WorldWideScience

Sample records for piezoresistive bridge-microcantilever biosensor

  1. Stepped piezoresistive microcantilever designs for biosensors

    International Nuclear Information System (INIS)

    Ansari, Mohd Zahid; Cho, Chongdu; Urban, Gerald

    2012-01-01

    The sensitivity of a piezoresistive microcantilever biosensor strongly depends on its ability to convert the surface stress-induced deflections into large resistance change. To improve the sensitivity, we present stepped microcantilever biosensor designs that show significant resistance change compared with commonly used rectangular designs. The cantilever is made of silicon dioxide with a u-shaped silicon piezoresistor. The surface stress-induced deflections, bimorph deflection, fundamental resonant frequency and self-heating properties of the cantilever are studied using the FEM software. The surface stress-induced deflections are compared against the analytical model derived in this work. Results show that stepped designs have better signal-to-noise ratio than the rectangular ones and cantilevers with l/L between 0.5 and 0.75 are better designs for improving sensitivity. (paper)

  2. Fabrication of piezoresistive microcantilever using surface micromachining technique for biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kwang-Ho [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kim, Yong-Sang [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kang, C.J. [Department of Physics and Nano-Bio Research Center, Myongji University, San38-2 Namdong, Yongin, Gyeonggido 449-728 (Korea, Republic of)]. E-mail: cjkang@mju.ac.kr

    2005-11-15

    A microcantilever-based biosensor with piezoresistor has been fabricated using surface micromachining technique, which is cost effective and simplifies a fabrication procedure. In order to evaluate the characteristics of the cantilever, the cystamine terminated with thiol was covalently immobilized on the gold-coated side of the cantilever and glutaraldehyde that would be bonded with amine group in the cystamine was injected subsequently. This process was characterized by measuring the deflection of the cantilever in real time monitoring. Using a piezoresistive read-out and a well-known optical beam deflection method as well, the measurement of deflection was carried out. The sensitivity of piezoresistive method is good enough compared with that of optical beam deflection method.

  3. Measurement and Simulation Techniques For Piezoresistive Microcantilever Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Aan Febriansyah

    2012-12-01

    Full Text Available Applications of microcantilevers as biosensors have been explored by many researchers for the applications in medicine, biological, chemistry, and environmental monitoring. This research discusses a design of measurement method and simuations for piezoresistive microcantilever as a biosensor, which consist of designing Wheatstone bridge circuit as object detector, simulation of resonance frequency shift based on Euler Bernoulli Beam equation, and microcantilever vibration simulation using COMSOL Multiphysics 3.5. The piezoresistive microcantilever used here is Seiko Instrument Technology (Japan product with length of 110 ?m, width of 50 ?m, and thickness of 1 ?m. Microcantilever mass is 12.815 ng, including the mass receptor. The sample object in this research is bacteria EColi. One bacteria mass is assumed to 0.3 pg. Simulation results show that the mass of one bacterium will cause the deflection of 0,03053 nm and resonance frequency value of 118,90 kHz. Moreover, four bacterium will cause the deflection of 0,03054 nm and resonance frequency value of 118,68 kHz. These datas indicate that the increasing of the bacteria mass increases the deflection value and reduces the value of resonance frequency.

  4. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  5. A Real-Time Thermal Self-Elimination Method for Static Mode Operated Freestanding Piezoresistive Microcantilever-Based Biosensors.

    Science.gov (United States)

    Ku, Yu-Fu; Huang, Long-Sun; Yen, Yi-Kuang

    2018-02-28

    Here, we provide a method and apparatus for real-time compensation of the thermal effect of single free-standing piezoresistive microcantilever-based biosensors. The sensor chip contained an on-chip fixed piezoresistor that served as a temperature sensor, and a multilayer microcantilever with an embedded piezoresistor served as a biomolecular sensor. This method employed the calibrated relationship between the resistance and the temperature of piezoresistors to eliminate the thermal effect on the sensor, including the temperature coefficient of resistance (TCR) and bimorph effect. From experimental results, the method was verified to reduce the signal of thermal effect from 25.6 μV/°C to 0.3 μV/°C, which was approximately two orders of magnitude less than that before the processing of the thermal elimination method. Furthermore, the proposed approach and system successfully demonstrated its effective real-time thermal self-elimination on biomolecular detection without any thermostat device to control the environmental temperature. This method realizes the miniaturization of an overall measurement system of the sensor, which can be used to develop portable medical devices and microarray analysis platforms.

  6. A Real-Time Thermal Self-Elimination Method for Static Mode Operated Freestanding Piezoresistive Microcantilever-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Yu-Fu Ku

    2018-02-01

    Full Text Available Here, we provide a method and apparatus for real-time compensation of the thermal effect of single free-standing piezoresistive microcantilever-based biosensors. The sensor chip contained an on-chip fixed piezoresistor that served as a temperature sensor, and a multilayer microcantilever with an embedded piezoresistor served as a biomolecular sensor. This method employed the calibrated relationship between the resistance and the temperature of piezoresistors to eliminate the thermal effect on the sensor, including the temperature coefficient of resistance (TCR and bimorph effect. From experimental results, the method was verified to reduce the signal of thermal effect from 25.6 μV/°C to 0.3 μV/°C, which was approximately two orders of magnitude less than that before the processing of the thermal elimination method. Furthermore, the proposed approach and system successfully demonstrated its effective real-time thermal self-elimination on biomolecular detection without any thermostat device to control the environmental temperature. This method realizes the miniaturization of an overall measurement system of the sensor, which can be used to develop portable medical devices and microarray analysis platforms.

  7. High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors

    Directory of Open Access Journals (Sweden)

    Mohd Zahid Ansari

    2013-03-01

    Full Text Available This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.

  8. High S/N ratio slotted step piezoresistive microcantilever designs for biosensors.

    Science.gov (United States)

    Ansari, Mohd Zahid; Cho, Chongdu

    2013-03-26

    This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.

  9. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  10. Review: Semiconductor Piezoresistance for Microsystems.

    Science.gov (United States)

    Barlian, A Alvin; Park, Woo-Tae; Mallon, Joseph R; Rastegar, Ali J; Pruitt, Beth L

    2009-01-01

    Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.

  11. On self-heating in piezoresistive microcantilevers with short piezoresistor

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Mohd Zahid; Cho, Chongdu, E-mail: cdcho@inha.ac.kr [Department of Mechanical Engineering, Inha University, 253 Yonghyun-dong, Nam-Ku, Incheon, 402-751 (Korea, Republic of)

    2011-07-20

    This work presents an analytical model for studying the effects of short piezoresistors on self-heating phenomena in piezoresistive microcantilevers. The model is verified using commercial finite element software for predicting the temperature profile in the 4-layer silicon dioxide cantilever with silicon piezoresistor commonly used in biosensors. The numerical analysis involved thermo-electric, thermal and surface-stress studies on the cantilever models. Results show good agreement between analytical and numerical results with average deviation about 3%. Further, the temperatures increase more rapidly with the width than the length of the piezoresistor and narrow piezoresistors are helpful in reducing resistance change due to self-heating.

  12. On self-heating in piezoresistive microcantilevers with short piezoresistor

    International Nuclear Information System (INIS)

    Ansari, Mohd Zahid; Cho, Chongdu

    2011-01-01

    This work presents an analytical model for studying the effects of short piezoresistors on self-heating phenomena in piezoresistive microcantilevers. The model is verified using commercial finite element software for predicting the temperature profile in the 4-layer silicon dioxide cantilever with silicon piezoresistor commonly used in biosensors. The numerical analysis involved thermo-electric, thermal and surface-stress studies on the cantilever models. Results show good agreement between analytical and numerical results with average deviation about 3%. Further, the temperatures increase more rapidly with the width than the length of the piezoresistor and narrow piezoresistors are helpful in reducing resistance change due to self-heating.

  13. SU-8 Based Piezoresistive Mechanical Sensor

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vestergaard, R.K.

    2002-01-01

    We present the first SU-8 based piezoresistive mechanical sensor. Conventionally, silicon has been used as a piezoresistive material due to its high gauge factor and thereby high sensitivity to strain changes in a sensor. By using the fact that SU-8 is much softer than silicon and that a gold...

  14. Biosensors and environmental health

    National Research Council Canada - National Science Library

    Preedy, Victor R; Patel, Vinood B

    2012-01-01

    ..., bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications...

  15. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Piezoresistive silicon pressure sensors in cryogenic environment

    Science.gov (United States)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  17. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  18. New pastes with high gauge factor for piezoresistive pressure sensors

    International Nuclear Information System (INIS)

    Szczepanski, Z.; Kalenik, J.; Gonciara, P.; Jakubowska, M.

    1999-01-01

    The thick film resistors with gauge factor exhibit high reversible changes of resistance under the influence of external load. The piezoresistivity of thick film resistors is utilized in piezoresistive pressure sensors as well as sensors, those allow force detection. The results of studies concerning piezoresistivity in thick film resistors made of pastes elaborated by the authors are presented in this paper. The GF measurement method has been designed and several resistive pastes were tested. The values of gauge factor for these resistive compositions have been evaluated and piezoresistive properties were compared with ESL resistive composition designed for sensor application. (author)

  19. Giant Geometrically Amplified Piezoresistance in Metal-Semiconductor Hybrid Resistors

    DEFF Research Database (Denmark)

    Hansen, Ole; Reck, Kasper; Thomsen, Erik Vilain

    2008-01-01

    We show that very high geometrically amplified piezoresistance can indeed be obtained in microstructured metal-semiconductor hybrid devices, even significantly higher amplification factors than the factor of approximately 8 demonstrated recently by Rowe and co-workers may be achieved. However, we...... than the sensitivity of conventional piezoresistors fabricated in the same piezoresistive material. ©2008 American Institute of Physics...

  20. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  1. Construction of a Piezoresistive Neural Sensor Array

    Science.gov (United States)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  2. Self-heating in piezoresistive cantilevers.

    Science.gov (United States)

    Doll, Joseph C; Corbin, Elise A; King, William P; Pruitt, Beth L

    2011-05-30

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature.

  3. Miniature piezoresistive solid state integrated pressure sensors

    Science.gov (United States)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  4. Biomolecule recognition using piezoresistive nanomechanical force probes

    Science.gov (United States)

    Tosolini, Giordano; Scarponi, Filippo; Cannistraro, Salvatore; Bausells, Joan

    2013-06-01

    Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.

  5. Optimization of sensitivity and noise in piezoresistive cantilevers

    DEFF Research Database (Denmark)

    Yu, Xiaomei; Thaysen, Jacob; Hansen, Ole

    2002-01-01

    In this article, the sensitivity and the noise of piezoresistive cantilevers were systematically investigated with respect to the piezoresistor geometry, the piezoresistive materials, the doping dose, the annealing temperature, and the operating biased voltage. With the noise optimization results......(-6), the biggest gauge factors was 95, and the minimum detectable deflection (MDD) at 6 V and 200 Hz-measurement bandwidth was 0.3 nm for a single-crystal silicon cantilever. Of the two LPCVD silicon piezoresistive cantilevers, amorphous silicon piezoresistors had relatively lower 1/f noise. The MDD for a LPCVD...

  6. Piezoresistivity in films of nanocrystalline manganites.

    Science.gov (United States)

    Sarkar, Jayanta; Raychaudhuri, A K

    2007-06-01

    Rare earth manganites having perovskite structure are susceptible to lattice strain. So far most investigations have been done with hydrostatic pressure or biaxial strain. We have observed that hole doped rare-earth manganites, which are known to display colossal magnetoresistance (CMR) also show change in its resistance under the influence of uniaxial strain. We report the direct measurement of piezoresistive response of La0.67Ca0.33MnO3 (LCMO) and La0.67Sr0.33MnO3 (LSMO) of this manganite family. The measurements were carried out on nanostructured polycrystalline films of LCMO and LSMO grown on oxidized Si(100) substrates. The piezoresistance was measured by bending the Si cantilevers (on which the film is grown) in flexural mode both with compressive and tensile strain. At room temperature the gauge factor approximately 10-20 and it increases to a large value near metal-insulator transition temperature (Tp) where the resistivity shows a peak.

  7. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  8. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  9. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  10. Electrostatic force microscopy with a self-sensing piezoresistive cantilever

    International Nuclear Information System (INIS)

    Pi, U. H.; Kye, J. I.; Shin, S.; Khim, Z. G.; Hong, J. W.; Yoon, S.

    2003-01-01

    We present a new method for electrostatic force microscopy (EFM) using a piezoresistive cantilever instead of the conventional cantilever with an optical detector. In EFM with a piezoresistive cantilever, the electrostatic force between the tip and the sample is monitored by sensing the change in the resistance of the piezoresistive cantilever at a frequency of several tens of kHz. A large stray capacitance effect can be rejected by using an appropriate phase tuning of the phase-sensitive detection. We observed the ferroelectric domain images of a triglycine sulfate single crystal. We could also write fine patterns on a lead-zirconate-titanate (PZT) thin film through domain reversal by applying various dc voltages between the tip and the sample. We suggest that the EFM technique using a self-sensing and self-actuating piezoresistive cantilever can be applied to a high-density data storage field

  11. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  12. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  13. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  14. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  15. Resonant Varifocal Micromirror with Piezoresistive Focus Sensor

    Directory of Open Access Journals (Sweden)

    Kenta Nakazawa

    2016-03-01

    Full Text Available This paper reports a microelectromechanical systems (MEMS resonant varifocal mirror integrated with piezoresistive focus sensor. The varifocal mirror is driven electrostatically at a resonant frequency of a mirror plate to obtain the wide scanning range of a focal length. A piezoresistor is used to monitor the focal length of the varifocal mirror. The device is made of a silicon-on-insulator (SOI wafer and a glass wafer. A mirror plate and a counter electrode are fabricated by a top silicon layer of the SOI wafer and on the glass wafer, respectively. The piezoresistor is fabricated by ion implantation on a supporting beam of the mirror plate. The stress variation of the beam, which is detected by the piezoresistor, correspond the focal length of the varifocal mirror. The focus length varies from −41 to 35 mm at the resonant frequency of 9.5 kHz. The focal length of the varifocal mirror is monitored by the piezoresistor in real time.

  16. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    Science.gov (United States)

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  17. Piezoresistive cantilever force-clamp system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  18. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing

    International Nuclear Information System (INIS)

    Bargatin, I.; Myers, E.B.; Arlett, J.; Gudlewski, B.; Roukes, M.L.

    2005-01-01

    We have developed a method of measuring rf-range resonance properties of nanoelectromechanical systems (NEMS) with integrated piezoresistive strain detectors serving as signal downmixers. The technique takes advantage of the high strain sensitivity of semiconductor-based piezoresistors, while overcoming the problem of rf signal attenuation due to a high source impedance. Our technique also greatly reduces the effect of the cross-talk between the detector and actuator circuits. We achieve thermomechanical noise detection of cantilever resonance modes up to 71 MHz at room temperature, demonstrating that downmixed piezoresistive signal detection is a viable high-sensitivity method of displacement detection in high-frequency NEMS

  19. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  20. Shielded piezoresistive cantilever probes for nanoscale topography and electrical imaging

    International Nuclear Information System (INIS)

    Yang, Yongliang; Ma, Eric Yue; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael; Shen, Zhi-Xun; Haemmerli, Alexandre; Harjee, Nahid; Pruitt, Beth L

    2014-01-01

    This paper presents the design and fabrication of piezoresistive cantilever probes for microwave impedance microscopy (MIM) to enable simultaneous topographic and electrical imaging. Plasma enhanced chemical vapor deposited Si 3 N 4  cantilevers with a shielded center conductor line and nanoscale conductive tip apex are batch fabricated on silicon-on-insulator wafers. Doped silicon piezoresistors are integrated at the root of the cantilevers to sense their deformation. The piezoresistive sensitivity is 2 nm for a bandwidth of 10 kHz, enabling topographical imaging with reasonable speed. The aluminum center conductor has a low resistance (less than 5 Ω) and small capacitance (∼1.7 pF) to ground; these parameters are critical for high sensitivity MIM imaging. High quality piezoresistive topography and MIM images are simultaneously obtained with the fabricated probes at ambient and cryogenic temperatures. These new piezoresistive probes remarkably broaden the horizon of MIM for scientific applications by operating with an integrated feedback mechanism at low temperature and for photosensitive samples. (paper)

  1. Piezoresistive effect in top-down fabricated silicon nanowires

    DEFF Research Database (Denmark)

    Reck, Kasper; Richter, Jacob; Hansen, Ole

    2008-01-01

    We have designed and fabricated silicon test chips to investigate the piezoresistive properties of both crystalline and polycrystalline nanowires using a top-down approach, in order to comply with conventional fabrication techniques. The test chip consists of 5 silicon nanowires and a reference...

  2. Biosensors and preparation thereof

    NARCIS (Netherlands)

    2008-01-01

    A low-temp. prepn. method for a biosensor device with a layer of reagent on the sensor surface is disclosed. During manufg. biol. interaction between the biosensor substrate and the reagent layer material is reduced, e.g. by cooling the biosensor substrate and depositing the reagent layer on the

  3. Cholinesterase-based biosensors.

    Science.gov (United States)

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  4. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    Directory of Open Access Journals (Sweden)

    Chongdu Cho

    2010-11-01

    Full Text Available The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  5. An analytical model of joule heating in piezoresistive microcantilevers.

    Science.gov (United States)

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  6. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  7. Hydrogel-based piezoresistive sensor for the detection of ethanol

    Directory of Open Access Journals (Sweden)

    J. Erfkamp

    2018-04-01

    Full Text Available This article describes a low-cost sensor for the detection of ethanol in alcoholic beverages, which combines alcohol-sensitive hydrogels based on acrylamide and bisacrylamide and piezoresistive sensors. For reproducible measurements, the reversible swelling and deswelling of the hydrogel were shown via microscopy. The response time of the sensor depends on the swelling kinetics of the hydrogel. The selectivity of the hydrogel was tested in different alcohols. In order to understand the influence of monomer and crosslinker content on the swelling degree and on the sensitivity of the hydrogels, gels with variable concentrations of acrylamide and bisacrylamide were synthesized and characterized in different aqueous solutions with alcohol contents. The first measurements of such hydrogel-based piezoresistive ethanol sensors demonstrated a high sensitivity and a short response time over several measuring cycles.

  8. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Contribution of current carrier mobility variation to piezo-resistive effect in SmS

    International Nuclear Information System (INIS)

    Vasil'ev, L.N.; Kaminskij, V.V.

    1999-01-01

    The value of the contribution from the change in the current carriers mobility and pressure to the piezo-resistive effect value in the materials on the basis of the samarium, monosulfide is studied. The conclusion, that the value of the piezoresistance of comprehensive compression should not exceed 7x10 -3 MPa -1 at T=300 K, experimental data [ru

  10. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-01-01

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  11. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  12. Biosensors and bioelectronics

    CERN Document Server

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  13. Piezoresistive microcantilever aptasensor for ricin detection and kinetic analysis

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Liu

    2015-04-01

    Full Text Available Up to now, there has been no report on target molecules detection by a piezoresistive microcantilever aptasensor. In order to evaluate the test performance and investigate the response dynamic characteristics of a piezoresistive microcantilever aptasensor, a novel method for ricin detection and kinetic analysis based on a piezoresistive microcantilever aptasensor was proposed, where ricin aptamer was immobilised on the microcantilever surface by biotin-avidin binding system. Results showed that the detection limit of ricin was 0.04μg L−1 (S/N ≥ 3. A linear relationship between the response voltage and the concentration of ricin in the range of 0.2μg L−1-40μg L−1 was obtained, with the linear regression equation of ΔUe = 0.904C + 5.852 (n = 5, R = 0.991, p < 0.001. The sensor showed no response for abrin, BSA, and could overcome the influence of complex environmental disruptors, indicating high specificity and good selectivity. Recovery and reproducibility in the result of simulated samples (simulated water, soil, and flour sample determination met the analysis requirements, which was 90.5∼95.5% and 7.85%∼9.39%, respectively. On this basis, a reaction kinetic model based on ligand-receptor binding and the relationship with response voltage was established. The model could well reflect the dynamic response of the sensor. The correlation coefficient (R was greater than or equal to 0.9456 (p < 0.001. Response voltage (ΔUe and response time (t0 obtained from the fitting equation on different concentrations of ricin fitted well with the measured values.

  14. Microstructuring of piezoresistive cantilevers for gas detection and analysis

    International Nuclear Information System (INIS)

    Sarov, Y.; Sarova, V.; Bitterlich, Ch.; Richter, O.; Guliyev, E.; Zoellner, J.-P.; Rangelow, I. W.; Andok, R.; Bencurova, A.

    2011-01-01

    In this work we report on a design and fabrication of cantilevers for gas detection and analysis. The cantilevers have expanded area of interaction with the gas, while the signal transduction is realized by an integrated piezoresistive deflection sensor, placed at the narrowed cantilever base with highest stress along the cantilever. Moreover, the cantilevers have integrated bimorph micro-actuator detection in a static and dynamic mode. The cantilevers are feasible as pressure, temperature and flow sensors and under chemical functionalization - for gas recognition, tracing and composition analysis. (authors)

  15. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  16. Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.

    Science.gov (United States)

    Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M

    2008-01-25

    An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field.

  17. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  18. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  19. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  20. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  1. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    Science.gov (United States)

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  2. Nanochannels Photoelectrochemical Biosensor.

    Science.gov (United States)

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  3. Triggered optical biosensor

    Science.gov (United States)

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  4. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    International Nuclear Information System (INIS)

    Sierakowski, Andrzej; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Gotszalk, Teodor; Rangelow, Ivo W

    2017-01-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/ f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation. (paper)

  5. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review

    Science.gov (United States)

    Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio

    2014-01-01

    The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126

  6. Novel temperature compensation technique for force-sensing piezoresistive devices

    International Nuclear Information System (INIS)

    Scott, Joshua; Enikov, Eniko T

    2011-01-01

    A novel stress-insensitive piezoresistor in the shape of an annulus has been developed to be used in conjunction with a piezoresistive bridge for temperature-compensated force measurements. Under uniform stress conditions, the annular resistor shows near-zero stress sensitivity and a linear response to temperature excitation within test conditions of 24–34 °C. Annular resistors were placed in close proximity to stress-sensitive elements in order to detect local temperature fluctuations. Experiments evaluating the performance of the temperature compensator while testing force sensitivity showed a thermal rejection ratio of 37.2 dB and near elimination of low-frequency noise (drift) below 0.07 Hz. Potential applications of this annular resistor include use in multi-axis force sensors for force feedback microassembly, improvements in the simplicity and robustness of high precision microgram sensitive balances, higher accuracy for silicon diaphragm-based pressure sensors and simple temperature compensation for AFM cantilevers.

  7. Piezoresistive silicon thin film sensor array for biomedical applications

    International Nuclear Information System (INIS)

    Alpuim, P.; Correia, V.; Marins, E.S.; Rocha, J.G.; Trindade, I.G.; Lanceros-Mendez, S.

    2011-01-01

    N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor - 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 o C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.

  8. Calibration and use of a rugged new piezoresistive pressure transducer

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, R.A.; Charest, J.A.

    1995-09-01

    A new 50-ohm piezoresistive pressure gauge has been developed and calibrated in the range 0 to 4.0 GPa. This ``pinducer`` consists of one half of 100 ohm, one quarter watt, carbon composition resistor mounted coaxially at the end of a small brass tube. Three techniques have been used to calibrate this new gauge. Good agreement is found between all calibration data, and a smooth curve is fit through all resistance change versus pressure data up to 1.5 GPa. The gauges exhibit rise times of about 0.5 {mu}s. They offer advantages in raggedness, cost, and flexibility of application. The pinducer can be successfully used in divergent flows, harsh environments, and positions where lead protection would be impossible with thin-film gauges. A unique application is demonstrated.

  9. Piezoresistance of top-down suspended Si nanowires

    International Nuclear Information System (INIS)

    Koumela, A; Mercier, D; Dupre, C; Jourdan, G; Marcoux, C; Ollier, E; Duraffourg, L; Purcell, S T

    2011-01-01

    Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 x 10 20 down to 5 x 10 17 cm -3 . The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires.

  10. Three Realizations and Comparison of Hardware for Piezoresistive Tactile Sensors

    Science.gov (United States)

    Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Navas-González, Rafael

    2011-01-01

    Tactile sensors are basically arrays of force sensors that are intended to emulate the skin in applications such as assistive robotics. Local electronics are usually implemented to reduce errors and interference caused by long wires. Realizations based on standard microcontrollers, Programmable Systems on Chip (PSoCs) and Field Programmable Gate Arrays (FPGAs) have been proposed by the authors for the case of piezoresistive tactile sensors. The solution employing FPGAs is especially relevant since their performance is closer to that of Application Specific Integrated Circuits (ASICs) than that of the other devices. This paper presents an implementation of such an idea for a specific sensor. For the purpose of comparison, the circuitry based on the other devices is also made for the same sensor. This paper discusses the implementation issues, provides details regarding the design of the hardware based on the three devices and compares them. PMID:22163797

  11. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications

    Science.gov (United States)

    Arcamone, Julien; Dupré, Cécilia; Arndt, Grégory; Colinet, Eric; Hentz, Sébastien; Ollier, Eric; Duraffourg, Laurent

    2014-10-01

    This work reports on top-down nanoelectromechanical resonators, which are among the smallest resonators listed in the literature. To overcome the fact that their electromechanical transduction is intrinsically very challenging due to their very high frequency (100 MHz) and ultimate size (each resonator is a 1.2 μm long, 100 nm wide, 20 nm thick silicon beam with 100 nm long and 30 nm wide piezoresistive lateral nanowire gauges), they have been monolithically integrated with an advanced fully depleted SOI CMOS technology. By advantageously combining the unique benefits of nanomechanics and nanoelectronics, this hybrid NEMS-CMOS device paves the way for novel breakthrough applications, such as NEMS-based mass spectrometry or hybrid NEMS/CMOS logic, which cannot be fully implemented without this association.

  12. Molecular Approaches to Optical Biosensors

    National Research Council Canada - National Science Library

    Fierke, Carol

    1998-01-01

    The goal of this proposal was to develop methodologies for the optimization of field-deployable optical biosensors, in general, and, in particular, to optimize a carbonic anhydrase-based fiber optic zinc biosensor...

  13. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors

    Directory of Open Access Journals (Sweden)

    Ribu Mathew

    2017-03-01

    Full Text Available Over the years, piezoresistive nano cantilever sensors have been extensively investigated for various biological sensing applications. Piezoresistive cantilever sensor is a composite structure with different materials constituting its various layers. Design and modeling of such sensors become challenging since their response is governed by the interplay between their geometrical and constituent material parameters. Even though, piezoresistive nano cantilever biosensors have several advantages, they suffer from a limitation in the form of self-heating induced inaccuracy which is seldom considered in design stages. Although, a few simplified mathematical models have been reported which incorporate the self-heating effect, several assumptions made in the modeling stages result in inaccuracy in predicting sensor terminal response. In this paper, we model and investigate the effect of self-heating on the thermo-electro-mechanical response of piezoresistive cantilever sensors as a function of the relative geometries of the piezoresistor and the cantilever platform. Finite element method (FEM based numerical computations are used to model the target-receptor interactions induced surface stress response in steady state and maximize the electrical sensitivity to thermal sensitivity ratio of the sensor. Simulation results show that the conduction mode of heat transfer is the dominant heat transfer mechanism. Furthermore, the isolation and immobilization layers play a critical role in determining the thermal sensitivity of the sensor. It is found that the shorter and wider cantilever platforms are more suitable to reduce self-heating induced inaccuracies. In addition, results depict that the piezoresistor width plays a more dominant role in determining the thermal drift induced inaccuracies compared to the piezoresistor length. It is found that for surface stress sensors at large piezoresistor width, the electrical sensitivity to thermal sensitivity ratio

  15. Introduction to biosensors.

    Science.gov (United States)

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Biosensors in forensic sciences

    Directory of Open Access Journals (Sweden)

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  17. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    Science.gov (United States)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  18. Biosensors: Future Analytical Tools

    Directory of Open Access Journals (Sweden)

    Vikas

    2007-02-01

    Full Text Available Biosensors offer considerable promises for attaining the analytic information in a faster, simpler and cheaper manner compared to conventional assays. Biosensing approach is rapidly advancing and applications ranging from metabolite, biological/ chemical warfare agent, food pathogens and adulterant detection to genetic screening and programmed drug delivery have been demonstrated. Innovative efforts, coupling micromachining and nanofabrication may lead to even more powerful devices that would accelerate the realization of large-scale and routine screening. With gradual increase in commercialization a wide range of new biosensors are thus expected to reach the market in the coming years.

  19. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    International Nuclear Information System (INIS)

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  20. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Monolithic integration of a micromachined piezoresistive flow sensor

    International Nuclear Information System (INIS)

    Li, Dan; Zhao, Tao; Yang, Zhenchuan; Zhang, Dacheng

    2010-01-01

    In this paper, a monolithic integrated piezoresistive flow sensor is presented, which was fabricated with an intermediate CMOS (complementary metal-oxide semiconductor) MEMS (micro electro mechanical system) process compatible with integrated pressure sensors. Four symmetrically arranged silicon diaphragms with piezoresistors on them were used to sense the drag force induced by the input gas flow. A signal conditioning CMOS circuit with a temperature compensation module was designed and fabricated simultaneously on the same chip with an increase of the total chip area by only 35%. An extra step of boron implantation and annealing was inserted into the standard CMOS process to form the piezoresistors. KOH anisotropic etching from the backside and deep reactive ion etching (DRIE) from the front side were combined to realize the silicon diaphragms. The integrated flow sensor was packaged and tested. The testing results indicated that the addition of piezoresistor formation and structure releasing did not significantly change any of the circuitry characteristics. The measured sensor output has a quadratic relation with the input flow rate of the fluid as predicted. The tested resolution of the sensor is less than 0.1 L min −1 with a measurement range of 0.1–5 L min −1 and the sensitivity is better than 40 mV per (L min −1 ) with a measurement range of 4–5 L min −1 . The measured noise floor of the sensor is 21.7 µV rtHz −1 .

  3. A MEMS SOI-based piezoresistive fluid flow sensor

    Science.gov (United States)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  4. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A novel method of temperature compensation for piezoresistive microcantilever-based sensors.

    Science.gov (United States)

    Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan

    2012-03-01

    Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.

  6. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  7. Electrochemical biosensors in pharmaceutical analysis

    OpenAIRE

    Gil, Eric de Souza; Melo, Giselle Rodrigues de

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  8. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  9. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  10. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  11. Biosensor. Seitai sensa

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1993-06-15

    Present state of the art of biosensors is described by taking taste sensors and odor sensors as examples. Bio-devices that response only to specific chemical substances are made using membranes that recognize particular molecules. Biosensors are constructed in combination of bio-devices with electronics devices that transduce the response of bio-devices to electric signals. Enzymes are used often as bio-devices to recognize molecules. They recognize strictly chemical substances and promote chemical reactions. Devices to measure electrochemically substances consumed or produced in the reactions serve as sensors. For taste sensors, inosinic acid or glutamic acid that is a component of taste, is recognized and measured. Combination of various bio-devices other than enzymes with various transducers makes it possible to produce biosensors based on a variety of principles. Odor sensors recognize odors by measuring frequency change of the electrode of quartz oscillator. The change occurs with weight change due to odorous substances absorbed on the oscillator electrode coated with lipids which exist in olfactory cells. 1 ref., 1 fig.

  12. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  13. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites

    Science.gov (United States)

    Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2018-03-01

    Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.

  14. Piezoresistance of Silicon and Strained Si0.9Ge0.1

    DEFF Research Database (Denmark)

    Richter, Jacob; Hansen, Ole; Larsen, A. Nylandsted

    2005-01-01

    We present experimentally obtained results of the piezoresistive effect in p-type silicon and strained Si0.9Ge0.1. Today, strained Si1-xGex is used for high speed electronic devices. This paper investigates if this area of use can be expanded to also cover piezoresistive micro electro mechanical...... systems (MEMS) devices. The measurements are performed on microfabricated test chips where resistors are defined in layers grown by molecular beam epitaxy on (0 0 1) silicon substrates. A uniaxial stress along the [1 1 0] direction is applied to the chip, with the use of a four point bending fixture....... The investigation covers materials with doping levels of N-A = 10(18) cm(-3) and NA = 1019 cm(-3), respectively. The results show that the pi(66) piezoresistive coefficient in strained Si0.9Ge0.1 is approximately 30% larger than the comparable pi(44) piezoresistive coefficient in silicon at a doping level of N...

  15. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  16. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  17. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Yu Xu

    2016-02-01

    Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  18. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency.

    Science.gov (United States)

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-02-06

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  19. Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures

    OpenAIRE

    Wang, Jer-Chyi; Karmakar, Rajat; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-01

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low...

  20. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    Science.gov (United States)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  1. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  2. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  3. Biosensors based on cantilevers.

    Science.gov (United States)

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  4. Direct Determination of a Small-Molecule Drug, Valproic Acid, by an Electrically-Detected Microcantilever Biosensor for Personalized Diagnostics

    Directory of Open Access Journals (Sweden)

    Long-Sun Huang

    2015-01-01

    Full Text Available Direct, small-molecule determination of the antiepileptic drug, valproic acid, was investigated by a label-free, nanomechanical biosensor. Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg·mL−1 in blood or serum. Unlike labeled and clinically-used measurement techniques, the label-free, electrical detection microcantilever biosensor can be miniaturized and simplified for use in portable or hand-held point-of-care platforms or personal diagnostic tools. A micromachined microcantilever sensor was packaged into the micro-channel of a fluidic system. The measurement of the antiepileptic drug, valproic acid, in phosphate-buffered saline and serum used a single free-standing, piezoresistive microcantilever biosensor in a thermally-controlled system. The measured surface stresses showed a profile over a concentration range of 50–500 μg·mL−1, which covered the clinically therapeutic range of 50–100 μg·mL−1. The estimated limit of detection (LOD was calculated to be 45 μg·mL−1, and the binding affinity between the drug and the antibody was measured at around 90 ± 21 μg·mL−1. Lastly, the results of the proposed device showed a similar profile in valproic acid drug detection with those of the clinically-used fluorescence polarization immunoassay.

  5. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  6. Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor

    International Nuclear Information System (INIS)

    Zhou, Youzheng; Wang, Zheyao; Wang, Chaonan; Ruan, Wenzhou; Liu, Litian

    2009-01-01

    This paper presents the design, fabrication and characterization of a silicon dioxide piezoresistive microcantilever immunosensor fabricated on silicon-on-insulator (SOI) wafers. The microcantilever consists of two strips of single crystalline silicon piezoresistors sandwiched in between two silicon dioxide layers. A theoretical model for the laminated microcantilever with a discontinuous layer is deduced using classic laminated beam theory. A two-step release method combining anisotropic and isotropic etching is developed to suspend the microcantilever, and the fabrication results show an excellent yield. The residual stress-induced free bending of the microcantilever and the stress caused by self-heating of the piezoresistors are discussed. The microcantilever sensor is characterized as an immunosensor using specific binding of antigen and antibody. These methods and some conclusions are also applicable to the development of other piezoresistive sensors that use laminated structures

  7. Design optimization of piezoresistive cantilevers for force sensing in air and water

    Science.gov (United States)

    Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.

    2009-01-01

    Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512

  8. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    International Nuclear Information System (INIS)

    Belwanshi, Vinod; Topkar, Anita

    2016-01-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  9. Piezoresistive polysilicon film obtained by low-temperature aluminum-induced crystallization

    International Nuclear Information System (INIS)

    Patil, Suraj Kumar; Celik-Butler, Zeynep; Butler, Donald P.

    2010-01-01

    A low-temperature deposition process employing aluminum-induced crystallization has been developed for fabrication of piezoresistive polycrystalline silicon (polysilicon) films on low cost and flexible polyimide substrates for force and pressure sensing applications. To test the piezoresistive properties of the polysilicon films, prototype pressure sensors were fabricated on surface-micromachined silicon nitride (Si 3 N 4 ) diaphragms, in a half-Wheatstone bridge configuration. Characterization of the pressure sensor was performed using atomic force microscope in contact mode with a specially modified probe-tip. Low pressure values ranging from 5 kPa to 45 kPa were achieved by this method. The resistance change was found to be - 0.1% to 0.5% and 0.07% to 0.3% for polysilicon films obtained at 500 o C and 400 o C, respectively, for the applied pressure range.

  10. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.

    2017-04-27

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several composite mixtures, with a CB filler loading up to 10% of binder mass, were mechanically tested under cyclic uniaxial compression, registering variations in electrical resistance as a function of deformation. The results show a reversible piezoresistive behaviour and a quasi-linear relation between the fractional change in resistivity and the compressive strain, in particular for those compositions with higher amount of CB. Gage factors of 30 and 24 were found for compositions containing 7 and 10% of binder mass, respectively. These findings suggest that the CB-cement composites may be a promising active material to monitor compressive strain in civil infrastructures such as concrete bridges and roadways.

  11. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    Science.gov (United States)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  12. Piezoresistive effect of the carbon nanotube yarn embedded axially into the 3D braided composite

    Science.gov (United States)

    Ma, Xin; Cao, Xiaona

    2018-06-01

    A new method for monitoring 3D braided composite structure health in real time by embedding the carbon nanotube yarn, based on its piezoresistivity, in the composite axially has been designed. The experimental system for piezoresistive effect detection of the carbon nanotube yarn in the 3D braided composite was built, and the sensing characteristics has been analyzed for further research. Compared with other structural health monitoring methods, the monitoring technique with carbon nanotubes yarns is more suitable for internal damage detection immediately, in addition the strength of the composite can be increased by embedding carbon nanotubes yarns. This method can also be used for strain sensing, the development of intelligent materials and structure systems.

  13. Detection Limits for Nanoscale Biosensors

    National Research Council Canada - National Science Library

    Sheehan, Paul E; Whitman, Lloyd J

    2005-01-01

    We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales...

  14. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    OpenAIRE

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedde...

  15. Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticle mass

    Science.gov (United States)

    Wasisto, H. S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Kirsch, I.; Salthammer, T.; Peiner, E.

    2011-06-01

    A silicon cantilever with slender geometry based Micro Electro Mechanical System (MEMS) for nanoparticles mass detection is presented in this work. The cantilever is actuated using a piezoactuator at the bottom end of the cantilever supporting frame. The oscillation of the microcantilever is detected by a self-sensing method utilizing an integrated full Wheatstone bridge as a piezoresistive strain gauge for signal read out. Fabricated piezoresistive cantilevers of 1.5 mm long, 30 μm wide and 25 μm thick have been employed. This self-sensing cantilever is used due to its simplicity, portability, high-sensitivity and low-cost batch microfabrication. In order to investigate air pollution sampling, a nanoparticles collection test of the piezoresistive cantilever sensor is performed in a sealed glass chamber with a stable carbon aerosol inside. The function principle of cantilever sensor is based on detecting the resonance frequency shift that is directly induced by an additional carbon nanoparticles mass deposited on it. The deposition of particles is enhanced by an electrostatic field. The frequency measurement is performed off-line under normal atmospheric conditions, before and after carbon nanoparticles sampling. The calculated equivalent mass-induced resonance frequency shift of the experiment is measured to be 11.78 +/- 0.01 ng and a mass sensitivity of 8.33 Hz/ng is obtained. The proposed sensor exhibits an effective mass of 2.63 μg, a resonance frequency of 43.92 kHz, and a quality factor of 1230.68 +/- 78.67. These results and analysis indicate that the proposed self-sensing piezoresistive silicon cantilever can offer the necessary potential for a mobile nanoparticles monitor.

  16. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  17. Linear and Non-Linear Piezoresistance Coefficients in Cubic Semiconductors. I. Theoretical Formulations

    Science.gov (United States)

    Durand, S.; Tellier, C. R.

    1996-02-01

    This paper constitutes the first part of a work devoted to applications of piezoresistance effects in germanium and silicon semiconductors. In this part, emphasis is placed on a formal explanation of non-linear effects. We propose a brief phenomenological description based on the multi-valleys model of semiconductors before to adopt a macroscopic tensorial model from which general analytical expressions for primed non-linear piezoresistance coefficients are derived. Graphical representations of linear and non-linear piezoresistance coefficients allows us to characterize the influence of the two angles of cut and of directions of alignment. The second part will primarily deal with specific applications for piezoresistive sensors. Cette publication constitue la première partie d'un travail consacré aux applications des effets piézorésistifs dans les semiconducteurs germanium et silicium. Cette partie traite essentiellement de la modélisation des effets non-linéaires. Après une description phénoménologique à partir du modèle de bande des semiconducteurs nous développons un modèle tensoriel macroscopique et nous proposons des équations générales analytiques exprimant les coefficients piézorésistifs non-linéaires dans des repères tournés. Des représentations graphiques des variations des coefficients piézorésistifs linéaires et non-linéaires permettent une pré-caractérisation de l'influence des angles de coupes et des directions d'alignement avant l'étude d'applications spécifiques qui feront l'objet de la deuxième partie.

  18. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  19. Micro- and nanogap based biosensors

    OpenAIRE

    Hammond, Jules L.

    2017-01-01

    Biosensors are used for the detection of a range of analytes for applications in healthcare, food production, environmental monitoring and biodefence. However, many biosensing platforms are large, expensive, require skilled operators or necessitate the analyte to be labelled. Direct electrochemical detection methods present a particularly attractive platform due to the simplified instrumentation when compared to other techniques such as fluorescence-based biosensors. With modern integrated ci...

  20. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura

    2015-01-01

    Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG) in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied. PMID:25831088

  1. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Directory of Open Access Journals (Sweden)

    Jandro L. Abot

    2018-02-01

    Full Text Available Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

  2. A flexible piezoresistive carbon black network in silicone rubber for wide range deformation and strain sensing

    Science.gov (United States)

    Zhu, Jianxiong; Wang, Hai; Zhu, Yali

    2018-01-01

    This work presents the design, fabrication, and measurement of a piezoresistive device with a carbon black (CB) particle network in a highly flexible silicone rubber for large deformation and wide range strain sensing. The piezoresistive composite film was fabricated with a mixture of silicone rubber and CB filler particles. The test results showed that the CB particle network in the silicone rubber strongly affected the resistance of the device during the process of drawing and its recovery. We found that the 50% volume ratio of CB filler particles showed a lower relative resistance than the 33.3% volume ratio of CB filler particles, but with an advantage of good resistance recovery stability and a smaller perturbation error (smaller changed resistance) during the periodic back and forth linear motor test. With both having a 50% volume ratio of CB filler particles and a 33.3% volume ratio of CB filler particles, one can reach up to 200% strain with resistances 18 kΩ and 110 kΩ, respectively. We also found that the relative resistance increased in an approximately linear relationship corresponding to the value of step-increased instantaneous length for the reported device. Moreover, an application test through hand drawing was used to demonstrate the piezoresistive performance of the device, which showed that the reported device was capable of measuring the instantaneous length with large deformation.

  3. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2018-01-01

    Full Text Available Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT-elastomer composite and a Quantum Tunneling Composite (QTC, have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics.

  4. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  5. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  6. The application of a piezo-resistive cardiorespiratory sensor system in an automobile safety belt.

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura

    2015-03-30

    Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG) in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied.

  7. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt

    Directory of Open Access Journals (Sweden)

    Syed Talha Ali Hamdani

    2015-03-01

    Full Text Available Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied.

  8. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Science.gov (United States)

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  9. Recycling microcavity optical biosensors.

    Science.gov (United States)

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  10. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  12. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    Science.gov (United States)

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  13. Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures

    Directory of Open Access Journals (Sweden)

    Jer-Chyi Wang

    2015-01-01

    Full Text Available The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS pressure sensors with inter-digitated (IDE and cross-point electrode (CPE structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.

  14. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures.

    Science.gov (United States)

    Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-05

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.

  15. Design and fabrication of a GaAs/Al0.4Ga0.6As micro-accelerometer based on piezoresistive effect

    International Nuclear Information System (INIS)

    Liu Guowen; Zhang Binzhen; Zhang Kairui

    2009-01-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al 0.4 Ga 0.6 As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  16. Design and fabrication of a GaAs/Al{sub 0.4}Ga{sub 0.6}As micro-accelerometer based on piezoresistive effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guowen; Zhang Binzhen; Zhang Kairui [National Key Laboratory for Electronic Measurement Technology, North University of China Taiyuan, Shanxi, 030051 (China)], E-mail: jacky.mucklow@iop.org

    2009-03-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al{sub 0.4}Ga{sub 0.6}As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  17. Biosensor for metal analysis and speciation

    Science.gov (United States)

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  18. Impedimetric biosensors and immunosensors

    International Nuclear Information System (INIS)

    Prodromidis, M.I.

    2007-01-01

    The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS) represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor, controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions). So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production and cost effective instrumentation (without need of high-energy sources) keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature. (author)

  19. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  20. Computational micromechanics analysis of electron hopping and interfacial damage induced piezoresistive response in carbon nanotube-polymer nanocomposites

    International Nuclear Information System (INIS)

    Chaurasia, A K; Seidel, G D; Ren, X

    2014-01-01

    Carbon nanotube (CNT)-polymer nanocomposites have been observed to exhibit an effective macroscale piezoresistive response, i.e., change in macroscale resistivity when subjected to applied deformation. The macroscale piezoresistive response of CNT-polymer nanocomposites leads to deformation/strain sensing capabilities. It is believed that the nanoscale phenomenon of electron hopping is the major driving force behind the observed macroscale piezoresistivity of such nanocomposites. Additionally, CNT-polymer nanocomposites provide damage sensing capabilities because of local changes in electron hopping pathways at the nanoscale because of initiation/evolution of damage. The primary focus of the current work is to explore the effect of interfacial separation and damage at the nanoscale CNT-polymer interface on the effective macroscale piezoresistive response. Interfacial separation and damage are allowed to evolve at the CNT-polymer interface through coupled electromechanical cohesive zones, within a finite element based computational micromechanics framework, resulting in electron hopping based current density across the separated CNT-polymer interface. The macroscale effective material properties and gauge factors are evaluated using micromechanics techniques based on electrostatic energy equivalence. The impact of the electron hopping mechanism, nanoscale interface separation and damage evolution on the effective nanocomposite electrostatic and piezoresistive response is studied in comparison with the perfectly bonded interface. The effective electrostatic/piezoresistive response for the perfectly bonded interface is obtained based on a computational micromechanics model developed in the authors’ earlier work. It is observed that the macroscale effective gauge factors are highly sensitive to strain induced formation/disruption of electron hopping pathways, interface separation and the initiation/evolution of interfacial damage. (paper)

  1. Micro-and nanoelectromechanical biosensors

    CERN Document Server

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  2. Biosensors in Clinical Practice: Focus on Oncohematology

    Directory of Open Access Journals (Sweden)

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  3. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  4. Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer

    Science.gov (United States)

    Jung, Han-Il; Kwon, Dae-Sung; Kim, Jongbaeg

    2017-12-01

    We report piezoresistive high-g three-axis accelerometer with a single proof mass suspended by thin eight beams. This eight-beam design allows load-sharing at high-g preventing structural breakage, as well as the symmetric arrangement of piezoresistors. The device chip size is 1.4 mm × 1.4 mm × 0.51 mm. Experimental results show that the sensitivity in X-, Y- and Z-axes are 0.2433, 0.1308 and 0.3068 mV/g/V under 5 V applied and the resolutions are 24.2, 29.9 and 25.4 g, respectively.

  5. Behavior of porous beryllium under thermomechanical loading. Part 7. Calibration studies on the carbon piezoresistive gage

    International Nuclear Information System (INIS)

    Horning, R.R.; Isbell, W.M.

    1975-01-01

    The calibrations, time responses, and Hugoniot for carbon piezoresistive gages from two manufacturers are presented. These gages exhibit a high sensitivity of about --20 percent resistance change per GPa at 0.5 GPa. Their equilibrium times, when tested in fused silica, exceed 0.6 μs below 0.5 GPa but improve at higher stresses and under better impedance matching conditions. They can be made of low atomic number materials, making them interesting candidates for studying the mechanical responses of materials to electron and x-ray deposition. (U.S.)

  6. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  7. Geometrical Considerations for Piezoresistive Microcantilever Response to Surface Stress during Chemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; Goericke, F; Ratto, T; Lee, J; Hart, B; King, W

    2008-04-25

    We have designed, fabricated, and tested five piezoresistive cantilever configurations to investigate the effect of shape and piezoresistor placement on the sensitivity of microcantilevers under either point loading and surface stress loading. The experimental study reveals that: (1) high aspect ratio cantilevers that are much longer than they are wide are optimal for point-loading applications such as microscopy and force measurements; (2) low aspect ratio cantilevers that are short and wide are optimal for surface stress loading scenarios such as those that occur in biological and chemical sensor applications. The sensitivity data for both point loads and surface stress are consistent with previously developed finite-element models.

  8. Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer nanocomposites via 3D computational multiscale micromechanics methods

    International Nuclear Information System (INIS)

    Ren, Xiang; Seidel, Gary D; Chaurasia, Adarsh K; Oliva-Avilés, Andrés I; Ku-Herrera, José J; Avilés, Francis

    2015-01-01

    In uniaxial tension and compression experiments, carbon nanotube (CNT)-polymer nanocomposites have demonstrated exceptional mechanical and coupled electrostatic properties in the form of piezoresistivity. In order to better understand the correlation of the piezoresistive response with the CNT dispersion at the mesoscale, a 3D computational multiscale micromechanics model based on finite element analysis is constructed to predict the effective macroscale piezoresistive response of CNT/polymer nanocomposites. The key factors that may contribute to the overall piezoresistive response, i.e. the nanoscale electrical tunneling effect, the inherent CNT piezoresistivity and the CNT mesoscale network effect are incorporated in the model based on a 3D multiscale mechanical–electrostatic coupled code. The results not only explain how different nanoscale mechanisms influence the overall macroscale piezoresistive response through the mesoscale CNT network, but also give reason and provide bounds for the wide range of gauge factors found in the literature offering insight regarding how control of the mesoscale CNT networks can be used to tailor nanocomposite piezoresistive response. (paper)

  9. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  10. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  11. An electromagnetic system for biosensors

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to an electromagnetic system for biosensors, in which the system can switch quickly between high magnetic gradients, without the need of movement of mech. elements. This is realized by two independent emu which are sepd. in the region of the pole shoes over a gap, in which a

  12. Development of Biosensors From Graphene

    Institute of Scientific and Technical Information of China (English)

    高瑞红; 孙红; 李霄寒; 于冲

    2017-01-01

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene -like 2D materials, single and few -atom -thick layers of van der Waals materials, which show fascinating and technologically useful properties.This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials.

  13. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  14. Biosensors and multiple mycotoxin analysis

    NARCIS (Netherlands)

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  15. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    Science.gov (United States)

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  16. Piezoresistive Composite Silicon Dioxide Nanocantilever Surface Stress Sensor: Design and Optimization.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-05-01

    In this paper, we present the design and optimization of a rectangular piezoresistive composite silicon dioxide nanocantilever sensor. Unlike the conventional design approach, we perform the sensor optimization by not only considering its electro-mechanical response but also incorporating the impact of self-heating induced thermal drift in its terminal characteristics. Through extensive simulations first we comprehend and quantify the inaccuracies due to self-heating effect induced by the geometrical and intrinsic parameters of the piezoresistor. Then, by optimizing the ratio of electrical sensitivity to thermal sensitivity defined as the sensitivity ratio (υ) we improve the sensor performance and measurement reliability. Results show that to ensure υ ≥ 1, shorter and wider piezoresistors are better. In addition, it is observed that unlike the general belief that high doping concentration of piezoresistor reduces thermal sensitivity in piezoresistive sensors, to ensure υ ≥ 1 doping concentration (p) should be in the range: 1E18 cm-3 ≤ p ≤ 1E19 cm-3. Finally, we provide a set of design guidelines that will help NEMS engineers to optimize the performance of such sensors for chemical and biological sensing applications.

  17. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    Science.gov (United States)

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  18. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  19. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction

    Science.gov (United States)

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  20. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction.

    Science.gov (United States)

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-05-18

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs.

  1. Sensitivity enhancement of polysilicon piezo-resistive pressure sensors with phosphorous diffused resistors

    International Nuclear Information System (INIS)

    Sivakumar, K; Dasgupta, N; Bhat, K N; Natarajan, K

    2006-01-01

    It is generally accepted that the piezo-resistive coefficient in single crystal silicon is higher when P-type impurities such as boron are used for doping the resistors. In this paper we demonstrate that the sensitivity of polycrystalline silicon piezo-resistive pressure sensors can be enhanced considerably when phosphorus diffusion source is used instead of boron dopant for realizing the piezo-resistors. Pressure sensors have been designed and fabricated with the polycrystalline piezo-resistors connected in the form of a Wheatstone bridge and laid out on thermal oxide grown on membranes obtained with a Silicon On Insulator (SOI) approach. The SOI wafers required for this purpose have been realized in-house by Silicon Fusion Bonding (SFB) and etch back technique in our laboratory. This approach provides excellent isolation between the resistors and enables zero temperature coefficient of the polysilicon resistor. The results obtained in our laboratory have clearly demonstrated that by optimizing the phosphorus diffusion temperature and duration, it is possible to achieve sensitivities in excess of 20mV /Bar for bridge input voltage of 10V, with linearity within 1% over a differential pressure range up to 10Bar (10 6 Pascal), and burst pressure in excess of 50 Bar as compared to the 10mV /Bar sensitivity obtained with boron doped polysilicon piezo-resistors. This enhancement is attributed to grain boundary passivation by phosphorous atoms

  2. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  3. Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response

    International Nuclear Information System (INIS)

    Abot, Jandro L; Kiyono, César Y; Thomas, Gilles P; Silva, Emílio C N

    2015-01-01

    Carbon nanotube (CNT) yarns are micron-size fibers that contain thousands of intertwined CNTs in their cross sections and exhibit piezoresistance characteristics that can be tapped for sensing purposes. Sensor yarns can be integrated into polymeric and composite materials to measure strain through resistance measurements without adding weight or altering the integrity of the host material. This paper includes the details of novel strain gauge sensor configurations comprised of CNT yarn, the numerical modeling of their piezoresistive response, and the parametric analysis schemes that determines the highest sensor sensitivity to mechanical loading. The effect of several sensor configuration parameters are discussed including the inclination and separation of the CNT yarns within the sensor, the mechanical properties of the CNT yarn, the direction and magnitude of the applied mechanical load, and the dimensions and shape of the sensor. The sensor configurations that yield the highest sensitivity are presented and discussed in terms of the mechanical and electrical properties of the CNT yarn. It is shown that strain gauge sensors consisting of CNT yarn are sensitive enough to measure strain, and could exhibit even higher gauge factors than those of metallic foil strain gauges. (paper)

  4. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  5. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    International Nuclear Information System (INIS)

    Mohammadi, Abdolreza R; Chiao, Mu; Bennington, Chad P J

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm 2 ) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa) −1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  6. Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics

    Science.gov (United States)

    Prakash, Naveen; Seidel, Gary D.

    2018-01-01

    Polymer bonded explosives can sustain microstructural damage due to accidental impact, which may reduce their operational reliability or even cause unwanted ignition leading to detonation of the explosive. Therefore a nanocomposite piezoresistivity based sensing solution is discussed here that employs a carbon nanotube based nanocomposite binder in the explosive material by which in situ real-time sensing can be obtained. A coupled electromechanical peridynamics code is used to numerically obtain the piezoresistive response of such a material under dynamic conditions, which allows one to capture damage initiation and propagation mechanisms due to stress waves. The relative change in resistance at three locations along the length of the microstructure is monitored, and found to correlate well with deformation and damage mechanisms within the material. This response can depend on many factors, such as carbon nanotube content, electrical conductivity of the grain, impact velocity and fracture properties, which are explored through numerical simulations. For example, it is found that the piezoresistive response is highly dependent on preferential pathways of electrical current , i.e. the phase through which the current flows, which is in turn affected by the conductivity of the grain and the specific pattern of damage. It is found that the results qualitatively agree with experimental data on the dynamic piezoresistive response of nanocomposites and look promising as a sensing mechanism for explosive materials.

  7. Non-monotonic piezoresistive behaviour of graphene nanoplatelet (GNP-polymer composite flexible films prepared by solvent casting

    Directory of Open Access Journals (Sweden)

    S. Makireddi

    2017-07-01

    Full Text Available Graphene-polymer nanocomposite films show good piezoresistive behaviour and it is reported that the sensitivity increases either with the increased sheet resistance or decreased number density of the graphene fillers. A little is known about this behaviour near the percolation region. In this study, graphene nanoplatelet (GNP/poly (methyl methacrylate (PMMA flexible films are fabricated via solution casting process at varying weight percent of GNP. Electrical and piezoresistive behaviour of these films is studied as a function of GNP concentration. Piezoresistive strain sensitivity of the films is measured by affixing the film to an aluminium specimen which is subjected to monotonic uniaxial tensile load. The change in resistance of the film with strain is monitored using a four probe. An electrical percolation threshold at 3 weight percent of GNP is observed. We report non-monotonic piezoresistive behaviour of these films as a function GNP concentration. We observe an increase in gauge factor (GF with unstrained resistance of the films up to a critical resistance corresponding to percolation threshold. Beyond this limit the GF decreases with unstrained resistance.

  8. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  9. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  10. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  11. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement

    International Nuclear Information System (INIS)

    Yang Yongliang; Li Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO 2 interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  12. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  13. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  14. A kinetic formulation of piezoresistance in N-type silicon: Application to non-linear effects

    Science.gov (United States)

    Charbonnieras, A. R.; Tellier, C. R.

    1999-07-01

    This paper is devoted to the theoretical study of the influence of the temperature and of the doping on the piezoresistance of N-type silicon. In the first step the fractional change in the resistivity caused by stresses is calculated in the framework of a multivalley model using a kinetic transport formulation based on the Boltzmann transport equation. In the second step shifts in the minima of the conduction band and the resulting shift of the Fermi level are expressed in terms of deformation potentials and of stresses. General expressions for the fundamental linear, π_{11} and π_{12}, and non-linear, π_{111}, π_{112}, π_{122} and π_{123}, piezoresistance coefficients are then derived. Plots of the non-linear piezoresistance coefficients against the reduced shift of the Fermi level or against temperature allow us to characterize the influence of doping and temperature. Finally some attempts are made to estimate the non-linearity for heavily doped semiconductor gauges. Cette publication est consacrée à l'étude théorique de l'influence de la température et du dopage sur la piezorésistivité du silicium type N. Dans une première étape nous adoptons le modèle de vallées et nous utilisons une formulation cinétique du transport électronique faisant appel à l'équation de transport de Boltzmann pour calculer la variation de la résistivité du semiconducteur sous contrainte. Dans la deuxième étape nous exprimons les déplacements des minima de la bande de conduction et du niveau de Fermi en termes de potentiels de déformation et de contraintes. Nous proposons ensuite des expressions générales pour les coefficients piezorésistifs fondamentaux linéaires, π_{11} et π_{12}, et non-linéaires, π_{111}, π_{112}, π_{122} et π_{123}. Des représentations graphiques des variations des coefficients non-linéaires permettent de caractériser l'influence du dopage et de la température. Enfin nous fournissons une première pré-estimation des effets

  15. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2014-01-01

    Full Text Available Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V and currents (<1 mA with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  16. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki; Maeda, Ryutaro [Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8564 (Japan)

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  17. Design and measurement of a piezoresistive ultrasonic sensor based on MEMS

    International Nuclear Information System (INIS)

    Yu Jiaqi; He Changde; Yuan Kejing; Xue Chenyang; Zhang Wendong; Lian Deqin

    2013-01-01

    A kind of piezoresistive ultrasonic sensor based on MEMS is proposed, which is composed of a membrane and two side beams. A simplified mathematical model has been established to analyze the mechanical properties of the sensor. On the basis of the theoretical analysis, the structural size and layout location of the piezoresistors are determined by simulation analysis. The boron-implanted piezoresistors located on membrane and side beams form a Wheatstone bridge to detect acoustic signal. The membrane-beam microstructure is fabricated integrally by MEMS manufacturing technology. Finally, this paper presents the experimental characterization of the ultrasonic sensor, validating the theoretical model used and the simulated model. The sensitivity reaches −116.2 dB (0 dB reference = 1 V/μbar, 31 kHz), resonant frequency is 39.6 kHz, direction angle is 55°. (semiconductor devices)

  18. Silicon-based micromembranes with piezoelectric actuation and piezoresistive detection for sensing purposes in liquid media

    International Nuclear Information System (INIS)

    Alava, T; Mathieu, F; Mazenq, L; Nicu, L; Soyer, C; Remiens, D

    2010-01-01

    In this paper, the authors report for the first time the physical cointegration of piezoelectric actuation and piezoresistive detection on resonating micromembranes dedicated to microgravimetric biosensing applications. The micromembranes are oscillated by a reverse piezoelectric phenomenon provided by a PbZr x Ti 1−x O 3 46/54 thin layer. The oscillation amplitudes are read-out by measuring the resistance change of piezoresistors precisely located on the clamped edges of each micromembrane. The detection of the micromembranes' resonant frequencies is reported in air and deionized water. A dedicated electronic set-up operating the micromembranes in a closed-loop configuration is described. The set-up enables multiplexed tracking of four micromembranes' resonant frequencies in liquid media while enhancing the corresponding quality factors' values. Increases up to 11-fold of the micromembranes' quality factors in liquid is reported for the (0,1) vibration mode. A quality factor of up to 417 is reported in fluid.

  19. Testing of a single-polarity piezoresistive three-dimensional stress-sensing chip

    International Nuclear Information System (INIS)

    Gharib, H H; Moussa, W A

    2013-01-01

    A new piezoresistive stress-sensing rosette is developed to extract the components of the three-dimensional (3D) stress tensor using single-polarity (n-type) piezoresistors. This paper presents the testing of a micro-fabricated sensing chip utilizing the developed single-polarity rosette. The testing is conducted using a four-point bending of a chip-on-beam to induce five controlled stress components, which are analyzed both numerically and experimentally. Numerical analysis using finite element analysis is conducted to study the levels of the induced stress components at three rosette-sites and the levels of the stress field non-uniformities, and to simulate the extracted stress components from the sensing rosette. The experimental analysis applied tensile and compressive loads over three rosette-sites at different load increments. The experimentally extracted stress components show good linearity with the applied load and values close to the numerical model. (paper)

  20. A piezoresistive cantilever for lateral force detection fabricated by a monolithic post-CMOS process

    International Nuclear Information System (INIS)

    Ji Xu; Li Zhihong; Li Juan; Wang Yangyuan; Xi Jianzhong

    2008-01-01

    This paper presents a post-CMOS process to monolithically integrate a piezoresistive cantilever for lateral force detection and signal processing circuitry. The fabrication process includes a standard CMOS process and one more lithography step to micromachine the cantilever structure in the post-CMOS process. The piezoresistors are doped in the CMOS process but defined in the post-CMOS micromachining process without any extra process required. A partially split cantilever configuration is developed for the lateral force detection. The piezoresistors are self-aligned to the split cantilever, and therefore the width of the beam is only limited by lithography. Consequently, this kind of cantilever potentially has a high resolution. The preliminary experimental results show expected performances of the fabricated piezoresistors and electronic circuits

  1. A Flexible and Highly Sensitive Piezoresistive Pressure Sensor Based on Micropatterned Films Coated with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jia-lin Yao

    2016-01-01

    Full Text Available Excellent flexibility, high sensitivity, and low consumption are essential characteristics in flexible microtube pressure sensing occasion, for example, implantable medical devices, industrial pipeline, and microfluidic chip. This paper reports a flexible, highly sensitive, and ultrathin piezoresistive pressure sensor for fluid pressure sensing, whose sensing element is micropatterned films with conductive carbon nanotube layer. The flexible pressure sensor, the thickness of which is 40 ± 10 μm, could be economically fabricated by using biocompatible polydimethylsiloxane (PDMS. Experimental results show that the flexible pressure sensor has high sensitivity (0.047 kPa−1 in gas sensing and 5.6 × 10−3 kPa−1 in liquid sensing and low consumption (<180 μW, and the sensor could be used to measure the pressure in curved microtubes.

  2. New type of Piezoresistive Pressure Sensors for Environments with Rapidly Changing Temperature

    Directory of Open Access Journals (Sweden)

    Tykhan Myroslav

    2017-03-01

    Full Text Available The theoretical aspects of a new type of piezo-resistive pressure sensors for environments with rapidly changing temperatures are presented. The idea is that the sensor has two identical diaphragms which have different coefficients of linear thermal expansion. Therefore, when measuring pressure in environments with variable temperature, the diaphragms will have different deflection. This difference can be used to make appropriate correction of the sensor output signal and, thus, to increase accuracy of measurement. Since physical principles of sensors operation enable fast correction of the output signal, the sensor can be used in environments with rapidly changing temperature, which is its essential advantage. The paper presents practical implementation of the proposed theoretical aspects and the results of testing the developed sensor.

  3. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    Science.gov (United States)

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  4. Design, simulation and analysis of piezoresistive MEMS pressure sensor for fast reactor applications

    International Nuclear Information System (INIS)

    Patankar, Mahesh Kumar; Murali, N.; Satya Murty, S.A.V.; Kalyana Rao, K.; Sridhar, S.

    2013-01-01

    To exploit the extraordinary benefits of MEMS technology in fast reactor domain, a piezoresistive MEMS pressure sensor was designed, simulated and analyzed using Intellisuite Software to measure the RCB air pressure in 0 - 1.25 bar (a) range. For sensing the pressure, a thin square silicon diaphragm of size of 800 x 800 μm 2 with thickness of 20 μm was optimized using FEM analysis and to transfer the mechanical stress, induce in the diaphragm due to pressure, into electrical output voltage signal, a set of piezoresistors were arranged on top side of the diaphragm in full active wheatstone bridge configuration for obtaining the higher sensitivity. The simulation results were compared with the analytical results which were found in line of expectations and electrical sensitivity was obtained at 15 mV/V.bar. (author)

  5. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    Directory of Open Access Journals (Sweden)

    Ji-Sik Kim

    2017-01-01

    Full Text Available This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane dispersed with carbon nanotubes (CNTs, to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied.

  6. Piezoresistive microcantilever based lab-on-a-chip system for detection of macronutrients in the soil

    Science.gov (United States)

    Patkar, Rajul S.; Ashwin, Mamta; Rao, V. Ramgopal

    2017-12-01

    Monitoring of soil nutrients is very important in precision agriculture. In this paper, we have demonstrated a micro electro mechanical system based lab-on-a-chip system for detection of various soil macronutrients which are available in ionic form K+, NO3-, and H2PO4-. These sensors are highly sensitive piezoresistive silicon microcantilevers coated with a polymer matrix containing methyltridodecylammonium nitrate ionophore/ nitrate ionophore VI for nitrate sensing, 18-crown-6 ether for potassium sensing and Tributyltin chloride for phosphate detection. A complete lab-on-a-chip system integrating a highly sensitive current excited Wheatstone's bridge based portable electronic setup along with arrays of microcantilever devices mounted on a printed circuit board with a liquid flow cell for on the site experimentation for soil test has been demonstrated.

  7. Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film.

    Science.gov (United States)

    Liu, Weijie; Liu, Nishuang; Yue, Yang; Rao, Jiangyu; Cheng, Feng; Su, Jun; Liu, Zhitian; Gao, Yihua

    2018-04-01

    Piezoresistive sensor is a promising pressure sensor due to its attractive advantages including uncomplicated signal collection, simple manufacture, economical and practical characteristics. Here, a flexible and highly sensitive pressure sensor based on wrinkled graphene film (WGF)/innerconnected polyvinyl alcohol (PVA) nanowires/interdigital electrodes is fabricated. Due to the synergistic effect between WGF and innerconnected PVA nanowires, the as-prepared pressure sensor realizes a high sensitivity of 28.34 kPa -1 . In addition, the device is able to discern lightweight rice about 22.4 mg (≈2.24 Pa) and shows excellent durability and reliability after 6000 repeated loading and unloading cycles. What is more, the device can detect subtle pulse beat and monitor various human movement behaviors in real-time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  9. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  10. Design and measurement of a piezoresistive triaxial accelerometer based on MEMS technology

    International Nuclear Information System (INIS)

    Du Chunhui; He Changde; Yu Jiaqi; Ge Xiaoyang; Zhang Wendong; Zhang Yongping

    2012-01-01

    With the springing up of the MEMS industry, research on accelerometers is focused on miniaturization, integration, high reliability, and high resolution, and shares extensive application prospects in military and civil fields. Comparing with the traditional single cantilever beam structure or 'cantilever-mass' structure, the proposed structure of '8-beams/mass' with its varistor completely symmetric distribution in micro-silicon piezoresistive triaxial accelerometer in this paper has a higher axial sensitivity and smaller cross-axis sensitivity. Adopting ANSYS, the process of structural analysis and the manufacturing flow of sensing unit are showed. In dynamic testing conditions, it can be concluded that the axial sensitivity of x, y, and z are S x = 48 μV/g, S y = 54 μV/g and S z = 217 μV/g respectively, and the nonlinearities are 0.4%, 0.6% and 0.4%.

  11. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  12. Embedded Piezoresistive Microcantilever Sensors Functionalized for the Detection of Methyl Salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Timothy L. [Univ. of Nevada, Las Vegas, NV (United States); Venedam, Richard J. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2013-03-01

    Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction of MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.

  13. Embedded Piezoresistive Microcantilever Sensors Functionalized for the Detection of Methyl Salicylate

    Directory of Open Access Journals (Sweden)

    Timothy L. Porter

    2013-02-01

    Full Text Available Sensors designed to detect the presence of methyl salicylate (MeS have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate, or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction of MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.

  14. Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications

    International Nuclear Information System (INIS)

    San, Haisheng; Zhang, Hong; Zhang, Qiang; Yu, Yuxi; Chen, Xuyuan

    2013-01-01

    Silicon–glass (Si–glass)-based single piezoresistive pressure sensors were designed and fabricated by standard MEMS technology. The single piezoresistive sensing element was designed to be on the lower surface of the silicon diaphragm and be vacuum-sealed in a Si–glass cavity, which form a self-packaging protection structure helpful to the applications of sensors in harsh media. The pressure sensors were fabricated using a Si–glass anodic bonding technique, and the embedded Al feedthrough lines at the Si–glass interface are used to realize the electrical connections between the piezo-sensing element and the electrode-pads, and two larger-size electrode-pads are fabricated for realizing the soldered electrical connection between the sensor and the external circuit. The performance of the pressure sensors was characterized by a pressure test system at different temperature conditions. The temperature compensation was performed by the difference between the output voltage at zero-pressure and the output at operation pressure. The measurement results show that the sensitivity is 24 mV V –1 MPa −1 , the coefficient of sensitivity is 0.14% FS °C –1 , and both the zero-point offset and the temperature coefficient of offset are equal to zero, which are able to meet the commercial application requirements. However, a nonlinearity of 5.2% FS caused by the balloon effect would considerably worsen the accuracy of the pressure sensor. It is suggested to reduce the balloon effect by using a bossed-diaphragm structure in the pressure sensor. (paper)

  15. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  16. Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications

    Science.gov (United States)

    Melnykowycz, M.; Tschudin, M.; Clemens, F.

    2017-02-01

    For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

  17. Antibody orientation on biosensor surfaces: a minireview

    NARCIS (Netherlands)

    Trilling, A.K.; Beekwilder, M.J.; Zuilhof, H.

    2013-01-01

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains – the immobilization

  18. A New Laccase Based Biosensor for Tartrazine

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  19. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  20. A New Laccase Based Biosensor for Tartrazine.

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  1. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  2. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  3. Boron impurity at the Si/SiO2 interface in SOI wafers and consequences for piezoresistive MEMS devices

    International Nuclear Information System (INIS)

    Nafari, A; Karlen, D; Enoksson, P; Rusu, C; Svensson, K

    2009-01-01

    In this work, the electrical performance of piezoresistive devices fabricated on thinned SOI wafers has been investigated. Specifically, SOI wafers manufactured with the standard bond-and-etch back method (BESOI), commonly used for MEMS fabrication, have been studied. Results from electrical measurements and SIMS characterization show the presence of a boron impurity close to the buried oxide, even on unprocessed wafers. If the boron impurity overlaps with the piezoresistors on the device, it can create non-defined pn-junctions and thus allow conduction through the substrate, leading to stray connections and excessive noise. The thickness of the boron impurity can extend up to several µm, thus setting a thickness limit for the thinnest parts of a MEMS device. This work shows how this impurity can fundamentally affect the functionality of piezoresistive devices. Design rules of how to avoid this are presented

  4. Electrochemical biosensors in pharmaceutical analysis

    Directory of Open Access Journals (Sweden)

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  5. A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer

    International Nuclear Information System (INIS)

    Hsieh, Hsieh-Shen; Chang, Heng-Chung; Hu, Chih-Fan; Cheng, Chao-Lin; Fang, Weileun

    2011-01-01

    This study designs and implements a stress isolation guard-ring structure to improve the performances of the existing single proof-mass three-axis piezoresistive accelerometer. Thus, the environment disturbances, such as temperature variation and force/deflection transmittance, for a packaged three-axis piezoresistive accelerometer are significantly reduced. In application, the three-axis piezoresistive accelerometer has been fabricated using the bulk micromachining process on the SOI wafer. Experimental results show that the out-of-plane deformation of the suspended spring mass on the packaged accelerometer is reduced from 0.72 to 0.10 µm at a 150 °C temperature elevation. The temperature coefficient of zero-g offset for the presented sensor is reduced, and the temperature-induced sensitivity variation is minimized as well. Measurements also demonstrate that the guard-ring design successfully reduces the false signals induced by the force and displacement transmittance disturbances for one order of magnitude. Moreover, the three-axis acceleration sensing for the presented accelerometer with guard ring has also been demonstrated with sensitivities of 0.12–0.17 mV V −1 g −1 and nonlinearity < 1.02%.

  6. Comparative advantages of mechanical biosensors.

    Science.gov (United States)

    Arlett, J L; Myers, E B; Roukes, M L

    2011-04-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

  7. Biosensor approach to psychopathology classification.

    Directory of Open Access Journals (Sweden)

    Misha Koshelev

    2010-10-01

    Full Text Available We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer by their DSM-diagnosed partner (the responder. The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574, we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria.

  8. Simulation of Biosensor using FEM

    International Nuclear Information System (INIS)

    Sheeparamatti, B G; Hebbal, M S; Sheeparamatti, R B; Math, V B; Kadadevaramath, J S

    2006-01-01

    Bio-Micro Electro Mechanical Systems/Nano Electro Mechanical Systems include a wide variety of sensors, actuators, and complex micro/nano devices for biomedical applications. Recent advances in biosensors have shown that sensors based on bending of microfabricated cantilevers have potential advantages over earlier used detection methods. Thus, a simple cantilever beam can be used as a sensor for biomedical, chemical and environmental applications. Here, microfabricated multilayered cantilever beam is exposed to sensing environment. Lower layer being pure structural silicon or polymer and upper layer is of polymer with antigen/antibody immobilized in it. Obviously, it has an affinity towards its counterpart i.e. antibody/antigen. In the sensing environment, if counter elements exists, they get captured by this sensing beam head, and the cantilever beam deflects. This deflection can be sensed and the presence of counter elements in the environment can be predicted. In this work, a finite element model of a biosensor for sensing antibody/antigen reaction is developed and simulated using ANSYS/Multiphysics. The optimal dimensions of the microcantilever beam are selected based on permissible deflection range with the aid of MATLAB. In the model analysis, both weight and surface stress effects on the cantilever are considered. Approximate weights are taken into account because of counter elements, considering their molecular weight and possible number of elements required for sensing. The results obtained in terms of lateral deflection are presented

  9. Electroacoustic miniaturized DNA-biosensor.

    Science.gov (United States)

    Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard

    2007-11-01

    A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.

  10. Prospects of conducting polymers in biosensors

    International Nuclear Information System (INIS)

    Malhotra, Bansi D.; Chaubey, Asha; Singh, S.P.

    2006-01-01

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  11. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  12. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  13. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-03-01

    In the last decade, piezoresistive nano cantilever sensors have been extensively explored, especially for chemical and biological sensing applications. Piezoresistive cantilever sensors are multi-layer structures with different constituent materials. Performance of such sensors is a function of their geometry and constituent materials. For a fixed material set, the pre-requisite for optimizing the performance of a composite piezoresistive cantilever sensor is careful geometrical design of its constituent layers. Even though, treatise encompasses various designs of such sensors, typically for computational simplicity the functional layers i.e., the isolation and immobilization layers are neglected in the modeling stages. In this paper, we elucidate the impact of the functional layers on the electro-mechanical response of composite piezoresistive nano cantilever sensors. Systematic and detailed computations are performed using theoretical models and numerical simulations. Results show that both the isolation and immobilization layers play a critical role in governing the sensor performance. Simulation results depict that compared to a sensor with an isolation layer of thickness 100 nm, a sensor without isolation layer has 36.29% and 42.51% better deflection sensitivity and electrical sensitivity respectively. Furthermore, it is found that when an immobilization layer of thickness 40 nm is added atop the isolation layer, the deflection sensitivity and electrical sensitivity reduces by 12.98% and 15.83% respectively. Through our investigation it is shown that the isolation and immobilization layers not only play a vital role in determining the stability and electro-mechanical response of the sensor but their negligence in the design stages can be detrimental. Apart from investigating the impact of the immobilization layer thickness, to model the sensor closer to real time operational conditions, we have performed analysis to understand the impact of non-uniformity in

  14. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2018-02-01

    Full Text Available To meet the radiosonde requirement of high sensitivity and linearity, this study designs and implements a monolithically integrated array-type piezoresistive intelligent pressure sensor system which is made up of two groups of four pressure sensors with the pressure range of 0–50 kPa and 0–100 kPa respectively. First, theoretical models and ANSYS (version 14.5, Canonsburg, PA, USA finite element method (FEM are adopted to optimize the parameters of array sensor structure. Combing with FEM stress distribution results, the size and material characteristics of the array-type sensor are determined according to the analysis of the sensitivity and the ratio of signal to noise (SNR. Based on the optimized parameters, the manufacture and packaging of array-type sensor chips are then realized by using the standard complementary metal-oxide-semiconductor (CMOS and microelectromechanical system (MEMS process. Furthermore, an intelligent acquisition and processing system for pressure and temperature signals is achieved. The S3C2440A microprocessor (Samsung, Seoul, Korea is regarded as the core part which can be applied to collect and process data. In particular, digital signal storage, display and transmission are realized by the application of a graphical user interface (GUI written in QT/E. Besides, for the sake of compensating the temperature drift and nonlinear error, the data fusion technique is proposed based on a wavelet neural network improved by genetic algorithm (GA-WNN for average measuring signal. The GA-WNN model is implemented in hardware by using a S3C2440A microprocessor. Finally, the results of calibration and test experiments achieved with the temperature ranges from −20 to 20 °C show that: (1 the nonlinear error and the sensitivity of the array-type pressure sensor are 8330 × 10−4 and 0.052 mV/V/kPa in the range of 0–50 kPa, respectively; (2 the nonlinear error and the sensitivity are 8129 × 10−4 and 0.020 mV/V/kPa in the

  15. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  16. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  17. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  18. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  19. Biosensors in immunology: the story so far

    NARCIS (Netherlands)

    Pathak, S.S.; Savelkoul, H.F.J.

    1997-01-01

    Optical biosensors are finding a range of applications in immunology. They enable biomolecular interactions to be characterized in real time without the need to label reactants, and, because individual binding steps can be visualized, are particularly suited to complex assays

  20. Biosensors a promising future in measurements

    International Nuclear Information System (INIS)

    Saleem, Muhammad

    2013-01-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors

  1. Biosensors for cardiac biomarkers detection: a review

    OpenAIRE

    Qureshi, Anjum; Gürbüz, Yaşar; Gurbuz, Yasar; Kolkar Mohammed, Javed Hussain Niazi

    2012-01-01

    The cardiovascular disease (CVD) is considered as a major threat to global health. Therefore, there is a growing demand for a range of portable, rapid and low cost biosensing devices for the detection of CVD. Biosensors can play an important role in the early diagnosis of CVD without having to rely on hospital visits where expensive and time-consuming laboratory tests are recommended. Over the last decade, many biosensors have been developed to detect a wide range of cardiac marker to reduce ...

  2. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  3. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  4. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  5. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Biosensors-on-chip: a topical review

    International Nuclear Information System (INIS)

    Chen, Sensen; Shamsi, Mohtashim H

    2017-01-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices. (topical review)

  7. DOUBLE BOSS SCULPTURED DIAPHRAGM EMPLOYED PIEZORESISTIVE MEMS PRESSURE SENSOR WITH SILICON-ON-INSULATOR (SOI

    Directory of Open Access Journals (Sweden)

    D. SINDHANAISELVI

    2017-07-01

    Full Text Available This paper presents the detailed study on the measurement of low pressure sensor using double boss sculptured diaphragm of piezoresistive type with MEMS technology in flash flood level measurement. The MEMS based very thin diaphragms to sense the low pressure is analyzed by introducing supports to achieve linearity. The simulation results obtained from Intellisuite MEMS CAD design tool show that very thin diaphragms with rigid centre or boss give acceptable linearity. Further investigations on very thin diaphragms embedded with piezoresistor for low pressure measurement show that it is essential to analyse the piezoresistor placement and size of piezoresistor to achieve good sensitivity. A modified analytical modelling developed in this study for double boss sculptured diaphragm results were compared with simulated results. Further the enhancement of sensitivity is analyzed using non uniform thickness diaphragm and Silicon-On-Insulator (SOI technique. The simulation results indicate that the double boss square sculptured diaphragm with SOI layer using 0.85μm thickness yields the higher voltage sensitivity, acceptable linearity with Small Scale Deflection.

  8. CMOS-MEMS prestress vertical cantilever resonator with electrostatic driving and piezoresistive sensing

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, J-C; Shieh, L-J; Lin, Y-J [Department of Electrical and Control Engineering, National Chiao Tung University, Hsin-Chu, Taiwan (China)], E-mail: chiou@mail.nctu.edu.tw, E-mail: ljs.ece93g@nctu.edu.tw, E-mail: yjlin@mail.nctu.edu.tw

    2008-10-21

    This paper presents a CMOS-MEMS prestress vertical comb-drive resonator with a piezoresistive sensor to detect its static and dynamic response. The proposed resonator consists of a set of comb fingers fabricated along with a composite beam. One end of the composite beam is clamped to the anchor, while the other is elevated by residual stress. Actuation occurs when the electrostatic force, induced by the fringe effect, pulls the composite beam downwards to the substrate. The initial tip height at the free end of the resonator due to residual stress is approximately 60 {mu}m. A piezoresistor is designed to sense the vertical deflection and vibration of the resonator. The relative change in the resistance of the piezoresistor ({delta}R/R) is about 0.52% when a voltage of 100 V is applied in static mode. The first resonant frequency of the device is 14.5 kHz, and the quality factor is around 36 in air. The device is fabricated through TSMC 0.35 {mu}m 2p4m CMOS process and post-CMOS process.

  9. CMOS-MEMS prestress vertical cantilever resonator with electrostatic driving and piezoresistive sensing

    International Nuclear Information System (INIS)

    Chiou, J-C; Shieh, L-J; Lin, Y-J

    2008-01-01

    This paper presents a CMOS-MEMS prestress vertical comb-drive resonator with a piezoresistive sensor to detect its static and dynamic response. The proposed resonator consists of a set of comb fingers fabricated along with a composite beam. One end of the composite beam is clamped to the anchor, while the other is elevated by residual stress. Actuation occurs when the electrostatic force, induced by the fringe effect, pulls the composite beam downwards to the substrate. The initial tip height at the free end of the resonator due to residual stress is approximately 60 μm. A piezoresistor is designed to sense the vertical deflection and vibration of the resonator. The relative change in the resistance of the piezoresistor (ΔR/R) is about 0.52% when a voltage of 100 V is applied in static mode. The first resonant frequency of the device is 14.5 kHz, and the quality factor is around 36 in air. The device is fabricated through TSMC 0.35 μm 2p4m CMOS process and post-CMOS process.

  10. Process Optimization for Monolithic Integration of Piezoresistive Pressure Sensor and MOSFET Amplifier with SOI Approach

    International Nuclear Information System (INIS)

    Kumar, V Vinoth; Dasgupta, A; Bhat, K N; KNatarajan

    2006-01-01

    In this paper we present the design and process optimization for fabricating piezoresitive pressure sensor and MOSFET Differential Amplifier simultaneously on the same chip. Silicon On Insulator approach has been used for realizing the membrane as well as the electronics on the same chip. The amplifier circuit has been configured in the common source connection and it has been designed with PSPICE simulation to achieve a voltage gain of about 5. In the initial set of experiments the Pressure sensor and the amplifier were fabricated on separate chips to optimize the process steps and tested in the hybrid mode. In the next set of experiments, SOI wafer having the SOI layer thickness of about 11 microns was used for realizing the membrane by anisotropic etching from the backside. The piezo-resistive pressure sensor was realized on this membrane by connecting the polysilicon resistors in the form of a Wheatstone bridge. The MOSFET source follower amplifier was also fabricated on the same SOI wafer by tailoring the process steps to suit the requirement of simultaneous fabrication of piezoresistors and the amplifier for achieving MOSFET Integrated Pressure Sensor. Reproducible results have been achieved on the SOI wafers, with the process steps developed in the laboratory. Sensitivity of 270 mV /Bar/10V, with the on chip amplifier gain of 4.5, has been achieved with this process

  11. Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure sensor

    International Nuclear Information System (INIS)

    Chung, Gwiy-Sang

    2010-01-01

    This paper describes polycrystalline (poly) 3C-SiC piezoresistive micro-pressure sensors for extreme environment applications prepared with a combination crystal growth technology using chemical vapor deposition (CVD) and micromachining techniques. The device was designed using bulk micromachining under a 1 x 1 mm 2 diaphragm and a Si membrane with a thickness of 20 μm. The pressure sensitivities of the fabricated pressure sensors were 0.1 mV/V·bar. The nonlinearity of the devices was ±0.44%·FS, and the hysteresis was 0.61%·FS. The temperature characteristics of the temperature coefficient of sensitivity (TCS), the temperature coefficient of resistance (TCR), and the temperature coefficient of the gauge factor (TCGF) were also evaluated. The TCS of the pressure sensors was -1,867 ppm/ .deg. C, the TCR was -792 ppm/ .deg. C, and the TCGF to 5 bars was -1,042 ppm/ .deg. C, from 25 to 400 .deg. C.

  12. Attachment of MEM piezoresistive silicon pressure sensor dies using different adhesives

    Directory of Open Access Journals (Sweden)

    Jović Vesna B.

    2011-01-01

    Full Text Available This paper gives comparison and discussion of adhesives used for attachment of silicon piezoresistive pressure sensor dies. Special attention is paid on low pressure sensor dies because of their extreme sensitivity on stresses, which can arise from packaging procedure and applied materials. Commercially available adhesives “Scotch Weld 2214 Hi-Temp” from “3M Co.” and “DM2700P/H848” from “DIEMAT”, USA, were compared. First of them is aluminum filled epoxy adhesive and second is low melting temperature (LMT glass paste. Comparing test results for low pressure sensor chips we found that LMT glass (glass frit is better adhesive for this application. Applying LMT glass paste minimizes internal stresses caused by disagreement of coefficients of thermal expansions between sensor die and housing material. Also, it minimizes stresses introduced during applying external loads in the process of pressure measuring. Regarding the measurements, for the sensors installed with filled epoxy paste, resistor for compensation of temperature offset change had negative values in all cases, which means that linear temperature compensation, of sensors installed this way, would be impossible. In the sensors installed with LMT glass paste, all results, without exception, were in their common limits (values, which give the possibility of passive temperature compensation. Furthermore, LMT glass attachment can broaden temperature operating range of MEM silicon pressure sensors towards higher values, up to 120 ºC.

  13. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    Science.gov (United States)

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-10-31

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  14. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

    Science.gov (United States)

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  15. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    Science.gov (United States)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  16. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  17. Design and fabrication of piezoresistive p-SOI Wheatstone bridges for high-temperature applications

    Science.gov (United States)

    Kähler, Julian; Döring, Lutz; Merzsch, Stephan; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2011-06-01

    For future measurements while depth drilling, commercial sensors are required for a temperature range from -40 up to 300 °C. Conventional piezoresistive silicon sensors cannot be used at higher temperatures due to an exponential increase of leakage currents which results in a drop of the bridge voltage. A well-known procedure to expand the temperature range of silicon sensors and to reduce leakage currents is to employ Silicon-On-Insulator (SOI) instead of standard wafer material. Diffused resistors can be operated up to 200 °C, but show the same problems beyond due to leakage of the p-njunction. Our approach is to use p-SOI where resistors as well as interconnects are defined by etching down to the oxide layer. Leakage is suppressed and the temperature dependence of the bridges is very low (TCR = (2.6 +/- 0.1) μV/K@1 mA up to 400 °C). The design and process flow will be presented in detail. The characteristics of Wheatstone bridges made of silicon, n- SOI, and p-SOI will be shown for temperatures up to 300 °C. Besides, thermal FEM-simulations will be described revealing the effect of stress between silicon and the silicon-oxide layer during temperature cycling.

  18. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  19. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    International Nuclear Information System (INIS)

    Zhang Juanting; He Changde; Zhang Hui; Li Yuping; Du Chunhui; Zhang Wendong; Zhang Yongping

    2014-01-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole. (semiconductor devices)

  20. An all-polymer airflow sensor using a piezoresistive composite elastomer

    International Nuclear Information System (INIS)

    Aiyar, Avishek R; Allen, Mark G; Song, Chao; Kim, Seong-Hyok

    2009-01-01

    This paper presents an all-polymer flexible micromachined flow sensor using a carbon-black based conductive composite elastomer as a piezoresistor. The device is composed of an out-of-plane curved flow sensing element formed using a polyimide film. The conductive composite elastomer combines a low Young's modulus (∼1.72 MPa) and a high piezoresistive gage factor (∼7.3), making it an ideal material for the sensing application. Moreover, the use of the polyimide film, which can be easily laser micromachined, as the material for device fabrication enables the use of planar micromachining techniques, which minimizes process complexities. The proposed fabrication sequence combines the benefits of the polymeric materials used, while simultaneously enabling a backside interconnect scheme for an array of devices, without additional processing steps. The backside interconnect scheme allows for flow field mapping with minimum interference due to the sensing circuitry. Individual sensors as small as 1.5 mm in length and 0.4 mm in width, with 70 µm wide and 20–50 µm thick piezoresistor lines, have been fabricated. Wind tunnel testing demonstrated sensitivities as high as 66Ω/(m s −1 ). The integration of polyimide films and conductive elastomers into a flow sensing device using the simple planar fabrication technologies discussed is suitable for reduced cost, large area sensor array development, and can also leverage traditional flexible circuit fabrication

  1. A constriction resistance model of conjugated polymer based piezoresistive sensors for electronic skin applications.

    Science.gov (United States)

    Khalili, N; Naguib, H E; Kwon, R H

    2016-05-14

    Human intervention can be replaced through the development of tools resulting from utilization of sensing devices possessing a wide range of applications including humanoid robots or remote and minimally invasive surgeries. Similar to the five human senses, sensors interface with their surroundings to stimulate a suitable response or action. The sense of touch which arises in human skin is among the most challenging senses to emulate due to its ultra high sensitivity. This has brought forth novel challenging issues to consider in the field of biomimetic robotics. In this work, using a multiphase reaction, a polypyrrole (PPy) based hydrogel is developed as a resistive type pressure sensor with an intrinsically elastic microstructure stemming from three dimensional hollow spheres. It is shown that the electrical conductivity of the fabricated PPy based piezoresistive sensors is enhanced as a result of adding conductive fillers and therefore, endowing the sensors with a higher sensitivity. A semi-analytical constriction resistance based model accounting for the real contact area between the PPy hydrogel sensors and the electrode along with the dependency of the contact resistance change on the applied load is developed. The model is then solved using a Monte Carlo technique and its corresponding sensitivity is obtained. Comparing the results with their experimental counterparts, the proposed modeling methodology offers a good tracking ability.

  2. Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI

    Science.gov (United States)

    Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.

    2018-04-01

    The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.

  3. Biosensor

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a biochemical assay for wide class of hydrophobic Coenzyme A esters wherein the analyte is caused to react with a specifically binding, modified protein, and thereby causing a detectable signal. A one step assay for hydrophobic carboxylic acid esters in whole blood, serum...

  4. Biosensors

    Indian Academy of Sciences (India)

    and an electronic component to transduce and detect the signal. A variety of .... aliphatic aldehyde as fol- lows: FMNH2 + .... microorganisms by the use of high temperature. ... ISFET. The oxidation of hypoxanthine to uric acid by xanthine.

  5. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    NARCIS (Netherlands)

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  6. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  7. Optimization of Xenon Biosensors for Detection of Protein Interactions

    International Nuclear Information System (INIS)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  8. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors.

    Science.gov (United States)

    Ma, Zhonglei; Wei, Ajing; Ma, Jianzhong; Shao, Liang; Jiang, Huie; Dong, Diandian; Ji, Zhanyou; Wang, Qian; Kang, Songlei

    2018-04-19

    Lightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes. The resultant conductive MWCNT/RGO@PU sponges exhibit very low densities (0.027-0.064 g cm-3), outstanding compressibility (up to 75%) and high electrical conductivity benefiting from the porous PU sponges and synergistic conductive MWCNT/RGO structures. In addition, the MWCNT/RGO@PU sponges present larger relative resistance changes and superior sensing performances under external applied pressures (0-5.6 kPa) and a wide range of strains (0-75%) compared with the RGO@PU and MWCNT@PU sponges, due to the synergistic effect of multiple mechanisms: "disconnect-connect" transition of nanogaps, microcracks and fractured skeletons at low compression strain and compressive contact of the conductive skeletons at high compression strain. The electrical and piezoresistive properties of MWCNT/RGO@PU sponges are strongly associated with the dip-coating cycle, suspension concentration, and the applied pressure and strain. Fully functional applications of MWCNT/RGO@PU sponge-based piezoresistive sensors in lighting LED lamps and detecting human body movements are demonstrated, indicating their excellent potential for emerging applications such as health monitoring, wearable devices and artificial intelligence.

  9. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  10. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Directory of Open Access Journals (Sweden)

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  11. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    Science.gov (United States)

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm

  12. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  13. S-Layer Protein-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Bernhard Schuster

    2018-04-01

    Full Text Available The present paper highlights the application of bacterial surface (S- layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  14. S-Layer Protein-Based Biosensors.

    Science.gov (United States)

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  15. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.

    Science.gov (United States)

    Pandya, H J; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P

    2014-03-01

    In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400-1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen.

  16. Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors

    International Nuclear Information System (INIS)

    Mohammed, Ahmed A S; Moussa, Walied A; Lou, Edmond

    2010-01-01

    In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from −50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 10 19 atoms cm −3 ). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges

  17. Dynamic characterization of human breast cancer cells using a piezoresistive microcantilever.

    Science.gov (United States)

    Shim, Sangjo; Kim, Man Geun; Jo, Kyoungwoo; Kang, Yong Seok; Lee, Boreum; Yang, Sung; Shin, Sang-Mo; Lee, Jong-Hyun

    2010-10-01

    In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1 μm preload displacement, 1 Hz at a 2 μm preload displacement, and all frequency ranges tested at a 3 μm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.

  18. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-01-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg −1 . This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  19. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  20. Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata

    2018-03-01

    Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non

  1. Functional design of electrolytic biosensor

    Science.gov (United States)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  2. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  3. Hydrogen peroxide biosensor based on titanium oxide

    Science.gov (United States)

    Halim, Nur Hamidah Abdul; Heng, Lee Yook; Hashim, Uda

    2015-09-01

    In this work, a biosensor utilizing modified titania, TiO2 particles using aminopropyl-triethoxy-silane, (APTS) for developing hydrogen peroxide biosensor is presented. The surface of Ti-APTS particles is used as a support for hemoglobin immobilization via covalent bonding. The performance of the biosensor is determined by differential pulse voltammetry. The linear response was observed at the reduction current of redox mediator probe [FeCN6]3-/4- at potential between 0.22 V to 0.24 V. The preliminary result for electrochemistry study on this modified electrode is reported. The preliminary linear range is obtained from 1×10-2 M to 1×10-8 M.

  4. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films.

    Science.gov (United States)

    Wagner, Stefan; Yim, Chanyoung; McEvoy, Niall; Kataria, Satender; Yokaribas, Volkan; Kuc, Agnieszka; Pindl, Stephan; Fritzen, Claus-Peter; Heine, Thomas; Duesberg, Georg S; Lemme, Max C

    2018-05-23

    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe 2 ), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe 2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe 2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe 2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe 2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe 2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.

  5. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    International Nuclear Information System (INIS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-01-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30–50 nm. Annealing of the Al–Si stack on an oxidized silicon substrate was performed in air ambient at 300–550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10–95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ∼ 30 mV MPa −1 , when the Wheatstone bridge was biased at 1 V input voltage. (paper)

  6. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors....

  7. Biosensor technology for pesticides--a review.

    Science.gov (United States)

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  8. Development of electrochemical biosensors with various types of zeolites

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  9. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  10. Spreeta-based biosensor for endocrine disruptors

    NARCIS (Netherlands)

    Marchesini, G.R.; Koopal, K.; Meulenberg, E.; Haasnoot, W.; Irth, H.

    2007-01-01

    The construction and performance of an automated low-cost Spreeta¿-based prototype biosensor system for the detection of endocrine disrupting chemicals (EDCs) is described. The system consists primarily of a Spreeta miniature liquid sensor incorporated into an aluminum flow cell holder, dedicated to

  11. Amperometric biosensors based on conducting nanotubes

    NARCIS (Netherlands)

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of

  12. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  13. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  14. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  15. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  16. Boar taint detection using parasitoid biosensors

    Science.gov (United States)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  17. Clinical Assessment Applications of Ambulatory Biosensors

    Science.gov (United States)

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  18. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  19. Development and Applications of Portable Biosensors.

    Science.gov (United States)

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  20. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  1. Fiber optic-based regenerable biosensor

    Science.gov (United States)

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  2. Disposable electrochemical DNA biosensor for environmental ...

    Indian Academy of Sciences (India)

    been used due to its rapid, easy handling and cost effective responses for the toxicity assessment in real water ... in the application of DNA as biosensors as it is found ... used as a preclinical safety assessment tool to screen ... out the work.

  3. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  4. Future of biosensors: a personal view.

    Science.gov (United States)

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  5. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications

    International Nuclear Information System (INIS)

    Vipulanandan, C; Mohammed, A

    2015-01-01

    In this study, smart cement with a 0.38 water-to-cement ratio was modified with iron oxide nanoparticles (NanoFe 2 O 3 ) to have better sensing properties, so that the behavior can be monitored at various stages of construction and during the service life of wells. A series of experiments evaluated the piezoresistive smart cement behavior with and without NanoFe 2 O 3 in order to identify the most reliable sensing properties that can also be relatively easily monitored. Tests were performed on the smart cement from the time of mixing to a hardened state behavior. When oil well cement (Class H) was modified with 0.1% of conductive filler, the piezoresistive behavior of the hardened smart cement was substantially improved without affecting the setting properties of the cement. During the initial setting the electrical resistivity changed with time based on the amount of NanoFe 2 O 3 used to modify the smart oil well cement. A new quantification concept has been developed to characterize the smart cement curing based on electrical resistivity changes in the first 24 h of curing. Addition of 1% NanoFe 2 O 3 increased the compressive strength of the smart cement by 26% and 40% after 1 day and 28 days of curing respectively. The modulus of elasticity of the smart cement increased with the addition of 1% NanoFe 2 O 3 by 29% and 28% after 1 day and 28 days of curing respectively. A nonlinear curing model was used to predict the changes in electrical resistivity with curing time. The piezoresistivity of smart cement with NanoFe 2 O 3 was over 750 times higher than the unmodified cement depending on the curing time and nanoparticle content. Also the nonlinear stress–strain and stress–change in resistivity relationships predicated the experimental results very well. Effects of curing time and NanoFe 2 O 3 content on the model parameters have been quantified using a nonlinear model. (paper)

  6. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    Science.gov (United States)

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  7. Biosensors in the small scale: methods and technology trends.

    Science.gov (United States)

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  8. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  9. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  10. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    Science.gov (United States)

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  11. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  12. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    OpenAIRE

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensor...

  13. A global benchmark study using affinity-based biosensors

    DEFF Research Database (Denmark)

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users...... the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used....

  14. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    Science.gov (United States)

    2015-07-21

    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  15. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  16. Biosensors for security and bioterrorism applications

    CERN Document Server

    Nikoleli, Georgia-Paraskevi

    2016-01-01

    This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed. There is a particular focus on electrochemical and optical det...

  17. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  18. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  19. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  20. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  1. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  2. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  3. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors

    Science.gov (United States)

    Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won

    2017-03-01

    Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.

  4. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  5. A global benchmark study using affinity-based biosensors

    NARCIS (Netherlands)

    Rich, Rebecca L.; Papalia, Giusseppe A.; Krishnamoorthy, G.; Beusink, J.B.; Pak, Brian J.; Myszka, David G.; more, more

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users

  6. In vitro evaluation of fluorescence glucose biosensor response.

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  7. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    International Nuclear Information System (INIS)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated (paper)

  8. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  9. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    Directory of Open Access Journals (Sweden)

    Mamdouh Aloraefy

    2014-07-01

    Full Text Available Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  10. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    OpenAIRE

    Nazruddin Nazaruddin

    2007-01-01

    Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. H...

  11. A biosensor device and a method of manufacturing the same

    NARCIS (Netherlands)

    2017-01-01

    A biosensor device (100) for detecting biological particles, the biosensor device (100) comprising a substrate (102), a regular pattern of pores (104) formed in the substrate (102), and a plurality of sensor active structures (106) each of which being arranged on a surface of a corresponding one of

  12. Translating University Biosensor Research to a High School Laboratory Experience

    Science.gov (United States)

    Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.

    2016-01-01

    The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…

  13. A biosensor device and a method of manufacturing the same

    NARCIS (Netherlands)

    2009-01-01

    A biosensor device (100) for detecting biological particles, the biosensor device (100) comprising a substrate (102), a regular pattern of pores (104) formed in the substrate (102), and a plurality of sensor active structures (106) each of which being arranged on a surface of a corresponding one of

  14. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  15. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  16. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  17. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  18. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Science.gov (United States)

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  19. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  20. Emerging synergy between nanotechnology and implantable biosensors: a review.

    Science.gov (United States)

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  1. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  2. Review of Micro/Nanotechnologies for Microbial Biosensors

    Directory of Open Access Journals (Sweden)

    Ji Won eLim

    2015-05-01

    Full Text Available A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory-regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.

  3. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  4. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  5. Biosensors and invasive monitoring in clinical applications

    CERN Document Server

    Córcoles, Emma P

    2013-01-01

    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices.

  6. More About Thin-Membrane Biosensor

    Science.gov (United States)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  7. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    their capability to work in biosensor devices. For example, Raman spectroscopy can be non-invasive and can provide 1 μm of spatial resolution in 1 second of collection time, well suited for sensing. Moreover, it may give information at the single cell and even approaching the single molecule scale. Here we present...... protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  8. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2013-01-01

    An on-chip integrated packaging-stress-suppressed suspension (PS 3 ) technology for a packaging-stress-free pressure sensor is proposed and developed. With a MIS (microholes interetch and sealing) micromachining process implemented only from the front-side of a single-side polished (1 1 1) silicon wafer, a compact cantilever-shaped PS 3 is on-chip integrated surrounding a piezoresistive pressure-sensing structure to provide a packaging-process/substrate-friendly method for low-cost but high-performance sensor applications. With the MIS process, the chip size of the PS 3 -enclosed pressure sensor is as small as 0.8 mm × 0.8 mm. Compared with a normal pressure sensor without PS 3 (but with an identical pressure-sensing structure), the proposed pressure sensor has the same sensitivity of 0.046 mV kPa −1 (3.3 V) −1 . However, without using the thermal compensation technique, a temperature coefficient of offset of only 0.016% °C −1 FS is noted for the sensor with PS 3 , which is about 15 times better than that for the sensor without PS 3 . Featuring effective isolation and elimination of the influence from packaging stress, the PS 3 technique is promising to be widely used for packaging-friendly mechanical sensors. (paper)

  9. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    Science.gov (United States)

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors

    International Nuclear Information System (INIS)

    Gregory, Otto J.; You, Tao; Crisman, Everett E.

    2005-01-01

    Ceramic strain sensors based on reactively sputtered indium tin oxide (ITO) thin films doped with aluminum are being considered to improve the high-temperature stability and response. Ceramic strain sensors were developed to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500 deg C. Earlier studies using electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum oxide increase the stability of ITO at elevated temperature. The resulting ESCA depth files showed the presence of two new indium-indium peaks at 448.85 and 456.40 eV, corresponding to the indium 3d5 and 3d3 binding energies. These binding energies are significantly higher than those associated with stoichiometric indium oxide. Based on these studies, a combinatorial chemistry approach was used to screen large numbers of possible concentrations to optimize the stability and performance of Al-doped ceramic strain sensors. Scanning electron microscopy was used to analyze the combinatorial libraries in which varying amounts of aluminum were incorporated into ITO films formed by cosputtering from multiple targets. Electrical stability and piezoresistive response of these films were compared to undoped ITO films over the same temperature range

  11. A thermal-driven silicon micro xy-stage integrated with piezoresistive sensors for nano-positioning

    International Nuclear Information System (INIS)

    Choi, Young-Soo; Zhang, Yan; Lee, Dong-Weon

    2012-01-01

    This paper describes a novel micro xy-stage, driven by double-hot arm horizontal thermal micro-actuators integrated with a piezoresistive sensor (PS) for low-voltage operation and precise control. This micro xy-stage structure is linked with chevron beams and optimized to amplify the displacement generated by the micro-actuators that provide a pull force to the movable platform. The PS employed for in situ displacement detection and feedback control is fabricated at the base of a cold arm, which minimizes the influence of temperature change induced by electro-thermal heating. The micro xy-stage structure is defined through the use of a simple micromachining process, released by backside wet etching with a special tool. For an input power of approximately 44 mW, each chevron actuator provides about 16 µm and the total displacement of the platform is close to 32 µm. The sensitivity of the PS is better than 1 mV µm −1 , obtained from the amplified voltage output of the Wheatstone bridge circuit. The potential applications of the proposed micro xy-stage lie in micro- or nano-manipulation, as well as the positioning of ultra-small objects in nanotechnology. (paper)

  12. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications.

    Science.gov (United States)

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-06

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  13. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

    Directory of Open Access Journals (Sweden)

    Ji Li

    2016-10-01

    Full Text Available A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  14. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass

    International Nuclear Information System (INIS)

    Ravi Sankar, A; Lahiri, S K; Das, S

    2009-01-01

    Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass is presented in this paper. The fabricated accelerometer device consists of a heavy proof mass supported by four thin flexures. Boron-diffused piezoresistors located near the fixed ends of the flexures are used for sensing the developed stress and hence acceleration. Performance enhancement is achieved by electroplating a gold mass of 20 µm thickness on top of the proof mass. A commercially available sulfite-based solution TSG-250(TM) was used for the electroplating process. Aluminum metal lines were used to form a Wheatstone bridge for signal pick-up. To avoid galvanic corrosion between two dissimilar metals having contact in an electrolyte, a shadow mask technique was used to selectively deposit a Cr/Au seed layer on an insulator atop the proof mass for subsequent electrodeposition. Bulk micromachining was performed using a 5% dual-doped TMAH solution. Fabricated devices with different electroplated gold areas were tested up to ±13 g acceleration. For electroplated gold dimensions of 2500 µm × 2500 µm × 20 µm on a proof mass, sensitivity along the Z-axis is increased by 21.8% as compared to the structure without gold. Off-axis sensitivities along the X- and Y-axes are reduced by 7.6% and 6.9%, respectively

  15. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  16. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    Science.gov (United States)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  17. Fabrication of Biosensors Based on Nanostructured Conducting Polyaniline (NSPANI

    Directory of Open Access Journals (Sweden)

    Deepshikha SAINI

    2011-11-01

    Full Text Available In this study, glucose and hydrogen peroxide (H2O2 biosensors based on nanostructured conducting polyaniline (NSPANI (synthesized using sodiumdodecyl sulphate (SDS as structure directing agent were developed. Because of the large specific surface area, excellent conductivity of NSPANI, horseradish peroxidase (HRP and glucose oxidase (GOx could be easily immobilized with high loading and activity. In addition the small dimensions and the high surface-to-volume ratio of the NSCP allow the rapid transmission of electron and enhance current response. The linear dynamic range of optical glucose and H2O2 biosensors is 5–40 mM for glucose and 1–50 mM for H2O2, respectively where as the bulk PANI exhibits linearity between 5-20 mM/l. The miniature optical glucose biosensor also exhibits good reproducibility. The storage stability of optical glucose and H2O2 biosensors is two weeks for glucose and five days for H2O2. The high response value of NSPANI based biosensors as compared to bulk PANI based biosensor reflects higher enzymatic affinity of GOx/NSPANI and HRP/NSPANI with glucose and H2O2 due to biocompatibility, active surface area and high electron communication capability of nanobiopolymer film. In conclusion, the NSPANI based biosensors proposed herein have many advantages such as a low response time, high reproducibility, high sensitivity, stable and wide dynamic range.

  18. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  19. A biosensor system using nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com [NIIT University, Neemrana, NH-8, Alwar, Rajasthan, India, 301705 (India)

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  20. Innovations in biomedical nanoengineering: nanowell array biosensor

    Science.gov (United States)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  1. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  2. Diabetes mellitus: biosensors for research and management.

    Science.gov (United States)

    Turner, A P; Pickup, J C

    1985-01-01

    The condition of diabetes mellitus is described with particular reference to the parameters that it would be desirable to monitor in order to improve management and understanding of the disease. Previous attention has largely focused on analysis of glucose, but many other intermediates of carbohydrate, fat and protein metabolism are deranged in diabetes and may be alternative measures of control. The need for laboratory analysers, self-monitoring, closed-loop devices and alarms are detailed and the problems associated with implantable sensors discussed. Progress in the development of biosensors is reviewed using glucose sensors as the main example. Electrochemical, optoelectronic and calorimetric approaches to sensing are considered and it is concluded that configurations based either on hydrogen peroxide detection or on mediated electron transfer are most likely to provide a raid route to in vivo monitoring. The extension of biosensor technology to tackle other important substrates is discussed, the principal hurdle to success being seen as the lack of long-term stability of the biological component.

  3. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  4. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    Directory of Open Access Journals (Sweden)

    Adam Gilbertsen

    2014-10-01

    Full Text Available Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice.

  5. Construction and characterization of novel stress-responsive Deinococcal biosensors

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-01

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR 0 161, DR 0 589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection

  6. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  7. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  8. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    Liu, XiaoLong; Zhang, Yun; Yue, JiaChang; Jiang, PeiDong; Zhang, ZhenXi

    2006-01-01

    F F 1 -ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F 1 -ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  9. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  10. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...... for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...

  11. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  12. Research on High-Precision, Low Cost Piezoresistive MEMS-Array Pressure Transmitters Based on Genetic Wavelet Neural Networks for Meteorological Measurements

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2015-05-01

    Full Text Available This paper provides a novel and effective compensation method by improving the hardware design and software algorithm to achieve optimization of piezoresistive pressure sensors and corresponding measurement systems in order to measure pressure more accurately and stably, as well as to meet the application requirements of the meteorological industry. Specifically, GE NovaSensor MEMS piezoresistive pressure sensors within a thousandth of accuracy are selected to constitute an array. In the versatile compensation method, the hardware utilizes the array of MEMS pressure sensors to reduce random error caused by sensor creep, and the software adopts the data fusion technique based on the wavelet neural network (WNN which is improved by genetic algorithm (GA to analyze the data of sensors for the sake of obtaining accurate and complete information over the wide temperature and pressure ranges. The GA-WNN model is implemented in hardware by using the 32-bit STMicroelectronics (STM32 microcontroller combined with an embedded real-time operating system µC/OS-II to make the output of the array of MEMS sensors be a direct digital readout. The results of calibration and test experiments clearly show that the GA-WNN technique can be effectively applied to minimize the sensor errors due to the temperature drift, the hysteresis effect and the long-term drift because of aging and environmental changes. The maximum error of the low cost piezoresistive MEMS-array pressure transmitter proposed by us is within 0.04% of its full-scale value, and it can satisfy the meteorological pressure measurement.

  13. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  14. Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination

    Directory of Open Access Journals (Sweden)

    Dainius Simelevicius

    2012-04-01

    Full Text Available In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments: a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response.

  15. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof; Sivashankar, Shilpa; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF

  16. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  17. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  18. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  19. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  20. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  1. Plasmon based biosensor for distinguishing different peptides mutation states

    KAUST Repository

    Das, Gobind; Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Zaccaria, Remo Proietti; Alabastri, Alessandro; Leoncini, Marco; Di Fabrizio, Enzo M.

    2013-01-01

    of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild

  2. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    Directory of Open Access Journals (Sweden)

    Nazruddin Nazaruddin

    2007-06-01

    Full Text Available Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. Hasil pengukuran menunjukkan sensitivitas biosensor urea berbasis membran khitin adalah 19,11 mV/dekade, trayek pengukuran 10-4 – 10-8 M, limit deteksi 10-8 M, waktu respon 3,10–6,02 menit, dengan urutan kekuatan ion penggangu: NH4Cl > NaCl > CH3COONa > campuran garam > KCl > CaCl2 > asam askorbat. Kata kunci: biosensor, immobilisasi, khitin, urea

  3. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  4. Innovative configurations of electrochemical DNA biosensors (a review)

    OpenAIRE

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  5. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  6. Ring-Interferometric Sol-Gel Bio-Sensor

    Science.gov (United States)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  7. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    ,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications....... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...

  8. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  9. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    Science.gov (United States)

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  10. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  11. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  12. The Scanning TMR Microscope for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Kunal N. Vyas

    2015-04-01

    Full Text Available We present a novel tunnel magnetoresistance (TMR scanning microscopeset-up capable of quantitatively imaging the magnetic stray field patterns of micron-sizedelements in 3D. By incorporating an Anderson loop measurement circuit for impedancematching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3Drastering a mounted TMR sensor over our magnetic barcodes, we are able to characterisethe complex domain structures by displaying the real component, the amplitude and thephase of the sensor’s impedance. The modular design, incorporating a TMR sensor withan optical microscope, renders this set-up a versatile platform for studying and imagingimmobilised magnetic carriers and barcodes currently employed in biosensor platforms,magnetotactic bacteria and other complex magnetic domain structures of micron-sizedentities. The quantitative nature of the instrument and its ability to produce vector maps ofmagnetic stray fields has the potential to provide significant advantages over other commonlyused scanning magnetometry techniques.

  13. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  14. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  15. Miniature Biosensor with Health Risk Assessment Feedback

    Science.gov (United States)

    Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross

    2016-01-01

    Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.

  16. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...... charge prediction, we show how ligand induced changes in conformation of two model proteins, both being ligand binding domains from glutamate receptors, can lead to changes in electrostatic potential predicted to be sufficient for NW sensing. Finally we, demonstrate how InAs nanowires can....... In part I - “Surface Patterning” - glass and gold surfaces serve as spatially encoded immobilization supports for patterning of recombinant proteins and organic monolayers. First, we combine micro-contact printing with a reactive SNAP-tag protein to establish a general platform for templated protein...

  17. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  18. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Baby, Rakhi Raghavan; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  19. Roughness effect on the efficiency of dimer antenna based biosensor

    Directory of Open Access Journals (Sweden)

    D. Barchiesi

    2012-09-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  20. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  1. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    Science.gov (United States)

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2010-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365

  2. Eutectic-based wafer-level-packaging technique for piezoresistive MEMS accelerometers and bond characterization using molecular dynamics simulations

    Science.gov (United States)

    Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.

    2018-03-01

    We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.

  3. Progress of new label-free techniques for biosensors: a review.

    Science.gov (United States)

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  4. Optimum Combination and Effect Analysis of Piezoresistor Dimensions in Micro Piezoresistive Pressure Sensor Using Design of Experiments and ANOVA: a Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Kirankumar B. Balavalad

    2017-04-01

    Full Text Available Piezoresistive (PZR pressure sensors have gained importance because of their robust construction, high sensitivity and good linearity. The conventional PZR pressure sensor consists of 4 piezoresistors placed on diaphragm and are connected in the form of Wheatstone bridge. These sensors convert stress applied on them into change in resistance, which is quantified into voltage using Wheatstone bridge mechanism. It is observed form the literature that, the dimensions of piezoresistors are very crucial in the performance of the piezoresistive pressure sensor. This paper presents, a novel mechanism of finding best combinations and effect of individual piezoresistors dimensions viz., Length, Width and Thickness, using DoE and ANOVA (Analysis of Variance method, following Taguchi experimentation approach. The paper presents a unique method to find optimum combination of piezoresistors dimensions and also clearly illustrates the effect the dimensions on the output of the sensor. The optimum combinations and the output response of sensor is predicted using DoE and the validation simulation is done. The result of the validation simulation is compared with the predicted value of sensor response i.e., V. Predicted value of V is 1.074 V and the validation simulation gave the response for V as 1.19 V. This actually validates that the model (DoE and ANOVA is adequate in describing V in terms of the variables defined.

  5. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  6. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.

    Science.gov (United States)

    Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao

    2018-05-09

    Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.

  7. Detection of heart-type fatty acid-binding protein (h-FABP) using piezoresistive polymer microcantilevers functionalized by a dry method

    Science.gov (United States)

    Agarwal, Dilip Kumar; Prasad, Abhinav; Vinchurkar, Madhuri; Gandhi, Sahir; Prabhakar, Deepika; Mukherji, Soumyo; Rao, V. Ramgopal

    2018-03-01

    Piezoresistive microcantilever-based sensor platform is being used for the last two decades due to their low cost, rapid response and label-free detection system. In this work, we are reporting a microfabricated piezoresistive SU-8/carbon black (polymer cantilever)-based sensor platform for the detection of a clinically important early-stage cardiac marker, i.e., fatty acid-binding protein. It is a most preferred cardiac marker for the diagnosis of acute myocardial infarction. The embodiment of the sensor is a SU-8 microcantilever chip with an integrated nanoparticle composite (carbon black) as a piezoresistor for on-chip electrical transduction. Prior to improving the sensing and susceptibility towards the specific target biomolecule (i.e., h-FABP), the fabricated SU-8 polymer cantilevers were subjected to tailored functionalization. This includes the use of an in-house dry method of hot wire chemical vapour deposition technique to graft amine groups onto the SU-8 surface. The surface-modified microcantilevers were further integrated with a polydimethylsiloxane liquid flow cell and connected externally with an electrical read-out system. Immobilization of the antibody corresponding to the marker protein on the microcantilever surface and subsequent recording of the signal generated upon the antibody-antigen interaction were carried out inside the liquid flow cell. Using our optimized immobilization protocol with this experimental set-up, we were successfully able to detect h-FABP concentration as low as 100 ng/ml.

  8. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor

    KAUST Repository

    Li, Fuquan; Kosel, Jü rgen

    2014-01-01

    . In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current

  9. FIBER-OPTIC BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)

    Science.gov (United States)

    A fiber-optic enzyme biosensor for the direct measurement of organophosphate nerveagents was developed. The basic element of this biosensor is organophosphorus hydrolaseimmobilized on a nylon membrane and attached to the common end of a bifurcated optical fiberbundle....

  10. Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors

    NARCIS (Netherlands)

    Wahono, N.; Qin, S.; Oomen, P.; Cremers, T. I. F.; de Vries, M. G.; Westerink, B. H. C.

    2012-01-01

    Monitoring of extracellular brain glutamate concentrations by intracerebral biosensors is a promising approach to further investigate the role of this important neurotransmitter. However, amperometric biosensors are typically hampered by Faradaic interference caused by the presence of other

  11. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  12. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  13. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  14. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  15. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  16. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Recent Advances in Application of Biosensors in Tissue Engineering

    Science.gov (United States)

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  18. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  19. Engineering nanomaterials-based biosensors for food safety detection.

    Science.gov (United States)

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  1. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  2. Functional Conducting Polymers in the Application of SPR Biosensors

    Directory of Open Access Journals (Sweden)

    Rapiphun Janmanee

    2012-01-01

    Full Text Available In recent years, conducting polymers have emerged as one of the most promising transducers for both chemical, sensors and biosensors owing to their unique electrical, electrochemical and optical properties that can be used to convert chemical information or biointeractions into electrical or optical signals, which can easily be detected by modern techniques. Different approaches to the application of conducting polymers in chemo- or biosensing applications have been extensively studied. In order to enhance the application of conducting polymers into the area of biosensors, one approach is to introduce functional groups, including carboxylic acid, amine, sulfonate, or thiol groups, into the conducting polymer chain and to form a so-called “self-doped” or by doping with negatively charged polyelectrolytes. The functional conducting polymers have been successfully utilized to immobilize enzymes for construction of biosensors. Recently, the combination of SPR and electrochemical, known as electrochemical-surface plasmon resonance (EC-SPR, spectroscopy, has been used for in situ investigation of optical and electrical properties of conducting polymer films. Moreover, EC-SPR spectroscopy has been applied for monitoring the interaction between biomolecules and electropolymerized conjugated polymer films in biosensor and immunosensor applications. In this paper, recent development and applications on EC-SPR in biosensors will be reviewed.

  3. GMR biosensor arrays: a system perspective.

    Science.gov (United States)

    Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X

    2010-05-15

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.

  4. Aptamer-functionalized nano-biosensors.

    Science.gov (United States)

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  5. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  6. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  7. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  8. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  9. Lactate Biosensor Based on Cellulose Acetate Membrane Bound Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Suman

    2007-05-01

    Full Text Available Lactate biosensor was fabricated by immobilizing lactate oxidase in cellulose acetate membrane and by mounting over the sensing part of Pt electrode (working and connected to Ag/AgCl electrode (reference along with auxillary electrode through potentiostat. The enzyme electrode was anodically polarized at +400 mV to generate electrons from H2O2, which was formed from oxidation of serum lactate by immobilized lactate oxidase. The minimum detection limit of the electrode was 0.1mmoles/L and sensitivity of the sensor was 0.008 mA/mM/L lactate. Assay coefficients of variation were < 2% .A good correlation (r=0.99 was found between lactate values obtained by colorimetric method and lactate biosensor. The self-life of the biosensor was 18 days at 4ºC and enzyme electrode can be re-used 150 times without any significant loss in enzyme activity.

  10. Nanophotonic label-free biosensors for environmental monitoring.

    Science.gov (United States)

    Chocarro-Ruiz, Blanca; Fernández-Gavela, Adrián; Herranz, Sonia; Lechuga, Laura M

    2017-06-01

    The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recent Progress in Biosensors for Environmental Monitoring: A Review.

    Science.gov (United States)

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-12-15

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.

  12. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  13. Microbially derived biosensors for diagnosis, monitoring and epidemiology.

    Science.gov (United States)

    Chang, Hung-Ju; Voyvodic, Peter L; Zúñiga, Ana; Bonnet, Jérôme

    2017-09-01

    Living cells have evolved to detect and process various signals and can self-replicate, presenting an attractive platform for engineering scalable and affordable biosensing devices. Microbes are perfect candidates: they are inexpensive and easy to manipulate and store. Recent advances in synthetic biology promise to streamline the engineering of microbial biosensors with unprecedented capabilities. Here we review the applications of microbially-derived biosensors with a focus on environmental monitoring and healthcare applications. We also identify critical challenges that need to be addressed in order to translate the potential of synthetic microbial biosensors into large-scale, real-world applications. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Biosensors for the determination of environmental inhibitors of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Evtugyn, Gennadii A; Budnikov, Herman C [Kazan State University, Kazan (Russian Federation); Nikolskaya, Elena B [I.M. Sechenov Institute of Evolution Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    1999-12-31

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  15. Biosensors for the determination of environmental inhibitors of enzymes

    International Nuclear Information System (INIS)

    Evtugyn, Gennadii A; Budnikov, Herman C; Nikolskaya, Elena B

    1999-01-01

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  16. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    Science.gov (United States)

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    Science.gov (United States)

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    Science.gov (United States)

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  19. Production and Application of Biosensors: A Brief Review

    Directory of Open Access Journals (Sweden)

    Pedro Emílio Amador Salomão

    2018-02-01

    Full Text Available In a modern world where efficiency, precision and time savings have been prioritized, a new frontier has been seen in the biosensors to be explored. A potential alternative to the current means of quantification and qualification, the biosensors have been gaining more and more prominence as they are devices of quantification and qualification cheaper and simple, when compared with the current techniques and with the advantage of being able to be used many times in the place where the sample is collected. According to its application is produced by different methods, in which it has in its basic constitution a sensor element of biological origin, an inorganic half-conductor used as a transducer and a signal processing device. In this article we show the scientific production involving biosensors, together with their synthesis method, which differs according to their application in order to detect the most varied analytes, chemical species and even living organisms.

  20. Principles and Applications of Flow Injection Analysis in Biosensors

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    In practical applications biosensors are often forced to operate under less than optimal conditions. Because of their construction, and the physical processes and chemical reactions involved in their operation, compromise conditions are frequently required to synchronize all events taking place....... Therefore, and in order to implement functions such as periodic calibration, conditioning and possible regeneration of the biosensor, and, very importantly, to yield the freedom to select the optimum detection means, it is advantageous to use these devices in a flow-through mode, particularly by employing...... the flow injection (FI) approach. The capacity of FI, as offering itself as a complementary facility to augment the performance of biosensors, and in many cases as an attractive alternative, is demonstrated by reference to selected examples, comprising assays based on enzymatic procedures with optical...

  1. Biosensor for the detection of Listeria monocytogenes: emerging trends

    KAUST Repository

    Soni, Dharmendra Kumar

    2018-05-23

    The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.

  2. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    Science.gov (United States)

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  3. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Whole-Cell Fluorescent Biosensors for Bioavailability and Biodegradation of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    David Ryan

    2010-02-01

    Full Text Available Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ,to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs.

  5. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  6. Fluorescence-based biosensors from concepts to applications

    CERN Document Server

    Morris, May C

    2013-01-01

    One of the major challenges of modern biology and medicine consists in finding means to visualize biomolecules in their natural environment with the greatest level of accuracy, so as to gain insight into their properties and behaviour in a physiological and pathological setting. This has been achieved thanks to the design of novel imaging agents, in particular to fluorescent biosensors. Fluorescence Biosensors comprise a large set of tools which are useful for fundamental purposes as well as for applications in biomedicine, drug discovery and biotechnology. These tools have been designed a

  7. Graphene-polymer-enzyme hybrid nanomaterials for biosensors

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent for the redu......The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent...

  8. Development of biosensor based on imaging ellipsometry and biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G., E-mail: gajin@imech.ac.c [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S. [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Cai, Q.; Jiang, T.J. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-28

    So far, combined with a microfluidic reactor array system, an engineering system of biosensor based on imaging ellipsometry is installed for biomedical applications, such as antibody screen, hepatitis B markers detection, cancer markers spectrum and virus recognition, etc. Furthermore, the biosensor in total internal reflection (TIR) mode has be improved by a spectroscopic light, optimization settings of polarization and low noise CCD which brings an obvious improvement of 10 time increase in the sensitivity and SNR, and 50 times lower concentration in the detection limit with a throughput of 48 independent channels and the time resolution of 0.04 S.

  9. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    Directory of Open Access Journals (Sweden)

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  10. Last Advances in Silicon-Based Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Adrián Fernández Gavela

    2016-02-01

    Full Text Available We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  11. Wireless Distribution and Use of Bio-sensor Data

    DEFF Research Database (Denmark)

    Kyng, Morten; Kristensen, Margit; Christensen, Erika Frischknecht

    2007-01-01

    consists of small bio-monitors - with sensors and a unique ID - which are placed on the victims. The bio-monitors communicate wirelessly with one or more base-stations, which distribute the signals locally at the incident site and to remote coordination centres and emergency departments. Ongoing...... data you are looking at? And, when an alarm goes off because the bio-sensor data of a patient reaches a critical threshold, how do you find the patient? In order to support medical responders on site and at coordination centres/ emergency departments, we are supplementing the bio-sensor data...

  12. Electrochemistry, biosensors and microfluidics: a convergence of fields.

    Science.gov (United States)

    Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R

    2015-08-07

    Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.

  13. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  14. ZnO nanowire-based glucose biosensors with different coupling agents

    International Nuclear Information System (INIS)

    Jung, Juneui; Lim, Sangwoo

    2013-01-01

    Highlights: ► Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. ► Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. ► Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis–Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 μA cm −2 mM −1 ) and the lowest Michaelis–Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  15. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.

    Science.gov (United States)

    De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan

    2018-05-18

    To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.

  16. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    Science.gov (United States)

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The procedure of ethanol determination in wine by enzyme amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. Development of the procedure of ethanol determination in wine by an enzyme amperometric biosensor. Methods. The amperometric biosensor method of ethanol analysis has been used in this work. Results. The paper presents comparative analysis of two methods of alcohol oxidase (AO immobilization for development of amperometric biosensor for ethanol determination in wine. The method of AO immobilization in glutaraldehyde vapour was chosen as optimal for this purpose. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The procedure of ethanol determination in wine by amperometric biosensor on the basis of platinum printed electrode SensLab and AO was optimized. The analysis of ethanol concentration in wine and must samples was carried out using the developed high-stable biosensor. A good correlation between the data obtained by the biosensor and densitometry methods was shown. Conclusion. The proposed method of ethanol analysis could be used in wine production

  18. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  19. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  20. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  1. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  2. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

    DEFF Research Database (Denmark)

    Meškinis, Šaru Nas; Gudaitis, Rimantas; Šlapikas, Kęstutis

    2018-01-01

    deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted......Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some...... samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four...

  3. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  4. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  5. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    Science.gov (United States)

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  6. Challenges in wireless bio-sensor based health development

    CSIR Research Space (South Africa)

    Nkosi, MT

    2011-06-01

    Full Text Available ]. The research carried out at Roviera i Virgili University on bio- sensor development has shown that biosensors can detect bacteria at levels as low as 1 cell per 5 ml of water, allowing water to be tested for typhoid fever bacteria in only a few seconds [25...

  7. Biosensor immunoassay for flumequine in broiler serum and muscle

    NARCIS (Netherlands)

    Haasnoot, W.; Gercek, H.; Cazemier, G.; Nielen, M.W.F.

    2007-01-01

    Flumequine (Flu) is one of the fluoroquinolones most frequently applied for the treatment of broilers in The Netherlands. For the detection of residues of Flu in blood serum of broilers, a biosensor immunoassay (BIA) was developed which was fast (7.5 min per sample) and specific (no cross-reactivity

  8. Analytical modeling of glucose biosensors based on carbon nanotubes.

    Science.gov (United States)

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-15

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.

  9. Green Chemistry Glucose Biosensor Development using Etlingera elatior Extract

    Science.gov (United States)

    Fatoni, A.; Anggraeni, M. D.; Zusfahair; Iqlima, H.

    2018-01-01

    Glucose biosensor development is one of the important strategies for early detection of diabetes mellitus disease. This study was aimed to explore the flower extract of Etlingera elatior for a green-analysis method of glucose biosensor. Flowers were extracted using ethanol: HCl and tested its performances as an indicator of glucose biosensor using glucose oxidase enzyme. The glucose oxidase react with glucose resulted hydrogen peroxide that would change the color of the flower extract. Furthermore, the extract was also studied including their stability to pH, oxidizing and reducing, temperature, and storage. The results showed that the Etlingera elatior extract had high correlation between color change and glucose concentration with regression equation of y = -0.0005x + 0.4724 and R2 of 0.9965. The studied biosensor showed a wide linear range to detect glucose sample of 0 to 500 mM. The extract characterization showed a more stable in low pH (acid), reducing agent addition, heating treatment and storage.

  10. Oriented antibodies as versatile detection element in biosensors

    NARCIS (Netherlands)

    Trilling, A.K.

    2013-01-01

    The aim of this thesis is to explore orientation of detection elements on biosensor

    surfaces. To this end, different strategies were combined such as surface chemistry and protein functionalization, with the aim to generate a platform for oriented immobilization of antibodies

    in

  11. Orientation of llama antibodies strongly increases sensitivity of biosensors

    NARCIS (Netherlands)

    Trilling, A.K.; Hesselink, T.; Houwelingen, van A.; Cordewener, J.H.G.; Jongsma, M.A.; Schoffelen, S.; Hest, van J.C.M.; Zuilhof, J.T.; Beekwilder, J.

    2014-01-01

    Sensitivity of biosensors depends on theorientation of bio-receptors on the sensor surface.The objective of this study was to organize bio-receptors on surfaces in a way that their analyte binding site is exposed to the analyte solution. VHH proteins recognizing foot-and-mouth disease virus (FMDV)

  12. Reversible sol-gel-sol medium for enzymatic optical biosensors

    NARCIS (Netherlands)

    Safaryan, S.; Yakovlev, A.; Pidko, E.A.; Vinogradov, A.; Vinogradov, V.

    2017-01-01

    In this paper we for the first time report a reversible sol-gel-sol approach to obtain optical enzymatic biosensors with improved enzyme stability and good sensitivity by using desktop inkjet printing. The developed technique is based on the bio-inorganic inks allowing for a sol-gel-sol transition

  13. Photonic Biosensor Chips for Label-Free Detection

    DEFF Research Database (Denmark)

    Kristensen, Martin

    Optical fibers are ideal for transmission of light due to their low loss. This is less important for optical sensors where chemical compatibility, size and price are more important. These parameters can be optimized by using planar integrated optics and fabrication methods from the semiconductor...... industry with adaptations to satisfy the requirements of biosensors....

  14. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  15. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  16. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    Science.gov (United States)

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  17. The blocking reagent optimization for the magnetoelastic biosensor

    Science.gov (United States)

    Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing

    2015-06-01

    The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.

  18. Lignin and silicate based hydrogels for biosensor applications

    Science.gov (United States)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  19. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  20. Synthesis and assessment of peptide-nanocellulosic biosensors

    Science.gov (United States)

    Nanocellulose is an ideal transducer surface for biosensors: it provides a high surface area, easily derivatized with bioactive molecules, and abrogates binding of proteins present in biological fluids where analytes and clinical biomarkers are of interest. Here an example of approaches to biosenso...

  1. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  2. Photonic crystal-based optical biosensor: a brief investigation

    Science.gov (United States)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  3. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    International Nuclear Information System (INIS)

    Arif, Khalid Mahmood

    2016-01-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.

  4. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  5. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  6. Development of an electrochemical DNA biosensor for detection of ...

    Indian Academy of Sciences (India)

    2.4 million of deaths.1,2 Southern hybridization tech- niques, radiographic .... Electrochemical DNA sensors can be greatly affected .... 3.5 Diagnostic performance of the biosensor ... Silva M M S, Cavalcanti I T, Barroso M F, Sales M G F.

  7. RNA Detection Based on Graphene Field-Effect Transistor Biosensor

    Directory of Open Access Journals (Sweden)

    Meng Tian

    2018-01-01

    Full Text Available Graphene has attracted much attention in biosensing applications due to its unique properties. In this paper, the monolayer graphene was grown by chemical vapor deposition (CVD method. Using the graphene as the electric channel, we have fabricated a graphene field-effect transistor (G-FET biosensor that can be used for label-free detection of RNA. Compared with conventional method, the G-FET RNA biosensor can be run in low cost, be time-saving, and be miniaturized for RNA measurement. The sensors show high performance and achieve the RNA detection sensitivity as low as 0.1 fM, which is two orders of magnitude lower than the previously reports. Moreover, the G-FET biosensor can readily distinguish target RNA from noncomplementary RNA, showing high selectivity for RNA detection. The developed G-FET RNA biosensor with high sensitivity, fast analysis speed, and simple operation may provide a new feasible direction for RNA research and biosensing.

  8. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...

  9. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  10. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  11. Nuclear track-based biosensors with the enzyme laccase

    Energy Technology Data Exchange (ETDEWEB)

    García-Arellano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México, C.P. 52005 (Mexico); Fink, D., E-mail: fink@xanum.uam.mx [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernández, G. [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, D.F. (Mexico); Vacík, J.; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Alfonta, L. [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-15

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  12. Nuclear track-based biosensors with the enzyme laccase

    Czech Academy of Sciences Publication Activity Database

    Garcia-Arellano, H.; Fink, Dietmar; Hernandez, G. M.; Vacík, Jiří; Hnatowicz, Vladimír; Alfonta, L.

    2014-01-01

    Roč. 310, SI (2014), s. 66-76 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : Biosensor * Laaccase * nuclear tracks * Phenolic compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  13. Biorecognition Ability of Polysaccharides as Piezo Quartz Biosensors

    African Journals Online (AJOL)

    Piezoquartz biosensors (PQB) which are analytical devices for recognition of biochemical interactions have recently attracted increasing interest from different researchers such as analysts, immune-chemists, medical doctors, environmentalists, etc. This is due to the advantages of PQB for having high detection sensitivity (at ...

  14. Bioelectroanalysis in a Drop: Construction of a Glucose Biosensor

    Science.gov (United States)

    Amor-Gutierrez, O.; Rama, E. C.; Fernandez-Abedul, M. T.; Costa-García, A.

    2017-01-01

    This lab experiment describes a complete method to fabricate an enzymatic glucose electroanalytical biosensor by students. Using miniaturized and disposable screen-printed electrodes (SPEs), students learn how to use them as transducers and understand the importance SPEs have acquired in sensor development during the last years. Students can also…

  15. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    Science.gov (United States)

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  16. Aquatarium - Biosensor & Aquatarium set i et akustisk perspektiv

    DEFF Research Database (Denmark)

    Ramsay, Loren Mark

    om behovet for returskyl. Det andet projekt omhandler biosensorer. Her undersøger vi om en on-line monitering af drikkevandets bakteriologiske vandkvalitet løses bedst ved et system bestående af flere enkeltkomponenter: sensor, automatisk prøvetager, karakteriseringsanalyser. Der udvikles en mindre...

  17. Nanosized zeolites as a perspective material for conductometric biosensors creation

    Science.gov (United States)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  18. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  19. Features and application of wearable biosensors in medical care

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2015-01-01

    Full Text Available One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database. In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  20. The development and application of FET-based biosensors

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be

  1. Development and testing of a fluorescence biosensor for glucose sensing

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  2. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  3. Development of phage/antibody immobilized magnetostrictive biosensors

    Science.gov (United States)

    Fu, Liling

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: (1) wireless/remote driving and sensing; (2) easy to fabricate; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was

  4. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    International Nuclear Information System (INIS)

    Toma, M.

    2012-01-01

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10 -7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  5. Novel trends in affinity biosensors: current challenges and perspectives

    International Nuclear Information System (INIS)

    Arugula, Mary A; Simonian, Aleksandr

    2014-01-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)

  6. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  7. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    International Nuclear Information System (INIS)

    Kucherenko, I S; Soldatkin, O O; Arkhypova, V M; Dzyadevych, S V; Soldatkin, A P

    2012-01-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l −1 ) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants. (paper)

  9. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  10. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-01

    The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    OpenAIRE

    Ramesh K. Jha; Jeremy M. Bingen; Christopher W. Johnson; Theresa L. Kern; Payal Khanna; Daniel S. Trettel; Charlie E.M. Strauss; Gregg T. Beckham; Taraka Dale

    2018-01-01

    Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sens...

  12. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  13. The Development of Reproducible and Selective Uric Acid Biosensor by Using Electrodeposited Polytyramine as Matrix Polymer

    Directory of Open Access Journals (Sweden)

    Manihar Situmorang

    2017-11-01

    Full Text Available A versatile method for the construction of reproducible and high selective uric acid biosensor is explained. Electrodeposited polytyramine is used as biosensor matrixes due to its compatibility to immobilize enzyme uric oxidase in the membrane electrode. The precise control over the charge passed during deposition of polytyramine allows concomitant control over the thickness of the deposited enzyme layers onto the surface of the electrode. The uric acid biosensor showed a sensitive response to uric acid with a linear calibration curve lies in the concentration range of 0.1–2.5 mM, slope 0.066 µA mM-1, and the limit detection was 0.01 mM uric acid (S/N = 3. The biosensor shown excellent reproducibility, the variation between response curves for uric acid lies between RSD 1% at low concentrations and up to RSD 6% at saturation concentration. Uric acid biosensor is free from normal interference. The biosensor showed good stability and to be applicable to determine uric acid in real samples. Analysis of uric acid in the reference standard serum samples by the biosensor method are all agreed with the real value from supplier. Standard samples were also analyzed independently by two methods: the present biosensor method and the standard UV-Vis spectrophotometry method, gave a correlation coefficient of 0.994. This result confirms that the biosensor method meets the rigid demands expected for uric acid in real samples.

  14. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Science.gov (United States)

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  15. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Science.gov (United States)

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  16. Calibration method for a carbon nanotube field-effect transistor biosensor

    International Nuclear Information System (INIS)

    Abe, Masuhiro; Murata, Katsuyuki; Ataka, Tatsuaki; Matsumoto, Kazuhiko

    2008-01-01

    An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures

  17. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Science.gov (United States)

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Amperometric biosensor for ethanol analysis in wines and grape must during wine fermentation].

    Science.gov (United States)

    Shkotova, L V; Slast'ia, E A; Zhyliakova, T A; Soldatkin, O P; Schuhmann, W; Dziadevych, S V

    2005-01-01

    The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).

  19. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2012-11-01

    Full Text Available The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs, and conductive polymers are also introduced in this review.

  20. Phase 2 SBIR Final Report: An Ultra-Sensitive Optical Biosensor for Flood Safety

    National Research Council Canada - National Science Library

    2002-01-01

    The further development of a unique interferometric based optical biosensor platform for the rapid unlabelled detection and identification of foodborne pathogens was carried out under Phase II SBIR...