode, the spread of model results appear largest in the tropics and in the middle and upper troposphere. Diagnostics and sensitivity experiments suggest that this large spread is directly related to the sulfur cycle in the models, which is strongly affected by the choice of sulfur chemistry scheme, its coupling with the convective transport and wet deposition calculation, and the related meteorological fields such as cloud cover, cloud water content, and precipitation. Aerosol size distributions simulated by the three models are compared against observations in the boundary layer. The characteristic shape and magnitude of the distribution functions are reasonably reproduced in typical conditions of clean, polluted and transition areas.

  9. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  10. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  11. Data-driven aerosol development in the GEOS-5 modeling and data assimilation system

    Science.gov (United States)

    Darmenov, A.; da Silva, A.; Liu, X.; Colarco, P. R.

    2013-12-01

    Atmospheric aerosols are important radiatively active agents that also affect clouds, atmospheric chemistry, the water cycle, land and ocean biogeochemistry. Furthermore, exposure to anthropogenic and/or natural fine particulates can have negative health effects. No single instrument or model is capable of quantifying the diverse and dynamic nature of aerosols at the range of spatial and temporal scales at which they interact with the other constituents and components of the Earth system. However, applying model-data integration techniques can minimize limitations of individual data products and remedy model deficiencies. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) Earth system model. GEOS-5 is a modeling and data assimilation framework well suited for aerosol research. It is being used to perform aerosol re-analysis and near real-time aerosol forecast on a global scale at resolutions comparable to those of aerosol products from modern spaceborne instruments. The aerosol processes in GEOS-5 derive from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) but it is implemented on-line, within the climate model. GEOS-5 aerosol modeling capabilities have recently been enhanced by inclusion of the Modal Aerosol Microphysics module (MAM-7) originally developed in the Community Earth System Model (CESM) model. This work will present examples of data driven model development that include refining parameterization of sea-salt emissions, tuning of biomass burning emissions from vegetation fires and the effect of the updated emissions on the modeled direct aerosol forcing. We will also present results from GOES-5/MAM-7 model evaluation against AOD and particulate pollution datasets, and outline future directions of aerosol data assimilation in the GEOS-5 system.

  12. Modelling the optical properties of aerosols in a chemical transport model

    Science.gov (United States)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  13. In vivo antitussive activity of Coccinia grandis against irritant aerosol and sulfur dioxide-induced cough model in rodents

    Directory of Open Access Journals (Sweden)

    Shakti Prasad Pattanayak and Priyashree Sunita

    2009-12-01

    Full Text Available Coccinia grandis (Cucurbitaceae has extensively used to get relief from asthma and cough by the indigenous people of India. The antitussive effect of aerosols of two different concentrations (2.5%, 5% w/v of methanol extract of C. grandis fruits were tested by counting the numbers of coughs produced due to aerosols of citric acid, 10 min after exposing the male guinea pigs to aerosols of test solutions for 7 min. In another set of experiment methanol extract was investigated for its therapeutic efficacy on a cough model induced by sulfur dioxide gas in mice. The results showed significant reduction of cough number obtained in the presence of both concentrations of methanol extract as that of the prototype antitussive agent codeine phosphate. Also, methanol extract exhibited significant antitussive effect at 100, 200 and 400 mg/kg, per orally by inhibiting the cough by 20.57, 33.73 and 56.71% within 90 min of performing the experiment respectively.

  14. Development and application of an aerosol screening model for size-resolved urban aerosols.

    Science.gov (United States)

    Stanier, Charles O; Lee, Sang-Rin

    2014-06-01

    Predictive models of vehicular ultrafine particles less than 0.1 microm in diameter (UFPs*) and other urban pollutants with high spatial and temporal variation are useful and important in applications such as (1) decision support for infrastructure projects, emissions controls, and transportation-mode shifts; (2) the interpretation and enhancement of observations (e.g., source apportionment, extrapolation, interpolation, and gap-filling in space and time); and (3) the generation of spatially and temporally resolved exposure estimates where monitoring is unfeasible. The objective of the current study was to develop, test, and apply the Aerosol Screening Model (ASM), a new physically based vehicular UFP model for use in near-road environments. The ASM simulates hourly average outdoor concentrations of roadway-derived aerosols and gases. Its distinguishing features include user-specified spatial resolution; use of the Weather Research and Forecasting (WRF) meteorologic model for winds estimates; use of a database of more than 100,000 road segments in the Los Angeles, California, region, including freeway ramps and local streets; and extensive testing against more than 9000 hours of observed particle concentrations at 11 sites. After initialization of air parcels at an upwind boundary, the model solves for vehicle emissions, dispersion, coagulation, and deposition using a Lagrangian modeling framework. The Lagrangian parcel of air is subdivided vertically (into 11 levels) and in the crosswind direction (into 3 parcels). It has overall dimensions of 10 m (downwind), 300 m (vertically), and 2.1 km (crosswind). The simulation is typically started 4 km upwind from the receptor, that is, the location at which the exposure is to be estimated. As parcels approach the receptor, depending on the user-specified resolution, step size is decreased, and crosswind resolution is enhanced through subdivision of parcels in the crosswind direction. Hourly concentrations and size

  15. A Time-Dependent Oceanic Aerosol Profile Model.

    Science.gov (United States)

    1982-02-10

    t iCk t ,% il 01t 11Uc’. .l2 inm[proirnt ent in thi-, model can he ohtained bk simph\\ upgrading the .,irli(Ui ..uhr(iutntcN u,,cd tl ItiL " model Th...PRINT Ni 17 P(20)=4 18 RETURN 20 REM SAVE WORLD ROUTINE 21 P(20)=5 22 RETURN 10000 GO TO 30090 20000 REM -------------------- OVL -- AREA 20010 REM 30000...RETURN 20000 REM 20010 REM --- 20020 REM @AEROSOL/PROGRAM/TASK1 20030 REM STUART GATHMAN NRL CODE 4327 20040 REM - 20050 REM 20060 UNIT 1 20070 DIM A

  16. Modelling and Simulation of Free Floating Pig for Different Pipeline Inclination Angles

    Directory of Open Access Journals (Sweden)

    Woldemichael Dereje Engida

    2016-01-01

    Full Text Available This paper presents a modelling and simulation of free floating pig to determine the flow parameters to avoid pig stalling in pigging operation. A free floating spherical shaped pig was design and equipped with necessary sensors to detect leak along the pipeline. The free floating pig does not have internal or external power supply to navigate through the pipeline. Instead, it is being driven by the flowing medium. In order to avoid stalling of the pig, it is essential to conduct simulation to determine the necessary flow parameters for different inclination angles. Accordingly, a pipeline section with inclination of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were modelled and simulated using ANSYS FLUENT 15.0 with water and oil as working medium. For each case, the minimum velocity required to propel the free floating pig through the inclination were determined. In addition, the trajectory of the free floating pig has been visualized in the simulation.

  17. Aerosols at the Poles: An AeroCom Phase II Multi-Model Evaluation

    Science.gov (United States)

    Sand, M.; Samset, B. H.

    2016-12-01

    Atmospheric aerosols from anthropogenic and natural sources reach the Polar Regions through long-range transport. By scattering and absorbing solar radiation, aerosols perturb the energy balance in the region and may have played a significant role in recent Arctic warming. Aerosols in Polar regions are however, poorly constrained in present day global climate models. Here we compare aerosol burdens from simulations with 16 global aerosol models from the Aerocom phase II model inter-comparison project with available observations at both Poles. We show that the annual mean multi-model median Aerosol Optical Depth (AOD) is not a bad representation of the measured AOD in Arctic, even though the model spread is large. The models tend to underestimate the spring maximum and overestimate the summer/autumn minimum. We also document the geographical distribution and seasonal cycle of aerosol burdens and shortwave anthropogenic direct radiative forcing (DRF) of the total aerosol and the individual aerosol species; black carbon (BC), sulfate, and primary organic aerosols from fossil/bio fuel and biomass burning, dust and sea-salt. A subset of models has also reported nitrate and secondary organic aerosols. The models produce an annual mean median AOD 0.07 in the Arctic and 0.01 the Antarctic. The Arctic modeled annual mean DRF is slightly negative -0.12 Wm-2, dominated by a positive black carbon DRF during spring and a negative sulfate DRF during summer. We perform sensitivity experiments with one of the Aerocom models (GISS modelE) to investigate how regional emissions of BC and sulfate and the lifetime of BC influence the Arctic and Antarctic aerosol burdens.

  18. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases.

    Science.gov (United States)

    Yao, Jing; Huang, Jiaojiao; Zhao, Jianguo

    2016-09-01

    Pigs have anatomical, physiological and genomic characteristics that make them highly suitable for modeling human diseases. Genetically modified (GM) pig models of human diseases are critical for studying pathogenesis, treatment, and prevention. The emergence of nuclease-mediated genome editing technology has been successfully employed for engineering of the pig genome, which has revolutionize the creation of GM pig models with highly complex pathophysiologies and comorbidities. In this review, we summarize the progress of recently developed genome editing technologies, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), which enable highly efficient and precise introduction of genome modifications into pigs, and tailored disease models that have been generated in various disciplines via genome editing technology. We also summarize the GM pig models that have been generated by conventional transgenic strategies. Additionally, perspectives regarding the application of GM pigs in biomedical research are discussed.

  19. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2009-09-01

    Full Text Available The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA and secondary OA (SOA – observed in Mexico City during the MILAGRO field project (March 2006. Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes, biogenic (i.e. monoterpenes and isoprene, and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA

  20. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States.

    Directory of Open Access Journals (Sweden)

    Meredith L McClure

    Full Text Available Wild pigs (Sus scrofa, also known as wild swine, feral pigs, or feral hogs, are one of the most widespread and successful invasive species around the world. Wild pigs have been linked to extensive and costly agricultural damage and present a serious threat to plant and animal communities due to their rooting behavior and omnivorous diet. We modeled the current distribution of wild pigs in the United States to better understand the physiological and ecological factors that may determine their invasive potential and to guide future study and eradication efforts. Using national-scale wild pig occurrence data reported between 1982 and 2012 by wildlife management professionals, we estimated the probability of wild pig occurrence across the United States using a logistic discrimination function and environmental covariates hypothesized to influence the distribution of the species. Our results suggest the distribution of wild pigs in the U.S. was most strongly limited by cold temperatures and availability of water, and that they were most likely to occur where potential home ranges had higher habitat heterogeneity, providing access to multiple key resources including water, forage, and cover. High probability of occurrence was also associated with frequent high temperatures, up to a high threshold. However, this pattern is driven by pigs' historic distribution in warm climates of the southern U.S. Further study of pigs' ability to persist in cold northern climates is needed to better understand whether low temperatures actually limit their distribution. Our model highlights areas at risk of invasion as those with habitat conditions similar to those found in pigs' current range that are also near current populations. This study provides a macro-scale approach to generalist species distribution modeling that is applicable to other generalist and invasive species.

  1. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  2. Regional simulation of aerosol radiative effects and their influence on rainfall over India using WRFChem model

    Science.gov (United States)

    Kedia, Sumita; Cherian, Ribu; Islam, Sahidul; Das, Subrata Kumar; Kaginalkar, Akshara

    2016-12-01

    A regional climate model, WRFChem has been utilized to simulate aerosol and rainfall distribution over India during July 2010 which was a normal monsoon year. Two identical simulations, one includes aerosol feedback via their direct and indirect effects and other one without any aerosol effect, are structured to understand the impact of aerosol net (direct + indirect) effect on rainfall pattern over India. Model results are accompanied by satellite and ground based observations to examine the robustness of the model simulations. It is shown that the model can reproduce the spatial and temporal characteristics of meteorological parameters, rainfall distribution, aerosol optical depth and single scattering albedo reasonably well. Model simulated spatial distribution and magnitude of aerosol optical depth over India are realistic, particularly over northwest India, where mineral dust is a major contributor to the total aerosol loading and over Indo-Gangetic Plain region (IGP) where AOD remains high throughout the year. Net (shortwave + longwave) atmospheric heating rate is the highest (> 0.27 K day - 1) over east IGP due to abundant dust and anthropogenic aerosols while it is the lowest over peninsular India and over the Thar desert (< 0.03 K day - 1) which can be attributed to less aerosol concentration and longwave cooling, respectively. It is shown that, inclusion of aerosol direct and indirect effects have strong influence ( ± 20%) on rainfall magnitude and its distribution over Indian subcontinent during monsoon.

  3. Aerosol Composition, Size Distribution and Optical Properties during SEAC4RS Simulated by a Sectional Aerosol Model

    Science.gov (United States)

    Yu, P.; Toon, O. B.; Bardeen, C.; Wiedinmyer, C.; Jimenez, J. L.; Campuzano Jost, P.; Froyd, K. D.; Ziemba, L. D.; Schwarz, J. P.; Perring, A. E.; Wagner, N.; Neely, R. R., III

    2014-12-01

    Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission in August and September 2013 provided large aerosol/gas datasets over the Southeastern U.S. We use a sectional microphysics model (CARMA) coupled with CAM-Chem to study the aerosol composition, size distribution, vertical distribution and optical properties during the SEAC4RS campaign. Our simulations are within the observational error bars for the mass of organics, sulfate and black carbon from the boundary layer to upper-troposphere. CARMA, as a sectional model, provides detailed aerosol size distributions from nano-meters to tens of microns, which is important to determine optical properties. We investigate how the aerosol size distribution varies with altitude. Modeled spatial gradients of [O]:[C] and [OC]:[SO4-2] ratios are compared with the AMS and PALMS data collected over forests, fires and cities. These ratios are important to constrain the budget of secondary organic aerosols. We will discuss the values of these ratios over the U.S. and the rest of the world.

  4. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  5. The pig as a large animal model for characterization of host-pathogen interactions

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Heegaard, Peter M. H.

    Large animal models are essential in understanding the mechanisms involved in human infectious disease. To study the expression of host and bacterial genes involved in defense and survival mechanisms, we analyzed lung tissue from pigs experimentally infected with the Gram-negative bacterium A...... experimental H1N2 virus infection of pigs, and found the regulation of several swine encoded miRNAs and cytokines to mimic key findings from influenza studies in human patients. By employing the pig as a model we were able to perform highly controlled experimental infections and to study changes of symptoms...

  6. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    Science.gov (United States)

    2016-06-13

    mechanistic model that predicts the evolution of the aerosol size and composition distribution. From such a model, aerosol extinction of EM radiation can be...calculated in a highly structured atmospheric marine boundary layer (AMBL) and used to evaluate and predict the performance of systems that operate...sea-salt AOD ranging from 0.01 - 0.10 (0.05 - 0.10 under moderate winds). IMPACT/APPLICATIONS Aerosols scatter and absorb EM radiation and are

  7. Generation of a miniature pig disease model for human Laron syndrome.

    Science.gov (United States)

    Cui, Dan; Li, Fang; Li, Qiuyan; Li, Jia; Zhao, Yaofeng; Hu, Xiaoxiang; Zhang, Ran; Li, Ning

    2015-10-29

    Laron syndrome is a rare disease caused by mutations of the growth hormone receptor (GHR), inheriting in an autosomal manner. To better understand the pathogenesis and to develop therapeutics, we generated a miniature pig model for this disease by employing ZFNs to knock out GHR gene. Three types of F0 heterozygous pigs (GHR(+/4bp), GHR(+/2bp), GHR(+/3bp)) were obtained and in which no significant phenotypes of Laron syndrome were observed. Prior to breed heterozygous pigs to homozygosity (GHR(4bp/4bp)), pig GHR transcript with the 4 bp insert was evaluated in vitro and was found to localize to the cytoplasm rather than the membrane. Moreover, this mutated transcript lost most of its signal transduction capability, although it could bind bGH. GHR(4bp/4bp) pigs showed a small body size and reduced body weight. Biochemically, these pigs exhibited significantly elevated levels of GH and decreased levels of IGF-I. These results resemble the phenotype observed in Laron patients, suggesting that these pigs could serve as an ideal model for Laron syndrome to bridge the gaps between mouse model and human.

  8. Critical review evaluating the pig as a model for human nutritional physiology

    NARCIS (Netherlands)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Huerou-Luron, Le Isabelle; Jager, de Nadia; Schuurman, Teun; Val-Laillet, David

    2016-01-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutam

  9. Critical review evaluating the pig as a model for human nutritional physiology

    National Research Council Canada - National Science Library

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-01-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience...

  10. Critical review evaluating the pig as a model for human nutritional physiology

    NARCIS (Netherlands)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Huerou-Luron, Le Isabelle; Jager, de Nadia; Schuurman, Teun; Val-Laillet, David

    2016-01-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet),

  11. Applications of Systems Genetics and Biology for Obesity Using Pig Models

    DEFF Research Database (Denmark)

    Kogelman, Lisette J. A.; Kadarmideen, Haja N.

    2016-01-01

    In many biomedical research areas, animals have been used as a model to increase the understanding of molecular mechanisms involved in human diseases. One of those areas is human obesity, where porcine models are increasingly used. The pig shows genetic and physiological features that are very...... similar to humans and have shown to be an excellent model for human obesity. Using pig populations, many genetic studies have been performed to unravel the genetic architecture of human obesity. Most of them are pinpointing toward single genes, but more and more studies focus on a systems genetics...... approach, a branch of systems biology. In this chapter, we will describe the state of the art of genetic studies on human obesity, using pig populations. We will describe the features of using the pig as a model for human obesity and briefly discuss the genetics of obesity, and we will focus on systems...

  12. A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment

    Science.gov (United States)

    Nishant, Nidhi; Sherwood, Steven C.

    2017-06-01

    In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.

  13. Oral uricase eliminates blood uric acid in the hyperuricemic pig model.

    Science.gov (United States)

    Szczurek, Paulina; Mosiichuk, Nadia; Woliński, Jarosław; Yatsenko, Tetiana; Grujic, Danica; Lozinska, Liudmyla; Pieszka, Marek; Święch, Ewa; Pierzynowski, Stefan Grzegorz; Goncharova, Kateryna

    2017-01-01

    An elevated level of serum uric acid-hyperuricemia, is strongly associated with the development of gout and chronic kidney disease (CKD) which is often accompanied by a significantly reduced glomerular filtration rate (GFR). In the present study, we investigated the extra-renal elimination of uric acid via the intestine in a healthy pig model and the effect of oral uricase therapy on plasma uric acid concentrations in pigs with induced hyperuricemia and CKD. The experiment was conducted on eleven, ten-week-old pigs (n = 11). The porcine model of CKD was developed by performing 9/10 nephrectomy surgery on eight pigs. A stable model of hyperuricemia was established in only five of the eight nephrectomized pigs by frequent injections of uric acid (UA) into the jugular vein. All pigs (three healthy pigs and five CKD pigs) were operated for implantation of jugular vein catheters and the three healthy pigs also had portal vein catheters inserted. Blood uric acid concentrations were measured spectrophotometrically, using the Uric Acid Assay Kit (BioAssay Systems, Hayward, USA). The piglets with CKD received orally administered uricase (treatment) and served as their own controls (without uricase supplementation). Oral uricase therapy significantly decreased plasma uric acid concentrations in pigs with CKD, whereas hyperuricemia was observed in the pigs whilst not being treated with uricase. Urinary uric acid excretion was similar during both the treatment and control periods during the first 8 h and 24 h after UA infusions in the CKD pigs. To demonstrate the elimination of UA via the intestine, the healthy pigs were infused with UA into the jugular vein. The blood collected from the jugular vein represents circulating UA concentrations and the blood collected from the portal vein represents the concentration of UA leaving the intestine. The final (after 2 h) concentration of UA was significantly lower in blood collected from the portal vein compared to that collected from

  14. Aerosol Infection Model of Tuberculosis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sheshagiri Gaonkar

    2010-01-01

    Full Text Available We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the next 12 weeks. We observed macroscopically visible granulomas in the lungs with demonstrable acid-fast bacilli and associated histopathology. Rifampicin (RIF at a dose range of 30 to 270 mg/kg exhibited a sharp dose response while isoniazid (INH at a dose range of 10 to 90 mg/kg and ethambutol (EMB at 100 to 1000 mg/kg showed shallow dose responses. Pyrazinamide (PZA had no dose response between 300 and 1000 mg/kg dose range. In a separate time kill study at fixed drug doses (RIF 90 mg/kg, INH 30 mg/kg, EMB 300 mg/kg, and PZA 300 mg/kg the bactericidal effect of all the four drugs increased with longer duration of treatment from two weeks to four weeks. The observed infection profile and therapeutic outcomes in this rat model suggest that it can be used as an additional, pharmacologically relevant efficacy model to develop novel antitubercular compounds at the interface of discovery and development.

  15. Aerosol infection model of tuberculosis in wistar rats.

    Science.gov (United States)

    Gaonkar, Sheshagiri; Bharath, Sowmya; Kumar, Naveen; Balasubramanian, V; Shandil, Radha K

    2010-01-01

    We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the next 12 weeks. We observed macroscopically visible granulomas in the lungs with demonstrable acid-fast bacilli and associated histopathology. Rifampicin (RIF) at a dose range of 30 to 270 mg/kg exhibited a sharp dose response while isoniazid (INH) at a dose range of 10 to 90 mg/kg and ethambutol (EMB) at 100 to 1000 mg/kg showed shallow dose responses. Pyrazinamide (PZA) had no dose response between 300 and 1000 mg/kg dose range. In a separate time kill study at fixed drug doses (RIF 90 mg/kg, INH 30 mg/kg, EMB 300 mg/kg, and PZA 300 mg/kg) the bactericidal effect of all the four drugs increased with longer duration of treatment from two weeks to four weeks. The observed infection profile and therapeutic outcomes in this rat model suggest that it can be used as an additional, pharmacologically relevant efficacy model to develop novel antitubercular compounds at the interface of discovery and development.

  16. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  17. A detailed aerosol mixing state model for investigating interactions between mixing state, semivolatile partitioning, and coagulation

    Directory of Open Access Journals (Sweden)

    J. Lu

    2010-01-01

    Full Text Available A new method for describing externally mixed particles, the Detailed Aerosol Mixing State (DAMS representation, is presented in this study. This novel method classifies aerosols by both composition and size, using a user-specified mixing criterion to define boundaries between compositional populations. Interactions between aerosol mixing state, semivolatile partitioning, and coagulation are investigated with a Lagrangian box model that incorporates the DAMS approach. Model results predict that mixing state affects the amount and types of semivolatile organics that partition to available aerosol phases, causing external mixtures to produce a more size-varying composition than internal mixtures. Both coagulation and condensation contribute to the mixing of emitted particles, producing a collection of multiple compositionally distinct aerosol populations that exists somewhere between the extremes of a strictly external or internal mixture. The selection of mixing criteria has a significant impact on the size and type of individual populations that compose the modeled aerosol mixture.

  18. An aerosol challenge model of tuberculosis in Mauritian cynomolgus macaques

    Science.gov (United States)

    Sharpe, S. A.; White, A. D.; Sibley, L.; Gleeson, F.; Hall, G. A.; Basaraba, R. J.; McIntyre, A.; Clark, S. O.; Gooch, K.; Marsh, P. D.; Williams, A.; Dennis, M. J.

    2017-01-01

    Background New interventions for tuberculosis are urgently needed. Non-human primate (NHP) models provide the most relevant pre-clinical models of human disease and play a critical role in vaccine development. Models utilising Asian cynomolgus macaque populations are well established but the restricted genetic diversity of the Mauritian cynomolgus macaques may be of added value. Methods Mauritian cynomolgus macaques were exposed to a range of doses of M. tuberculosis delivered by aerosol, and the outcome was assessed using clinical, imaging and pathology-based measures. Results All macaques developed characteristic clinical signs and disease features of tuberculosis (TB). Disease burden and the ability to control disease were dependent on exposure dose. Mauritian cynomolgus macaques showed less variation in pulmonary disease burden and total gross pathology scores within exposure dose groups than either Indian rhesus macaques or Chinese cynomolgus macaques Conclusions The genetic homogeneity of Mauritian cynomolgus macaques makes them a potentially useful model of human tuberculosis. PMID:28273087

  19. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using a global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-08-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  20. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  1. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    Science.gov (United States)

    Sessions, W. R.; Reid, J. S.; Benedetti, A.; Colarco, P. R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T. Y.; Baldasano, J. M.; Basart, S.; Brooks, M. E.; Eck, T. F.; Iredell, M.; Hansen, J. A.; Jorba, O. C.; Juang, H.-M. H.; Lynch, P.; Morcrette, J.-J.; Moorthi, S.; Mulcahy, J.; Pradhan, Y.; Razinger, M.; Sampson, C. B.; Wang, J.; Westphal, D. L.

    2014-06-01

    Over the past several years, there has been a rapid development in the number and quality of global aerosol models intended for operational forecasting use. Indeed, most centers with global numerical weather prediction (NWP) capabilities have some program for aerosol prediction. These aerosol models typically have differences in their underlying meteorology as well as aerosol sources, sinks, microphysics and transformations. However, like similar diversity in aerosol climate models, the aerosol forecast models have fairly similar overall bulk error statistics for aerosol optical thickness (AOT)-one of the few aerosol metrics that is globally available. Experience in climate and weather prediction has shown that in situations such as this where there are several independent models, a multi-model ensemble or consensus will be top performing in many key error metrics. Further, multi-model ensembles provide a highly valuable tool for forecasters attempting to predict severe aerosol events. Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP) latest generation of quasi-operational aerosol models, five day AOT forecasts are analyzed for December 2011 through November 2012 from four institutions: ECMWF, JMA, NASA GSFC, and NRL/FNMOC. For dust, we also include the NOAA NGAC product in our analysis. The Barcelona Supercomputing Centre (NMMC) and UK Met office dust product have also recent become available with ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble) is used to create the ICAP Multi-Model Ensemble (ICAP-MME). The ICAP-MME is run daily at 0Z for 6 hourly forecasts out to 120 h. Basing metrics on comparisons to 21 regionally

  2. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME

    Directory of Open Access Journals (Sweden)

    W. R. Sessions

    2014-06-01

    Full Text Available Over the past several years, there has been a rapid development in the number and quality of global aerosol models intended for operational forecasting use. Indeed, most centers with global numerical weather prediction (NWP capabilities have some program for aerosol prediction. These aerosol models typically have differences in their underlying meteorology as well as aerosol sources, sinks, microphysics and transformations. However, like similar diversity in aerosol climate models, the aerosol forecast models have fairly similar overall bulk error statistics for aerosol optical thickness (AOT-one of the few aerosol metrics that is globally available. Experience in climate and weather prediction has shown that in situations such as this where there are several independent models, a multi-model ensemble or consensus will be top performing in many key error metrics. Further, multi-model ensembles provide a highly valuable tool for forecasters attempting to predict severe aerosol events. Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP latest generation of quasi-operational aerosol models, five day AOT forecasts are analyzed for December 2011 through November 2012 from four institutions: ECMWF, JMA, NASA GSFC, and NRL/FNMOC. For dust, we also include the NOAA NGAC product in our analysis. The Barcelona Supercomputing Centre (NMMC and UK Met office dust product have also recent become available with ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble is used to create the ICAP Multi-Model Ensemble (ICAP-MME. The ICAP-MME is run daily at 0Z for 6 hourly forecasts out to 120 h. Basing metrics on comparisons to 21

  3. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Science.gov (United States)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  4. Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans.

    Science.gov (United States)

    He, Xianqiang; Pan, Delu; Bai, Yan; Zhu, Qiankun; Gong, Fang

    2011-08-01

    The operational atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses the predefined aerosol models to retrieve aerosol optical properties, and their accuracy depends on how well the aerosol models can represent the real aerosol optical properties. In this paper, we developed a method to evaluate the aerosol models (combined with the model selection methodology) by simulating the aerosol retrieval using the Aerosol Robotic Network (AERONET) data. Our method can evaluate the ability of aerosol models themselves, independent of the sensor performance. Two types of aerosol models for SeaWiFS and MODIS operational atmospheric correction algorithms are evaluated over global open oceans, namely the GW1994 models and Ahmad2010 models. The results show that GW1994 models significantly overestimate the aerosol optical thicknesses and underestimate the Ångström exponent, which is caused by the underestimation of the scattering phase function. However, Ahmad2010 models can significantly reduce the overestimation of the aerosol optical thickness and the underestimation of the Ångström exponent as a whole, but this improvement depends on the backscattering angle. Ahmad2010 models have a significant improvement in the retrieval of the aerosol optical thickness at a backscattering angle less than 140°. For a backscattering angle larger than 140°, GW1994 models are better at retrieving the aerosol optical thickness than the Ahmad2010 models.

  5. Use of the CALIOP vertical feature mask for evaluating global aerosol models

    Directory of Open Access Journals (Sweden)

    E. P. Nowottnick

    2015-01-01

    Full Text Available Global aerosol distributions provided by the NASA Modern Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero are evaluated using the aerosol types identified by the CALIOP vertical feature mask (VFM algorithm, focusing especially on Saharan dust distributions during July 2009. MERRAero is comprised of an aerosol simulation produced in the Goddard Earth Observing System version 5 (GEOS-5 Earth system model and incorporates assimilation of MODIS-derived aerosol optical thickness to constrain column aerosol loadings. For comparison to the CALIOP VFM we construct two synthetic VFMs using the MERRAero aerosol distributions: a Level 2 VFM in which simulated MERRAero total attenuated backscatter and estimated particulate depolarization ratios are input directly to the CALIOP VFM typing algorithm, and a Level 3 VFM in which we map the aerosol species in MERRAero to the CALIOP VFM types. By comparing the simulated MERRAero-Level 2 VFM to CALIOP VFM we can diagnose the aerosol transport and speciation in MERRAero. By comparing the MERRAero-Level 2 and MERRAero-Level 3 simulated VFMs we perform a simple Observing System Simulation Experiment (OSSE, which is useful for identifying shortcomings in the CALIOP VFM algorithm itself. We find that despite having our column AOT constrained by MODIS, comparison to the CALIOP VFM reveals a greater occurrence of dusty aerosol layers in our MERRAero-Level 2 VFM, due to errors in MERRAero aerosol speciation. Additionally, we find that the CALIOP VFM algorithm classification for desert dust and polluted dust should be reconsidered for aerosol features that contain dust mixtures in low aerosol loadings, as our application of the CALIOP VFM to MERRAero distributions flagged a greater presence of dusty vs. marine aerosols when our two MERRAero VFMs were compared.

  6. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    Science.gov (United States)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  7. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  8. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  9. Generation of a miniature pig disease model for human Laron syndrome

    OpenAIRE

    Dan Cui; Fang Li; Qiuyan Li; Jia Li; Yaofeng Zhao; Xiaoxiang Hu; Ran Zhang; Ning Li

    2015-01-01

    Laron syndrome is a rare disease caused by mutations of the growth hormone receptor (GHR), inheriting in an autosomal manner. To better understand the pathogenesis and to develop therapeutics, we generated a miniature pig model for this disease by employing ZFNs to knock out GHR gene. Three types of F0 heterozygous pigs (GHR+/4bp, GHR+/2bp, GHR+/3bp) were obtained and in which no significant phenotypes of Laron syndrome were observed. Prior to breed heterozygous pigs to homozygosity (GHR4bp/4...

  10. Future aerosol emissions: a multi-model comparison

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven J.; Rao, Shilpa; Riahi, Keywan; van Vuuren, Detlef P.; Calvin, Katherine V.; Kyle, Page

    2016-08-02

    This paper compares projections over the 21st century of SO2, BC, and OC emissions from three technologically detailed, long-term integrated assessment models. The character of the projections and the response of emissions due to a comprehensive climate policy are discussed. In a continuation of historical experience, aerosol and precursor emissions are increasingly decoupled from carbon dioxide emissions over the 21st century. Implementation of a comprehensive climate policy further reduces emissions, although there is significant variation in this response by sector and by model. Differences in model responses can be traced to specific characteristics of reference case end-use and supply-side technology deployment and emissions control assumptions, which are detailed by sector.

  11. Development of a portable sodium fluorescence aerosol generator model

    CERN Document Server

    LiuQun; Gao Xiao Mei; Jia Ming; Guo Chuang Cheng; Wu Tao; Liu Zhao Feng; Qiu Dan Gui

    2002-01-01

    A portable sodium fluorescence aerosol generator has been developed. It is a key equipment for in-situ testing of HEPA filters using sodium fluorescence method. The structure and technical specifications of the model generator are presented, along with its performance testing methods. The performance comparison result of the model with two French-made generators is also presented. The self-made generator has performances as follows: the average mass generating rate is 32.9 mg/h, mass median diameter of the particles 0.22 mu m and geometric standard deviation 1.58. The filtration efficiency up to 99.99% can be achieved flow-rate of ventilation system is less than 150000 m sup 3 /h. The portable model weight 25 kg, which is convenient for in situ testing

  12. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    Science.gov (United States)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  13. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    Science.gov (United States)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  14. Global aerosol modeling with the online NMMB/BSC Chemical Transport Model: sensitivity to fire injection height prescription and secondary organic aerosol schemes

    Science.gov (United States)

    Spada, Michele; Jorba, Oriol; Pérez García-Pando, Carlos; Tsigaridis, Kostas; Soares, Joana; Obiso, Vincenzo; Janjic, Zavisa; Baldasano, Jose M.

    2015-04-01

    We develop and evaluate a fully online-coupled model simulating the life-cycle of the most relevant global aerosols (i.e. mineral dust, sea-salt, black carbon, primary and secondary organic aerosols, and sulfate) and their feedbacks upon atmospheric chemistry and radiative balance. Following the capabilities of its meteorological core, the model has been designed to simulate both global and regional scales with unvaried parameterizations: this allows detailed investigation on the aerosol processes bridging the gap between global and regional models. Since the strong uncertainties affecting aerosol models are often unresponsive to model complexity, we choose to introduce complexity only when it clearly improves results and leads to a better understanding of the simulated aerosol processes. We test two important sources of uncertainty - the fires injection height and secondary organic aerosol (SOA) production - by comparing a baseline simulation with experiments using more advanced approaches. First, injection heights prescribed by Dentener et al. (2006, ACP) are compared with climatological injection heights derived from satellite measurements and produced through the Integrated Monitoring and Modeling System For Wildland Fires (IS4FIRES). Also global patterns of SOA produced by the yield conversion of terpenes as prescribed by Dentener et al. (2006, ACP) are compared with those simulated by the two-product approach of Tsigaridis et al. (2003, ACP). We evaluate our simulations using a variety of observations and measurement techniques. Additionally, we discuss our results in comparison to other global models within AEROCOM and ACCMIP.

  15. Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment

    DEFF Research Database (Denmark)

    Wan, M.P.; To, G.N.S.; Chao, C.Y.H.

    2009-01-01

    The transport and deposition of polydispersed expiratory aerosols in an aircraft cabin were simulated using a Lagrangian-based model validated by experiments conducted in an aircraft cabin mockup. Infection risk by inhalation was estimated using the aerosol dispersion data and a model was developed...

  16. Model Analysis of Influences of Aerosol Mixing State upon Its Optical Properties in East Asia

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao; ZHANG Meigen; ZHU Lingyun; XU Liren

    2013-01-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e.,externally mixed,half externally and half internally mixed,and internally mixed) on radiative forcing in East Asia.The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed,while the single scattering albedo (SSA) decreased.Therefore,the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states.Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed.Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex.Generally,the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China,Korean peninsula,and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process,and the variation range can reach ±5 W m-2.The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens.Conversely,the internal mixture of anthropogenic aerosols,including sulfate,nitrate,ammonium,black carbon,and organic carbon,could obviously weaken the cooling effect.

  17. Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model

    Science.gov (United States)

    Sajani, S.; Krishna Moorthy, K.; Rajendran, K.; Nanjundiah, Ravi S.

    2012-08-01

    Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a

  18. Hairless pigmented guinea pigs: a new model for the study of mammalian pigmentation.

    Science.gov (United States)

    Bolognia, J L; Murray, M S; Pawelek, J M

    1990-09-01

    A stock of hairless pigmented guinea pigs was developed to facilitate studies of mammalian pigmentation. This stock combines the convenience of a hairless animal with a pigmentary system that is similar to human skin. In both human and guinea pig skin, active melanocytes are located in the basal layer of the interfollicular epidermis. Hairless albino guinea pigs on an outbred Hartley background (CrI:IAF/HA(hr/hr)BR; designated hr/hr) were mated with red-haired guinea pigs (designated Hr/Hr). Red-haired heterozygotes from the F1 generation (Hr/hr) were then mated with each other or with hairless albino guinea pigs. The F2 generation included hairless pigmented guinea pigs that retained their interfollicular epidermal melanocytes and whose skin was red-brown in color. Following UV irradiation, there was an increase in cutaneous pigmentation as well as an increase in the number of active epidermal melanocytes. An additional strain of black hairless guinea pigs was developed using black Hr/Hr animals and a similar breeding scheme. These two strains should serve as useful models for studies of the mammalian pigment system.

  19. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    Data.gov (United States)

    U.S. Environmental Protection Agency — The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size...

  20. Evaluating Direct Radiative Effects of Absorbing Aerosols on Atmospheric Dynamics with Aquaplanet and Regional Model Results

    Science.gov (United States)

    Can, Ö.; Tegen, I.; Quaas, J.

    2015-12-01

    Effects of absorbing aerosol on atmospheric dynamics are usually investigated with help of general circulation models or also regional models that represent the atmospheric system as realistic as possible. Reducing the complexity of models used to study the effects of absorbing aerosol on atmospheric dynamics helps to understand underlying mechanisms. In this study, by using ECHAM6 General Circulation Model (GCM) in an Aquaplanet setting and using simplified aerosol climatology, an initial idealization step has been taken. The analysis only considers direct radiative effects, furthering the reduction of complex model results. The simulations include cases including aerosol radiative forcing, no aerosol forcing, coarse mode aerosol forcing only (as approximation for mineral dust forcing) and forcing with increased aerosol absorption. The results showed that increased absorption affects cloud cover mainly in subtropics. Hadley circulation is found to be weakened in the increased absorption case. To compare the results of the idealized model with a more realistic model setting, the results of the regional model COSMO-MUSCAT that includes interactive mineral dust aerosol and considers the effects of dust radiative forcing are also analyzed. The regional model computes the atmospheric circulation for the year 2007 twice, including the feedback of dust and excluding the dust aerosol forcing. It is investigated to which extent the atmospheric response to the dust forcing agrees with the simplified Aquaplanet results. As expected, in the regional model mineral dust causes an increase in the temperature right above the dust layer while reducing the temperature close to the surface. In both models the presence of aerosol forcing leads to increased specific humidity, close to ITCZ. Notwithstanding the difference magnitudes, comparisons of the global aquaplanet and the regional model showed similar patterns. Further detailed comparisons will be presented.

  1. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    Science.gov (United States)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  2. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  3. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    Science.gov (United States)

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  4. Exhaled aerosol pattern discloses lung structural abnormality: a sensitivity study using computational modeling and fractal analysis.

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    Full Text Available Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases.In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns.Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma.Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities.

  5. A dynamic programming model for optimising feeding and slaughter decisions regarding fattening pigs

    Directory of Open Access Journals (Sweden)

    J. K. NIEMI

    2008-12-01

    Full Text Available Costs of purchasing new piglets and of feeding them until slaughter are the main variable expenditures in pig fattening. They both depend on slaughter intensity, the nature of feeding patterns and the technological constraints of pig fattening, such as genotype. Therefore, it is of interest to examine the effect of production technology and changes in input and output prices on feeding and slaughter decisions. This study examines the problem by using a dynamic programming model that links genetic characteristics of a pig to feeding decisions and the timing of slaughter and takes into account how these jointly affect the quality-adjusted value of a carcass. The state of nature and the genotype of a pig are known in the analysis. The results suggest that producer can benefit from improvements in the pig’s genotype. Animals of improved genotype can reach optimal slaughter maturity quicker and produce leaner meat than animals of poor genotype. In order to fully utilise the benefits of animal breeding, the producer must adjust feeding and slaughter patterns on the basis of genotype. The results also suggest that the producer can benefit from flexible feeding technology. Typically, such a technology provides incentives to feed piglets with protein-rich feed. When the pig approaches slaughter maturity, the share of protein-rich feed in the diet gradually decreases and the amount of energy-rich feed increases. Generally, the optimal slaughter weight is within the weight range that pays the highest price per kilogram of pig meat. The optimal feeding pattern and the optimal timing of slaughter depend on price ratios. Particularly, an increase in the price of pig meat provides incentives to increase the growth rates up to the pig’s biological maximum by increasing the amount of energy in the feed. Price changes and changes in slaughter premium can also have large income effects.;

  6. Development of a global model of mineral dust aerosol microphysics

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2008-10-01

    Full Text Available A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. For example, including only sites with measured dust concentrations of at least 0.5 μg m−3, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. We conclude that the underestimation of mineral dust in remote areas results from local factors and sources not well described by the dust source function and/or the GCM meteorology. The effect of dust aerosols on CCN(0.2% concentrations is negligible in most regions of the globe; however, CCN(0.2% concentrations decrease by 10–20% in dusty regions as a result of coagulational scavenging of CCN particles by dust and a decrease in H2SO4 condensation to CCN particles due to the additional surface area of dust.

  7. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    Science.gov (United States)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  8. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-11-01

    Full Text Available The biosphere emits volatile organic compounds (BVOCs which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.

  9. Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis.

    Science.gov (United States)

    Hu, Youtian; Liu, Zhenyu; Yu, Xiaoyun; Pasricha, Pankaj J; Undem, Bradley J; Yu, Shaoyong

    2014-07-15

    Eosinophilic esophagitis (EoE) is characterized with eosinophils and mast cells predominated allergic inflammation in the esophagus and present with esophageal dysfunctions such as dysphagia, food impaction, and heartburn. However, the underlying mechanism of esophageal dysfunctions is unclear. This study aims to determine whether neurons in the vagal sensory ganglia are modulated in a guinea pig model of EoE. Animals were actively sensitized by ovalbumin (OVA) and then challenged with aerosol OVA inhalation for 2 wk. This results in a mild esophagitis with increases in mast cells and eosinophils in the esophageal wall. Vagal nodose and jugular neurons were disassociated, and their responses to acid, capsaicin, and transient receptor potential vanilloid type 1 (TRPV1) antagonist AMG-9810 were studied by calcium imaging and whole cell patch-clamp recording. Compared with naïve animals, antigen challenge significantly increased acid responsiveness in both nodose and jugular neurons. Their responses to capsaicin were also increased after antigen challenge. AMG-9810, at a concentration that blocked capsaicin-evoked calcium influx, abolished the increase in acid-induced activation in both nodose and jugular neurons. Vagotomy strongly attenuated those increased responses of nodose and jugular neurons to both acid and capsaicin induced by antigen challenge. These data for the first time demonstrated that prolonged antigen challenge significantly increases acid responsiveness in vagal nodose and jugular ganglia neurons. This sensitization effect is mediated largely through TRPV1 and initiated at sensory nerve endings in the peripheral tissues. Allergen-induced enhancement of responsiveness to noxious stimulation by acid in sensory nerve may contribute to the development of esophageal dysfunctions such as heartburn in EoE.

  10. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    Science.gov (United States)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.

  11. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  12. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Science.gov (United States)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  13. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo;

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...

  14. Generation and characterization of RAG2 knockout pigs as animal model for severe combined immunodeficiency.

    Science.gov (United States)

    Suzuki, Shunichi; Iwamoto, Masaki; Hashimoto, Michiko; Suzuki, Misae; Nakai, Michiko; Fuchimoto, Daiichiro; Sembon, Shoichiro; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide; Onishi, Akira

    2016-10-01

    Pigs with severe combined immunodeficiency (SCID) are versatile animal models for human medical research because of their biological similarities to humans, suitable body size, and longevity for practical research. SCID pigs with defined mutation(s) can be an invaluable tool for research on porcine immunity. In this study, we produced RAG2-knockout pigs via somatic cell nuclear transfer and analyzed their phenotype. The V(D)J recombination processes were confirmed as being inactivated. They consistently lacked mature T and B cells but had substantial numbers of cells considered to be T- or B-cell progenitors as well as NK cells. They also lacked thymic medulla and lymphoid aggregations in the spleen, mesenteric lymph nodes, and ileal Peyer's patches. We showed more severe immunological defects in the RAG2 and IL2RG double-knockout pig through this study. Thus, SCID pigs could be promising animal models not only for translational medical research but also for immunological studies of pigs themselves.

  15. Metabolomic perfusate analysis during kidney machine perfusion: the pig provides an appropriate model for human studies.

    Directory of Open Access Journals (Sweden)

    Jay Nath

    Full Text Available Hypothermic machine perfusion offers great promise in kidney transplantation and experimental studies are needed to establish the optimal conditions for this to occur. Pig kidneys are considered to be a good model for this purpose and share many properties with human organs. However it is not established whether the metabolism of pig kidneys in such hypothermic hypoxic conditions is comparable to human organs.Standard criteria human (n = 12 and porcine (n = 10 kidneys underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery Systems using KPS-1 solution. Perfusate was sampled at 45 minutes and 4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR spectroscopy.There was no inter-species difference in the number of metabolites identified. Of the 30 metabolites analysed, 16 (53.3% were present in comparable concentrations in the pig and human kidney perfusates. The rate of change of concentration for 3-Hydroxybutyrate was greater for human kidneys (p<0.001. For the other 29 metabolites (96.7%, there was no difference in the rate of change of concentration between pig and human samples.Whilst there are some differences between pig and human kidneys during HMP they appear to be metabolically similar and the pig seems to be a valid model for human studies.

  16. Explicit simulation of aerosol physics in a cloud-resolving model

    Directory of Open Access Journals (Sweden)

    A. M. L. Ekman

    2004-02-01

    Full Text Available The role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (0<−d<−5.84 nm are quickly transferred to the larger modes as they grow through coagulation and condensation of H2SO4. Accumulation mode aerosols (d>−31.0 nm are almost completely removed by nucleation (activation of cloud droplets and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration of the Aitken mode aerosol population (5.84 nm<−d<−31.0 nm reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric Aitken mode number concentration are coagulation, condensation, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation appears to be more important than condensation. Less important processes are dry deposition, impact scavenging

  17. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  18. The effect of harmonized emissions on aerosol properties in global models - an AeroCom experiment

    NARCIS (Netherlands)

    Textor, C.; Schulz, M.; Krol, M.C.

    2007-01-01

    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingl

  19. Numerical modeling of gas-phase kinetics in formation of secondary aerosol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three basic modules of gas-phase photochemical reactions involved in the formation of secondary aerosol are developed for modeling the concentration variation of precursors of aerosol, including ketone (RCOx), aldehyde (ALD), peroxyacetylnitrate (PAN), NO2, and SO2, followed by numerical solution for each of the modules. Reasonable trends of concentration variation of the precursors can be obtained from the proposed modules.

  20. Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5

    Directory of Open Access Journals (Sweden)

    W.-C. Hsieh

    2013-08-01

    Full Text Available This study used the Community Atmospheric Model 3.5 (CAM3.5 to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with 3 times the mass of carbonaceous aerosols as compared to the model's default carbonaceous aerosol mass, as well as no-carbon runs in which carbonaceous aerosols were removed. The slab ocean model (SOM and the fixed sea surface temperature (SST were used to examine effects of ocean boundary conditions. Throughout this study, climate response induced by aerosol forcing was mainly analyzed in the following three terms: (1 aerosol radiative effects under fixed SST, (2 effects of aerosol-induced SST feedbacks, and (3 total effects including effects of aerosol forcing and SST feedbacks. The change of SST induced by aerosols has large impacts on distribution of climate response; the magnitudes in response patterns such as temperature, precipitation, zonal winds, mean meridional circulation, radiative fluxes, and cloud coverage are different between the SOM and fixed SST runs. Moreover, different spatial responses between the SOM and fixed SST runs can also be seen in some local areas. This implies the importance of SST feedbacks on simulated climate response. The aerosol dimming effects cause a cooling predicted at low layers near the surface in most carbonaceous aerosol source regions. The temperature response shows a warming (cooling predicted in the north (south high latitudes, suggesting that aerosol forcing can cause climate change in regions far away from its origins. Our simulation results show that direct and semidirect radiative forcing due to carbonaceous aerosols decreases rainfall in the tropics. This implies that carbonaceous aerosols have possibly strong influence on weakening of the tropical circulation. Most changes in precipitation are negatively correlated with changes of radiative fluxes at the top of model. The changes in radiative fluxes at top of model are physically

  1. Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2010-03-01

    Full Text Available Tropospheric aerosol size distributions are simulated by three online global models that employ exactly the same modal approach but differ in many aspects such as model meteorology, natural aerosol emissions, sulfur chemistry, and the parameterization of deposition processes. The main purpose of this study is to identify where the largest inter-model discrepancies occur and what the main reasons are.

    The number concentrations of different aerosol size ranges are compared among the three models and against observations. Overall all the three models can capture the basic features of the observed aerosol number spatial distributions. The magnitude of the number concentration of each mode is consistent among the three models. Quantitative differences are also clearly detectable. For the soluble and insoluble coarse mode and accumulation mode, inter-model discrepancies mainly result from differences in the sea salt and dust emissions, as well as the different strengths of the convective transport in the meteorological models. For the nucleation mode and the soluble Aitken mode, the spread of the model results is largest in the tropics and in the middle and upper troposphere. Diagnostics and sensitivity experiments suggest that this large spread is closely related to the sulfur cycle in the models, which is strongly affected by the choice of sulfur chemistry scheme, its coupling with the convective transport and wet deposition calculation, and the related meteorological fields such as cloud cover, cloud water content, and precipitation.

    The aerosol size distributions simulated by the three models are compared to observations in the boundary layer. The characteristic shape and magnitude of the distribution functions are reasonably reproduced in typical conditions (i.e., clean, polluted and transition areas. Biases in the mode parameters over the remote oceans and the China adjacent seas are probably caused by the fixed mode variance

  2. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    Science.gov (United States)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  3. A pig model of acute Staphylococcus aureus induced pyemia

    DEFF Research Database (Denmark)

    Nielsen, O. L.; Iburg, T.; Aalbæk, B.;

    2009-01-01

    Background: Sepsis caused by Staphylococcus aureus constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with S. aureus....... aureus isolated from man and an extension of the timeframe aiming at inducing sepsis, severe sepsis and septic shock....

  4. Development of a Physiologically Based Pharmacokinetic Model for the Anesthetics Halothane, Isoflurane, and Desflurane in the Pig (SUS SCROFA)

    Science.gov (United States)

    1999-08-01

    HALOTHANE, ISOFLURANE, AND DESFLURANE IN THE PIG ( SUS SCROFA ) / Allen Vinegar MANTECH-GEO CENTER JOINT VENTURE PO BOX 31009 ~ DAYTON, OH 45437-0009...Pharmacokinetic Model for the Anesthetics Contract F41624-96-C-9010 Halothane, Isoflurane, and Desfiurane in the Pig ( Sus Scrofa ) PE 62202F PR 7757 6. AUTHOR(S) TA...PFA) " CA Figure I - Physiologicallly Based Pharmacokinetic Model of the Pig ( Sus scrofa ). Abbreviations: CA, arterial concentration; CX, exhaled

  5. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  6. Establishment of a leptospirosis model in guinea pigs using an epicutaneous inoculations route

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2012-01-01

    Full Text Available Abstract Background Leptospires are presumed to enter their host via small abrasions or breaches of the skin. The intraperitoneal route, although commonly used in guinea pig and hamster models of leptospirosis, does not reflect conditions encountered during natural infection. The aim of this study is to develop a novel leptospirosis guinea pig model through epicutaneous route and to elucidate the pathogenesis of leptospirosis in experimental guinea pigs by comparing the data from other studies using different infection routes. Methods The guinea pigs were inoculated with 5 × 108 Leptospira interrogans strain Lai onto either shaved-only or abraded skin. The guinea pigs were sacrificed at 2, 8, 24, 48, 72, 96 and 144 h post-infection (p.i. followed by harvest of the lungs, liver, kidneys, spleen, and the skin around the inoculated sites for further examinations. Hematoxylin and eosin (HE staining and electron microscopy were used to detect the pathologic changes. Real time PCR and immunohistochemistry staining were performed to detect dynamic distribution of leptospires in blood and tissues, respectively. Results In the guinea pigs with abraded skin inoculations, leptospires were detected in blood as early as 2 h post infection (p.i. and then disseminated to the liver, lungs and kidneys of almost all animals within 96 h p.i.. Leptospires were also detected engulfed in the swelling vascular endothelial cells and were frequently aggregated around the capillaries in the dermis and subcutaneous tissue under the inoculated site. For the guinea pigs with abraded skin inoculations, hemorrhage at the dermis around the inoculated site was found before the appearance of internal organs hemorrhage, severe lesions such as hemorrhages in the lungs, nephritis, jaundice, haematuria were also observed, and two of seven guinea pigs died at 144 h p.i. while no lesions and leptospires were detected in the shaved-only guinea pigs using the same dose of strain Lai

  7. Lidar signal simulation for the evaluation of aerosols in chemistry transport models

    Directory of Open Access Journals (Sweden)

    S. Stromatas

    2012-12-01

    Full Text Available We present an adaptable tool, the OPTSIM (OPTical properties SIMulation software, for the simulation of optical properties and lidar attenuated backscattered profiles (β' from aerosol concentrations calculated by chemistry transport models (CTM. It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties (β' requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.

  8. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.

  9. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost V.; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat O.

    2016-11-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of fossil fuel combustion in the southern part of the basin (AAE ˜ 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40 % in total absorption, respectively.

  10. Evaluation of Black Carbon Estimations in Global Aerosol Models

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  11. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    D. Koch

    2009-07-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD from AERONET and Ozone Monitoring Instrument (OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a

  12. Increased Foraging in Outdoor Organic Pig Production-Modeling Environmental Consequences.

    Science.gov (United States)

    Jakobsen, Malene; Preda, Teodora; Kongsted, Anne Grete; Hermansen, John Erik

    2015-11-02

    Consumers' motivations for buying organic products include a wish of acquiring healthy, environmentally friendly products from production systems that also ensure a high level of animal welfare. However, the current Danish organic pig production faces important challenges regarding environmental impact of the system. High ammonia emissions arise from outdoor concrete areas with growing pigs and sows on pasture possess an increased risk of nitrogen (N) leaching. Direct foraging in the range area is suggested as a way to improve the nutrient efficiency at farm level and to support a more natural behavior of the pig. Thus, by modeling, we investigated the environmental consequences of two alternative scenarios with growing pigs foraging in the range area and different levels of crops available for foraging-grass-clover or a combination of Jerusalem artichokes and lucerne. It was possible to have growing pigs on free-range without increasing N leaching compared to the current practice. The alternative system with Jerusalem artichokes and lucerne (high integration of forage) showed the lowest carbon foot print with 3.12 CO₂ eq kg(-1) live weight pig compared to the current Danish pasture based system with 3.69 kg CO₂ eq kg(-1) live weight pig. Due to positive impact on soil carbon sequestration, the second alternative system based on grass-clover (low integration of forage) showed a similar carbon foot print compared to current practice with 3.68 kg CO₂ eq kg(-1) live weight pig. It is concluded that in practice there is room for development of organic farming systems where direct foraging plays a central role.

  13. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.

  14. Analysis of Swine Leukocyte Antigen Haplotypes in Yucatan Miniature Pigs Used as Biomedical Model Animal.

    Science.gov (United States)

    Choi, Nu-Ri; Seo, Dong-Won; Choi, Ki-Myung; Ko, Na-Young; Kim, Ji-Ho; Kim, Hyun-Il; Jung, Woo-Young; Lee, Jun-Heon

    2016-03-01

    The porcine major histocompatibility complex (MHC) is called swine leukocyte antigen (SLA), which controls immune responses and transplantation reactions. The SLA is mapped on pig chromosome 7 (SSC7) near the centromere. In this study, 3 class I (SLA-1, SLA-3, and SLA-2) and 3 class II (DRB1, DQB1, and DQA) genes were used for investigation of SLA haplotypes in Yucatan miniature pigs in Korea. This pig breed is a well-known model organism for biomedical research worldwide. The current study indicated that Korean Yucatan pig population had 3 Class I haplotypes (Lr-4.0, Lr-6.0, and Lr-25.0) and 3 class II haplotypes (Lr-0.5, Lr-0.7, and Lr-0.25). The combinations of SLA class I and II haplotype together, 2 homozygous (Lr-4.5/4.5 and Lr-6.7/6.7) and 3 heterozygous (Lr-4.5/6.7, Lr-4.5/25.25, and Lr-6.7/25.25) haplotypes were identified, including previously unidentified new heterozygous haplotypes (Lr-4.5/4.7). In addition, a new SLA allele typing method using Agilent 2100 bioanalyzer was developed that permitted more rapid identification of SLA haplotypes. These results will facilitate the breeding of SLA homozygous Yucatan pigs and will expedite the possible use of these pigs for the biomedical research, especially xenotransplantation research.

  15. Modelling phosphorus intake, digestion, retention and excretion in growing and finishing pigs: model description.

    Science.gov (United States)

    Symeou, V; Leinonen, I; Kyriazakis, I

    2014-10-01

    Low phosphorus (P) digestibility combined with intensive pig production can increase P diffuse pollution and environmental load. The aim of this paper was to develop a deterministic, dynamic model able to represent P digestion, retention and ultimately excretion in growing and finishing pigs of different genotypes, offered access to diets of different composition. The model represented the limited ability of pig endogenous phytase activity to dephosphorylate phytate as a linear function of dietary calcium (Ca). Phytate dephosphorylation in the stomach by exogenous microbial phytase enzymes was expressed by a first order kinetics relationship. The absorption of non-phytate P from the lumen of the small intestine into the blood stream was set at 0.8 and the dephosphorylated phytate from the large intestine was assumed to be indigestible. The net efficiency of using digested P was set at 0.94 and assumed to be independent of BW, and constant across genotype and sex. P requirements for both maintenance and growth were made simple functions of body protein mass, and hence functions of animal genotype. Undigested P was assumed to be excreted in the feaces in both soluble and insoluble forms. If digestible P exceeded the requirements for P then the excess digestible P was excreted through the urinary flow; thus the model represented both forms of P excretion (soluble and insoluble) into the environment. Using a UK industry standard diet, model behaviour was investigated for its predictions of P digestibility, retention and excretion under different levels of inclusion of microbial phytase and dietary Ca, and different non-phytate P : phytate ratios in the diet, thus covering a broad space of potential diet compositions. Model predictions were consistent with our understanding of P digestion, metabolism and excretion. Uncertainties associated with the underlying assumptions of the model were identified. Their consequences on model predictions, as well as the model

  16. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates...

  17. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  18. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  19. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-01-01

    Full Text Available The flux of cosmic rays to the atmosphere has been observed to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2%. The change in the total number of particles larger than 10 nm was larger, but always less than 1%. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  20. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-04-01

    Full Text Available The flux of cosmic rays to the atmosphere has been reported to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2 %. The change in the total number of particles larger than 10 nm was larger, but always less than 1 %. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  1. Implementation of a new aerosol HAM model within the Weather Research and Forecasting (WRF modeling system

    Directory of Open Access Journals (Sweden)

    R. Mashayekhi

    2009-07-01

    Full Text Available A new coupled system of aerosol HAM model and the Weather, Research and Forecasting (WRF model is presented in this paper. Unlike the current aerosol schemes used in WRF model, the HAM is using a "pseudomodal" approach for the representation of the particle size distribution. The aerosol components considered are sulfate, black carbon, particulate organic matter, sea salt and mineral dust. The preliminary model results are presented for two different 6-day simulation periods from 22 to 28 February 2006 as a winter period and 6 to 12 May 2006 as a mild period. The mean shortwave radiation and thermal forcing were calculated from the model simulations with and without aerosols feedback for two simulation periods. A negative radiative forcing and cooling of the atmosphere were found mainly over the regions of high emission of mineral dust. The absorption of shortwave radiation by black carbon caused warming effects in some regions with positive radiative forcing. The simulated daily mean sulfate mass concentration showed a rather good agreement with the measurements in the European EMEP network. The diurnal variation of the simulated hourly PM10 mass concentration at Tehran was also qualitatively close to the observations in both simulation periods. The model captured diurnal cycle and the magnitude of the observed PM10 concentration during most of the simulation periods. The differences between the observed and simulated PM10 concentration resulted mostly from limitation of the model in simulating the clouds and precipitation, transport errors and uncertainties in the particulate emission rates. The inclusion of aerosols feedback in shortwave radiation scheme improved the simulated daily mean shortwave radiation fluxes in Tehran for both simulation periods.

  2. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, Brigitte [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Schulz, Michael [Norwegian Meteorological Institute, Oslo Norway; Bréon, François-Marie [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Dentener, Frank [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Steensen, Birthe Marie [Norwegian Meteorological Institute, Oslo Norway; Griesfeller, Jan [Norwegian Meteorological Institute, Oslo Norway; Winker, David [NASA Langley Research Center, MS/475, Hampton Virginia USA; Balkanski, Yves [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Bauer, Susanne E. [Center for Climate Systems Research, Columbia University, New York New York USA; NASA Goddard Institute for Space Studies, New York New York USA; Bellouin, Nicolas [Department of Meteorology, University of Reading, Reading UK; Berntsen, Terje [Department of Geosciences, University of Oslo, Oslo Norway; Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Bian, Huisheng [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore Country Maryland USA; Chin, Mian [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Diehl, Thomas [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Easter, Richard [Pacific Northwest National Laboratory, Richland Washington USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland Washington USA; Hauglustaine, Didier A. [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Iversen, Trond [Norwegian Meteorological Institute, Oslo Norway; Department of Geosciences, University of Oslo, Oslo Norway; Kirkevåg, Alf [Norwegian Meteorological Institute, Oslo Norway; Liu, Xiaohong [Pacific Northwest National Laboratory, Richland Washington USA; Now at University of Wyoming, Laramie Wyoming USA; Lohmann, Ulrike [ETH-Zentrum, Zürich Switzerland; Myhre, Gunnar [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Rasch, Phil [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Seland, Øyvind [Norwegian Meteorological Institute, Oslo Norway; Skeie, Ragnhild B. [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Steenrod, Stephen D. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Stier, Philip [Department of Physics, University of Oxford, Oxford UK; Tackett, Jason [Science Systems and Applications, Inc., Hampton Virginia USA; Takemura, Toshihiko [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Tsigaridis, Kostas [Center for Climate Systems Research, Columbia University, New York New York USA; NASA Goddard Institute for Space Studies, New York New York USA; Vuolo, Maria Raffaella [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Now at National Institute for Agronomic Research, Thiverval-Grignon France; Yoon, Jinho [Pacific Northwest National Laboratory, Richland Washington USA; Now at Gwangju Institute of Science and Technology, Gwangju Korea; Zhang, Kai [Pacific Northwest National Laboratory, Richland Washington USA; Max Planck Institute for Meteorology, Hamburg Germany

    2016-06-27

    The ability of eleven models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model inter-comparison initiative (AeroCom II) is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded dataset of aerosol extinction profiles built on purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 sub-continental regions show that five models improved whereas three degraded in reproducing the Zα 0-6 km mean extinction height diagnostic, which is computed over the 0-6 km altitude range for each studied region and season. While the models’ performance remains highly variable, it has generally improved in terms of inter-regional diversity and seasonality. The biases in Zα 0-6 km have notably decreased in the U.S. and European industrial and downwind maritime regions, whereas the timing of the Zα 0-6 km peak season has improved for all but two models. However, most of the models now show a Zα 0-6 km underestimation over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα 0-6 km latitudinal variability over ocean than over land. Hypotheses for the (changes in the) the performance of the individual models and for the inter-model diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties that can contribute to the differences between the simulations and observations.

  3. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  4. A simplified model of aerosol removal by natural processes in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.; Washington, K.E.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States); Burson, S.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-07-01

    Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

  5. Maternally Derived Immunity Extends Swine Influenza A Virus Persistence within Farrow-to-Finish Pig Farms: Insights from a Stochastic Event-Driven Metapopulation Model.

    Science.gov (United States)

    Cador, Charlie; Rose, Nicolas; Willem, Lander; Andraud, Mathieu

    Swine Influenza A Viruses (swIAVs) have been shown to persist in farrow-to-finish pig herds with repeated outbreaks in successive batches, increasing the risk for respiratory disorders in affected animals and being a threat for public health. Although the general routes of swIAV transmission (i.e. direct contact and exposure to aerosols) were clearly identified, the transmission process between batches is still not fully understood. Maternally derived antibodies (MDAs) were stressed as a possible factor favoring within-herd swIAV persistence. However, the relationship between MDAs and the global spread among the different subpopulations in the herds is still lacking. The aim of this study was therefore to understand the mechanisms induced by MDAs in relation with swIAV spread and persistence in farrow-to-finish pig herds. A metapopulation model has been developed representing the population dynamics considering two subpopulations-breeding sows and growing pigs-managed according to batch-rearing system. This model was coupled with a swIAV-specific epidemiological model, accounting for partial passive immunity protection in neonatal piglets and an immunity boost in re-infected animals. Airborne transmission was included by a between-room transmission rate related to the current prevalence of shedding pigs. Maternally derived partial immunity in piglets was found to extend the duration of the epidemics within their batch, allowing for efficient between-batch transmission and resulting in longer swIAV persistence at the herd level. These results should be taken into account in the design of control programmes for the spread and persistence of swIAV in swine herds.

  6. Climate-aerosol interactions over the Mediterranean region: a regional coupled modelling approach

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc

    2015-04-01

    The Mediterranean basin is affected by numerous and various aerosols which have a high spatio-temporal variability. These aerosols directly interact with solar and thermal radiation, and indirectly with clouds and atmospheric dynamics. Therefore they can have an important impact on the regional climate. This work, located at the boundary between the ChArMEx and HyMeX programs, considers a coupled regional modeling approach in order to address the questions of the aerosol-radiation-cloud interactions with regards to the climate variability over the Mediterranean. In order to improve the characterization of Mediterranean aerosols, a new interannual monthly climatology of aerosol optical depth has been developed from a blended product based on both satellite-derived and model-simulated datasets. This dataset, available for every regional climate model over the Mediterranean for the 1979-2012 period, has been built to obtain the best possible estimate of the atmospheric aerosol content for the five species at stake (sulfate, black carbon, organic matter, desert dust and sea salt particles). Simulation ensembles, which have been carried out over the 2003-2009 period with and without aerosols, show a major impact on the regional climate. The seasonal cycle and the spatial patterns of the Mediterranean climate are significantly modified, as well as some specific situations such as the heat wave in July 2006 strengthened by the presence of desert dust particles. The essential role of the Mediterranean sea surface temperature is highlighted, and enables to understand the induced changes on air-sea fluxes and the consequences on regional climate. Oceanic convection is also strengthened by aerosols. In addition, the decrease in anthropogenic aerosols observed for more than thirty years is shown to significantly contribute to the observed Euro-Mediterranean climatic trends in terms of surface radiation and temperature. Besides, an interactive aerosol scheme has been developed

  7. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated, which

  8. Development of a global model of mineral dust aerosol microphysics

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2009-04-01

    Full Text Available A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. Including only sites with measured dust concentrations of at least 0.5 μg m−3, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. These results suggest that the underestimation of mineral dust in remote areas may result from local factors/sources not well described by the global dust source function used here or the GCM meteorology. The effect of dust aerosols on CCN(0.2% concentrations is negligible in most regions of the globe; however, CCN(0.2% concentrations change decrease by 10–20% in dusty regions the impact of dust on CCN(0.2% concentrations in dusty regions is very sensitive to the assumed size distribution of emissions. If emissions are predominantly in the coarse mode, CCN(0.2% decreases in dusty regions up to 10–20% because dust competes for condensable H2SO4, reducing the condensational growth of ultrafine mode particles to CCN sizes. With significant fine mode emissions, however, CCN(0.2% doubles in Saharan source regions because the direct emission of dust particles outweighs any microphysical feedbacks. The impact of dust on CCN concentrations active at various water supersaturations is also investigated

  9. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guangxing; Qian, Yun; Yan, Huiping; Zhao, Chun; Ghan, Steven J.; Easter, Richard C.; Zhang, Kai

    2017-06-16

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis. The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).

  10. On the use of prior information in modelling metabolic utilization of energy in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Jørgensen, Henry; Fernández, José Adalberto

    2011-01-01

    Construction of models that provide a realistic representation of metabolic utilization of energy in growing animals tend to be over-parameterized because data generated from individual metabolic studies are often sparse. In the Bayesian framework prior information can enter the data analysis...... through formal statements of probability because model parameters are random variables and hence, are assigned probability distribution (Gelman et al. 2004). The objective of the study was to introduce prior information in modelling metabolizable energy (ME) intake, protein (PD) and lipid deposition (LD......) curves, resulting from a metabolism study on growing pigs of high genetic potential. A total of 17 crossbred pigs of three genders (barrows, boars and gilts) were used. Pigs were fed four diets based on barley, wheat and soybean meal supplemented with crystalline amino acids to meet Danish nutrient...

  11. Adjustment and Characterization of an Original Model of Chronic Ischemic Heart Failure in Pig

    Directory of Open Access Journals (Sweden)

    Laurent Barandon

    2010-01-01

    Full Text Available We present and characterize an original experimental model to create a chronic ischemic heart failure in pig. Two ameroid constrictors were placed around the LAD and the circumflex artery. Two months after surgery, pigs presented a poor LV function associated with a severe mitral valve insufficiency. Echocardiography analysis showed substantial anomalies in radial and circumferential deformations, both on the anterior and lateral surface of the heart. These anomalies in function were coupled with anomalies of perfusion observed in echocardiography after injection of contrast medium. No demonstration of myocardial infarction was observed with histological analysis. Our findings suggest that we were able to create and to stabilize a chronic ischemic heart failure model in the pig. This model represents a useful tool for the development of new medical or surgical treatment in this field.

  12. Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM chamber

    Directory of Open Access Journals (Sweden)

    S. Chen

    2013-05-01

    Full Text Available A model has been developed to simulate the formation and evolution of secondary organic aerosol (SOA and was tested against data produced in a Potential Aerosol Mass (PAM flow reactor and a large environmental chamber. The model framework is based on the two-dimensional volatility basis set approach (2D-VBS, in which SOA oxidation products in the model are distributed on the 2-D space of effective saturation concentration (Ci* and oxygen-to-carbon ratio (O : C. The modeled organic aerosol mass concentrations (COA and O : C agree with laboratory measurements within estimated uncertainties. However, while both measured and modeled O : C increase with increasing OH exposure as expected, the increase of modeled O : C is rapid at low OH exposure and then slows as OH exposure increases while the increase of measured O : C is initially slow and then accelerates as OH exposure increases. A global sensitivity analysis indicates that modeled COA values are most sensitive to the assumed values for the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the yield of first-generation products. Modeled SOA O : C values are most sensitive to the assumed O : C of first-generation oxidation products, the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the number of O : C bins. All these sensitivities vary as a function of OH exposure. The sensitivity analysis indicates that the 2D-VBS model framework may require modifications to resolve discrepancies between modeled and measured O : C as a function of OH exposure.

  13. Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection

    Science.gov (United States)

    Yauri, Verónica; Castro-Sesquen, Yagahira E.; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M.; Gilman, Robert H.

    2016-01-01

    Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15–40 dpi). Anti-T.cruzi immunoglobulin M was detected during 15–75 dpi; high levels of anti-T.cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841

  14. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    Science.gov (United States)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid

  15. Impact of East Asian summer monsoon circulation on the regional aerosol distribution in observations and models

    Science.gov (United States)

    Wang, Hongli; Xie, Xiaoning; Yan, Libin; Liu, Xiaodong

    2017-06-01

    The East Asian summer monsoon (EASM) can change the spatio-temporal distribution of aerosols by influencing the aerosol horizontal and vertical transports and the wet deposition of aerosols over East Asia. In this paper, we examined the aerosol optical depth (AOD) during summer together with the intensity of the EASM based on moderate-resolution imaging spectroradiometer products on board the Terra satellite and the modeling results from the NCAR Community Atmospheric Model 5.1 in the mid-latitude monsoonal East Asia (20-45° N, 105-130° E). Our results from both observations and simulations show positive correlations of AOD with the monsoon intensity over the Northeast Asia sub-region (32.5-45° N, 105-130° E), and negative correlations with that over the southeast Asia sub-region (20-32.5° N, 105-130° E). The observed and simulated AODs were much larger over the northern sub-region and much smaller over the southern sub-region in the strongest monsoon years compared with those in the weakest monsoon years. The model results suggest that the mechanism responsible for the north-south difference in the aerosol distribution was mainly caused by lower-tropospheric meridional wind anomalies related to EASM. Compared with the weakest monsoon years, the strongest monsoon years experienced southerly wind anomalies, which enabled more aerosols to be transported northward and resulted in a convergence of aerosols over the northern sub-region. In addition, the wet deposition of aerosols reduced (enhanced) the aerosol concentrations in the northern (southern) sub-region during the strongest monsoon years compared with the weakest monsoon years, which partly offset the impact of the lower southerly winds on the aerosol distribution over East Asia.

  16. A pig model of acute Staphylococcus aureus induced pyemia

    DEFF Research Database (Denmark)

    Nielsen, O. L.; Iburg, T.; Aalbæk, B.;

    2009-01-01

    Background: Sepsis caused by Staphylococcus aureus constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with S. aureus......, with the aim of mimicking human sepsis and pyemia. Methods: The study was conducted in anaesthetized and intravenously inoculated pigs, and was based on bacteriological examination of blood and testing of blood for IL-6 and C-reactive protein. Following killing of the animals and necropsy bacteriological...... was not detected in the blood and C-reactive protein did not increase, probably because of the short time course of the study. Conclusion: This study demonstrates the successful induction of acute pyemia (microabscesses), and forms a basis for future experiments that should include inoculation with strains of S...

  17. A pig model of acute Staphylococcus aureus induced pyemia

    DEFF Research Database (Denmark)

    Nielsen, O. L.; Iburg, T.; Aalbæk, B.

    2009-01-01

    Background: Sepsis caused by Staphylococcus aureus constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with S. aureus......, with the aim of mimicking human sepsis and pyemia. Methods: The study was conducted in anaesthetized and intravenously inoculated pigs, and was based on bacteriological examination of blood and testing of blood for IL-6 and C-reactive protein. Following killing of the animals and necropsy bacteriological...... was not detected in the blood and C-reactive protein did not increase, probably because of the short time course of the study. Conclusion: This study demonstrates the successful induction of acute pyemia (microabscesses), and forms a basis for future experiments that should include inoculation with strains of S...

  18. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    J. Kazil

    2010-05-01

    Full Text Available Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are −1.15 W/m2 for charged H2SO4/H2O nucleation, −0.235 W/m2 for cluster activation, and −0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is −2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with −2.18 W/m2 to total absorbed solar short-wave radiation, compared to −0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of

  19. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs.

    Science.gov (United States)

    Li, Jin-Tao; Wei, Jing; Guo, Hong-Xia; Han, Jiang-Bo; Ye, Nan; He, Hai-Yang; Yu, Tian-Tian; Wu, Yu-Zhang

    2016-08-21

    To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines. 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography. When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea. These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.

  20. Case study of modeled aerosol optical properties during the SAFARI 2000 campaign.

    Science.gov (United States)

    Kuzmanoski, Maja; Box, Michael A; Schmid, Beat; Russell, Philip B; Redemann, Jens

    2007-08-01

    We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

  1. Climatic impact of urbanization in Eastern China: modeling the combined urban heat island and aerosol effects

    Science.gov (United States)

    Qian, Y.; Yang, B.; Zhao, C.; Leung, L. R.; Yan, H.; Fan, J.

    2014-12-01

    In this study we investigate the climatic impact of urbanization, including both Urban Heat Island (UHI) and aerosol effects, over the Yangtze-Delta metropolitan clusters region of Eastern China, based on a series of simulations with prescribed land use/land cover and emissions of aerosols and their precursors for the 2000s and 1970s , respectively. We conduct simulations for each land use/land cover and emission scenario from 2006-2010 using the Weather Research and Forecasting (WRF) model, with online chemistry/aerosol and urban canopy models, at a 3-km grid spacing. Overall the model can reasonably capture the spatial pattern of temperature and precipitation as well as the phase of precipitation diurnal cycle in summer. Simulations results show a very clear UHI effect, i.e. expanded urban surface decreases surface latent heat flux, increases sensible heat flux and PBL height, and reduces surface wind over urban areas, with a more significant change in summer. Aerosol has much less obvious impact on local surface heat flux and temperature, but shows more remote impacts downwind due to dispersion and transport of pollutants and aerosol-cloud interaction. Aerosol also has a larger impact on precipitation amount and areal coverage than UHI. While UHI increases precipitation over urban regions during daytime especially when the southeasterly monsoonal flow prevails, aerosol remarkably suppresses precipitation, especially for light to moderate rain events, and increases the frequency of dry days in the entire model region.

  2. Study of pH Stability of R-Salbutamol Sulfate Aerosol Solution and Its Antiasthmatic Effects in Guinea Pigs.

    Science.gov (United States)

    Liu, Qing; Li, Qingrui; Han, Ting; Hu, Tingting; Zhang, Xuemei; Hu, Junhua; Hu, Hui; Tan, Wen

    2017-09-01

    Currently, all commercial available nebulized salbutamol in China is in its racemic form. It is known that only R-salbutamol (eutomer) has therapeutic effects, while S-salbutamol (distomer) may exacerbate asthma after chronic use. Therefore, it is an unmet clinical need to develop R-salbutamol as a nebulized product that is more convenient for young and old patients. In our study, a stable aerosol solution of R-salbutamol sulfate was established, and its antiasthmatic effects were confirmed. The decomposition rate and racemization effect of the R-salbutamol sulfate solution were evaluated over a pH range from 1 to 10 (except pH=7, 8) at 60°C. The aerodynamic particle size of the R-salbutamol sulfate solution and commercial RS-salbutamol sulfate solution were both tested in vitro by Next-Generation Impactor (NGI) in 5°C. Laser diffractometer was used to characterize the droplet-size distribution (DSD) of both solutions. We next conducted an in vivo animal study to document the antiasthmatic effect of R-salbutamol aerosol sulfate solution and determine the relationship to RS-salbutamol. The results showed that the R-salbutamol sulfate solution was more stable at pH 6. In vitro comparison studies indicated that there was no distribution difference between R-salbutamol sulfate solution and the commercial RS-salbutamol solution. The animal results showed that R-salbutamol was more potent than RS-salbutamol against the same dose of histamine challenge. Unlike commercial RS-salbutamol, which was acidified to a pH of 3.5 to extend bench life but may cause bronchoconstriction in asthmatic patients, the neutralized R-salbutamol solution was more suitable for clinic use.

  3. Response of different regional online coupled models to aerosol-radiation interactions

    Science.gov (United States)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  4. A multilevel nonlinear mixed-effects approach to model growth in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H

    2009-01-01

    Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....

  5. The pig as a large preclinical model for therapeutic human anti-cancer vaccine development

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    2016-01-01

    Development of therapeutic cancer vaccines has largely been based on rodent models and the majority failed to establish therapeutic responses in clinical trials. We therefore used pigs as a large animal model for human cancer vaccine development due to the large similarity between the porcine...... and human immunome. We administered peptides derived from porcine IDO, a cancer antigen important in human disease, formulated in Th1-inducing adjuvants to outbred pigs. By in silico prediction 136 candidate IDO-derived peptides were identified and peptide-SLA class I complex stability measurements revealed...

  6. Robotic intercostal nerve harvest: a feasibility study in a pig model.

    Science.gov (United States)

    Miyamoto, Hideaki; Serradori, Thomas; Mikami, Yoji; Selber, Jesse; Santelmo, Nicola; Facca, Sybille; Liverneaux, Philippe

    2016-01-01

    The aim of this study was to report the feasibility of robotic intercostal nerve harvest in a pig model. A surgical robot, the da Vinci Model S system, was installed after the creation of 3 ports in the pig's left chest. The posterior edges of the fourth, fifth, and sixth intercostal nerves were isolated at the level of the anterior axillary line. The anterior edges of the nerves were transected at the rib cartilage zone. Three intercostal nerve harvesting procedures, requiring an average of 33 minutes, were successfully performed in 3 pigs without major complications. The advantages of robotic microsurgery for intercostal nerve harvest include elimination of physiological tremor, free movement of joint-equipped robotic arms, and amplification of the surgeon's hand motion by as much as 5 times. Robot-assisted neurolysis may be clinically useful for intercostal nerve harvest for brachial plexus reconstruction.

  7. Assimilation of Polder aerosol optical thickness into LMD2-Inca model in order to study aerosol-climate interactions; Etude des interactions entre aerosols et climat: assimilation des observations spatiales de Polder dans LMDz-Inca

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, S.

    2004-12-15

    Aerosols influence the Earth radiative budget both through their direct (scattering and absorption of solar radiation) and indirect (impacts on cloud microphysics) effects. The anthropogenic perturbation due to aerosol emissions is of the same order of magnitude than the one due to greenhouse gases, but less well known. To improve our knowledge, we need to better know aerosol spatial and temporal distributions. Indeed, aerosol modeling still suffers from large uncertainties in sources and transport, while satellite observations are incomplete (no detection in the presence of clouds, no information on the vertical distribution or on the chemical nature). Moreover, field campaigns are localized in space and time. This study aims to reduce uncertainties in aerosol distributions, developing assimilation of satellite data into a chemical transport model. The basic idea is to combine information obtained from spatial observation (optical thickness) and modeling studies (aerosol types, vertical distribution). In this study, we assimilate data from the POLDER space-borne instrument into the LMDz-INCA model. The results show the advantage of merging information from different sources. In many regions, the method reduces uncertainties on aerosol distribution (reduction of RMS error). An application of the method to the study of aerosol impact on cloud microphysics is shown. (author)

  8. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  9. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    Science.gov (United States)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  10. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Wang, Minghuai; Ghan, Steven J.; Ding, A.; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, U.; Ferrachat, S.; Takeamura, Toshihiko; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, Daniel; Stier, P.; Kipling, Z.; Fu, Congbin

    2016-03-04

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  11. ISA-MIP: A co-ordinated intercomparison of Interactive Stratospheric Aerosol models

    Science.gov (United States)

    Timmreck, Claudia; Mann, Graham; Aquila, Valentina; Bruehl, Christoph; Chin, Mian; Dohmse, Sandip; English, Jason; Lee, Lindsay; Mills, Michael; Hommel, Rene; Neely, Ryan; Schmidt, Anja; Sheng, Jianxiong; Toohey, Matthew; Weisenstein, Debra

    2016-04-01

    The SPARC activity, "Stratospheric Sulfur and its Role in Climate" (SSiRC) was initiated to coordinate international research activities on modelling and observation of stratospheric sulphate aerosols (and precursor gases) in order to assess its climate forcing and feedback. With several international activities to extend and improve observational stratospheric aerosol capabilities and data sets, and a growing number of global models treating stratospheric aerosol interactively, a new model intercomparison activity "ISA-MIP" has been established in the frame of SSIRC. ISA-MIP will compare interactive stratospheric aerosol (ISA) models using a range of observations to constrain and improve the models and to provide a sound scientific basis for future work. Four ISA-MIP experiments have been designed to assess different periods of the obervational stratospheric aerosol record, and to explore key processes which influence the formation and temporal development of stratospheric aerosol. The "Background" experiment will focus on the role of microphysical and transport processes under volcanically quiescent conditions, where the stratospheric aerosol size distribution is only modulated by seasonal circulations. The "Model intercomparison of Transient Aerosol Record" (MiTAR) experiment will focus on addressing the role of small- to moderate-magnitude volcanic eruptions and transport processes in the upper troposphere - lower stratosphere (UTLS) aerosols loading over the period 1998-2011. Background and MiTAR simulations will be compared to recent in-situ and satellite observations to evaluate the performances of the model and understand their strengths and weaknesses. Two further experiments investigate the radiative forcing from historical major eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) will involve models carrying out mini-ensembles of the stratospheric aerosol perturbations from each of the 1963 Agung, 1982 El Chichon and 1991 Pinatubo

  12. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    Science.gov (United States)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  13. Aerosol Simulation in the Mexico City Metropolitan Area during MCMA2003 using CMAQ/Models3

    Science.gov (United States)

    Bei, N.; Zavala, M.; Lei, W.; de Foy, B.; Molina, L.

    2007-12-01

    CMAQ/Models3 has been employed to simulate the aerosol distribution and variation during the period from 13 to 16 April 2003 over the Mexico City Metropolitan Area as part of MCMA-2003 campaign. The meteorological fields are simulated using MM5, with three one-way nested grids with horizontal resolutions of 36, 12 and 3 km and 23 sigma levels in the vertical. MM5 3DVAR system has also been incorporated into the meteorological simulations. Chemical initial and boundary conditions are interpolated from the MOZART output. The SAPRC emission inventory is developed based on the official emission inventory for MCMA in 2004. The simulated mass concentrations of different aerosol compositions, such as elemental carbon (EC), primary organic aerosol (POA), secondary organic aerosol (SOA), nitrate, ammonium, and sulfate have been compared to the measurements taken at the National Center for Environmental Research and Training (Centro Nacional de Investigacion y Capacitacion Ambiental, CENICA) super-site. Hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) are used as observations of POA and SOA, respectively in this study. The preliminary model results show that the temporal evolutions of EC and POA are reasonable compared with measurements. The peak time of EC and POA are basically reproduced, thus validating the emission inventory and its processing through CMAQ/Models3. But the magnitude of EC and POA are underestimated over the entire episode. The modeled nitrate and ammonium concentrations are overestimated on most of the days. There is 1-2 hour difference between the simulated peak time of nitrate and ammonium aerosols compared to observations at CENICA. The simulated mass concentrations of SOA and sulfate are significantly underestimated. The reasons of the discrepancy between simulations and measurements are due to the uncertainties existing in the emission inventory, meteorological fields, and as well as aerosol formation mechanism in the case

  14. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    Energy Technology Data Exchange (ETDEWEB)

    Ervens, Barbara [Univ. of Colorado, Boulder, CO (United States)

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  15. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    OpenAIRE

    2015-01-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water ...

  16. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2010-08-01

    Full Text Available Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects.

    Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  17. Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2013-03-01

    Full Text Available Strong positive relationships between cloud fraction (fc and aerosol optical depth (τ have been reported. Data retrieved from the MODerate resolution Imaging Spectroradiometer (MODIS instrument show positive fc–τ relationships across most of the globe. A global mean fc increase of approximately 0.2 between low and high τ conditions is found for both ocean and land. However, these relationships are not necessarily due to cloud–aerosol interactions. Using state-of-the-art Monitoring Atmospheric Composition and Climate (MACC reanalysis-forecast τ data, which should be less affected by retrieval artefacts, it is demonstrated that a large part of the observed fc–τ signal may be due to cloud contamination of satellite-retrieved τ. For longer MACC forecast time steps of 24 h, which likely contain less cloud contamination, some negative fc–τ relationships are found. The global mean fc increase between low and high τ conditions is reduced to 0.1, suggesting that cloud contamination may account for approximately one half of the satellite-retrieved increase in fc. ECHAM5-HAM general circulation model (GCM simulations further demonstrate that positive fc–τ relationships may arise due to covariation with relative humidity. Widespread negative simulated fc–τ relationships in the tropics are shown to arise due to scavenging of aerosol by convective precipitation. Wet scavenging events are likely poorly sampled in satellite-retrieved data, because the properties of aerosol below clouds cannot be retrieved. Quantifying the role of wet scavenging, and assessing GCM representations of this important process, remains a challenge for future observational studies of aerosol–cloud–precipitation interactions.

  18. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    Energy Technology Data Exchange (ETDEWEB)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  19. The global middle-atmosphere aerosol model MAECHAM5-SAM2: comparison with satellite and in-situ observations

    Directory of Open Access Journals (Sweden)

    R. Hommel

    2011-09-01

    Full Text Available In this paper we investigate results from a three-dimensional middle-atmosphere aerosol-climate model which has been developed to study the evolution of stratospheric aerosols. Here we focus on the stratospheric background period and evaluate several key quantities of the global distribution of stratospheric aerosols and their precursors with observations and other model studies. It is shown that the model fairly well reproduces in situ observations of the aerosol size and number concentrations in the upper troposphere and lower stratosphere (UT/LS. Compared to measurements from the limb-sounding SAGE II satellite instrument, modelled integrated aerosol quantities are more biased the lower the moment of the aerosol population is. Both findings are consistent with earlier work analysing the quality of SAGE II retrieved e.g. aerosol surface area densities in the volcanically unperturbed stratosphere (SPARC/ASAP, 2006; Thomason et al., 2008; Wurl et al., 2010.

    The model suggests that new particles are formed over large areas of the LS, albeit nucleation rates in the upper troposphere are at least one order of magnitude larger than those in the stratosphere. Hence, we suggest that both, tropospheric sulphate aerosols and particles formed in situ in the LS are maintaining the stability of the stratospheric aerosol layer in the absence of direct stratospheric emissions from volcanoes. Particle size distributions are clearly bimodal, except in the upper branches of the stratospheric aerosol layer where aerosols evaporate. Modelled concentrations of condensation nuclei (CN are smaller than measured in regions of the aerosol layer where aerosol mixing ratios are largest. This points to an overestimated particle growth by coagulation.

    Transport regimes of tropical stratospheric aerosol have been identified from modelled aerosol mixing ratios and correspond to those deduced from satellite extinction measurements. We found that convective

  20. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  1. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.

    Science.gov (United States)

    Ben-David, Avishai; Davidson, Charles E; Embury, Janon F

    2008-11-01

    We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).

  2. Telmisartan attenuates chronic ciclosporin A nephrotoxicity in a pig model

    DEFF Research Database (Denmark)

    Cibulskyte, Donata; pedersen, michael; Hørlyck, Arne

    2007-01-01

    and 54, we measured body weight, mean arterial blood pressure (MAP), serum creatinine, whole blood trough CsA, plasma Ang II, haemoglobin and liver function parameters. Magnetic resonance imaging was used to estimate kidney length, volume, relative glomerular filtration rate (rGFR) and renal blood flow.......064). A significant increase in renal volume was seen in both groups, but tended to be lower in the CsA + telmisartan pigs at 54 weeks (P = 0.097). Telmisartan did not reduce MAP, RBF or rGFR. CONCLUSIONS: Long-term CsA treatment causes histopathological changes in the porcine kidney similar to those observed...

  3. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  4. Modelling the kinetic of biogas production from co-digestion of pig waste and grass clippings

    OpenAIRE

    Matheri, Anthony Njuguna; Belaid, Mohamed; Seodigeng, Tumisang, Dr.; Ngila, Catherine Jane

    2016-01-01

    Abstract: This work investigated the use of laboratory batch anaerobic digester to derive kinetics parameters for anaerobic co-digestion of pig waste and grass clippings. Laboratory experiment data from 10 litres batch anaerobic digester operating at ambient mesophilic temperature of 37 0C and pH of 6.9 was used to derive parameters for modified Gompertz model. The carbon/nitrogen (C/N) ratio of Pig waste was found to be 16.16 and grass clippings to be 20.54. Through co-digestion in ratio of ...

  5. Establishment of a Model of Combined Pancreas-Kidney Transplantation in Pig

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To establish a model of combined pancreas-kidney transplantation in pig. Methods A renoportal end-to-end anastomoses between the left renal vein and the distal end of portal vein were performed. Only two vascular end-to-side anastomoses between the donor portal vein and recipient inferior vena cava, and between the donor aortic segment including the celiac, superior mesenteric, and left renal arteries and recipient abdominal aorta were constructed. Pancreas exocrine drainage was established with duodenocystostomy. The ureterostomosis of the graft was performed. Results Satisfactory results were obtained in 11 pigs. Conclusion The method for combined pancreas-kidney transplantation was reliable.

  6. High Resolution Modelling of Aerosols-Meteorology Interactions over Northern Europe and Arctic regions

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Baklanov, Alexander

    2017-04-01

    Aerosols have influence on weather, air quality and climate. Multi-scale modelling, and especially long-range atmospheric transport, dispersion, and deposition of aerosols from remote sources is especially challenging in northern latitudes. It is due to complexity of meteorological, chemical and biological processes, their interactions and especially within and above the surface layer, linking to climate change, and influence on ecosystems. The online integrated meteorology-chemistry-aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of atmospheric aerosols and their interactions and effects on meteorology with a focus on the Northern Europe and Arctic regions. The model setup covers domain having 510 x 568 grids of latitude vs. longitude, horizontal resolution of 0.15 deg, 40 vertical hybrid levels, time step of 360 sec, 6 h meteorological surface data assimilation. The model was run for January and July-August 2010 at DMI's CRAY-XC30 supercomputer. Emissions used are anthropogenic (ECLIPSE v5), shipping (combined AU_RCP and FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. The boundary conditions were obtained from ECMWF: for meteorology (from IFS at 0.15 and 0.25 deg. for summer and winter, respectively) and atmospheric composition (from MACC Reanalysis at 1.125 deg. resolution). The Enviro-HIRLAM model was employed in 4 modes: the reference run (e.g. without aerosols influence on meteorology) and 3 modified runs (direct aerosol effect (DAE), indirect aerosol effect (IDAE), and both effects DAE and IDAE included). The differences between the reference run and the runs with mentioned aerosol effects were estimated on a day-by-day, monthly and diurnal cycle bases over the domain, Arctic areas, European and Nordic countries. The results of statistical analyses are summarized and presented.

  7. Delayed development of systemic immunity in preterm pigs as a model for preterm infants

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Frøkiær, Hanne;

    2016-01-01

    Preterm neonates are highly sensitive to systemic infections in early life but little is known about systemic immune development following preterm birth. We hypothesized that preterm neonates have immature systemic immunity with distinct developmental trajectory for the first several weeks of life......, relative to those born at near-term or term. Using pigs as a model, we characterized blood leukocyte subsets, antimicrobial activities and TLR-mediated cytokine production during the first weeks after preterm birth. Relative to near-term and term pigs, newborn preterm pigs had low blood leukocyte counts......, poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2...

  8. Internal gallbladder drainage prevents development of acute cholecystitis in a pig model: a randomized study

    DEFF Research Database (Denmark)

    Kjaer, Daniel W; Mortensen, Frank V; Møller, Jens K;

    2010-01-01

    BACKGROUND: Acute cholecystitis can be the result of retention of bile in the gallbladder with possible secondary infection and ischaemia. The aim of the present study was to investigate whether internal drainage of the gallbladder could protect against the development of acute cholecystitis...... in a pig model. MATERIALS AND METHODS: Twenty pigs were randomized to either internal drainage (drained) or not (undrained). Day 0 acute cholecystitis was induced by ligation of the cystic artery and duct together with inoculation of bacteria. Four days later the pigs were killed and the gallbladders were...... removed and histologically scored for the presence of cholecystitis. Bile and blood samples were collected for bacterial culturing and biochemical analyses. RESULTS: The histological examination demonstrated statistical significant differences in acute cholecystitis development between groups, the degree...

  9. [An experimental model of hepatointestinal transplant in the pig with clinical applications].

    Science.gov (United States)

    López Santamaría, M; Gámez, M; Murcia, J; Bueno, J; Paz, J A; Canser, E; Reinoso, F; Muñoz, J; Lobato, R; Martínez, L; de Miguel, E; Polanco, I; Jara, P; Tovar, J

    1996-10-01

    A model of experimental hepatointestinal transplant in pigs, with clinical applications is presented. Ten animals received a graft composed by the liver and the full length of the small bowel. Two pigs died during the transplant and in eight the surgical procedure was well tolerated with a good revascularization of the grafts. The coagulation parameters were normal after the transplant and only minor biochemical disturbances were found. The main difficulties of the surgical technique are related with the poor tolerance of the pig to the portal and caval clamping, and the close relationships of the duodenum, pancreas and distal colon, produced by the 360 degrees anti-clockwise bowel rotation around the mesenteric vessels. Clamping the supraceliac aorta during the implant of the graft keeps the animal hemodynamically stable and makes unnecessary the use of the more complicated veno venous shunt.

  10. Delayed development of systemic immunity in preterm pigs as a model for preterm infants

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Frøkiær, Hanne

    2016-01-01

    Preterm neonates are highly sensitive to systemic infections in early life but little is known about systemic immune development following preterm birth. We hypothesized that preterm neonates have immature systemic immunity with distinct developmental trajectory for the first several weeks of life......, relative to those born at near-term or term. Using pigs as a model, we characterized blood leukocyte subsets, antimicrobial activities and TLR-mediated cytokine production during the first weeks after preterm birth. Relative to near-term and term pigs, newborn preterm pigs had low blood leukocyte counts......, poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2...

  11. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma...... concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing...

  12. Assessment of Antimicrobial Treatment Strategies in Pig Production Using Mathematical Models

    DEFF Research Database (Denmark)

    Ahmad, Amais

    The phenomenon of antimicrobial resistance (AMR) is well established, but its persistent increase and alarming proportions threaten the ability of antimicrobials to treat infections. AMR has become a major issue in veterinary antimicrobial use, specifically in food production animals, due...... to the potential consequences for human health. Danish pig production accounted for 76% of the total veterinary use of antimicrobials in 2012 with 79% of pig production used in weaning pigs. Escherichia coli (E. coli) are the predominant bacteria in the gastrointestinal flora of humans and animals, and can serve...... strategies. Dosing factors, along with the in vivo epidemiological parameters, govern the relation between resistance and antimicrobial use. Mathematical modeling and simulation techniques have been used over the past two decades to evaluate the effect of these factors on the development of resistance...

  13. Light absorption by pollution, dust, and biomass burning aerosols. A global model study and evaluation with AERONET measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Mian; Holben, B.N. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Atmospheres; Diehl, T.; Eck, T.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Atmospheres; Maryland Univ., Baltimore County, MD (United States); Dubovik, O. [Univ. de Lille 1/CNRS, Villeneuve d' Ascq (France). Lab. d' Optique Atmospherique; Sinyuk, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Atmospheres; Science Systems and Applications, Inc., Lanham, MD (United States); Streets, D.G. [Argonne National Lab., Argonne, IL (United States)

    2009-07-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth ({tau}), absorption optical depth ({tau}{sub a}), and single scattering albedo ({omega}) at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of {tau} (37%), followed by dust (30%), sea salt (16%), organic matter (OM) (13%), and black carbon (BC) (4%). BC and dust account for 43% and 53% of {tau}{sub a}, respectively. From a model experiment with ''tagged'' sources, natural aerosols are estimated to be 58% of {tau} and 53% of {tau}{sub a}, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of {tau} and the Aangstroem exponent ({alpha}) than its retrieved quantities of {omega} and {tau}{sub a}. Relatively small in its systematic bias of {tau} for pollution and dust regions, the model tends to underestimate {tau} for biomass burning aerosols by 30-40%. The modeled {alpha} is 0.2-0.3 too low (particle too large) for pollution and dust aerosols but 0.2-0.3 too high (particle too small) for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated {omega} is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere. (orig.)

  14. Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5

    Directory of Open Access Journals (Sweden)

    W.-C. Hsieh

    2013-03-01

    Full Text Available This study used Community Atmospheric Model 3.5 (CAM3.5 to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with carbonaceous aerosols and no carbon runs in which carbonaceous aerosols were removed. The Slab Ocean Model (SOM and the fixed Sea Surface Temperature (SST were used to examine effects of ocean boundary conditions. Throughout this study, climate response induced by aerosol forcing was mainly analyzed in the following three terms: (1 aerosol radiative effects under fixed SST, (2 effects of aerosol-induced SST feedbacks , and (3 total effects including effects of aerosol forcing and SST feedbacks. The change of SST induced by aerosols has large impacts on distribution of climate response, the magnitudes in response patterns such as temperature, precipitation, zonal winds, mean meridional circulation, radiative fluxes and cloud coverage are different between the SOM and fixed SST runs. Moreover, different spatial responses between the SOM and fixed SST runs can also be seen in some local areas. This implies the importance of SST feedbacks on simulated climate response. The aerosol dimming effects cause a cooling predicted at low layers near the surface in most of carbonaceous aerosol source regions. The temperature response shows a warming (cooling predicted in the north (south high latitudes, suggesting that aerosol forcing can cause climate change in regions far away from its origins. Our simulation results show that warming of the troposphere due to black carbon decreases rainfall in the tropics. This implies that black carbon has possibly strong influence on weakening of the tropical circulation. Most of these changes in precipitation are negatively correlated with changes of radiative fluxes at the top of model. The changes in radiative fluxes at top of model are physically consistent with the response patterns in cloud fields. On global average, low-level cloud coverage increases, mid

  15. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Science.gov (United States)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  16. Comparison of Observed and Modeled Regional Scale Aerosol Characteristics for ACE-ASIA and TRACE-P

    Science.gov (United States)

    Kapustin, V.; Clarke, A.; Carmichael, G.; Tang, Y.; McNaughton, C.

    2002-12-01

    During spring of 2001 we measured aerosol physical, chemical and optical properties for Asian aerosol with our similar instrument sets [University of Hawaii] from two aircraft - the NASA P3-B (TRACE-P) and NSF C-130 (ACE-ASIA). Observed aerosol characteristics included aerosol number concentration, measured with Ultrafine Condensation Nuclei counter (UCN) and CN counters; size distributions, obtained from a radial differential mobility analyzer (RDMA), a laser optical particle counter (OPC), aerodynamic particle sizer (APS) and wing mounted probes; aerosol light scattering and absorption obtained from nephelometers and a Particle Soot Absorption Photometers (PSAP). On the C-130 a dry and humidified nephelometer was operated to measure humidity dependence of aerosol light scattering, f(RH). Size distributions and number concentrations were measured with thermal aerosol volatilization to infer particles volatility and refractory properties linked to dust and soot aerosol components. Here we compare these observations to results from the University of Iowa CFORS/STEM model of related aerosol characteristics during these measurement periods. This model includes a wide variety of aerosol chemical and optical properties - black and organic carbon (BC and OC), dust, sulfate concentrations and calculated aerosol optical depth. This comparison is based not only on case studies bur also on regional scale air mass characterization. To facilitate this comparison a set of scatter "signature" plots of measured aerosol parameters like f(RH) vs. fractional submicron aerosol surface area or submicron refractory volume vs. total aerosol absorption is used. This approach generates clusters of data characteristics for different air masses. The model shows a high degree of consistency in identifying the main features of biomass burning, urban/industrial pollution, and dust events. This combination of measured and modeled aerosol parameters is shown to be valuable in quantifying the

  17. Treatment efficacy in a soman-poisoned guinea pig model: Added value of physostigmine?

    NARCIS (Netherlands)

    Joosen, M.J.A.; Smit, A.B.; Helden, H.P.M. van

    2011-01-01

    Current treatment of organophosphate poisoning is insufficient, and survivors may suffer from long-lasting adverse effects, such as cognitive deficits and sleep-wake disturbances. In the present study, we aimed at developing a guinea pig model to investigate the benefits of immediate and delayed sta

  18. Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion

    NARCIS (Netherlands)

    de Groot, Daphne; Grundmann, Sebastian; Timmers, Leo; Pasterkamp, Gerard; Hoefer, Imo E.

    2011-01-01

    de Groot D, Grundmann S, Timmers L, Pasterkamp G, Hoefer IE. Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion. Am J Physiol Heart Circ Physiol 300: H408-H414, 2011. First published October 15, 2010; doi: 10.1152/ajpheart.00070.2010.-Therapeutic stimul

  19. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  20. Dynamic model for ammonia volatilization in housing with partially slatted floors, for fattening pigs

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Elzing, A.

    1998-01-01

    A dynamic model was developed to simulate the ammonia volatilization from pig housing with partially slatted floors, where no litter is used. Simulated ammonia emission levels were compared with measured levels for 1 day in each 3-week period during two fattening periods of 15 weeks (one in winter a

  1. Application of sodium alginate microspheres in ischemic stroke modeling in miniature pigs

    Institute of Scientific and Technical Information of China (English)

    Yongchun Cui; Like Wu; Yi Tian; Yue Tang; Liujun Jia; Aili Wu; Peng Peng; Jianzhong Yang; Hong Du; Xiaojuan Wang

    2013-01-01

    The miniature pig is an optimal animal model for studying nervous system disease because of its physiologic and pathologic features. However, the rete mirabile composed of arteries and veins at the skull base limits their application as a model of ischemic stroke by middle cerebral artery occlusion. The present study investigated the possibility of establishing an ischemic stroke model in the miniature pig by blocking the skull base retia with sodium alginate microspheres. Three Bama miniature pigs were used. Using the monitor of C-arm X-ray machine, sodium alginate aortic arch, common carotid artery, ascending pharyngeal artery and the retia. Results were evaluated using carotid arteriography, MRI, behavior observation and histology. The unilateral rete mirabile was completely blocked, resulting in disturbance in blood supply to the basal ganglia, astasia of the right hind limb and salivation. MRI and hematoxylin-eosin staining showed an evident infarction focus in the basal ganglia. These findings indicate that sodium alginate microspheres are a suitable embolic material for blocking the skull base retia in miniature pigs to establish an ischemic stroke models.

  2. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  3. Aerosol extinction models based on measurements at two sites in Sweden.

    Science.gov (United States)

    Kaurila, Timo; Hågård, Arne; Persson, Rolf

    2006-09-10

    Two aerosol extinction models have been developed using statistical analysis of long-term optical transmission measurements in Sweden performed at two locations from July 1977 to June 1982. The aerosol volume extinction coefficient for infrared (IR) radiation is calculated by the models with visibility, temperature, and air pressure as input parameters. As in the MODTRAN model, the IR extinction coefficient is proportional to the coefficient at 550 nm, which depends on the visibility. In the new models, the wavelength dependence of the extinction also depends on the visibility. The models predict significantly higher attenuation in the IR than does the Rural aerosol model from MODTRAN, which is commonly used. Comparison with the Maritime model shows that the new models predict lower extinction values in the 3-5 microm region and higher values in the 8-12 microm region. The uncertainties in terms of variance levels are calculated by the models. The properties of aerosols, and thereby the extinction coefficient, are partly correlated to local meteorological parameters, which enables the calculation of a mean predicted value. A substantial part of the variation is, however, caused by conditions in the source area and along the trajectory path of the aerosols. They are not correlated to the local meteorological parameters and therefore cause the variance in the models.

  4. Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models.

    Science.gov (United States)

    Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz

    2017-01-01

    In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful

  5. Representation of nucleation mode microphysics in global aerosol microphysics models

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-02-01

    Full Text Available In models, nucleation mode (1 nm Dp J10 and the burdens and lifetimes of ultrafine mode (10 nm Dp J10 and shorter coagulation lifetimes of ultrafine mode particles than the model with explicit dynamics (i.e. 1 nm boundary. The spatial distributions of CN10 (Dp > 10 nm and CCN(0.2% (i.e. CCN concentrations at 0.2% supersaturation are moderately affected, especially CN10 predictions above ~ 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by the overprediction of J10 or J3 with the parameterized microphysics possibly due to the instantaneous growth rate assumption in the survival and growth parameterization. The errors in CN10 predictions are sensitive to the choice of the lower size boundary but not to the choice of the time step applied to the microphysical processes. The spatial distribution of CCN(0.2% with the 3 nm boundary is almost identical to that with the 1 nm boundary, but that with the 10 nm boundary can differ more than 10–40% in some areas. We found that the deviation in the 10 nm simulations is partly due to the longer time step (i.e. 1-h time step used in the 10 nm simulations compared to 10-min time step used in the benchmark simulations but, even with the same time step, the 10 nm cutoff showed noticeably higher errors than the 3 nm cutoff. In conclusion, we generally recommend using a lower diameter boundary of 3 nm for studies focused on aerosol indirect effects but down to 1 nm boundary for studies focused on CN10 predictions or nucleation.

  6. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  7. INVESTIGATIONS OF MAIN FACTORS AFFECTING TROPOSPHERIC NITRATE AEROSOL USING A COUPLING MODEL

    Institute of Scientific and Technical Information of China (English)

    Tijian Wang; Shu Li; Fei Jiang; Lijie Gao

    2006-01-01

    Factors affecting tropospheric nitrate aerosol formation were investigated through a number of sensitivity studies using the thermodynamic equilibrium model ISORROPIA and the condensed gas-phase chemistry model. Resuits indicate that the equilibrium concentration of nitrate aerosol varies with solar zenith angle, air temperature, relative humidity, initial SO2 concentration, initial NO2 concentration and initial NH3 concentration. NH3 concentration and solar zenith angle play the most important roles, followed by relative humidity and NO2 concentration. It seems that the relations between nitrate aerosol and these four factors, as well as air temperature, are strong and highly nonlinear due to the coupling effect. The influence of SO2 concentration on nitrate aerosol is near-linear and weak.

  8. Influence of different meteorological datasets and emission inventories on modeled fire aerosol abundance

    Science.gov (United States)

    Lee, Hsiang-He; Bar-Or, Rotem; Wang, Chien

    2017-04-01

    Fires including peatland burning in Southeast Asia have become a major concern to the general public as well as governments in the region. This is because aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatialtemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibility and particulate matter concentration observations, supplemented by decadal long (2003 to 2014) simulations using the Weather Research and Forecasting (WRF) model with a fire aerosol module, driven by high-resolution biomass burning emission inventories. We find that in the past decade, fire aerosols are responsible for nearly all the events with very low visibility (aerosols alone are also responsible for a substantial fraction of the low visibility events (visibility aerosol concentration and visibility, especially in Bangkok and Singapore. For instance, the contribution to fire aerosol in Singapore from northern Australia changes from nearly zero in the simulation driven by FINNv1.5 to about 22% in another simulation driven by GFEDv4.1s. Based on these results, we suggest further research is needed to improve the current estimate of the spatiotemporal distribution of fire emissions, in addition to total emitted quantities from the fire hotspots.

  9. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

    Science.gov (United States)

    Kristiansen, N. I.; Stohl, A.; Olivié, D. J. L.; Croft, B.; Søvde, O. A.; Klein, H.; Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; Zhang, K.; Tsigaridis, K.; Bergman, T.; Evangeliou, N.; Wang, H.; Ma, P.-L.; Easter, R. C.; Rasch, P. J.; Liu, X.; Pitari, G.; Di Genova, G.; Zhao, S. Y.; Balkanski, Y.; Bauer, S. E.; Faluvegi, G. S.; Kokkola, H.; Martin, R. V.; Pierce, J. R.; Schulz, M.; Shindell, D.; Tost, H.; Zhang, H.

    2016-03-01

    Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (137Cs) and xenon-133 (133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available aerosol surface area. 137Cs size distribution measurements taken close to the power plant suggested that accumulation-mode (AM) sulfate aerosols were the main carriers of cesium. Hence, 137Cs can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas 133Xe behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of 137Cs that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and 133Xe emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled 137Cs and 133Xe concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime τe, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days (95

  10. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

    Directory of Open Access Journals (Sweden)

    N. I. Kristiansen

    2015-09-01

    Full Text Available Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (137Cs and xenon-133 (133Xe were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available aerosol surface area. 137Cs size distribution measurements taken close to the power plant suggested that accumulation-mode (AM sulphate aerosols were the main carriers for the cesium. Hence, 137Cs can be used as a proxy tracer for the AM sulphate aerosol's fate in the atmosphere. In contrast, the noble gas 133Xe behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of 137Cs that were assigned to an aerosol tracer with each model's default properties of AM sulphate, and 133Xe emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulphate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled 37Cs and 133Xe concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime τe, calculated from station measurement data taken between two and nine weeks after the start of the

  11. A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model

    Science.gov (United States)

    Lee, Yunha; Adams, P. J.

    2012-01-01

    This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.

  12. Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation

    Science.gov (United States)

    Liu, X.; Easter, R. C.; Ghan, S. J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; Conley, A.; Park, S.; Neale, R.; Hannay, C.; Ekman, A. M. L.; Hess, P.; Mahowald, N.; Collins, W.; Iacono, M. J.; Bretherton, C. S.; Flanner, M. G.; Mitchell, D.

    2011-12-01

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical

  13. Biases in modeled surface snow BC mixing ratios in prescribed-aerosol climate model runs

    OpenAIRE

    Doherty, S. J.; C. M. Bitz; M. G. Flanner

    2014-01-01

    Black carbon (BC) in snow lowers its albedo, increasing the absorption of sunlight, leading to positive radiative forcing, climate warming and earlier snowmelt. A series of recent studies have used prescribed-aerosol deposition flux fields in climate model runs to assess the forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we compare progn...

  14. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  15. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  16. Direct Climatic Effect of Aerosols and Interdecadal Variations over East Asia Investigated by a Regional Coupled Climate-Chemistry/Aerosol Model

    Institute of Scientific and Technical Information of China (English)

    HAN Zhi-Wei; XIONG Zhe; LI Jia-Wei

    2011-01-01

    The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.

  17. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    Science.gov (United States)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  18. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2010-02-01

    Full Text Available Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing.

    Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  19. High-throughput gene expression analysis in pigs as model for respiratory infections

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Schou, Kirstine Klitgaard

    Animal models are essential in understanding the mechanisms involved in human infectious disease and for the development of effective prevention and treatment strategies. It is increasingly realized that large animal models like the pig are exceptionally human like and serve as an excellent model...... highly controlled experimental infections and to study changes of symptoms, viral titer, and expression of microRNAs/mRNAs as the influenza infection progresses in time, generating information that would be difficult to obtain from human patients....

  20. Transport of aerosol pollution in the UTLS during Asian summer monsoon as simulated by ECHAM5-HAMMOZ model

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2012-11-01

    Full Text Available An eight member ensemble of ECHAM5-HAMMOZ simulations for the year 2003 is analyzed to study the transport of aerosols in the Upper Troposphere and Lower Stratosphere (UTLS during the Asian Summer Monsoon (ASM. Simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September when convective activity over the Indian subcontinent is highest. Model simulations indicate boundary layer aerosol pollution as the source of this UTLS aerosol layer and identify ASM convection as the dominant transport process. Evidence of ASM transport of aerosols into the stratosphere is observed in HALogen Occultation Experiment (HALOE and Stratospheric Aerosol and Gas Experiment (SAGE II aerosol extinction. The impact of aerosols in the UTLS region is analyzed by evaluating the differences between simulations with (CTRL and without aerosol (HAM-off loading. The transport of anthropogenic aerosols in the UTLS increases cloud ice, water vapour and temperature, indicating that aerosols play an important role in enhancement of cloud ice in the Upper-Troposphere (UT. Aerosol induced circulation changes include a weakening of the main branch of the Hadley circulation and increased vertical transport around the southern flank of the Himalayas and reduction in monsoon precipitation over the India region.

  1. Initial embryology and pluripotent stem cells in the pig - the quest for establishing the pig as a model for cell therapy

    DEFF Research Database (Denmark)

    Secher, Jan; Callesen, Henrik; Freude, Karla Kristine;

    2016-01-01

    to produce genetically modified mice since the mid-80s. However, no convincing reports on the generation of bona fide porcine embryonic stem cells or embryonic germ cells resulted from these activities, and with the advent of somatic cell nuclear transfer during the late 90s, alternative methods for creating......The quest for porcine pluripotent stem cells (PSCs) was initiated in the early 90s. Initially, it was the intention to benefit from these cells for production of genetically modified pigs using homologous recombination followed by derivation of chimeric offspring; a technology that has been used...... genetically modified pigs emerged. Over the past years, renewed interest in porcine PSCs has sparked activities in deriving in particular porcine induced pluripotent stem cells to develop the pig as a faithful model for studying the potentials and risks associated with induced pluripotent stem cell...

  2. Finite element analysis modeling of pulse-laser excited photothermal deflection (mirage effect) from aerosols.

    Science.gov (United States)

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    A finite element analysis method for numerical modeling of the photothermal deflection spectroscopy of aerosols is presented. The models simulate pulse-laser excited photothermal deflection from aerosols collected on a plane surface substrate in air medium. The influence of the aerosol and substrate properties on the transient photothermal deflection signal is examined. We have previously obtained experimental results for photothermal deflection spectrometry of aerosols deposited onto a plate from an impactor system (O. O. Dada and S. E. Bialkowski, Appl. Spectrosc. 62, 1336 (2008)). This paper supports the validity of the experimental results presented in that paper and helps in answering some of the questions raised. The modeling results presented here demonstrate that the (peak) normalized transient temperature change profile and (peak) normalized transient photothermal deflection profile are a good approximation and invariant with number of particles, inter-particle distance, and particulate shape, which suggests that the photothermal deflection signal amplitude may be calibrated linearly with total mass of aerosols and the method could be applied to analysis of complex aerosols.

  3. Application of computer-aided multi-scale modelling framework - Aerosol case study

    DEFF Research Database (Denmark)

    Heitzig, Martina; Gregson, Christopher; Sin, Gürkan;

    2011-01-01

    A computer-aided modelling tool for efficient multi-scale modelling has been developed and is applied to solve a multi-scale modelling problem related to design and evaluation of fragrance aerosol products. The developed modelling scenario spans three length scales and describes how droplets...

  4. Modeling biogenic and anthropogenic secondary organic aerosol in China

    Science.gov (United States)

    Hu, Jianlin; Wang, Peng; Ying, Qi; Zhang, Hongliang; Chen, Jianjun; Ge, Xinlei; Li, Xinghua; Jiang, Jingkun; Wang, Shuxiao; Zhang, Jie; Zhao, Yu; Zhang, Yingyi

    2017-01-01

    A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene oxidation was applied to study the spatial and temporal distribution of SOA in China in the entire year of 2013. Predicted organic carbon (OC), elemental carbon and volatile organic compounds agreed favorably with observations at several urban areas, although the high OC concentrations in wintertime in Beijing were under-predicted. Predicted summer SOA was generally higher (10-15 µg m-3) due to large contributions of isoprene (country average, 61 %), although the relative importance varies in different regions. Winter SOA was slightly lower and was mostly due to emissions of alkane and aromatic compounds (51 %). Contributions of monoterpene SOA was relatively constant (8-10 %). Overall, biogenic SOA accounted for approximately 75 % of total SOA in summer, 50-60 % in autumn and spring, and 24 % in winter. The Sichuan Basin had the highest predicted SOA concentrations in the country in all seasons, with hourly concentrations up to 50 µg m-3. Approximately half of the SOA in all seasons was due to the traditional equilibrium partitioning of semivolatile components followed by oligomerization, while the remaining SOA was mainly due to reactive surface uptake of isoprene epoxide (5-14 %), glyoxal (14-25 %) and methylglyoxal (23-28 %). Sensitivity analyses showed that formation of SOA from biogenic emissions was significantly enhanced due to anthropogenic emissions. Removing all anthropogenic emissions while keeping the biogenic emissions unchanged led to total SOA concentrations of less than 1 µg m-3, which suggests that manmade emissions facilitated biogenic SOA formation and controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.

  5. Aerosol effects on ozone concentrations in Beijing: A model sensitivity study

    Institute of Scientific and Technical Information of China (English)

    Jun Xu; Yuanhang Zhang; Shaoqing Zheng; Youjiang He

    2012-01-01

    Most previous O3 simulations were based only on gaseous phase photochemistry.However,some aerosol-related processes,namely,heterogeneous reactions occurring on the aerosol surface and photolysis rate alternated by aerosol radiative influence,may affect O3 photochemistry under high aerosol loads.A three-dimensional air quality model,Models-3/Community Multi-scale Air Quality-Model of Aerosol Dynamics,Reaction,Ionization,and Dissolution,was employed to simulate the effects of the above-mentioned processes on O3 formation under typical high O3 episodes in Beijing during summer.Five heterogeneous reactions,i.e.,NO2,NO3,N2O5,HO2,and O3,were individually investigated to elucidate their effects on O3 formation.The results showed that the heterogeneous reactions significantly affected O3 formation in the urban plume.NO2 heterogeneous reaction increased O3 to 90 ppb,while HO2 heterogeneous reaction decreased O3 to 33 ppb.In addition,O3 heterogeneous loss decreased O3 to 31 ppb.The effects of NO2,NO3,and N2O5 heterogeneous reactions showed opposite O3 concentration changes between the urban and extra-urban areas because of the response of the reactions to the two types of O3 formation regimes.When the aerosol radiative influence was included,the photolysis rate decreased and O3 decreased significantly to 73 ppb O3.The two aerosol-related processes should be considered in the study of O3 formation because high aerosol concentration is a ubiquitous phenomenon that affects the urban- and regional air quality in China.

  6. Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

    2014-01-29

    A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

  7. Aerosol impact on seasonal prediction using FIM-Chem-iHYCOM coupled model

    Science.gov (United States)

    sun, shan; Grell, Georg; Bleck, Rainer

    2016-04-01

    A coupled model consisting of the weather model FIM and the ocean model iHYCOM, both operating on an icosahedral horizontal grid, is being developed for subseasonal to seasonal prediction. Initial results indicate that the model skill is comparable to that of the operational model CFSv2 used by NCEP. In addition, an online atmospheric chemistry module is coupled to FIM. The purpose of onging experiments with the FIM-Chem-iHYCOM combination is to investigate the aerosol impact on the atmospheric and oceanic circulation at the seasonal scale. We compare the model sensitivity with various chemistry emissions, including aerosols, fire and anthropogenic emissions. Additional emphasis of this work is on the effect of aerosols on cloudiness and precipitation, either directly or indirectly through changes in SST. To isolate the latter effect, we conduct parallel experiments with observed SST.

  8. MODELING OF ORGANIC CARBON AEROSOL DISTRIBUTIONS OVER EAST ASIA IN THE SPRINGTIME

    Institute of Scientific and Technical Information of China (English)

    Meigen Zhang

    2004-01-01

    The Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to investigate the transport and evolution processes of organic carbon (OC) aerosols in the springtime of 2001. The simulated OC mixing ratios are compared with ground level observations at three remote sites in Japan during the Aerosol Characterization Experiment - Asia (ACE-Asia) field campaign. It is found that the modeled OC concentrations are generally in good agreement with the observed ones, and the model reproduces the time variations in OC mixing ratios reasonably well. Model results show that high levels (larger than 16 mg.m-2) of column burden of OC aerosols concentrated in the middle reaches of Yangtse River and southern isopleth of 4 mg.m-2 extended to the inner area of northwestern Pacific Ocean.

  9. Comparison of aerosol optical thickness retrieval from spectroradiometer measurements and from two radiative transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Utrillas, M.P.; Martinez-Lozano, J.A.; Tena, F. [Universitat de Valencia, Dept. de Termodinamica, Valencia (Spain); Cachorro, V.E. [Universidad de Valladolid, Dept. de Fisica Aplicada 1, Valladolid (Spain); Hernandez, S. [Universidad de Valladolid, Dept. de Ingenieria Agricola y Forestal, Valladolid (Spain)

    2000-07-01

    The spectral values of the aerosol optical thickness {tau}{sub a{lambda}} in the 400-670 nm band have been determined from 500 solar direct irradiance spectra at normal incidence registered at Valencia (Spain) in the period from July 1993 to March 1997. The {tau}{sub a{lambda}} values obtained from experimental measurements have been compared with the boundary layer aerosol models implemented in the radiative transfer codes ZD-LOA and LOWTRAN 7. For the ZD-LOA code, the continental and maritime models have been considered and for the LOWTRAN 7 code the rural, maritime, urban and tropospheric models have been used. The obtained results show that the aerosol model that best represents the average turbidity of the boundary layer for the urban area of Valencia (Spain) is the continental model when the ZD-LOA code is used and the urban model when the LOWTRAN 7 code is used. (Author)

  10. Comparison of activity coefficient models for atmospheric aerosols containing mixtures of electrolytes, organics, and water

    Science.gov (United States)

    Tong, Chinghang; Clegg, Simon L.; Seinfeld, John H.

    Atmospheric aerosols generally comprise a mixture of electrolytes, organic compounds, and water. Determining the gas-particle distribution of volatile compounds, including water, requires equilibrium or mass transfer calculations, at the heart of which are models for the activity coefficients of the particle-phase components. We evaluate here the performance of four recent activity coefficient models developed for electrolyte/organic/water mixtures typical of atmospheric aerosols. Two of the models, the CSB model [Clegg, S.L., Seinfeld, J.H., Brimblecombe, P., 2001. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. Journal of Aerosol Science 32, 713-738] and the aerosol diameter dependent equilibrium model (ADDEM) [Topping, D.O., McFiggans, G.B., Coe, H., 2005. A curved multi-component aerosol hygroscopicity model framework: part 2—including organic compounds. Atmospheric Chemistry and Physics 5, 1223-1242] treat ion-water and organic-water interactions but do not include ion-organic interactions; these can be referred to as "decoupled" models. The other two models, reparameterized Ming and Russell model 2005 [Raatikainen, T., Laaksonen, A., 2005. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest. Atmospheric Chemistry and Physics 5, 2475-2495] and X-UNIFAC.3 [Erdakos, G.B., Change, E.I., Pandow, J.F., Seinfeld, J.H., 2006. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3. Atmospheric Environment 40, 6437-6452], include ion-organic interactions; these are referred to as "coupled" models. We address the question—Does the inclusion of a treatment of ion-organic interactions substantially improve the performance of the coupled models over

  11. Experimental model of enterotoxigenic Escherichia coli infection in pigs: potential for an early recognition of colibacillosis by monitoring of behavior.

    Science.gov (United States)

    Krsnik, B; Yammine, R; Pavicić, Z; Balenović, T; Njari, B; Vrbanac, I; Valpotić, I

    1999-10-01

    The hypothesis that altered behavior is a sign for an early recognition of disease was tested. The experiment was conducted to evaluate the behavioral patterns of pigs in a model of postweaning colibacillosis. Twenty-five weaned pigs (from a herd that was previously found to be highly susceptible to F4+ Escherichia coli strains) were randomly assigned into 5 groups, kept in isolated pens under the controlled ambiental conditions. One day after weaning, the pigs from three groups were intragastrically inoculated (via orogastric tube) with either F4ac+ (1466 or 2407) or F4- (1467) nonenterotoxigenic E. coli (non-ETEC) strains, respectively. The pigs from the fourth group were inoculated with F4ac+ ETEC strain M1823 and the remaining 5 pigs that received broth containing 1.2% sodium bicarbonate were kept as noninoculated controls. The pigs were examined daily and the frequency and duration of their behavioral patterns, such as eating, drinking, lying, standing, urinating, defecating, rooting and playing were monitored for 300 h during a period of 10 days. In this model, three conditions were also observed in F4-susceptible pigs: (1) acute fatal diarrheal disease; (2) moderate diarrhea and weight loss and (3) no diarrhea and weight loss. The incidence (both frequency and duration) of defecating was significantly higher (P < 0.05) in pigs inoculated with F4ac+ ETEC strain M1823 as compared to that of noninoculated (control) pigs. Pigs inoculated with F4ac+ non-ETEC strain 1466 had a significantly lower frequency of eating (P < 0.05) and frequency/duration of drinking (P < 0.05) than did the controls. The 1466-inoculated pigs, had an increased diarrhea score, but frequency/duration of defecating was not significantly different. Pigs inoculated with F4ac+ non-ETEC strain 2407 spent more time in lying (P < 0.05) than did noninoculated pigs. Conversely, the pigs that received F4- non-ETEC strain 1467 laid shorter (P < 0.05) and ate/drank less frequently (P < 0.05) than the

  12. Evaluation of aerosol simulation in a global model using multiple-platform observations

    Science.gov (United States)

    Ma, X.

    2015-12-01

    Large diversity in the magnitude of aerosol optical depth (AOD) and their spatial distributions is one of key factors contributing to the large uncertainty of the model predicted aerosol radiative forcing (global mean ranging from -0.02 to -0.58W m-2) and its climatic effect. Therefore, evaluation of model performances with respect to AOD is a critical step to improve the model simulations and, thus, reduce the diversities. In this study, multi-year AOD data (2004-2012) from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals are used to evaluate the performance of a global model, GEOS-Chem-APM, one of global models involved in AeroCom phase II aerosol module inter-comparison project. Comparisons of the modeled AOD with satellite data on spatial distribution, seasonal and inter-annual variations are quantitatively analyzed. In addition, several regions representative of various aerosol dominant species are chose for the detailed evaluations of AOD between the simulation and AERONET observations. The capability and weakness of the model to capture seasonal variation and chemical species is also discussed for further improvement in the future.

  13. A new approach to endocochlear potential and potassium ion concentration measures in mini pig models

    Institute of Scientific and Technical Information of China (English)

    Lili Ren a; Ling Zhang b; Weiwei Guo a; Wei Sun c; Shiming Yang a

    2014-01-01

    Mini pig models are large mammals and their ears are more similar with human beings in structure and development than other animals. However, the study on porcine ears is still in the initial stage and there is no description of an ideal operation approach to endocochlear potential and potassium ion concentration measurements. In this article, we describe a pre-auricular surgical approach to access the middle and inner ear for endocochlear potential and potassium ion concentration measures in mini pig models. Ten one-week old normal mini pigs were used in the study. The bulla of the temporal bone was accessed via a pre-auricular approach for endocochlear potential and potassium ion concentration measurements. The condition of the animals during the first posteexperiment 24 h was observed. One animal died during surgery. The pre-auricular approach improved protection and preservation of relevant nervous and vascular elements including the facial nerve and carotid ar-tery. So, the pre-auricular approach can be used for endocochlear potential and potassium ion concentration measurements with improved nerve and artery preservation mini pigs.

  14. The Validity of Osteoarthritis Model Induced by Bilateral Ovariectomy in Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To evaluate the validity of osteoarthritis model induced by bilateral ovariectomy in guinea pig, 32-month-old female guinea pigs were randomly divided into two groups: a sham operation group (control group) and an ovariectomized group (OVX group). The animals were killed 6 or 12 weeks after the operation and the degeneration of the knees were assessed microscopically and histologically by scanning electron microscope (SEM), transmission electron microscope (TEM) and light microscope. The serum levels of estrogen and gestone were detected by immune contest assay.The scoring of articular cartilage histopathology of tibial plateau was performed by histopathological examination. The blood serum levels of estrogen and gestone were decreased significantly in the OVX group as compared with the control group 6 or 12 weeks after the operation. Joint cartilage degeneration as detected by SEM and TEM could be found at the 6th week, but severe degenerative lesions were observed at the 12th week in the OVX group as compared with the control group (P<0.01).The histopathological score of articular cartilage in tibial plateau in OVX group was higher than that of control group, which was coincident with the changes of estrogen and the ultrastructure (P<0.01).The findings suggested that bilateral ovariectomy in guinea pig can induce the severe osteoarthritis that is similar to the aging-induced OA in human. Therefore, the model of the osteoarthritis by bilateral ovariectomy in guinea pig in this study is valid.

  15. Global distribution and climate forcing of marine organic aerosol – Part 1: Model improvements and evaluation

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2011-07-01

    Full Text Available Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR's Community Atmosphere Model (CAM5 with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7. Emissions of marine primary organic aerosols (POA, phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA and methane sulfonate (MS are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011 and Vignati et al. (2010 emission parameterizations, respectively. Marine sources of SOA and particulate MS (containing both sulfur and carbon atoms contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM with POA concentrations from the two emission parameterizations shows that both Gantt et al. (2011 and Vignati et al. (2010 formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011 parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN. The largest increases (up to 20 % in CCN (at a supersaturation (S of 0.2 % number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides

  16. Global distribution and climate forcing of marine organic aerosol - Part 1: Model improvements and evaluation

    Science.gov (United States)

    Meskhidze, N.; Xu, J.; Gantt, B.; Zhang, Y.; Nenes, A.; Ghan, S. J.; Liu, X.; Easter, R.; Zaveri, R.

    2011-07-01

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS-) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr-1, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS- (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr-1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m-3, with values up to 400 ng m-3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increase and decrease in the concentration of CCN over different parts of

  17. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Science.gov (United States)

    Meskhidze, N.; Xu, J.; Gantt, B.; Zhang, Y.; Nenes, A.; Ghan, S. J.; Liu, X.; Easter, R.; Zaveri, R.

    2011-11-01

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS-) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr-1, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS- (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr-1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m-3, with values up to 400 ng m-3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20%) in CCN (at a supersaturation (S) of 0.2%) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases

  18. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  19. Development and basic evaluation of a prognostic aerosol scheme in the CNRM Climate Model

    Science.gov (United States)

    Michou, M.; Nabat, P.; Saint-Martin, D.

    2014-09-01

    We have implemented a prognostic aerosol scheme in the CNRM-GAME/CERFACS climate model, based upon the GEMS/MACC aerosol module of the ECMWF operational forecast model. This scheme describes the physical evolution of the five main types of aerosols, namely black carbon, organic matter, sulfate, desert dust and sea-salt. In this work, we describe the specificities of our implementation, for instance, taking into consideration a different dust scheme or boosting biomass burning emissions by a factor of 2, as well as the evaluation performed on simulation outputs. The simulations consist of 2004 conditions and transient runs over the 1993-2012 period, and are either free-running or nudged towards the ERA-Interim Reanalysis. Evaluation data sets include several satellite instrument AOD products (i.e., MODIS Aqua classic and Deep-Blue products, MISR and CALIOP products), as well as ground-based AERONET data and the derived AERONET climatology, MAC-v1. The internal variability of the model has little impact on the seasonal climatology of the AODs of the various aerosols, and the characteristics of a nudged simulation reflect those of a free-running simulation. In contrast, the impact of the new dust scheme is large, with modelled dust AODs from simulations with the new dust scheme close to observations. Overall patterns and seasonal cycles of the total AOD are well depicted with, however, a systematic low bias over oceans. The comparison to the fractional MAC-v1 AOD climatology shows disagreements mostly over continents, while that to AERONET sites outlines the capability of the model to reproduce monthly climatologies under very diverse dominant aerosol types. Here again, underestimation of the total AOD appears in several cases, linked sometimes to insufficient efficiency of the aerosol transport away from the aerosol sources. Analysis of monthly time series at 166 AERONET sites shows, in general, correlation coefficients higher than 0.5 and lower model variance than

  20. The protease inhibitors ritonavir and saquinavir influence lipid metabolism: a pig model for the rapid evaluation of new drugs

    DEFF Research Database (Denmark)

    Petersen, E.; Mu, Huiling; Porsgaard, Trine

    2010-01-01

    Background: Studies of the effects of antiretroviral drugs on lipid metabolism are limited by the availability of suitable models. We have thus developed an animal model utilising Gottingen mini-pigs. The normal lipid metabolism of mini-pigs closely reflects that of humans and they are expected...... to have similar reactions to antiretroviral drugs. Methods: The pigs were treated orally with high doses of the protease inhibitors ritonavir and saquinavir for 4 weeks. The model allows repeated concomitant biopsies from liver, muscle, adipose tissue and plasma samples. Results: The study showed...

  1. Lidar signal simulation for the evaluation of aerosols in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    S. Stromatas

    2012-06-01

    Full Text Available We present an adaptable tool, the OPTSIM (OPTical properties SIMulation software, for the simulation of optical properties and lidar attenuated backscattered profiles (β' from aerosol concentrations calculated by chemistry-transport models (CTM. It was developed to support model evaluation using an original approach based on the lidar Level 1 observations (β', avoiding the use of Level 2 aerosol retrievals which include specific assumptions on aerosol types that may not be in agreement with the CTM. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes.

  2. Maternally Derived Immunity Extends Swine Influenza A Virus Persistence within Farrow-to-Finish Pig Farms: Insights from a Stochastic Event-Driven Metapopulation Model

    Science.gov (United States)

    Cador, Charlie; Rose, Nicolas; Willem, Lander; Andraud, Mathieu

    2016-01-01

    Swine Influenza A Viruses (swIAVs) have been shown to persist in farrow-to-finish pig herds with repeated outbreaks in successive batches, increasing the risk for respiratory disorders in affected animals and being a threat for public health. Although the general routes of swIAV transmission (i.e. direct contact and exposure to aerosols) were clearly identified, the transmission process between batches is still not fully understood. Maternally derived antibodies (MDAs) were stressed as a possible factor favoring within-herd swIAV persistence. However, the relationship between MDAs and the global spread among the different subpopulations in the herds is still lacking. The aim of this study was therefore to understand the mechanisms induced by MDAs in relation with swIAV spread and persistence in farrow-to-finish pig herds. A metapopulation model has been developed representing the population dynamics considering two subpopulations—breeding sows and growing pigs—managed according to batch-rearing system. This model was coupled with a swIAV-specific epidemiological model, accounting for partial passive immunity protection in neonatal piglets and an immunity boost in re-infected animals. Airborne transmission was included by a between-room transmission rate related to the current prevalence of shedding pigs. Maternally derived partial immunity in piglets was found to extend the duration of the epidemics within their batch, allowing for efficient between-batch transmission and resulting in longer swIAV persistence at the herd level. These results should be taken into account in the design of control programmes for the spread and persistence of swIAV in swine herds. PMID:27662592

  3. A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia

    Institute of Scientific and Technical Information of China (English)

    LI Jiawei; HAN Zhiwei

    2012-01-01

    In this study,a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia.Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well.Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers:the Taklimakan Desert (~ 1000μg m-3),the Gobi Desert (~ 400 μg m-3),and the Huabei Plain (~ 300 μg m-3) of China.Vertically,high PM10 concentrations ranging from 100 μg m-3 to 250μg m-3 occurred from the surface to an altitude of 6000 m at 30°-45°N in spring.In winter,the vertical gradient was so large that most aerosols were restricted in the boundary layer.Both sulfate and ammonium reached their highest concentrations in autumn,while nitrate reached its maximum level in winter.Black carbon and organic carbon aerosol concentrations reached maximums in winter.Soil dust were strongest in spring,whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer.The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg).The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden.The dust burden was about twice the anthropogenic aerosol burden,implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.

  4. Aerosol-Driven Surface Solar Dimming Over Asia: Insights from a Model-Observation Intercomparison

    Science.gov (United States)

    Persad, G.; Ming, Y.; Ramaswamy, V.

    2012-12-01

    Sun photometer and satellite data have indicated a reduction in surface solar radiation (SSR) over India and China during the second half of the 20th century that is at least partly due to anthropogenic aerosols. Recent integrated observational studies of aerosol properties also suggest that this SSR reduction may have a strong contribution from atmospheric absorption by carbonaceous aerosols over Asia. The reduction in SSR and associated redistribution of energy between the surface and atmosphere may have significant implications for regional hydrological systems like the summertime monsoon. Previous generations of general circulation models (GCMs), however, have been largely unsuccessful at recreating aerosol-driven trends in SSR, hindering theoretical investigation of causes and effects of these trends in regional climate. We analyze the behavior of SSR over Asia in the Geophysical Fluid Dynamics Laboratory's AM3 Atmospheric General Circulation Model—the updated aerosol treatment of which contains internal mixing of aerosols and interactive dry and wet deposition—in the context of new satellite and ground-based observational estimates of aerosol-driven SSR reduction. We find that AM3 is more successful than the previous generation of GCMs at recreating the observed SSR trend over South and East Asia and also suggests that as much as half of the clear-sky trend may be attributable to increases in atmospheric absorption in both regions. We will discuss the SSR and atmospheric absorption trends over China and India, as depicted in both observations and AM3, as well the particular aerosol processes responsible for the model's recreation of the trends and their implications for regional climate.

  5. Modeling Deactivation of Catalysts for Selective Catalytic Reduction of NOx by KCl Aerosols

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Castellino, Francesco; Jensen, Anker Degn

    2017-01-01

    with the catalyst at the surface of the monolith wall, the transport and accumulation of potassium, bound to Brønsted acid sites, throughout the catalyst wall, and the resulting loss in SCR activity. Using an experimentally measured KCl aerosol size distribution as input, the model can replicate the observed...... if the particle size of the incoming aerosol is increased. The model provides, for the first time, a mechanistic framework for understanding and modeling SCR catalyst deactivation by KCl that may be applicable also for deactivation by other salts and at different operating conditions.......A detailed model for the deactivation of a V2O5–WO3/TiO2-based SCR monolith catalyst by potassium poisoning has been developed and validated. The model accounts for deposition of KCl aerosol particles present in the flue gas on the external catalyst surface, the reaction of the deposited particles...

  6. An indoor air aerosol model for outdoor contaminant transmission into occupied rooms

    Institute of Scientific and Technical Information of China (English)

    XIE Hui; ZHAO Shen; CAO Guo-qing

    2014-01-01

    The paper presents a simple model for outdoor air contaminant transmission into occupied rooms. In the model, several factors such as filtration, ventilation, deposition, re-emission, outdoor concentration and indoor sources are included. The model results show that the air exchange rate plays an important role in the transmission of outdoor contaminants into the indoor environment. The model shows that increasing the value of the filtration efficiency decreases the mass concentration of indoor particles. In addition, if outdoor aerosol particles have a periodic behaviour, indoor aerosol particles also behave periodically but smoother. Indoor sources are found to be able to increase indoor concentrations greatly and continuously.

  7. Bayesian simultaneous equation models for the analysis of energy intake and partitioning in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Jørgensen, Henry; Kebreab, E

    2012-01-01

    ABSTRACT SUMMARY The objective of the current study was to develop Bayesian simultaneous equation models for modelling energy intake and partitioning in growing pigs. A key feature of the Bayesian approach is that parameters are assigned prior distributions, which may reflect the current state...... of nature. In the models, rates of metabolizable energy (ME) intake, protein deposition (PD) and lipid deposition (LD) were treated as dependent variables accounting for residuals being correlated. Two complementary equation systems were used to model ME intake (MEI), PD and LD. Informative priors were...... genders (barrows, boars and gilts) selected on the basis of similar birth weight. The pigs were fed four diets based on barley, wheat and soybean meal supplemented with crystalline amino acids to meet or exceed Danish nutrient requirement standards. Nutrient balances and gas exchanges were measured at c...

  8. Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2009-11-01

    Full Text Available Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR are simulated by only a few GCMs. The GCMs that simulate a negative OLR–τa relationship show a strong positive correlation between

  9. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  10. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Science.gov (United States)

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  11. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  12. Aerosol specification in single-column Community Atmosphere Model version 5

    Science.gov (United States)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-01

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important). By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm-3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.

  13. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms.

    Science.gov (United States)

    Mur, L; Sánchez-Vizcaíno, J M; Fernández-Carrión, E; Jurado, C; Rolesu, S; Feliziani, F; Laddomada, A; Martínez-López, B

    2017-03-13

    African swine fever virus (ASFV) has been endemic in Sardinia since 1978, resulting in severe losses for local pig producers and creating important problems for the island's veterinary authorities. This study used a spatially explicit stochastic transmission model followed by two regression models to investigate the dynamics of ASFV spread amongst domestic pig farms, to identify geographic areas at highest risk and determine the role of different susceptible pig populations (registered domestic pigs, non-registered domestic pigs [brado] and wild boar) in ASF occurrence. We simulated transmission within and between farms using an adapted version of the previously described model known as Be-FAST. Results from the model revealed a generally low diffusion of ASF in Sardinia, with only 24% of the simulations resulting in disease spread, and for each simulated outbreak on average only four farms and 66 pigs were affected. Overall, local spread (indirect transmission between farms within a 2 km radius through fomites) was the most common route of transmission, being responsible for 98.6% of secondary cases. The risk of ASF occurrence for each domestic pig farm was estimated from the spread model results and integrated in two regression models together with available data for brado and wild boar populations. There was a significant association between the density of all three populations (domestic pigs, brado, and wild boar) and ASF occurrence in Sardinia. The most significant risk factors were the high densities of brado (OR = 2.2) and wild boar (OR = 2.1). The results of both analyses demonstrated that ASF epidemiology and infection dynamics in Sardinia create a complex and multifactorial disease situation, where all susceptible populations play an important role. To stop ASF transmission in Sardinia, three main factors (improving biosecurity on domestic pig farms, eliminating brado practices and better management of wild boars) need to be addressed.

  14. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.

    Science.gov (United States)

    Stachowiak, M; Szczerbal, I; Switonski, M

    2016-01-01

    The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome

    Directory of Open Access Journals (Sweden)

    Ruimin Qiao

    2015-06-01

    Full Text Available Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq analysis on affected and healthy pig embryos (day 14.25. We identified a list of 337 differentially expressed genes (DEGs between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  16. Results of Acellular Dermis Matrix Graft Used for Tympanoplasty in Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Farhad Farahani

    2015-03-01

    Full Text Available Introduction: To describe the underlay tympanoplasty technique using an acellular dermal graft(AlloDerm for tympanic membrane (TM reconstruction in a guinea pig model and to demonstrate the feasibility of the technique using AlloDerm tissue harvested from the prepuce as a source of tissue for future grafting in human TM reconstruction.   Materials and Methods: The prepuce was divided during circumcision and the acellular dermis was prepared using a number of standard processes. Two groups of guinea pigs were prepared. In the case group (20 guinea pigs and 40 ears removal of TM was performed with tympanoplasty using AlloDerm, and in the control group (eight guinea pigs and 16 ears, removal of TM was performed without tympanoplasty. In each group, the TM was completely removed in one ear and partially removed on the other side, and the integrity of the TMs was re-evaluated after 8 weeks.   Results: In the case group, the healing rates in the completely and partially removed TMs were 83.3% and 94.4%, respectively. The difference in healing rate (0% and 66.7%, respectively was statistically significant (P

  17. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome.

    Science.gov (United States)

    Qiao, Ruimin; He, Yuyong; Pan, Bo; Xiao, Shijun; Zhang, Xufei; Li, Jing; Zhang, Zhiyan; Hong, Yuan; Xing, Yuyun; Ren, Jun

    2015-06-01

    Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq) analysis on affected and healthy pig embryos (day 14.25). We identified a list of 337 differentially expressed genes (DEGs) between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn) as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  18. Cost-benefit Analysis of Scale Pig Breeding in Shandong Province Based on Modified Entropy Weight-TOPSIS Model

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan; ZHANG; Shimin; SUN

    2014-01-01

    According to the relevant statistical data in National Agricultural cost-benefit Data Compilation(2001- 2013),we use the modified entropy weight- TOPSIS model to research the cost-benefit status of scale pig breeding in Shandong Province from the perspective of comparing it with that of the entire country and 9 other main pig producing areas. The results show that compared with the national average,the cost-benefit ratio of small scale pig breeding in Shandong Province is lower,while the cost-benefit ratio of medium scale and large scale pig breeding is significantly improved; the cost-benefit ratio of small scale pig breeding in Shandong Province is basically the same as that in 9 other main pig producing areas,while the cost-benefit ratio of medium scale and large scale pig breeding is higher; the output value of main products and the purchase price of piglet are two major bottlenecks restricting the cost-benefit improvement of scale pig breeding in Shandong Province.

  19. Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model.

    Directory of Open Access Journals (Sweden)

    Debra J Thomas

    Full Text Available BACKGROUND: Probiotics have been studied as immunomodulatory agents of allergy. Several human probiotic trials tracking the development of eczema and other forms of allergy have yielded inconsistent results. A recent infant study demonstrated that pre and postnatal Lactobacillus rhamnosus HN001 (HN001 supplementation decreased the prevalence of eczema and IgE associated eczema. However, the influence of HN001 on the incidence of wheeze, asthma, and/or other allergic manifestations has yet to be reported. OBJECTIVE: This study was conducted to determine the effects of the probiotic HN001 on the development of allergic lung disease in a pig model. METHODS: Allergy was induced by a series of subcutaneous and intratracheal sensitizations with Ascaris suum allergen (ASA during a six week time frame in post-weanling pigs supplemented daily with HN001, or without supplementation. One week following final sensitization intradermal skin tests and respiratory challenges were conducted. RESULTS: In response to intradermal and respiratory challenges, ASA-sensitized pigs fed HN001 had less severe skin flare reactions, smaller increases in pleural pressure, and trends towards lower changes in arterial oxygen and carbon dioxide partial pressure levels compared to control pigs. The frequency of ASA-specific IFN-γ-secreting peripheral blood mononuclear cells, as well as the amount of IL-10 produced by ASA-specific cells, was of greater magnitude in probiotic-fed pigs compared to control animals. These observations suggest that differences in clinical responses to the allergen challenges may be related to probiotic-induced modulation of Th1 (IFN-γ and regulatory (IL-10 cytokine expression. CONCLUSIONS: Probiotic supplementation decreased the severity of allergic skin and lung responses in allergen-sensitized pigs with a corresponding increase in IFN-γ expression. A similar correlation between certain allergic responses and increased IFN-γ expression has been

  20. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  1. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  2. Cytotoxic Evaluation of e-Liquid Aerosol using Different Lung-Derived Cell Models

    Directory of Open Access Journals (Sweden)

    Stefanie Scheffler

    2015-10-01

    Full Text Available The in vitro toxicological evaluation of e-liquid aerosol is an important aspect of consumer protection, but the cell model is of great significance. Due to its water solubility, e-liquid aerosol is deposited in the conducting zone of the respiratory tract. Therefore, primary normal human bronchial epithelial (NHBE cells are more suitable for e-liquid aerosol testing than the widely used alveolar cell line A549. Due to their prolonged lifespan, immortalized cell lines derived from primary NHBE cells, exhibiting a comparable in vitro differentiation, might be an alternative for acute toxicity testing. In our study, A549 cells freshly isolated NHBE cells and the immortalized cell line CL-1548 were exposed at the air-liquid interface to e-liquid aerosol and cigarette mainstream smoke in a CULTEX® RFS compact module. The cell viability was analyzed 24 h post-exposure. In comparison with primary NHBE cells, the CL-1548 cell line showed lower sensitivity to e-liquid aerosol but significantly higher sensitivity compared to A549 cells. Therefore, the immortalized cell line CL-1548 is recommended as a tool for the routine testing of e-liquid aerosol and is preferable to A549 cells.

  3. Establishing the Impact of Model Surfactants on Cloud Condensation Nuclei Activation of Sea Spray Aerosols

    Science.gov (United States)

    Forestieri, S.; Cappa, C. D.; Ruehl, C. R.

    2016-12-01

    Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. To reduce this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. It is well established that both size and hygroscopicity impact the cloud condensation nuclei (CCN) activity of aerosols. Previous studies demonstrate that the presence of surface-active organic material in aerosols can also reduce the surface tension of activating droplets, thereby enhancing CCN activity. We quantified surface tension of microscopic droplets using a continuous-flow stream-wise thermal gradient chamber at humidities close to activation for multi-component lab-generated sea spray aerosol (SSA) proxies. The SSA proxies used were atomized NaCl or synthetic sea salt coated with one to many various fatty acids found in nascent SSA particles. Observed surface tension values near the point of activation as a function of chemical composition for various SSA proxies will be presented.

  4. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP

    Directory of Open Access Journals (Sweden)

    Young Stuart

    2016-01-01

    Full Text Available To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP to a new radiation module (UKCARADAER. In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  5. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E. [Michigan Univ., Ann Arbor, MI (United States)

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  6. The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations

    Science.gov (United States)

    Kleinschmitt, Christoph; Boucher, Olivier; Bekki, Slimane; Lott, François; Platt, Ulrich

    2017-09-01

    Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.

  7. A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2005-01-01

    Full Text Available A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM. The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA, specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the

  8. A curved multi-component aerosol hygroscopicity model framework: 1 – Inorganics

    Directory of Open Access Journals (Sweden)

    H. Coe

    2004-12-01

    Full Text Available A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Köhler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM. The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, whereas this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA, specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However

  9. Model study on the dependence of primary marine aerosol emission on the sea surface temperature

    Directory of Open Access Journals (Sweden)

    S. Barthel

    2014-01-01

    Full Text Available Primary marine aerosol composed of sea salt and organic material is an important contributor to the global aerosol load. By comparing measurements from two EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air-pollutants in Europe intensive campaigns in June 2006 and January 2007 with results from an atmospheric transport model this work shows that accounting for the influence of the sea surface temperature on the emission of primary marine aerosol improves the model results towards the measurements in both months. Different sea surface temperature dependencies were evaluated. Using correction functions based on Sofiev et al. (2011 and Jaeglé et al. (2011 improves the model results for coarse mode particles. In contrast, for the fine mode aerosols no best correction function could be found. The model captures the low sodium concentrations at the marine station Virolahti II (Finland, which is influenced by air masses from the low salinity Baltic Sea, as well as the higher concentrations at Cabauw (Netherlands and Auchencorth Moss (Scotland. These results indicate a shift towards smaller sizes with lower salinity for the emission of dry sea salt aerosols. Organic material was simulated as part of primary marine aerosol assuming an internal mixture with sea salt. A comparison of the model results for primary organic carbon with measurements by a Berner-impactor at Sao Vincente (Cape Verde indicated that the model underpredicted the observed organic carbon concentration. This leads to the conclusion that the formation of secondary organic material needs to be included in the model to improve the agreement with the measurements.

  10. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  11. Modeling the effects of aerosols to increase rainfall in regions with shortage

    Science.gov (United States)

    Shukla, J. B.; Sundar, Shyam; Misra, A. K.; Naresh, Ram

    2013-05-01

    It is well known that the emissions of hot gases from various power stations and other industrial sources in the regional atmosphere cause decrease in rainfall around these complexes. To overcome this shortage, one method is to introduce artificially conducive aerosol particles in the atmosphere using aeroplane to increase rainfall. To prove the feasibility of this idea, in this paper, a nonlinear mathematical model is proposed involving five dependent variables, namely, the volume density of water vapour, number densities of cloud droplets and raindrops, and the concentrations of small and large size conducive aerosol particles. It is assumed that two types of aerosol particles are introduced in the regional atmosphere, one of them is of small size CCN type which is conducive to increase cloud droplets from vapour phase, while the other is of large size and is conducive to transform the cloud droplets to raindrops. The model is analyzed using stability theory of differential equations and computer simulation. The model analysis shows that due to the introduction of conducive aerosol particles in the regional atmosphere, the rainfall increases as compared to the case when no aerosols are introduced in the atmosphere of the region under consideration. The computer simulation confirms the analytical results.

  12. Snatch-farrowed, porcine-colostrum-deprived (SF-pCD) pigs as a model for swine infectious disease research.

    Science.gov (United States)

    Huang, Yanyun; Haines, Deborah M; Harding, John C S

    2013-04-01

    The current study tested the benefit of commercially available spray-dried bovine colostrum (The Saskatoon Colostrum Company, Saskatoon, Saskatchewan) in raising snatch-farrowed, porcine-colostrum-deprived (SF-pCD) pigs. In experiment 1, 12 SF-pCD pigs received a liquid diet composed mainly of bovine colostrum from birth to day 10; 6 remained on the same liquid diet (COL), and the other 6 were fed a diet composed mainly of milk replacer (RPL) until weaning. In experiment 2, 12 SF-pCD pigs were fed mainly bovine colostrum before weaning; after weaning, 6 were fed a starter diet containing 20% (w/w) bovine colostrum powder (STARTER-COL), and the other 6 were fed a starter diet without any bovine colostrum (STARTER-CTRL) until termination (day 42 or day 49). In experiment 1 the COL pigs had significantly fewer fever-days than did the RPL pigs. In experiment 2 diarrhea, typhlocolitis, and pancreatic degeneration developed in 4 of the STARTER-COL pigs after weaning. In both experiments all the pigs fed mainly bovine colostrum before weaning survived until termination. All pigs tested free of swine influenza virus H1N1 and H3N2, Porcine reproductive and respiratory syndrome virus, and Porcine parvovirus. In experiment 2 all the pigs tested free of Porcine circovirus type 2 (PCV2), but some in both groups tested positive for Torque teno virus genogroups 1 and 2. In conclusion, with the use of snatch-farrowing and bovine colostrum, pigs can be raised in the absence of porcine maternal antibodies with 100% survival and freedom from most porcine pathogens of biologic relevance. This model is potentially suitable for animal disease research.

  13. Evaluation of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere global model

    Science.gov (United States)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2017-04-01

    Aerosol radiative forcing is one of the greatest sources of uncertainty when projecting future climate change. Aerosols vary in time and in space and alter the Earth's radiative balance directly, by absorbing and scattering radiation, and indirectly, by interacting with clouds and altering cloud microphysics. A series of sensitivity tests were performed using the coupled ocean-atmosphere general circulation model CNRM-CM in order to investigate how the representation of aerosols within the model can affect climate. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; altering the vertical distribution of aerosols, and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly affect radiative flux, the cloud radiative effect and global surface temperatures. Of particular note is the importance of the indirect effect of sea salt aerosols, which has more of a significant impact upon climate than the direct radiative forcing of sea salt aerosols; and the impact of using an interactive aerosol scheme instead of 2-D climatologies, which results in more net radiative flux at the top of the atmosphere and slightly warmer temperatures at land surfaces.

  14. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig.

    Science.gov (United States)

    Lossi, Laura; D'Angelo, Livia; De Girolamo, Paolo; Merighi, Adalberto

    2016-03-01

    The anatomical features distinctive to each of the very large array of species used in today's biomedical research must be born in mind when considering the correct choice of animal model(s), particularly when translational research is concerned. In this paper we take into consideration and discuss the most important anatomical and histological features of the commonest species of laboratory rodents (rat, mouse, guinea pig, hamster, and gerbil), rabbit, and pig related to their importance for applied research.

  15. Development of a Model of Sacrocaudal Spinal Cord Injury in Cloned Yucatan MiniPigs for Cellular Transplantation Research

    OpenAIRE

    2010-01-01

    Research into transplantation strategies to treat spinal cord injury (SCI) is frequently performed in rodents, but translation of results to clinical patients can be poor and a large mammalian model of severe SCI is needed. The pig has been considered an optimal model species in which to perform preclinical testing, and the Yucatan minipig can be cloned successfully utilizing somatic cell nuclear transfer (SCNT). However, induction of paralysis in pigs poses significant welfare and nursing ch...

  16. Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease

    Directory of Open Access Journals (Sweden)

    Raymond D. Hickey

    2014-07-01

    FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzoyl-1,3 cyclohexanedione (NTBC throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, the animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopathy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH−/− pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH−/− pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of the efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes.

  17. High-throughput Gene Expression Analysis In Pigs As Model For Respiratory Infections

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Schou, Kirstine Klitgaard

    Influenza A virus infections have great impact on human health and welfare and significant resources are linked to influenza epidemics due to excess hospitalizations and lost productivity. Up to 15% of the human population is affected when Influenza spreads around the world in seasonal epidemics...... to be an obvious large animal model for respiratory infections. This study aimed at providing a better understanding of the involvement of circulating non-coding RNA and innate immune factors in porcine blood leukocytes during influenza virus infection. By employing the pig as a model we were able to perform...... pleuropneumoniae causes pneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. The rapidly evolving pneumonia is characterized by large areas of lung necrosis resulting from the combined effect of tissue damage caused by the bacteria, and a strong...

  18. Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Science.gov (United States)

    Tie, Xuexi; Emmons, Louisa; Horowitz, Larry; Brasseur, Guy; Ridley, Brian; Atlas, Elliot; Stround, Craig; Hess, Peter; Klonecki, Andrzej; Madronich, Sasha; Talbot, Robert; Dibb, Jack

    2003-02-01

    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3 reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOx due to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere.

  19. Initial embryology and pluripotent stem cells in the pig--The quest for establishing the pig as a model for cell therapy.

    Science.gov (United States)

    Secher, Jan O; Callesen, Henrik; Freude, Kristine K; Hyttel, Poul

    2016-01-01

    The quest for porcine pluripotent stem cells (PSCs) was initiated in the early 90s. Initially, it was the intention to benefit from these cells for production of genetically modified pigs using homologous recombination followed by derivation of chimeric offspring; a technology that has been used to produce genetically modified mice since the mid-80s. However, no convincing reports on the generation of bona fide porcine embryonic stem cells or embryonic germ cells resulted from these activities, and with the advent of somatic cell nuclear transfer during the late 90s, alternative methods for creating genetically modified pigs emerged. Over the past years, renewed interest in porcine PSCs has sparked activities in deriving in particular porcine induced pluripotent stem cells to develop the pig as a faithful model for studying the potentials and risks associated with induced pluripotent stem cell-based human therapy. Here, we review the recent data on establishment of porcine PSCs and the differences in embryonic development between pig and mouse, which may be underlying factors for the continuing challenge to culture and maintain porcine PSCs.

  20. Modeling nitrate aerosol distributions and its direct radiative forcing in East Asia with RAMS-CMAQ

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Meigen Zhang; Baorong Zhou

    2013-01-01

    The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module.For evaluating the model performance,nitrate ion concentration in precipitation,and mixing ratios of PM1o,and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan,Korea,and China,and the satellite retrieved NO2 columns.The comparison shows that the simulated values are generally in good agreement with the observed ones.Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations.The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other.Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25-30% of the total aerosol mass concentration and DRF in Sichuan Basin,Southeast China,and East China where the high mass burden of all major aerosols concentrated.The high-est mass concentration and strongest DRF of nitrate could exceed 40 μg/m3 and-5 W/m2,respectively.It also indicates that other aerosol species,such as carbonaceous and mineral particles,could obviously influence the nitrate DRF for they are often internally mixed with each other.

  1. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma.

    Science.gov (United States)

    Mahajan, Shailaja G; Mehta, Anita A

    2011-01-10

    In the present study, the efficacy of β-sitosterol isolated from an n-butanol extract of the seeds of the plant Moringa oleifera (Moringaceae) was examined against ovalbumin-induced airway inflammation in guinea pigs. All animals (except group I) were sensitized subcutaneously and challenged with aerosolized 0.5% ovalbumin. The test drugs, β-sitosterol (2.5mg/kg) or dexamethasone (2.5mg/kg), were administered to the animals (p.o.) prior to challenge with ovalbumin. During the experimental period (on days 18, 21, 24 and 29), a bronchoconstriction test (0.25% acetylcholine for 30s) was performed and lung function parameters (tidal volume and respiration rate) were measured for each animal. On day 30, blood and bronchoalveolar lavaged fluid were collected to assess cellular content, and serum was collected for cytokine assays. Lung tissue was utilized for a histamine assay and for histopathology. β-sitosterol significantly increased the tidal volume (V(t)) and decreased the respiration rate (f) of sensitized and challenged guinea pigs to the level of non-sensitized control guinea pigs and lowered both the total and differential cell counts, particularly eosinophils and neutrophils, in blood and bronchoalveolar lavaged fluid. Furthermore, β-sitosterol treatment suppressed the increase in cytokine levels (TNFα, IL-4 and IL-5), with the exception of IL-6, in serum and in bronchoalveolar lavaged fluid detected in model control animals. Moreover, treatment with β-sitosterol protected against airway inflammation in lung tissue histopathology. β-sitosterol possesses anti-asthmatic actions that might be mediated by inhibiting the cellular responses and subsequent release/synthesis of Th2 cytokines. This compound may have therapeutic potential in allergic asthma.

  2. Modelled radiative effects of sea spray aerosol using a source function encapsulating wave state

    Science.gov (United States)

    Partanen, Antti-Ilari; Dunne, Eimear M.; Bergman, Tommi; Laakso, Anton; Kokkola, Harri; Ovadnevaite, Jurgita; Sogacheva, Larisa; Baisnée, Dominique; Sciare, Jean; Manders, Astrid; O'Dowd, Colin; de Leeuw, Gerrit; Korhonen, Hannele

    2014-05-01

    Sea spray aerosol particles have significant effects on global climate by scattering solar radiation (direct effect) and modifying cloud properties (indirect effect). Sea spray consists mainly of sea salt, but in biologically active regions, major fraction of sea spray may come in the form of primary marine organic matter (PMOM). Traditionally, sea spray flux has been parameterized in global models in terms of wind speed, and organic fraction of sea spray in terms of chlorophyll-a concentration. In this study, we have incorporated recently developed parameterizations for the sea spray aerosol source flux into the global aerosol-climate model ECHAM-HAMMOZ. The parameterizations encapsulate the wave state via Reynolds number, and predict the organic fraction of the sea spray aerosol source flux. The model was then used to investigate the direct and indirect effects of sea spray aerosol particles. We compared simulated sea spray concentrations with in-situ measurements from Mace Head (North Atlantic), Point Reyes (North Pacific), and Amsterdam Island (Southern Indian Ocean). Aerosol optical depth (AOD) was compared with satellite measurements from PARASOL. Modelled annual mean global emissions of sea salt and PMOM were 805 Tg yr-1 (uncertainty range of 378-1233 Tg yr-1) and 1.1 Tg yr-1 (0.5-1.8 Tg yr-1), respectively. Sea salt emissions were considerably lower than the majority of previous estimates, but PMOM was in the range of previous studies. The model captured sea salt concentrations fairly well in the smaller size ranges at Mace Head (annual normalized mean bias of -13% for particles with vacuum aerodynamic diameter Dva

  3. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  4. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2008-10-01

    Full Text Available The yields of organic nitrates and of secondary organic aerosol (SOA particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5β-pinene (peak~15 ppb, with no seed aerosol. SOA formation was observed to be prompt and substantial (~50% mass yield under both dry conditions and at 60% RH, and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of pvap~5×10−6 Torr (6.67×10−4 Pa, which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5–8% of the global total of organic aerosol on regional and global scales.

  5. Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model

    Science.gov (United States)

    Silva-Gomes, Rita; Marcq, Elly; Trigo, Gabriela; Gonçalves, Carine M.; Longatto-Filho, Adhemar; Castro, António G.; Pedrosa, Jorge; Fraga, Alexandra G.

    2015-01-01

    Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies. PMID:26625302

  6. Experimental study on the establishment and maintenance of brain death model with pigs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuijun; SHI Jihua; ZHAI Wenlong; SONG Yan; CHEN Shi

    2007-01-01

    It remains controversial that after the transplantation of using grafts from brain-dead donors,organs injury and rejection can influence the effects of transplantation.This study sought to explore methods of establishing a stable brain death(BD)model using Bama mini pigs and to maintain the brain-dead state for a comparatively long period to provide a model for investigating changes in brain death.Sixteen anesthetized Bama mini pigs were randomized into a control group(n=5)and a BD group(n=11).Intracranial pressure (ICP)was increased in a modified,slow,and intermittent way to establish BD.Respiration and circulation were sustained during the brain-dead state.Hemodynamic changes were monitored during the experiment.In the BD group,10 pigs met the requirements for brain death and 1 died of cardiopulmonary complications following an increase in ICP.Brain death was maintained for more than 48 hours with artificial life support.During the experiment,the heart rate and blood pressure showed characteristic changes due to increased ICP.Prior to BD being established,a"tic reaction"inevitably occurred.We used an improved method of increasing ICP to establish a stable BD model.The BD state could be maintained for more than 48 hours with effective respiratory and circulatory support.Disappearance of the tic reaction was considered to be one of the verified indexes for BD via encephalic pressure increase.

  7. Infant guinea pig retina model of glutamate toxicity and intervention of basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Yunzhi Shi; Lihua Wei; Mingshan Song; Min Chen; Changqing Du; Baoliang Sun

    2011-01-01

    Impaired vision with oligemic ophthalmopathy is a result of excitotoxicity caused by excitatory amino acids, resulting in pathological changes, such as loss of retinal neurons and in particular retinal ganglionic cells. The present study utilized infant guinea pigs, aged 45-50 days, to establish injury models via intrapedtoneal injection of fixed sodium glutamate doses. Results from hematoxylin- eosin staining revealed significantly reduced retinal ganglionic cell numbers and retinal damage at 10 days after 7 consecutive days of 3 g/kg sodium glutamate treatment; these animals sewed as the injury model group. In addition, models of moderate injury (glutamate 3 g/kg daily, for 7 consecutive days) were intrapedtoneally pretreated with basic fibroblast growth factor (800 U/kg daily). Immunohistochemistry results confirmed reduced anti-apoptotic gene bcl-2 expression in the ganglion cell layer of glutamate-injured guinea pigs. Expression of the pro-apoptotic gene caspase-3 was increased in the ganglion cell layer and inner plexiform layer. Somatostatin expression was primadly distributed in the ganglion cell layer and inner nuclear layer. Expression of the presynaptic element synaptophysin was weak. However, following basic fibroblast growth factor injection, expressions of the above-described bioactive molecules were reversed, which suggested that basic fibroblast growth factor exerted protective effects on sodium glutamate-induced retinal injury in infant guinea pigs by regulating expression of synaptophysin, somatostatin, Bcl-2, and caspase-3.

  8. Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs

    OpenAIRE

    Doherty, S. J.; C. M. Bitz; M. G. Flanner

    2014-01-01

    A series of recent studies have used prescribed aerosol deposition flux fields in climate model runs to assess forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we use a series of offline calculations to show that this approach results, on average, in a~factor of about 1.5–2.5 high bias in annual-mean surface snow BC mixing ratios in three ...

  9. Endoscopic submucosal dissection training with pig models in a Western country

    Institute of Scientific and Technical Information of China (English)

    Adolfo; Parra-Blanco; María; Rosa; Arnau; David; Nicolás-Pérez; Antonio; Z; Gimeno-García; Nicolás; González; Juan; A; Díaz-Acosta; Alejandro; Jiménez; Enrique; Quintero

    2010-01-01

    AIM:To test a strategy for endoscopic submucosal dissection(ESD) training in animal models designed to overcome the initial learning curve.METHODS:ESD was attempted in ex vivo and in vivo pig models.Thirty ESD procedures were attempted in the esophagus(n=9) or the stomach(n=21).The ex vivo model was used until initial competence was achieved.In the in vivo model,several ESD procedures were performed in up to 3 sessions.The following variables were analyzed:specimen size,complete and en bloc resection rate,t...

  10. Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake.

    Science.gov (United States)

    Houle, F A; Hinsberg, W D; Wilson, K R

    2015-02-14

    An accurate description of the evolution of organic aerosol in the Earth's atmosphere is essential for climate models. However, the complexity of multiphase chemical and physical transformations has been challenging to describe at the level required to predict aerosol lifetimes and changes in chemical composition. In this work a model is presented that reproduces experimental data for the early stages of oxidative aging of squalane aerosol by hydroxyl radical (OH), a process governed by reactive uptake of gas phase species onto the particle surface. Simulations coupling free radical reactions and Fickian diffusion are used to elucidate how the measured uptake coefficient reflects the elementary steps of sticking of OH to the aerosol as a result of a gas-surface collision, followed by very rapid abstraction of hydrogen and subsequent free radical reactions. It is found that the uptake coefficient is not equivalent to a sticking coefficient or an accommodation coefficient: it is an intrinsically emergent process that depends upon particle size, viscosity, and OH concentration. An expression is derived to examine how these factors control reactive uptake over a broad range of atmospheric and laboratory conditions, and is shown to be consistent with simulation results. Well-mixed, liquid behavior is found to depend on the reaction conditions in addition to the nature of the organic species in the aerosol particle.

  11. Application of Positron Emission Tomography to Aerosol Transport Research in a Model of Human Lungs

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available Positron Emission Tomography (PET is a convenient method for measurement of aerosol deposition in complex models of lungs. It allows not only the evaluation of regional deposition characteristics but also precisely detects deposition hot spots. The method is based on a detection of a pair of annihilation photons moving in opposite directions as a result of positron – electron interaction after the positron emission decay of a suitable radioisotope. Liquid di(2-ethylhexyl sebacate (DEHS particles tagged with fluorine-18 as a radioactive tracer were generated by condensation monodisperse aerosol generator. Aerosol deposition was measured for three different inhalation flowrates and for two sizes of particles. Combination of PET with Computed Tomography (CT in one device allowed precise localisation of particular segments of the model. The results proved correlation of deposition efficiency with Stokes number, which means that the main deposition mechanism is inertial impaction. As a next task the methodology for tagging the solid aerosol particles with radioactive tracer will be developed and deposition of porous and fiber aerosols will be measured.

  12. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    Science.gov (United States)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  13. Aerosol effects and variable-resolution modelling approaches in regional climate applications

    Science.gov (United States)

    Heinzeller, D.; Junkermann, W.; Duda, M.; Kunstmann, H.

    2016-12-01

    Advances in numerical weather prediction and climate models and in computational facilities open the door to convection-resolving studies at regional and global scale. They also allow to include a range of important physical and chemical processes hitherto out of reach in a climate modelling context. In this contribution, we present two approaches that demonstrate achievements made in this area. First, we highlight the importance of aerosol effects in a regional climate study over South-Western Australia. While the entire region experienced a gradual decline in precipitation of about 15% over the 20th century, the coastal area around Perth saw an additional, sudden drop of the same order in the 1970s. Using the Weather and Research Forecasting tool WRF with a newly added, aerosol-aware microphysics scheme (Thompson and Eidhammer, 2014), we conduct a series of convection-resolving modelling experiments at a resolution of 3.3km for the period 1970-1974. We show that aerosol emissions of local large pollutants such as coal power plants and refineries, commissioned nearby during that period, can lead to a reduction in precipitation of up to 10%. The figure displays the resulting CCN number concentrations for three different aerosol-aware modelling experiments for the wet and dry season (i.e. austral winter and summer) 1970-1974 with surface win