WorldWideScience

Sample records for piezoelectric bimorph cantilever-actuated

  1. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators

    Science.gov (United States)

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej

    2016-11-01

    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  2. Modelling of non-symmetric piezoelectric bimorphs

    Science.gov (United States)

    Brissaud, Michel

    2004-11-01

    This paper deals with the modelling of non-symmetric piezoelectric bimorphs used in micromechanics or microsystems (MEMs). An analytical modelling including the elastic and geometric parameters of the substrate, bonding material, piezoelectric layer and electrodes is carried out. This model has been applied to bimorphs having different types of boundary conditions, that is clamped edges (CC), clamped and free edges (CF) or simply supported edges (SS). When the bimorph is used as an actuator, the resonance frequency and displacement of different types of bimorphs are calculated. Open circuit voltage, displacement and resonance frequency are determined when the bimorph is used as a sensor. The influence of the parameters of the bonding layer has been determined. A new method for calculating the global quality factor of bimorphs versus the quality factor of each layer is given. This method can easily be applied to all types of bimorphs (CC, CF, SS). The analytical form of the evolution of the resonance frequency and the sensitivity is deduced from the general modelling and theoretical models and are compared to those given by the finite element method and discussed.

  3. Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator

    Science.gov (United States)

    Bowden, W.; Hill, I. R.; Baird, P. E. G.; Gill, P.

    2017-01-01

    We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device has intrinsically low power and is acoustically quiet. The cantilever position is controlled by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 μs, corresponding to mechanical slew rates of 1.3 ms-1, with a timing jitter of less than 1 μs. When used to create optical pulses, we achieve minimum pulse durations of 250 μs. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a measurable amount.

  4. A High-Performance, Low-Cost Laser Shutter using a Piezoelectric Cantilever Actuator

    CERN Document Server

    Bowden, W; Baird, P E G; Gill, P

    2016-01-01

    We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controlled by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 $\\mu$s, corresponding to mechanical slew rates of 1.3 $\\textrm{ ms}^{-1}$, with an timing jitter of less than 1 $\\mu$s. When used to create optical pulses, we achieve minimum pulse durations of 250 $\\mu$s. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a notable amount. We also show that the high-voltage electronics can be easily configured as a versatile low-noise, high-bandwidt...

  5. Performance analysis of piezoelectric bimorph generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the theoretical model and simulation of the performance of a piezoelectric (PZT)bimorph generator is introduced.The generator consists of two piezoelectric plates bonded on a substrate metal plate.For an effective electromechanical coupling coefficient (EECC) and the generated energy,the analytical formulae are established with the thickness ratio and the Young's modulus ratio as variables.After giving correlative material parameters,the EECC and generated energy can be computed.The results show that there is a optimal thickness ratio for a piezoelectric bimorph generator to achieve the maximum EECC and electrical energy.The EECC and generated energy decrease with an increase of the Young's modulus ratio.In addition,the influence of mechanical source on electrical energy generation and power output is also considered.

  6. BIMORPH PIEZOELECTRIC ACTUATOR FOR SMALL PIPE ROBOT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experimental bimorph piezoelectric element (PZT) actuator for small pipe robot is developed. The robotcan move in φ 20 mm pipe, and can carry a CCD camera for detecting cracks or fine holes on inner surface of pipe. Thevelocity of the robot can reach 17~22 mm/s for vertical pipe up/down, respectively. Moving principle and its perfor-mance characteristics are presented.

  7. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro

    2014-01-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  8. Development of a Micro-Gripper Using Piezoelectric Bimorphs

    Directory of Open Access Journals (Sweden)

    Nur Azah Hamzaid

    2013-05-01

    Full Text Available Piezoelectric bimorphs have been used as a micro-gripper in many applications, but the system might be complex and the response performance might not have been fully characterized. In this study the dynamic characteristics of bending piezoelectric bimorphs actuators were theoretically and experimentally investigated for micro-gripping applications in terms of deflection along the length, transient response, and frequency response with varying driving voltages and driving signals. In addition, the implementation of a parallel micro-gripper using bending piezoelectric bimorphs was presented. Both fingers were actuated separately to perform mini object handling. The bending piezoelectric bimorphs were fixed as cantilevers and individually driven using a high voltage amplifier and the bimorph deflection was measured using a non contact proximity sensor attached at the tip of one finger. The micro-gripper could perform precise micro-manipulation tasks and could handle objects down to 50 µm in size. This eliminates the need for external actuator extension of the microgripper as the grasping action was achieved directly with the piezoelectric bimorph, thus minimizing the weight and the complexity of the micro-gripper.

  9. Modelling of a cantilever non-symmetric piezoelectric bimorph

    Science.gov (United States)

    Brissaud, Michel; Ledren, Sarah; Gonnard, P.

    2003-11-01

    The aim of this paper is the modelling of a non-symmetric bimorph constituted by a piezoelectric material deposited on an alumina substrate and used either as an actuator or a sensor. Theoretical modelling based on the flexural modes of the structure is carried out and the influence of the electrode characteristics (geometrical dimensions and elastic parameters) is introduced in the modelling for calculating the bimorph bending displacement. In actuator mode, the electrical admittance of the cantilever non-symmetric bimorph is stated and the intrinsic electromechanical coupling factor linked to the bimorph bending motion is deduced and compared with that defined in IEEE Standards. The analytical modelling was used for characterizing a cantilever bimorph constituted by a piezoelectric thick film deposited on an alumina substrate. A trial and error fitting method is described for determining the elastic, piezoelectric and dielectric constants of the piezoelectric material. The influence of the electrode parameters is calculated and the measurement uncertainty is deduced. In sensor mode the open voltage delivered by the bent piezoelectric layer and the electrical equivalent circuit of the bimorph are given. Theoretical results are compared with those obtained by the finite element method, and discussed.

  10. Theoretical modelling of non-symmetric circular piezoelectric bimorphs

    Science.gov (United States)

    Brissaud, Michel

    2006-05-01

    This paper deals with the theoretical modelling of non-symmetric and symmetric circular bimorphs. The model is restricted to the study of flexural vibration modes having radial symmetry (axisymmetry), as is often the case for piezoelectric devices such as MEMs. The calculation of the resonance frequencies and the displacement of the non-symmetric circular bimorph has been carried out and the influence of the elastic and geometric parameters of the cement layer has been introduced into the model. As is shown, the modelling of non-symmetric and symmetric circular bimorphs reduces to the determination of two global quantities: the global rigidity DG and the global Poisson ratio σG of the bimorph which is then equivalent to a homogenous element. Consequently, the results obtained with elastic and homogeneous circular plates can be applied to non-symmetric and symmetric bimorphs with the only condition of using the global DG and σG. The new modelling was applied to bimorph functioning either as an actuator or as a sensor and having a simply supported or clamped edge. The electromechanical coupling factor of flexure modes has been calculated and compared to the radial mode. Comparison between analytical models and simulations using the finite-element method is given and discussed.

  11. Piezoelectric Energy Harvesting Using PZT Bimorphs and Multilayered Stacks

    Science.gov (United States)

    Panda, Prasanta Kumar; Sahoo, Benudhar; Chandraiah, M.; Raghavan, Sreekumari; Manoj, Bindu; Ramakrishna, J.; Kiran, P.

    2015-11-01

    Piezoelectric materials have a unique ability to interchange electrical and mechanical energy. This property allows the absorption of mechanical energy such as ambient vibration and its transformation into electrical energy. The electrical energy generated can be used to power low-power electronic devices. In the present study, energy harvesting by lead zirconate titanate (PZT) multilayer (ML) stacks and bimorphs is presented. The devices were fabricated by a tape casting technique and were poled at 2 kV/mm for 30 min immersed in a silicone oil bath maintained at 60°C. The energy harvesting characteristics of the fabricated devices were measured in a suitably assembled test setup. The output voltage obtained from the PZT bimorphs and ML stacks was 450 mV and 125 mV, respectively. The higher output voltage from the bimorph is due to its low capacitance.

  12. Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.

    1999-07-28

    As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.

  13. TRAVELING MACHINE DRIVEN BY PIEZOELECTRIC BIMORPH

    Institute of Scientific and Technical Information of China (English)

    HUA Shunming; CHENG Guangming; FAN Zunqiang; YANG Zhigang; SUZUKI Katsiyoshi

    2007-01-01

    A rectangular bimorph will vibrate in bending mode under alternating current (AC) electric field. If two opposite tips along longitudinal direction are both clamped, the maximum magnitude of bending displacement occurs on the short center line. Using bimorph type vibrators forementioned as actuators, an invention of simple traveling machine based on stick-slip principle is presented. The machine can not only move along both x and y direction within horizontal working plane, furthermore, excellent bearing ability and agile response as well as stable step are also proved. In addition, the machine can work on stepping mode and scanning mode at the same time, hence the contradiction between long stroke and high precise positioning is solved. Therefore, it meets the needs of micro/nanometer precise positioning under long stroke and is desired to be used as carrying stage for micro-assembling system and locomotive mechanism for miniature robot system.

  14. An in-pipe micro robot actuated by piezoelectric bimorphs

    Institute of Scientific and Technical Information of China (English)

    LIU PinKuan; WEN ZhiJie; SUN LiNing

    2009-01-01

    A novel in-pipe micro robot providing stable and accurate locomotion inside a tubular structure with diameters ranging from 16 mm to 18 mm is presented in this paper. Driven by impulsive voltages, deflections of the piezoelectric bimorphs are generated and then converted into translational locomotion by the principle of the Impact Drive Mechanism (IDM). Theoretical analysis of the proposed system is performed based on a simplified mechanical model. Then dynamic simulations of the dynamic behavior are performed. Finally, an experiment is conducted to investigate the moving ability of this device. The results demonstrate that a maximum translational velocity of 3.5 mm/s can be obtained under an impulsive driving voltage with peak value at 50 V and frequency of 1100 Hz. Both theoretical analysis and experimental trials prove that the principle of IDM actuated by piezoelectric bimorphs is feasible and robust for achieving accurate locomotion of the micro robot in pipes with diameters of less than 20 mm.

  15. Impact drive rotary precision actuator with piezoelectric bimorphs

    Institute of Scientific and Technical Information of China (English)

    Hongzhuang ZHANG; Ping ZENG; Shunming HUA; Guangming CHENG; Zhigang YANG

    2008-01-01

    An impact drive rotary precision actuator with end-loaded piezoelectric cantilever bimorphs is proposed. According to finite element analysis and experiments of the dynamic characteristics of end-loaded piezoelectric cantilever bimorphs, a specific fixed-frequency and adjustable-amplitude is confirmed to control the actua-tor. The results show that an actuator excited by fixed-frequency and the adjustable-amplitude ramp voltage waveform works with a large travel range (180°), high resolution (1 μrad), speed (0.2 rad/min) and heavy-load ability (0.02 Nm). With advantages of high-precision positioning ability, simple structure and only one percent the cost of traditional impact drive mechanisms, the actuator is expected to be widely used in precision industries.

  16. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  17. Analytical Modelling of a Plucked Piezoelectric Bimorph for Energy Harvesting

    CERN Document Server

    Pozzi, Michele

    2012-01-01

    Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of sufficient power to operate targeted low-power applications. Piezoelectric transducers are often used for vibrational, inertial and direct movement EH. One problem is that, due to the stiffness of the most common material (PZT) and typically useful sizes, intrinsic resonant frequencies are normally high, whereas the available power is often concentrated at low frequencies. The aim of the plucking technique of frequency up-conversion, also known as "pizzicato" excitation, is to bridge this frequency gap. In this paper, the technique is modelled analytically. The analytical model is developed starting from the Euler-Bernoulli beam equations modified for piezoelectric coupling. A system of differential equations and associated initial conditions are derived which describe the free vibration of a piezoelectric bimorph in the last part of the plucki...

  18. Degradation of bimorph piezoelectric bending beams in energy harvesting applications

    Science.gov (United States)

    Pillatsch, P.; Xiao, B. L.; Shashoua, N.; Gramling, H. M.; Yeatman, E. M.; Wright, P. K.

    2017-03-01

    Piezoelectric energy harvesting is an attractive alternative to battery powering for wireless sensor networks. However, in order for it to be a viable long term solution the fatigue life needs to be assessed. Many vibration harvesting devices employ bimorph piezoelectric bending beams as transduction elements to convert mechanical to electrical energy. This paper introduces two degradation studies performed under symmetrical and asymmetrical sinusoidal loading. It is shown that besides a loss in output power, the most dramatic effect of degradation is a shift in resonance frequency which is highly detrimental to resonant harvester designs. In addition, micro-cracking was shown to occur predominantly in piezoelectric layers under tensile stress. This opens the opportunity for increased life time through compressive operation or pre-loading of piezoceramic layers.

  19. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  20. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    Science.gov (United States)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  1. Piezoelectric Bimorphs' Characteristics as In-Socket Sensors for Transfemoral Amputees

    OpenAIRE

    El-Sayed, Amr M.; Nur Azah Hamzaid; Noor Azuan Abu Osman

    2014-01-01

    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric...

  2. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2015-01-01

    Full Text Available Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.

  3. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experiments, the theoretical model is verified effectively to express the nonlinear characteristic. Furthermore, when the piezoelectric bimorph resonance happens, some interharmonic response at low frequency will modulate with the resonance response.

  4. Resonant frequency of a polyvinylidene flouride piezoelectric bimorph: the effect of surrounding fluid

    Science.gov (United States)

    Abedian, Behrouz; Cundari, Michael

    1993-07-01

    This work presents experimental and theoretical results on the dynamic behavior of piezoelectric cantilever bimorph in the presence of surrounding air. The bimorph is composed of a pair of piezoelectric sheets bonded by a uniform elastic layer of adhesive in the center. The transverse motion of the bimorph is generated by a sequential application of two opposing electric fields on the piezoelectric sheets. Theoretically, the tip deflection and the natural frequency of the bimorph are obtained making use of an energy balance technique. The fluid in modeled as inviscid and incompressible whose motion induces locally additional mass in the transverse direction. An expression for the kinetic energy of the system is derived based on this additional mass from which the natural frequency of the combined system is obtained. Tests were performed on the piezoelectric bimorphs with similar geometries and varying adhesive thickness in a vacuum chamber. The air pressure in the chamber was varied from 10 kPa to one atmosphere. Good agreements between the theoretical predictions and the observed values were obtained. This study could have applications in the use of piezoelectric materials for fluid property measurements.

  5. Piezoelectric bimorphs' characteristics as in-socket sensors for transfemoral amputees.

    Science.gov (United States)

    El-Sayed, Amr M; Hamzaid, Nur Azah; Abu Osman, Noor Azuan

    2014-12-10

    Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0-100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.

  6. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    OpenAIRE

    Ting Zhang; Ying Pan; Lijie Cao

    2016-01-01

    A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experi...

  7. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    OpenAIRE

    Zhou, Gongbo; Wang, Houlian; Zhu, Zhencai; Huang, Linghua; Li, Wei

    2015-01-01

    Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectr...

  8. Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters

    KAUST Repository

    Ahmad, Mahmoud Al

    2012-07-23

    In this paper, a method to find the maximum power transfer conditions in bimorph piezoelectric-based harvesters is proposed. Explicitly, we derive a closed form expression that relates the load resistance to the mechanical parameters describing the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs was derived. In interest of impartiality, we apply the proposed philosophy on previously published experimental results and compare it with other reported hypotheses. It was found that the proposed method was able to predict the actual optimum load resistance more accurately than other methods reported in the literature. © 2012 American Institute of Physics.

  9. Parameter identification of piezoelectric bimorphs for dynamic applications considering strain and velocity dependent effects

    Science.gov (United States)

    Richter, Björn; Twiefel, Jens

    2009-03-01

    Piezoelectric bimorph elements are commonly used in a wide area of applications, among them various actuator applications in textile machines, applications in sensing like medical tissue identification, or the use in energy harvesting systems. Especially the last field may create a mass market for piezoelectric elements. Due to their easy use and low resonance frequency, bimorphs seem to fit energy harvesting demands quite well. To get the best possible power output, the element has to be designed as good as possible to fit the environmental excitation characteristics as excitation frequency and amplitude. Due to the need of a good understanding of the resulting system, a model based approach is desirable for the design of the used bimorphs. This is the case not only in Energy Harvesting systems but in most of the mentioned applications.

  10. Non-linear electromechanical behaviour of piezoelectric bimorph actuators: influence on performance and lifetime

    NARCIS (Netherlands)

    Ende, D.A. van den; Bos, B.; Groen, W.A.

    2009-01-01

    Piezoelectric bimorph bender actuators find application number of areas, ranging from automotive to health care. High voltage operation in harsh environments poses ever more stringent demands on functionality and lifetime. In these high performance benders, the trade-off between functionality and li

  11. Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads

    DEFF Research Database (Denmark)

    Donoso, Alberto; Sigmund, Ole

    2009-01-01

    The paper considers optimal design problems in the context of active damping. More specifically, we are interested in controlling the tip-deflection of a cantilever beam subjected to static and time-harmonic loading on its free extreme. First, the thickness profile of a piezoelectric bimorph...

  12. Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation

    Science.gov (United States)

    Pozzi, Michele; Zhu, Meiling

    2011-05-01

    The modern drive towards mobility and wireless devices is motivating intensive research in energy harvesting technologies. To reduce the battery burden on people, we propose the adoption of a frequency up-conversion strategy for a new piezoelectric wearable energy harvester. Frequency up-conversion increases efficiency because the piezoelectric devices are permitted to vibrate at resonance even if the input excitation occurs at much lower frequency. Mechanical plucking-based frequency up-conversion is obtained by deflecting the piezoelectric bimorph via a plectrum, then rapidly releasing it so that it can vibrate unhindered; during the following oscillatory cycles, part of the mechanical energy is converted into electrical energy. In order to guide the design of such a harvester, we have modelled with finite element methods the response and power generation of a piezoelectric bimorph while it is plucked. The model permits the analysis of the effects of the speed of deflection as well as the prediction of the energy produced and its dependence on the electrical load. An experimental rig has been set up to observe the response of the bimorph in the harvester. A PZT-5H bimorph was used for the experiments. Measurements of tip velocity, voltage output and energy dissipated across a resistor are reported. Comparisons of the experimental results with the model predictions are very successful and prove the validity of the model.

  13. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU Yuantai; HU Hongping; YANG Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  14. Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting

    Science.gov (United States)

    Lumentut, M. F.; Howard, I. M.

    2013-03-01

    Power harvesters that extract energy from vibrating systems via piezoelectric transduction show strong potential for powering smart wireless sensor devices in applications of health condition monitoring of rotating machinery and structures. This paper presents an analytical method for modelling an electromechanical piezoelectric bimorph beam with tip mass under two input base transverse and longitudinal excitations. The Euler-Bernoulli beam equations were used to model the piezoelectric bimorph beam. The polarity-electric field of the piezoelectric element is excited by the strain field caused by base input excitation, resulting in electrical charge. The governing electromechanical dynamic equations were derived analytically using the weak form of the Hamiltonian principle to obtain the constitutive equations. Three constitutive electromechanical dynamic equations based on independent coefficients of virtual displacement vectors were formulated and then further modelled using the normalised Ritz eigenfunction series. The electromechanical formulations include both the series and parallel connections of the piezoelectric bimorph. The multi-mode frequency response functions (FRFs) under varying electrical load resistance were formulated using Laplace transformation for the multi-input mechanical vibrations to provide the multi-output dynamic displacement, velocity, voltage, current and power. The experimental and theoretical validations reduced for the single mode system were shown to provide reasonable predictions. The model results from polar base excitation for off-axis input motions were validated with experimental results showing the change to the electrical power frequency response amplitude as a function of excitation angle, with relevance for practical implementation.

  15. COUPLED ANALYSIS FOR THE HARVESTING STRUCTURE AND THE MODULATING CIRCUIT IN A PIEZOELECTRIC BIMORPH ENERGY HARVESTER

    Institute of Scientific and Technical Information of China (English)

    Yuantai Hu; Ting Hu; Qing Jiang

    2007-01-01

    The authors analyze a piezoelectric energy harvester as an electro-mechanically coupled system. The energy harvester consists of a piezoelectric bimorph with a concentrated mass attached at one end, called the harvesting structure, an electric circuit for energy storage,and a rectifier that converts the AC output of the harvesting structure into a DC input for the storage circuit. The piezoelectric bimorph is assumed to be driven into flexural vibration by an ambient acoustic source to convert the mechanical energies into electric energies. The analysis indicates that the performance of this harvester, measured by the power density, is characterized by three important non-dimensional parameters, I.e., the non-dimensional inductance of the storage circuit, the non-dimensional aspect ratio (length/thickness) and the non-dimensional end mass of the harvesting structure. The numerical results show that: (1) the power density can be optimized by varying the non-dimensional inductance for each fixed non-dimensional aspect ratio with a fixed non-dimensional end mass; and (2) for a fixed non-dimensional inductance, the power density is maximized if the non-dimensional aspect ratio and the non-dimensional end mass are so chosen that the harvesting structure, consisting of both the piezoelectric bimorph and the end mass attached, resonates at the frequency of the ambient acoustic source.

  16. Piezoelectric bimorph-based translation device for two-dimensional, remote micropositioning

    Science.gov (United States)

    Peters, D. J.; Blackford, B. L.

    1989-01-01

    We describe a two-dimensional, remote micropositioning device that uses the bending mode of a piezoelectric bimorph for walking in the forward/reverse direction of motion. For this mode of operation step sizes range from ˜50 to 5000 nm, with a voltage sensitivity of ˜10 nm/V. Speeds of about 1 mm/s are possible. In the lateral direction of motion, the linear extension mode of the bimorph is used, giving step sizes from ˜50 to 1000 nm, with a sensitivity of ˜2 nm/V. For the walking sequence, anodized aluminum feet are electrostatically clamped to an anodized aluminum baseplate. When used as the coarse positioner in a scanning tunneling microscope, the device requires less than 100 V operating voltage, thus eliminating the high-voltage supply needed for previous piezoelectric walking devices. A circuit diagram for ``joystick'' control of the micropositioner is also described.

  17. MODELLING AND OPTIMISATION OF A BIMORPH PIEZOELECTRIC CANTILEVER BEAM IN AN ENERGY HARVESTING APPLICATION

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs.

  18. Research on the optimization of a bimorph piezoelectric deformable mirror based on zeroth-order method

    Science.gov (United States)

    Wang, Hairen; Hu, Lin

    2016-07-01

    The deformable mirror adjusts the mirror surface shape to compensate the wavefront error in the adaptive optics system. Recently, the adaptive optics has been widely used in many applications, such as astronomical telescopes, high power laser systems, etc. These applications require large diameter deformable mirrors with large stroke, high speed and low cost. Thus, the bimorph piezoelectric deformable mirror, which is a good match for the applications, has attracted more and more attentions. In this paper, we use zeroth-order optimization method to optimize the physical parameters of a bimorph piezoelectric deformable mirror that consists of a metal reflective layer deposited on the top of a slim piezoelectric ceramic surface layer. The electrodes are deposited on the bottom of the piezoelectric ceramic layer. The physical parameters to be optimized include the optimal thickness ratio between the piezoelectric layer and reflective layer, inter-electrode distance, and so on. A few reasonable designs are obtained by a comparative study presented for three geometries of electrodes, which are circular, square and hexagon, respectively.

  19. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    Science.gov (United States)

    Erturk, A.; Inman, D. J.

    2009-02-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh-Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler-Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  20. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

    Science.gov (United States)

    Zhang, Haifeng; Afzalul, Karim

    2014-06-01

    The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design.

  1. Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-02-01

    Full Text Available An efficient spectral element (SE with electric potential degrees of freedom (DOF is proposed to investigate the static electromechanical responses of a piezoelectric bimorph for its actuator and sensor functions. A sublayer model based on the piecewise linear approximation for the electric potential is used to describe the nonlinear distribution of electric potential through the thickness of the piezoelectric layers. An equivalent single layer (ESL model based on first-order shear deformation theory (FSDT is used to describe the displacement field. The Legendre orthogonal polynomials of order 5 are used in the element interpolation functions. The validity and the capability of the present SE model for investigation of global and local responses of the piezoelectric bimorph are confirmed by comparing the present solutions with those obtained from coupled 3-D finite element (FE analysis. It is shown that, without introducing any higher-order electric potential assumptions, the current method can accurately describe the distribution of the electric potential across the thickness even for a rather thick bimorph. It is revealed that the effect of electric potential is significant when the bimorph is used as sensor while the effect is insignificant when the bimorph is used as actuator, and therefore, the present study may provide a better understanding of the nonlinear induced electric potential for bimorph sensor and actuator.

  2. AlN-based piezoelectric bimorph microgenerator utilizing low-level non-resonant excitation

    Science.gov (United States)

    Hampl, Stefan; Cimalla, Volker; Polster, Tobias; Hoffmann, Martin

    2011-06-01

    This work aims for utilizing human ocular motion for the self-sufficient power supply of a minimally invasive implantable monitoring system for intraocular pressure (IOP). With a proven piezoelectric functionality (d33>5 pm/V), nanocrystalline thin films of aluminum nitride (AlN) provide a good capability for micromechanical energy harvesting (EH) in medical applications. Many d31-mode microcantilever architectures are poorly suited for human-induced EH: Resonant mass-spring-damper systems are tested under high, narrow-band excitation frequencies. However, human motions, e.g. vibrations of eyeballs are marked by their low frequency, unpredictable, mainly aperiodic and time-varying signature. Different vibration types and directions are 3-dimensionally superimposed. Saccadic eye movements are favorable for inertial microgenerators because of their high dynamic loading (ω<=1000°/s). Our generator concept (symmetric active/active-parallel-bimorph cantilever) enables a high structural compliance by maximizing the piezoactive volume at very low cantilever thicknesses (<1 μm). An increased length and seismic mass enable an effective excitation by low-level aperiodic vibrations such as saccadic acceleration impulses. Analytic calculations and FEA-simulations investigate the potential distribution and transient response of different bimorph structures (length 200- 1000 μm, width 20-200 μm) on broadband vibrations. First released monomorph and bimorph structures show very low resonant frequencies and an adequate robustness.

  3. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications

    Science.gov (United States)

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael

    2016-04-01

    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  4. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    Science.gov (United States)

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol

    2016-12-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  5. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope.

    Science.gov (United States)

    Zhao, Jianyong; Gong, Weitao; Cai, Wei; Shang, Guangyi

    2013-08-01

    A piezoelectric bimorph-based scanner operating in tip-scan mode for high speed atomic force microscope (AFM) is first presented. The free end of the bimorph is used for fixing an AFM cantilever probe and the other one is mounted on the AFM head. The sample is placed on the top of a piezoelectric tube scanner. High speed scan is performed with the bimorph that vibrates at the resonant frequency, while slow scanning is carried out by the tube scanner. The design and performance of the scanner is discussed and given in detailed. Combined with a commercially available data acquisition system, a high speed AFM has been built successfully. By real-time observing the deformation of the pores on the surface of a commercial piezoelectric lead zirconate titanate (PZT-5) ceramics under electric field, the dynamic imaging capability of the AFM is demonstrated. The results show that the notable advantage of the AFM is that dynamic process of the sample with large dimensions can be easily investigated. In addition, this design could provide a way to study a sample in real time under the given experimental condition, such as under an external electric field, on a heating stage, or in a liquid cell.

  6. An Efficient Spectral Element Model with Electric DOFs for the Static and Dynamic Analysis of a Piezoelectric Bimorph

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-01-01

    Full Text Available An efficient spectral element (SE model for static and dynamic analysis of a piezoelectric bimorph is proposed. It combines an equivalent single layer (ESL model for the mechanical displacement field with a sublayer approximation for the electric potential. The 2D Gauss-Lobatto-Legendre (GLL shape functions are used to discretize the displacements and then the governing equation of motion is derived following the standard SE method procedure. It is shown numerically that the present SE model can well predict both the global and local responses such as mechanical displacements, natural frequencies, and the electric potentials across the bimorph thickness. In the case of bimorph sensor application, it is revealed that the distribution of the induced electric potential across the thickness does not affect the global natural frequencies much. Furthermore, the effects of the order of Legendre polynomial and the mesh size on the convergence rate are investigated. Comparison of the present results for a bimorph sensor with those from 3D finite element (FE simulations establishes that the present SE model is accurate, robust, and computationally efficient.

  7. Active control of flow noise sources in turbulent boundary layer on a flat-plate using piezoelectric bimorph film

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Lee, Seung Bae [Inha University, Incheon (Korea, Republic of); Shin, Dong Shin [Hongik University, Seoul (Korea, Republic of); Na, Yang [Konkuk University, Seoul (Korea, Republic of)

    2006-11-15

    The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700{nu}/u{sub {tau}}-long bimorph film is periodically actuated at the non-dimensional frequency f{sub b}{sup +} =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

  8. BIMORPH-TYPE PIEZOELECTRIC THIN FILM BENDING ACTUATORS SYNTHESIZED BY HYDROTHERMAL METHOD

    Institute of Scientific and Technical Information of China (English)

    Du Liqun; Arai Fumihito; Fukuda Toshio; Kwon Guiryong

    2004-01-01

    Lead zirconate titanium solid-solution (PZT) thin films with various thickness are synthesized on titanium substrates by repeated hydrothermal treatments.Young modulus,electric-field- induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films.The model,which is used to analyze the driving ability of bimorph-type bending actuators by hydrothermal method,is set up.It can be seen that the driving ability of bimorph-type bending actuators can be greatly improved by optimizing the thickness of PZT thin film and substrate from the theoretical analysis results.The measured values are expected to agree with the theoretical values calculated by the above model.

  9. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART I: APPLICATION TO ENERGY HARVESTING-ANALYTICAL DERIVATIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan G. Y.

    2016-03-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  10. Finite Element Study on Performance of Piezoelectric Bimorph Cantilevers Using Porous/Ceramic 0-3 Polymer Composites

    Science.gov (United States)

    Kiran, Raj; Kumar, Anuruddh; Chauhan, Vishal S.; Kumar, Rajeev; Vaish, Rahul

    2017-09-01

    Finite element analysis of 0-3 composites made of piezoceramic particles and pores embedded in polyvinylidene difluoride (PVDF) has been carried out. The representative volume element (RVE) approach was used to calculate the effective elastic and piezoelectric properties of the periodic isotropic 0-3 piezoelectric composites. It was observed that the elastic and piezoelectric properties increased with the volume fraction of {K}_{0.475} {Na}_{0.475} {Li}_{0.05} ( {{Nb}_{0.92} {Ta}_{0.05} {Sb}_{0.03} } ){O}3 (KNLNTS) particles but decreased for the porous composites. These effective properties were further used to analyze the potential use of such bimorph cantilever beams in sensing and energy harvesting applications. Sensing voltage continuously increased for KNLNTS filled composites while for porous materials it increased up to 15% volume fraction porosity and then decreased. The same trend was also observed for the power produced by the harvester. However, the sensing voltage and power produced by harvesters made of porous composites were lower than for harvesters made of pure PVDF.

  11. Finite element analysis and experiment on piezoelectric bimorph%压电双晶片的有限元分析及实验

    Institute of Scientific and Technical Information of China (English)

    李龙土; 邬军飞; 褚祥诚; 季叶

    2008-01-01

    The deformation of bimorph is analyzed by using the Finite Element Method(FEM).The influences of middle elastic beam and piezoelectric layer on the deflection actuator are studied.The correlations of the applied voltage,the elastic modulus of beam and the thickness of piezoelectric 1aver are analyzed quantitatively to provide a theoretical basis and design method for the bimorph actuators.The mechanical force derived from the bimorph deformation is also studied. Furthermore,experiments are carried out to validate the finite element model.The vilidation shows that the tip-deflection ment results demonstrate that the piezoelectric bimorph model used in this paper is feasible and effective.Moreover,the resonance property of the bimorph is measured by the polytec 300-F scanning vibrometer.The bimorph performs an exceeding deflection about 1.7 mm at the tip when it resonates at a frequency about 310 Hz under an alternating voltage of 20 Vp-p.These numerical and experimental results are useful to design and optimize the piezoelectric bimorph.%采用有限元分析方法,分析了压电双晶片悬臂梁的位移形变特征.研究了金属弹性层、压电陶瓷片的材料属性及几何尺寸对双晶片偏转位移的影响;计算了双晶片的弹性模量、厚度以及加载电压与位移形变产生弯应力的关系;通过位移测试、弯应力测试等相关实验对有限元分析进行了验证.当加载电压为60 V(120 Vp-p)时,双晶片的偏转位移和弯应力分别为166/μm和34.7 m·N,实验结果证明本文所建的有限元模型是合理有效的.此外,测试了压电双晶片的振动特性,测得其谐振频率为310 Hz,在该频率下加载20 Vp-p电压,其端部位移输出即可达1.7 mm.有限元分析结果及实验验证为压电双晶片结构的优化设计提供了依据.

  12. Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting

    Science.gov (United States)

    Kuo, Chun-Liang; Lin, Shun-Chiu; Wu, Wen-Jong

    2016-10-01

    This paper presents the development of a bimorph microelectromechanical system (MEMS) generator for vibration energy harvesting. The bimorph generator is in cantilever beam structure formed by laminating two lead zirconate titanate thick-film layers on both sides of a stainless steel substrate. Aiming to scavenge vibration energy efficiently from the environment and transform into useful electrical energy, the two piezoelectric layers on the device can be poled for serial and parallel connections to enhance the output voltage or output current respectively. In addition, a tungsten proof mass is bonded at the tip of the device to adjust the resonance frequency. The experimental result shows superior performance the generator. At the 0.5 g base excitation acceleration level, the devices pooled for serial connection and the device poled for parallel connection possess an open-circuit output voltage of 11.6 VP-P and 20.1 VP-P, respectively. The device poled for parallel connection reaches a maximum power output of 423 μW and an output voltage of 15.2 VP-P at an excitation frequency of 143.4 Hz and an externally applied based excitation acceleration of 1.5 g, whereas the device poled serial connection achieves a maximum power output of 413 μW and an output voltage of 33.0 VP-P at an excitation frequency of 140.8 Hz and an externally applied base excitation acceleration of 1.5 g. To demonstrate the feasibility of the MEMS generator for real applications, we finished the demonstration of a self-powered Bluetooth low energy wireless temperature sensor sending readings to a smartphone with only the power from the MEMS generator harvesting from vibration.

  13. 压电双晶片扫描器的低温迟滞蠕变特性%Cryogenic hysteresis and creep characteristics of piezoelectric bimorph scanner

    Institute of Scientific and Technical Information of China (English)

    张旋; 潘鸣

    2012-01-01

    The cryogenic hysteresis and creep characteristics of piezoelectric bimorph scanners for cryogenic optical systems in space infrared cameras were studied. The piezoelectric bimorph has superior characteristics of large displacement, high resolution, no self-heating, etc. , moreover, it can work efficiently at a cryogenic temperature. However,the inherent hysteresis and creep characteristics of the piezoelectric bmorph have a large impact on the scanning accuracy when it is used for high precision scanning. In this paper, the hysteresis and creep characteristics of a fabricated piezoelectric bimorph scanner were experimentally studied at room temperature and cryogenic temperature and the results were compared. The results indicate that both hysteresis displacement and creep displacement of the piezoelectric bimorph scanner have a large decrease, but the decrease of total travel displacement is much larger, which leads the hysteresis rate and creep coefficient increase more large. The hysteresis rate at 120 K is twice that at 300 K and the creep coefficient at 120 K increases by an order of magnitude as compared with that at 300 K. Results mean that the hysteresis and creep characteristics of piezoelectric bimorph scanner at cryogenic temperature are more serious than it at room temperature, which will bring greater impact when it is used for high precision applications.%研究了用于空间红外相机低温光学系统的压电双晶片扫描器的低温迟滞蠕变问题.压电双晶片具有行程大,不发热,在低温下仍然能够工作等优点,然而由于压电陶瓷固有的迟滞蠕变特性,使得其扫描精度受到了较大的影响.本文在常温和低温下,对所研制的压电双晶片扫描器的迟滞和蠕变特性进行实验研究和特性对比.结果显示:尽管压电双晶片扫描器的迟滞量和蠕变量均有大幅度下降,但由于总行程的下降幅度更大,使得迟滞度和蠕变系数有较大上升;120 K

  14. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART II: APPLICATION TO ENERGY HARVESTING-NUMERICAL RESULTS AND DISCUSSIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan, Gevorg Y.

    2016-06-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  15. Bimorph-driven synthetic jet actuators optimized for various piezoelectric materials using a low-order model

    Science.gov (United States)

    Yu, Tianliang; Lesieutre, George A.; Griffin, Steven F.; Brzozowski, Daniel P.; Sassoon, Aaron M.

    2017-04-01

    Synthetic jet actuators are of interest for potential applications to active flow control and thermal management. Resonant piezoelectric-diaphragm-type configurations are commonly considered. Modeling of such actuators remains a challenge due to complexities associated with both electro-elastic and fluid-structure coupling, as well as potential non-linearities in both. A key metric for synthetic jet performance is the time-averaged jet momentum. Linear lumped-element modeling is an approach that has demonstrated the ability to predict jet momentum in terms of input frequency and voltage; however, it neglects nonlinearity and increasing losses at high amplitude. Full electro-elastic-fluidic finite element modeling makes the most accurate prediction but is computationally expensive for design and optimization purposes. The assumed-modes method provides an energy-based low-order model which captures electro-elastic and acoustic-structure couplings with adequate accuracy. Tri-laminar circular plates under clamped boundary conditions were modeled using the assumed-modes method. Maximization of jet momentum is considered via the maximization of surrogate device metrics: free volume displacement, effective blocking pressure, strain energy, and device coupling coefficient. The driving frequency of the actuator is treated as a constraint in the optimization which nominally matches the fundamental acoustic natural frequency of the cylindrical cavity. Device configurations were obtained for various polycrystalline and single crystal piezoelectric materials, driven at 10% of their coercive fields in the model. The optimal configurations approximate a simply-supported circular plate with complete piezo coverage. The relative merits of individual materials were also discerned from the optimization results. The low mechanical loss factor of PZT8 enables high output at resonance, while high loss factor and low stiffness limit the utility of PVDF in this application. Due to a

  16. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  17. Development of an innovative energy harvesting device using MFC bimorphs

    Science.gov (United States)

    Tabesh, Majid; Nguyen, The; Motlagh, Amin M.; Elahinia, Mohammad

    2009-03-01

    Recently, widespread attention has been directed towards scavenging energy from renewable sources such as wind. Piezoelectric materials are particularly suitable for capturing energy from motion since mechanical deflection of a piezoelectric specimen results in an electric displacement. This electricity can be stored in batteries or used to power portable devices. The present work is on the development of a device that can generate electricity from an oscillating motion using a piezoelectric Macro Fiber Composite (MFC) bimorph. Previously, bimorph vibration was created by a rotating or reciprocating part hitting the bimorph tip; whereas in the current work, base reciprocation excites the piezoelectric bimorph. The device includes a fan blade, which aligns with the direction of the wind and moves a rod in vertical direction. The microfiber composite beams (MFC) are attached to the upper end of the rod. Reciprocation of the rod acts as a harmonic excitation for the MFC bimorphs. Vibration of the MFCs produces electricity which is stored in a capacitor to be used to power electronic systems such as different types of remote sensors. Simulation and experimental results have been compared. In vibration and wind tunnel experiments, comparable amounts of energy were collected and accumulated in a capacitor.

  18. A piezoelectrically actuated ball valve

    Science.gov (United States)

    Erwin, L. R.; Schwartz, H. W.; Teitelbaum, B. R.

    1972-01-01

    Bimorph strip composed of two layers of poled piezoelectric ceramic material closes and opens valve. Strip performs like capacitator, allowing initial inrush of current when valve is energized and then only small leakage current flows as valve remains energized.

  19. Auxetic piezoelectric energy harvesters for increased electric power output

    Science.gov (United States)

    Li, Qiang; Kuang, Yang; Zhu, Meiling

    2017-01-01

    This letter presents a piezoelectric bimorph with auxetic (negative Poisson's ratio) behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE) modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  20. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectri...

  1. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Christiansen, T.L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material....... It provides mechanical support but it also reduces the power output. Our device replaces the support with another layer of the piezoelectric material, and with the absence of an inactive mechanical support all of the stresses induced by the vibrations will be harvested by the active piezoelectric elements....

  2. Piezoelectricity

    CERN Document Server

    Lubitz, Karl

    2008-01-01

    Piezoelectric materials play a key role in an innovative market. Advances in applications derive from new materials and their development, as well as to new market requirements. This report elucidates these developments by a broad spectrum of examples, comprising ultrasound in medicine and defence industry, and frequency control.

  3. Thermal vertical bimorph actuators and their applications

    CERN Document Server

    Sehr, H J

    2002-01-01

    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  4. Modeling and characterization of multilayered d 15 mode piezoelectric energy harvesters in series and parallel connections

    Science.gov (United States)

    Zhu, Y. K.; Yu, Y. G.; Li, L.; Jiang, T.; Wang, X. Y.; Zheng, X. J.

    2016-07-01

    A Timoshenko beam model combined with piezoelectric constitutive equations and an electrical model was proposed to describe the energy harvesting performances of multilayered d 15 mode PZT-51 piezoelectric bimorphs in series and parallel connections. The effect of different clamped conditions was considered for non-piezoelectric and piezoelectric layers in the theoretical model. The frequency dependences of output peak voltage and power at different load resistances and excitation voltages were studied theoretically, and the results were verified by finite element modeling (FEM) simulation and experimental measurements. Results show that the theoretical model considering different clamped conditions for non-piezoelectric and piezoelectric layers could make a reliable prediction for the energy harvesting performances of multilayered d 15 mode piezoelectric bimorphs. The multilayered d 15 mode piezoelectric bimorph in a series connection exhibits a higher output peak voltage and power than that of a parallel connection at a load resistance of 1 MΩ. A criterion for choosing a series or parallel connection for a multilayered d 15 mode piezoelectric bimorph is dependent on the comparison of applied load resistance with the critical resistance of about 55 kΩ. The proposed model may provide some useful guidelines for the design and performance optimization of d 15 mode piezoelectric energy harvesters.

  5. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    Science.gov (United States)

    Chandrasekharan, N.; Thompson, L. L.

    2016-04-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation.

  6. Polymer constraint effect for electrothermal bimorph microactuators

    NARCIS (Netherlands)

    Chu Duc, T.; Lau, G.K.; Sarro, P.M.

    2007-01-01

    The authors report on the analysis of the polymer constraint effect and its use for a micromachined electrothermal bimorph actuator. The actuated displacement is enhanced due to the polymer constraint effect. Both the thermal expansion and apparent Young’s modulus of the constrained polymer blocks a

  7. Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials

    Science.gov (United States)

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Chang, Huicong; Yang, Yang; Zhou, Ying

    2016-01-01

    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale.

  8. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.

    Science.gov (United States)

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Huang, Yi; Chang, Huicong; Yang, Yang; Zhou, Ying; Chen, Yongsheng

    2016-06-01

    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale.

  9. Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators

    Directory of Open Access Journals (Sweden)

    Mostafa R. A. Nabawy

    2016-01-01

    Full Text Available Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young’s modulus relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive

  10. Piezoelectric Bimorphs’ Characteristics as In-Socket Sensors for Transfemoral Amputees

    Directory of Open Access Journals (Sweden)

    Amr M. El-Sayed

    2014-12-01

    Full Text Available Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0–100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.

  11. Piezoelectric Windmill: A Novel Solution to Remote Sensing

    Science.gov (United States)

    Priya, Shashank; Chen, Chih-Ta; Fye, Darren; Zahnd, Jeff

    2005-01-01

    This study demonstrates a technology, “Piezoelectric Windmill”, for generating the electrical power from wind energy. The electric power-generation from wind energy is based on piezoelectric effect and utilizes the bimorph actuators. Piezoelectric Windmill consists of piezoelectric actuators arranged along the circumference of the mill in the cantilever form. Using the camshaft gear mechanism an oscillating torque is generated through the flowing wind and applied on the actuators. A working prototype was fabricated utilizing 12 bimorphs (60 × 20 × 0.5 mm3) having a preload of 23.5 gm. Under a nominal torque level corresponding to normal wind flow and oscillating frequency of 6 Hz, a power of 10.2 mW was successfully measured across a load of 4.6 kΩ after rectification. Combined with the wireless transmission, this technology provides a practical solution to the remote powering of sensors and communication devices.

  12. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  13. Layerwise Analysis of Thermal Shape Control in Graded Piezoelectric Beams

    Science.gov (United States)

    Lee, Ho-Jun

    2003-01-01

    A layerwise finite element formulation developed for piezoelectric materials is used to investigate the displacement and stress response of a functionally graded piezoelectric bimorph actuator. The formulation is based on the principles of linear thermopiezoelectricity and accounts for the coupled mechanical, electrical, and thermal response of piezoelectric materials. The layerwise laminate theory is implemented into a linear beam element in order to provide a more accurate representation of the transverse and shear effects that are induced by increased inhomogeneities introduced through-the-thickness by using functionally graded materials. The accuracy of the formulation is verified with previously published experimental results for a piezoelectric bimorph actuator. Additional studies are conducted to analyze the impact of electric and thermal loads on the deflections and stresses in a bimorph actuator. Results of the study help demonstrate the capability of the layerwise theory to provide a more complete representation of shear effects that are no longer negligible even in thin piezoelectric beams. In addition, the effects of varying piezoelectric properties through-the-thickness of the beam are shown to provide additional benefits in minimizing the induced deformations and stresses.

  14. Design, modeling, and fabrication of piezoelectric polymer actuators

    Science.gov (United States)

    Fu, Yao; Harvey, Erol C.; Ghantasala, Muralidhar K.; Spinks, Geoff

    2004-04-01

    Piezoelectric polymers are a class of materials with great potential and promise for many applications. Because of their ideally suitable characteristics, they make good candidates for actuators. However, the difficulty of forming structures and shapes has limited the range of mechanical design. In this work, the design and fabrication of a unimorph piezoelectric cantilever actuator using piezoelectric polymer PVDF with an electroplated layer of nickel alloy has been described. The modeling and simulation of the composite cantilever with planar and microstructured surfaces has been performed by CoventorWare to optimize the design parameters in order to achieve large tip deflections. These simulation results indicated that a microstructured cantilever could produce 25 percent higher deflection compared to a simple planar cantilever surface. The tip deflection of the composite cantilever with a length of 6mm and a width of 1mm can reach up to 100μm. A PVDF polymer with a specifically designed shape was punched out along the elongation direction on the embossing machine at room temperature. The nickel alloy layer was electroplated on one side of the PVDF to form a composite cantilever. The tip deflection of the cantilever was observed and measured under an optical microscope. The experimental result is in agreement with the theoretical analysis.

  15. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking

    Science.gov (United States)

    Kuang, Yang; Yang, Zhihao; Zhu, Meiling

    2016-08-01

    Piezoelectric energy harvesting from human motion is challenging because of the low energy conversion efficiency at a low-frequency excitation. Previous studies by the present authors showed that mechanical plucking of a piezoelectric bimorph cantilever was able to provide frequency up-conversion from a few hertz to the resonance frequency of the cantilever, and that a piezoelectric knee-joint energy harvester (KEH) based on this mechanism was able to generate sufficient energy to power a wireless sensor node. However, the direct contact between the bimorph and the plectra leads to reduced longevity and considerable noise. To address these limitations, this paper introduces a magnetic plucking mechanism to replace the mechanical plucking in the KEH, where primary magnets (PM) actuated by knee-joint motion excite the bimorphs through a secondary magnet (SM) fixed on the bimorphs tip and so achieve frequency up-conversion. The key parameters of the new KEH that affect the energy output of a plucked bimorph were investigated. It was found that the bimorph plucked by a repulsive magnetic force produced a higher energy output than an attractive force. The energy output peaked at 32 PMs and increased with a decreasing gap between PM and SM as well as an increasing rotation speed of the PMs. Based on these investigations, a KEH with high energy output was prototyped, which featured 8 piezoelectric bimorphs plucked by 32 PMs through repulsive magnetic forces. The gap between PM and SM was set to 1.5 mm with a consideration on both the energy output and longevity of the bimorphs. When actuated by knee-joint motion of 0.9 Hz, the KEH produced an average power output of 5.8 mW with a life time >7.3 h (about 3.8 × 105 plucking excitations).

  16. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  17. Newly designed double surface bimorph mirror for BL-15A of the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo; Niwa, Yasuhiro; Abe, Hitoshi; Kimura, Masao; Mori, Takeharu; Nagatani, Yasuko; Kosuge, Takashi; Kamijo, Ai; Koyama, Atsushi; Shimizu, Nobutaka [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ohta, Hiromasa [Mitsubishi Electric System & Service Co., Ltd. 20F Carrot Tower 4-1-1 Taishido, Setagaya-ku, Tokyo 154-8520 (Japan)

    2016-07-27

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance is promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.

  18. NiMnGa/Si Shape Memory Bimorph Nanoactuation

    Science.gov (United States)

    Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred

    2016-12-01

    The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.

  19. Fabrication of a self-sensing electroactive polymer bimorph actuator based on polyvinylidene fluoride and its electrostrictive terpolymer

    Science.gov (United States)

    Engel, Leeya; Van Volkinburg, Kyle R.; Ben-David, Moti; Washington, Gregory N.; Krylov, Slava; Shacham-Diamand, Yosi

    2016-04-01

    In this paper, we report on the fabrication of a self-sensing electroactive polymer cantilevered bimorph beam actuator and its frequency response. Tip deflections of the beam, induced by applying an AC signal across ferroelectric relaxor polyvinylidene fluoride-trifluoroethylene chlorotrifluoroethylene (P(VDF-TrFE-CTFE)), reached a magnitude of 350μm under a field of ~55MV/m and were recorded externally using a laser Doppler vibrometer (LDV). Deflections were determined simultaneously by applying a sensing model to the voltage measured across the bimorph's integrated layer of piezoelectric polymer polyvinylidene fluoride (PVDF). The sensing model treats the structure as a simple Euler- Bernoulli cantilevered beam with two distributed active elements represented through the use of generalized functions and offers a method through which real time tip deflection can be measured without the need for external visualization. When not being used as a sensing element, the PVDF layer can provide an additional means for actuation of the beam via the converse piezoelectric effect, resulting in bidirectional control of the beam's deflections. Integration of flexible sensing elements together with modeling of the electroactive polymer beam can benefit the developing field of polymer microactuators which have applications in soft robotics as "smart" prosthetics/implants, haptic displays, tools for less invasive surgery, and sensing.

  20. Millipede-inspired locomotion through novel U-shaped piezoelectric motors

    Science.gov (United States)

    Avirovik, Dragan; Butenhoff, Bryan; Priya, Shashank

    2014-03-01

    We report a novel piezoelectric motor that operates at a resonance frequency of 144 Hz, much lower than that of conventional ultrasonic motors, and meets the displacement and gait requirements for designing the locomotion mechanism of a millipede-inspired robot (millibot). The motor structure consists of two piezoelectric bimorphs arranged in a U-shaped configuration. Using the first bending mode for both the piezoelectric bimorphs an elliptical motion was obtained at the tip which led to the successful implementation of millipede inspired locomotion. At an input voltage of 70.7 Vrms, the piezoelectric motor operating at resonance frequency was able to generate torque of 0.03 mN m, mechanical power of 0.84 mW and maximum velocity of 62 rad s-1. Detailed discussion is provided about the principle of operation of the millibot.

  1. Bimorph mirrors: The Good, the Bad, and the Ugly

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Sutter, John P.; Sawhney, Kawal J.S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom)

    2013-05-11

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray “pencil-beam” scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called “junction effect” has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the “Ultimate” mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect.

  2. Bimorph mirrors: The Good, the Bad, and the Ugly

    Science.gov (United States)

    Alcock, Simon G.; Sutter, John P.; Sawhney, Kawal J. S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas

    2013-05-01

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray "pencil-beam" scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called "junction effect" has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the "Ultimate" mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect.

  3. Development and Validation of an Enhanced Coupled-Field Model for PZT Cantilever Bimorph Energy Harvester

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2013-01-01

    Full Text Available The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.

  4. Theoretical analysis and simulation of thermoelastic deformation of bimorph microbeams

    Institute of Scientific and Technical Information of China (English)

    SHANG; YuanFang; YE; XiongYing; FENG; JinYang

    2013-01-01

    In this paper, a purely mechanical model for the thermoelastic behavior of a bimorph microbeam is presented. The thermoelastic coupling problem of the microbeam is converted to a mechanical problem by simply replacing the thermal stress in the beam with a bulk force and a surface force. Thermoelastic deformation of the bimorph microbeams with constraints frequently used in micro-electro-mechanical systems (MEMS) devices has been derived based on this model and is characterized by FEA simulation. Coincidence of the results from theory and simulation demonstrates the validity of the model. The analysis shows that a bimorph microbeam with a soft constraint and a uniform temperature field has a larger thermoelastic deformation than that with a hard constraint and a linear temperature field. In addition to the adoption of materials with large CTE mismatch,thickness ratio and length ratio of the two layers need to be optimized to get a large thermoelastic deformation.

  5. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  6. An Experimental Study on Electric Output Characteristics of Bimorph Cantilever Generators%双晶压电悬臂梁电荷输出特性实验研究

    Institute of Scientific and Technical Information of China (English)

    刘阳; 罗奇; 孙科; 陶孟伦; 陈定方

    2014-01-01

    通过研究压电材料的压电效应与压电方程组,得到正压电效应下的压电能量采集相关知识,并分析双晶压电悬臂梁的结构与特性,结合实验与仿真,得出并联型双晶压电悬臂梁的相关输出特性。%Based on the research of the piezoelectric effect and piezoelectric equations,the paper established the knowledge of piezoelectric energy harvesting,and analyzed the structure and characteristics of bimorph cantilever generators.Through the experiment and simulation,it then concluded the output characteristics of the piezoelectric cantilever beam.

  7. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  8. Analysis of a piezoelectric power harvester with adjustable frequency by precise electric field method.

    Science.gov (United States)

    Wang, Yujue; Lian, Ziyang; Yao, Mingge; Wang, Ji; Hu, Hongping

    2013-10-01

    A power harvester with adjustable frequency, which consists of a hinged-hinged piezoelectric bimorph and a concentrated mass, is studied by the precise electric field method (PEFM), taking into account a distribution of the electric field over the thickness. Usually, using the equivalent electric field method (EEFM), the electric field is approximated as a constant value in the piezoelectric layer. Charge on the upper electrode (UEC) of the bimorph is often assumed as output charge. However, different output charge can be obtained by integrating on electric displacement over the electrode with different thickness coordinates. Therefore, an average charge (AC) on thickness is often assumed as the output value. This method is denoted EEFM AC. The flexural vibration of the bimorph is calculated by the three methods and their results are compared. Numerical results illustrate that EEFM UEC overestimates resonant frequency, output power, and efficiency. EEFM AC can accurately calculate the output power and efficiency, but underestimates resonant frequency. The performance of the harvester, which depends on concentrated mass weight, position, and circuit load, is analyzed using PEFM. The resonant frequency can be modulated 924 Hz by moving the concentrated mass along the bimorph. This feature suggests that the natural frequency of the harvester can be adjusted conveniently to adapt to frequency fluctuation of the ambient vibration.

  9. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  10. A Bimorph Moment/Force Actuator for Dynamic Testing

    Directory of Open Access Journals (Sweden)

    Hou Xiaoyan

    2009-09-01

    Full Text Available This paper focuses on a novel bimorph actuator which can produce pure moment or pure force to structures under testing. Due to its unique construction, this actuator is only sensitive to one translational and one rotational degree of freedom (DOF, which can be further decoupled from each other through controlling the phase of the excitation voltage supplied to the actuator. To correlate the input electrical voltage with the output moment (or force, angular velocity, linear velocity, rotational (or translational conversion functions are defined and then numerically determined. Compared with conventional twin-shaker setup to generate moment, the bimorph actuator is simple, compact, light-weight, effective and cheap. When generating moment, the usually-existing unwanted force excitation is avoided. The working frequency range of the actuator is much wider and the loading effect is greatly reduced.

  11. Optimization design for magneto electric coupling prop erty of the magnet/bimorph comp osite%磁铁/压电双晶片复合材料磁电耦合性能的优化设计∗

    Institute of Scientific and Technical Information of China (English)

    张源; 高雁军; 胡诚; 谭兴毅; 邱达; 张婷婷; 朱永丹; 李美亚

    2016-01-01

    Magnetoelectric (ME) composite as one kind of ME material that can yield a strong coupling effect between magnetic and electric fields at room temperature, has drawn widespread attention for decades due to its rich physics contents and significant technological prospect. Except for traditional magnetostrictive/piezoelectric based ME composites, other ME composites have been reported, among which the magnet/piezo-cantilever composites show super strong ME coupling effect. The magnet/piezo-cantilever composite is generally composed of a piezoelectric cantilever and magnets attached at the free end of the cantilever, which realizes ME coupling by force moment-mediated magnetic torque effect and piezoelectric effect. Recently, various configurations of the magnet/piezo-cantilever composites for obtaining higher ME coupling coefficients have been proposed and demonstrated experimentally. However, few theoretical researches of these magnet/piezo-cantilever composites of different configurations have been carried out, which is of great importance for optimizing the design of ME coupling property of the magnet/piezo-cantilever composites. Here in this paper, a theoretical expression for the low-frequency ME coupling coefficient in the magnet/piezo-cantilever composite is deduced based on piezoelectric constitutive equations by using the theory of elastic mechanics. The typical magnet/bimorph composite is chosen as the theoretical model. Based on the deduced theoretical expression, the dependences of the low-frequency ME coupling coefficients in the magnet/bimorph composite on material and structural parameters are numerically calculated. The results show that there are optimal thickness values of the piezoelectric layers in the magnet/bimorph composite with different metal thickness values and material constituents for achieving maximal low-frequency ME coupling coefficients. The thicker the metal layer in the magnet/bimorph composite, the less insensitive the low

  12. Modeling and Analysis of a Piezoelectric Energy Harvester with Varying Cross-Sectional Area

    Directory of Open Access Journals (Sweden)

    Maiara Rosa

    2014-01-01

    Full Text Available This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying cross-sectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output on beam shape optimization problems is also discussed.

  13. Design and Simulation of Array of Rectangular Micro Cantilevers Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Komal Kumari

    2016-09-01

    Full Text Available This paper presents the design, analysis and simulation of MEMS based array of bimorph rectangular microcantilever piezoelectric energy harvester structure with and without tip mass, to analyze their sensitivity. The microcantilever beams are made up of piezoelectric material and Aluminium as a substrate material. The analytical simulation of design is done by FEM (COMSOL Multiphysics. The simulation results of bimorph cantilever structure, applied force of 0.1 N and obtained end displacement and electric potential developed are given. The analytical model of the cantilever beam will be analyzed and the process of its construction will be discussed. The changes in the sensitivity of a cantilever beam with respect to change in its shape for the same applied force of 0.1N are denoted.

  14. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  15. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    Science.gov (United States)

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  16. Research on an inertial piezoelectric actuator for a micro in-pipe robot

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin; SUN Bao-yuan

    2006-01-01

    A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoelectric bimorph beam, made up of a middle metal element, an upper and lower piezoelectric elements. The mechanism is driven by an asymmetric waveform voltage, such as saw-toothed waveform, and utilizes the dynamic relationship between the maximum static friction force and the inertial force. To study the actuator, firstly, the constituent equation of a composite piezoelectric bimorph under both applied voltage and external force was inferred by thermodynamics. Secondly, the dynamic model of the actuator was established analyzing the relationship between the locomotive states, viz. displacement and velocity, and design parameters, such as piezoelectric strain constant, elastic modulus, length, width and thickness of the piezoelectric element, actuator mass, and driving voltage. At last, the dynamic equation was solved and the theoretical calculation of the inherent frequency was more consistent with the experimental data, which proved the rationality of the model. All these lay a theoretical foundation of the micro actuator parameter optimization and more research on a micro robot.

  17. Competition between the Thermal Gradient and the Bimorph Effect in Locally Heated MEMS Actuators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mølhave, Kristian; Kristensen, Anders

    2009-01-01

    modeling. As a result, bidirectional bending has been experimentally observed and interpreted as the competition between bimorph and thermal gradient effects. The competition has illustrated the importance of including the thermal gradient effect in the behavior analysis of bimorph driven MEMS/NEMS devices....

  18. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Science.gov (United States)

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  19. Piezoelectric Film.

    Science.gov (United States)

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  20. Theoretical analysis on shear-bending deflection of a ring-shape piezoelectric plate

    Directory of Open Access Journals (Sweden)

    Zejun Yu

    2016-02-01

    Full Text Available In this paper, the electromechanical coupling field in shear-bending mode for a ring-shape piezoelectric plate was theoretically established. According to the classical small bending elastic plate theory and piezoelectric constitutive equations, the analytical solution to the bending deformation of the piezo-actuator under electric field and a concentrated or uniformly distributed mechanical load was achieved. The mechanism for generating bending deformation is attributed to axisymmetric shear strain, which further induces the bending deformation of the single ring-shape piezoelectric plate. This mechanism is significant different from that of piezoelectric bimorph or unimorph actuators reported before. Our analysis offers guidance for the optimum design of a ring-shape shear-bending piezo-actuator.

  1. Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency

    Science.gov (United States)

    Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.

    2016-12-01

    In this paper the analytical analysis of an adaptively tuned piezoelectric vibration based energy harvester is presented. A bimorph piezoelectric energy harvester is suspended between two electrodes, subjected to a same DC voltage. The resonance frequency of the system is controllable by the applied DC voltage, and the harvested power is maximized by controlling the natural frequency of the system to cope with vibration sources which have varying excitation frequencies. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and due to the softening nonlinearity of the electrostatic force, the harvester is capable of working over a broad frequency range. The steady state harmonic solution is obtained using the harmonic balance method and results are verified numerically. The results show that the harvester can be tuned to give a resonance response over a wide range of frequencies, and shows the great potential of this hybrid system.

  2. Cantilevered bimorph-based scanner for high speed atomic force microscopy with large scanning range.

    Science.gov (United States)

    Zhou, Yusheng; Shang, Guangyi; Cai, Wei; Yao, Jun-en

    2010-05-01

    A cantilevered bimorph-based resonance-mode scanner for high speed atomic force microscope (AFM) imaging is presented. The free end of the bimorph is used for mounting a sample stage and the other one of that is fixed on the top of a conventional single tube scanner. High speed scanning is realized with the bimorph-based scanner vibrating at resonant frequency driven by a sine wave voltage applied to one piezolayer of the bimorph, while slow scanning is performed by the tube scanner. The other piezolayer provides information on vibration amplitude and phase of the bimorph itself simultaneously, which is used for real-time data processing and image calibration. By adjusting the free length of the bimorph, the line scan rate can be preset ranging from several hundred hertz to several kilohertz, which would be beneficial for the observation of samples with different properties. Combined with a home-made AFM system and a commercially available data acquisition card, AFM images of various samples have been obtained, and as an example, images of the silicon grating taken at a line rate of 1.5 kHz with the scan size of 20 microm are given. By manually moving the sample of polished Al foil surface while scanning, the capability of dynamic imaging is demonstrated.

  3. Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. E.; Lee, S. K.; Lee, Y. G.; Kim, K. M.; Yang, Y. S.; Yang, W. S.; Kim, J. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this paper, we present the calculations and the results for vibration-energy-scavenging performances based on a piezoelectric single-crystal beam. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of a novel cantilever structure device, we calculated the output performances and compared them with the measured results. A device based on a bimorph cantilever structure with a proof mass was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of piezoelectric single crystal was measured. The results showed that several tens of AC volts and a few milliwatts power were achieved under a 0.1 g{sub rms} vibration condition. Also using this device and a commercial power management circuit, we performed Li-ion battery charging experiment.

  4. 同步辐射中双压电片反射镜的研究现状∗%Present research status of piezo electric bimorph mirrors in synchrotron radiation sources

    Institute of Scientific and Technical Information of China (English)

    张瑶; 汤善治; 李明; 王立超; 高俊祥

    2016-01-01

    The third-generation synchrotron radiation sources are widely used in physics, chemistry, material science, etc. due to their light beams with high brilliance and low emittance. In order to efficiently utilize such light beams for scientific research, reflective mirrors with excellent figure quality are required. The reflective mirrors on the beamlines of synchrotron radiation sources consist of fixed polished shape mirrors and bendable mirrors. Bendable mirrors have been attracting the attention of the synchrotron radiation community because their curvatures can be varied to realize different focusing properties. Classical bendable mirrors are realized by applying mechanical moment at the ends of the mirror substrates. In this paper, we introduce a new concept of bendable mirrors, X-ray adaptive mirrors which are based on the adaptive optics technology and the properties of piezoelectric bimorph systems. X-ray adaptive mirrors exhibit many advantages over the classical bendable mirrors, such as mechanics-free, figure local corrections, and good focusing properties. The piezoelectric bimorph mirrors have been used in astronomy to correct the wavefront distortions introduced by atmospheric turbulence in real time. The piezoelectric bimorph mirror was first introduced into the field of synchrotron radiation by European Synchrotron Radiation Facility (ESRF) in the 1990s for making an X-ray reflective mirror. Compared with astronomy community, synchrotron radiation community is not interested in high-speed wavefront correction, but looking for the ultimate precision of the surface shape of piezoelectric bimorph mirror. In the second part of this paper, the usual structure and working principle are briefly described. Piezoelectric bimorph mirrors are laminated structures consisting of two strips of an active material such as zirconate lead titanate (PZT) and two faceplates of a reflecting material such as silicon. A discrete or continuous control electrode is located

  5. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca [Thales-SESO, 305 rue Louis Armand, Pôle d’Activités d’Aix les Milles, Aix-en-Provence (France)

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  6. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    Science.gov (United States)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  7. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande

    2017-09-01

    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  8. Alumimun nitride piezoelectric NEMS resonators and switches

    Science.gov (United States)

    Piazza, G.

    2010-04-01

    A major challenge associated with the demonstration of high frequency and fast NanoElectroMechanical Systems (NEMS) components is the ability to efficiently transduce the nanomechanical device. This work presents noteworthy opportunities associated with the scaling of piezoelectric aluminum nitride (AlN) films from the micro to the nano realm and their application to the making of efficient NEMS resonators and switches that can be directly interfaced with conventional electronics. Experimental data showing NEMS AlN resonators (250 nm thick with lateral features as small as 300 nm) vibrating at record-high frequencies approaching 10 GHz with Qs close to 500 are presented. These NEMS resonators could be employed as sensors to tag analyte concentrations that reach the part per trillion levels or for frequency synthesis and filtering in ultra-compact microwave transceivers. 100 nm thick AlN films have been used to fabricate NEMS actuators for mechanical computing applications. Experimental data confirming that bimorph nanopiezo- actuators have the same piezoelectric properties of microscale counterparts and can be adopted for the implementation of mechanical logic elements are presented.

  9. Reliability study of Piezoelectric Structures Dedicated to Energy Harvesting by the Way of Blocking Force Investigation

    Science.gov (United States)

    Maaroufi, S.; Parrain, F.; Lefeuvre, E.; Boutaud, B.; Dal Molin, R.

    2015-12-01

    In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically.

  10. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-01-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design. PMID:27605125

  11. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  12. Martensitic transformation in NiMnGa/Si bimorph nanoactuators with ultra-low hysteresis

    Science.gov (United States)

    Lambrecht, F.; Sagardiluz, N.; Gueltig, M.; Aseguinolaza, I. R.; Chernenko, V. A.; Kohl, M.

    2017-05-01

    We report on the fabrication and in-situ characterization of temperature-dependent electrical resistance and deflection characteristics of free-standing NiMnGa/Si bimorph cantilevers with a NiMnGa layer thickness of 200 nm and a minimum lateral width of 50 nm. The martensitic transformation in the initial NiMnGa/Si bimorph films and nanomachined NiMnGa/Si bimorph cantilevers proceeds in a wide temperature range with a hardly detectable temperature hysteresis width below 1 K. This remarkable behavior is ascribed to the internal stress in the bimorph system that exceeds the stress limit of the critical point terminating the stress-temperature phase diagram as it is known for ferromagnetic shape memory alloys. Temperature-dependent deflection characteristics reveal a competition between the bimorph effect and the shape memory effect, causing beam deflection in opposite directions. The observation of the shape memory effect strongly depends on the NiMnGa/Si thickness ratio, causing a maximum deflection change per beam length of 3% in agreement with finite element simulations.

  13. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  14. Numerical analysis of piezoelectric active repair in the presence of frictional contact conditions.

    Science.gov (United States)

    Alaimo, Andrea; Milazzo, Alberto; Orlando, Calogero; Messineo, Antonio

    2013-04-02

    The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures repaired by active piezoelectric patches are presented. A two-dimensional boundary integral formulation for piezoelectric solids based on the multi-domain technique to model the composite host damaged structures and the bonded piezoelectric patches is employed. An interface spring model is also implemented to take into account the finite stiffness of the bonding layers and to model the frictional contact between the delamination surfaces, by means of an iterative procedure. The effect of the adhesive between the plies of piezoelectric bimorph devices on the electromechanical response is first pointed out for both sensing and actuating behavior. Then, the effect of the frictional contact condition on the fracture mechanics behavior of actively repaired delaminated composite structures is investigated.

  15. Hydroelectromechanical modelling of a piezoelectric wave energy converter

    Science.gov (United States)

    Renzi, E.

    2016-11-01

    We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.

  16. Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications

    KAUST Repository

    Conchouso Gonzalez, David

    2015-04-01

    This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used, the bimorph actuators can be designed to move in both: Counter Clockwise (CCW) and Clockwise (CW) directions with a resolution of up to 110 μm/V, with smallest step in the range of nanometers. Thermal and electrical characterization of the thermal bimorph actuators showed low influence in the platforms temperature and low power consumption (< 35μW) mainly due to the natural isolation of the structure. Tip displacements larger than 500μm were achieved. The precise angle adjustment achieved through these mechanisms makes them optimal for a range of different MEMS applications, like optical benches and low frequency sweeping sensors and antennas. © 2015 IEEE.

  17. Nondestructive testing and hardness measurement based on contact resonance of piezoelectric cantilevers (Conference Presentation)

    Science.gov (United States)

    Li, Faxin; Fu, Ji

    2016-04-01

    A suitable defect identification parameter is very important in the field of nondestructive testing (NDT). In this work, we proposed a NDT method which detects the sample's local contact stiffness (LCS) based on the contact resonance of a piezoelectric cantilever. Firstly, through finite element analysis we showed that LCS is quite sensitive to typical defects including debonding, voids, cracks and inclusions, making it a good identification parameter. Secondly, a homemade NDT system containing a piezoelectric unimorph cantilever was assembled to detect the sample's LCS by tracking the contact resonance frequency (CRF) of the cantilever-sample system based on strain signals. Testing results indicated that this NDT system could detect the above mentioned defects efficiently. The cantilever-stiffness dependent detection sensitivity was specially investigated and the stiffer cantilevers were found to be more sensitive to small defects. Then, a piezoelectric bimorph cantilever was fabricated and the electromechanical impedance, other than the strain signals, was measured to track the CRF of the cantilever-system. The LCS is then derived by using the equivalent-circuit model. The electromechanical impedance based NDT system is more compact and can be further developed to be a portable device. Finally, a Vicker indenter is fabricated onto the bimorph tip and the contact area is derived from the measured LCS. Thus the NDT system turns to be a hardness tester without any optical devices. It is very useful for in-situ testing or testing on inner surfaces where conventional hardness tester is not applicable.

  18. An electromechanical finite element model for piezoelectric energy harvester plates

    Science.gov (United States)

    De Marqui Junior, Carlos; Erturk, Alper; Inman, Daniel J.

    2009-10-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton's principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit.

  19. Piezoelectric particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.; Franzi, Matthew

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  20. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  1. Thermal stability test and analysis of a 20-actuator bimorph deformable mirror

    Institute of Scientific and Technical Information of China (English)

    Ning Yu; Zhou Hong; Yu Hao; Rao Chang-Hui; Jiang Wen-Han

    2009-01-01

    One of the important characteristic of adaptive mirrors is the thermal stability of surface flatness. In this paper, the thermal stability from 13℃ to 25℃ of a 20-actuator bimorph deformable mirror is tested by a Shack-Hartmann wavefront sensor. Experimental results show that, the surface P-V of bimorph increases nearly linearly with ambient temperature. The ratio is 0.11 μm/℃ and the major component of surface displacement is defocused, compared with which, astigmatism, coma and spherical aberration contribute very small. Besides, a finite element model is built up to analyse the influence of thickness, thermal expansion coefficient and Young's modulus of materials on thermal stability. Calculated results show that bimorph has the best thermal stability when the materials have the same thermal expansion coefficient. And when the thickness ratio of glass to PZT is 3 and Young's modulus ratio is approximately 0.4, the surface instability behaviour of the bimorph manifests itself most severely.

  2. Analysis of resonance frequency and pull-in voltages of curled micro-bimorph cantilevers

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Yagubizade, H.; Krijnen, G.J.M.

    2012-01-01

    A systematic study is presented on the modelling, fabrication and measurements of curled micro-bimorph cantilevers, which are composed of a dielectric beam with a metal electrode layer coated on top. The device, having stress-induced upward curvature in the electrical off-state, functions as a verti

  3. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    Science.gov (United States)

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.

    2016-04-01

    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  4. Piezoelectric d36 in-plane shear-mode of lead-free BZT-BCT single crystals for torsion actuation

    Science.gov (United States)

    Berik, P.; Chang, W.-Y.; Jiang, X.

    2017-01-01

    We report the study of piezoelectric direct torsion actuation mechanism using lead-free piezoelectric d36 in-plane shear-mode BZT-BCT single crystals. The generated angle of twist of the piezoelectric torsion actuator was obtained from the transverse deflection measurement using a laser vibrometer. The bi-morph torsional actuator, consisting of two lead-free piezoelectric BZT-BCT in-plane shear-mode single crystals with a giant piezoelectric d36 shear strain coefficient of 1590 pC/N, provided a rate of twist of 34.12 mm/m under a quasi-static 15 V drive. The experimental benchmark was further modelled and verified by the ANSYS software using three dimensional (3D) piezoelectric finite elements. The experimental results revealed that lead-free piezoelectric BZT-BCT d36-mode single crystal is a superior candidate for piezoelectric torsion actuation. This lead-free piezoelectric BZT-BCT d36-mode torsion actuator can be effectively applied in torsional deformation control by taking into account the environmental considerations.

  5. Optimal Design of Bimorph Type Acceleration Sensor and Its Application in Vector Hydrophone%三叠片式加速度计的优化设计及其在矢量水听器中的应用

    Institute of Scientific and Technical Information of China (English)

    张灏; 孔志刚

    2015-01-01

    使用压电方程结合梁弯曲公式和有限元仿真的方法建立了三叠片式压电加速度传感器的数学模型,通过实验验证了模型的正确性。对三叠片式压电加速度传感器的结构进行了优化设计,在不改变传感器几何轮廓的基础上提高了传感器的灵敏度,并定量分析了不同的结构对传感器性能的影响。提出了三叠片式压电加速度传感器在矢量水听器中的应用方案,使用有限元法对矢量水听器进行了分析计算,制作了矢量水听器样品,并对其主要性能进行了测试。%The sensitivity equation of the bimorph type piezoelectric acceleration sensor was derived from the piezoelectric constitutive equation and the bending formula of cantilever, the finite element method was also used to build the model of the sensor. A method of improving the performance of the acceleration sensor by fabricating hollow structure on surfaces of the metal beam part was analyzed by using finite ele-ment method. A vector hydrophone by using bimorph type acceleration sensors was designed, modeled and tested.

  6. Structure–performance relationships for cantilever-type piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyung-Hoon, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu; Park, Hwi-Yeol; Heo, Jin S. [Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Priya, Shashank, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Virginia 24061 (United States)

    2014-05-28

    This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm{sup −3} at 30 Hz under 6.9 m s{sup −2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

  7. An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters

    Science.gov (United States)

    Tabesh, Ahmadreza; Fréchette, Luc G.

    2008-10-01

    The analytical model presented in this paper describes the energy conversion mechanism of a piezoelectric beam (bimorph) under small-deflection static and vibrating conditions. The model provides an improved approach to design and analyze the performance of piezoelectric actuators and energy harvesters (sensors). Conventional models assume a linear voltage distribution over the piezoelectric beam thickness, which is shown here to be invalid. The proposed modeling method improves accuracy by using a quadratic voltage distribution. The equivalent capacitance of a beam shows a 40% discrepancy between a conventional model and the proposed model for PZT5A material. This inaccuracy level is not negligible, especially when the design of micro-power electrical energy harvesting is concerned. The method solves simultaneously the solid mechanics and Maxwell's equations with the constitutive equations for piezoelectric materials. The paper also proposes a phasor-based procedure for measuring the damping of a piezoelectric beam. An experimental setup is developed to verify the validity of the model. The experimental results confirm the accuracy of the improved model and also reveal limitations in using models for small deflections.

  8. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  9. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  10. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... of bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when...... the two layers are connected in series, the output voltage is increased, and as a result the relative power loss in the necessary rectifying circuit is reduced. We describe an improved process scheme for the energy harvester, which resulted in a robust fabrication process with a record high fabrication...

  11. Fast optimization of a bimorph mirror using x-ray grating interferometry.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sebastien; Sutter, John; Alcock, Simon G; Wagner, Ulrich; Rau, Christoph

    2014-04-15

    An x-ray grating interferometer was employed for in situ optimization of an x-ray bimorph mirror. Unlike many other at-wavelength techniques, only a single interferogram image, captured out of the focal plane, is required, enabling the optical surface to be quickly optimized. Moiré fringe analysis was used to calculate the wavefront slope error, which is proportional to the mirror's slope error. Using feedback from grating interferometry, the slope error of a bimorph mirror was reduced to <200  nrad (rms) in only two iterations. This technique has the potential to create photon beams with spatially homogeneous intensities for use in synchrotron and free electron laser beam lines.

  12. The research on piezoelectric cantilever oscillator generator performance%悬臂梁双压电晶片振子发电性能研究

    Institute of Scientific and Technical Information of China (English)

    姜德龙; 程光明; 曾平; 庞建志

    2011-01-01

    The bimorph oscillator is investigated,in the piezoelectric effect voltage output character of bimorph oscillator based on cantilever beam was studied by the finite element analysis and experimental.The best position of piezoelectric oscillator pasted on the cantilever was given,the finite element model of was established by using of finite element analysis software ,the impact of the structure and size parameters on the piezoelectric cantilever oscillator voltage output effects was simulated,Relative experimental tests were carried out using test system of piezoelectric ceramic generating capacity,by comparison of simulation and test results ,the structure and size parameters on the impact of bimorph oscillator cantilever voltage output effects was obtained.%以双压电晶片振子为研究对象,对悬臂梁式双压电晶片振子在正压电效应下电压输出特性进行了有限元分析与试验研究,给出了压电晶片在悬臂梁上的最佳粘贴位置,并且利用有限元分析软件建立了悬臂梁双压电晶片振子的有限元模型,进行了结构尺寸参数对悬臂梁双压电晶片振子输出电压影响规律的仿真分析;利用压电陶瓷发电能力测试系统进行了试验测试,通过仿真和试验结果对比分析,得出了结构尺寸参数对悬臂梁双压电晶片振子发电的输出电压影响规律.

  13. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  14. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  15. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    Science.gov (United States)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  16. Load optimised piezoelectric generator for powering battery-less TPMS

    Science.gov (United States)

    Blažević, D.; Kamenar, E.; Zelenika, S.

    2013-05-01

    The design of a piezoelectric device aimed at harvesting the kinetic energy of random vibrations on a vehicle's wheel is presented. The harvester is optimised for powering a Tire Pressure Monitoring System (TPMS). On-road experiments are performed in order to measure the frequencies and amplitudes of wheels' vibrations. It is hence determined that the highest amplitudes occur in an unperiodic manner. Initial tests of the battery-less TPMS are performed in laboratory conditions where tuning and system set-up optimization is achieved. The energy obtained from the piezoelectric bimorph is managed by employing the control electronics which converts AC voltage to DC and conditions the output voltage to make it compatible with the load (i.e. sensor electronics and transmitter). The control electronics also manages the sleep/measure/transmit cycles so that the harvested energy is efficiently used. The system is finally tested in real on-road conditions successfully powering the pressure sensor and transmitting the data to a receiver in the car cockpit.

  17. Electromechanical performances of different shapes of piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, S.; St-Amant, Y. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mechanical Engineering

    2009-07-01

    This study examined the feasibility of harvesting mechanical energy from vibrating structures using the direct piezoelectric effect of a bimorph cantilever beam with integrated piezoceramic elements. A harvester consisting of a cantilever tapered beam, two bonded piezoelectric ceramics and two masses at its end was investigated with particular reference to the effect of harvester geometry on electromechanical performance. This paper summarized the material properties of each element and presented numerical simulations to demonstrate the increase in performances when using a tapered beam harvester instead of constant cross section harvester. Three case studies were presented, including a standard rectangular harvester, an equivalent mass/stiffness tapered beam harvester and an equivalent maximal strain tapered beam harvester. They all had a first short circuit natural frequency of 100 Hz. In order to evaluate model quality and the results accuracy, the harvester structure was modeled using finite element with NxNastran 5. The study showed that the efficiency of a cantilever beam vibration energy harvester can be increased by using a variable thickness. A semianalytical model that takes both the dynamic and the electromechanical behaviour of the harvester into account showed that the energy harvested can be increased by 69 per cent when the thickness of the beam was varied. Varying the thickness of the beam also results in more uniform strain distribution, thereby increasing the amount of energy that can be harvested. 7 refs., 2 tabs., 6 figs.

  18. Low-frequency meandering piezoelectric vibration energy harvester.

    Science.gov (United States)

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.

  19. A Preliminary Study on the IoT-Based Pavement Monitoring Platform Based on the Piezoelectric-Cantilever-Beam Powered Sensor

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-01-01

    Full Text Available Green and sustainable power supply for sensors in pavement monitoring system has attracted attentions of civil engineers recently. In this paper, the piezoelectric energy harvesting technology is used to provide the power for the acceleration sensor and Radio Frequency (RF communication. The developed piezoelectric bimorph cantilever beam is used for collecting the vibrational energy. The energy collection circuit is used to charge the battery, where the power can achieve 1.68 mW and can meet the power need of acceleration sensor for data collection and transmission in one operation cycle, that is, 32.8 seconds. Based on the piezoelectric-cantilever-beam powered sensor, the preliminary study on the IoT-based pavement monitoring platform is suggested, which provides a new applicable approach for civil infrastructure health monitoring.

  20. A piezoelectric transformer

    Science.gov (United States)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  1. Piezoelectric Wheel System

    Science.gov (United States)

    Juang, Puu-An

    2007-10-01

    A piezoelectric wheel system is proposed for used as a microstepping displacement device including a carrier and two displacement members, which are separately pivoted on the carrier. Each displacement member includes two wheels, and which can not rotate. In addition, each wheel includes a wheel sheet and a piezoelectric element embedded on its surface. When the piezoelectricity element generates and transmits power to the wheel sheet, the wheel induces vibration and deformation. Therefore, owing to the wheel sheets and the touched ground involving their relative motion, the displacement device can be moved or can be oriented its motion direction. The wheel system involves direct movement, and has no rotor requirement. In this research, a three-dimensional (3D) mechanical element with an extra electrical degree of freedom is employed to simulate the dynamic vibration modes of the linear piezoelectric, mechanical, and piezoelectric-mechanical behaviours of the piezoelectric wheel.

  2. Piezoelectric energy harvesting

    CERN Document Server

    Erturk, Alper

    2011-01-01

    The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-

  3. Advanced Mechanics of Piezoelectricity

    CERN Document Server

    Qin, Qing-Hua

    2013-01-01

    "Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.

  4. A comparative study of piezoelectric unimorph and multilayer actuators as stiffness sensors via contact resonance

    Science.gov (United States)

    Fu, Ji; Li, Fa-Xin

    2016-08-01

    Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960s and stiffness sensors in the 1990s based on the contact impedance method. In this work, we point out that both multilayer and unimorph (or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator-based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator-based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator-based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator-based sensor is more suitable for hard materials.

  5. A comparative study of piezoelectric unimorph and multilayer actuators as stiffness sensors via contact resonance

    Institute of Scientific and Technical Information of China (English)

    Ji Fu; Fa-Xin Li

    2016-01-01

    Piezoelectric bar-shaped resonators were pro-posed to act as hardness sensors in the 1960s and stiffness sensors in the 1990s based on the contact impedance method. In this work, we point out that both multilayer and uni-morph (or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechan-ical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sen-sors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.

  6. Hybrid thermoelectric piezoelectric generator

    Science.gov (United States)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  7. Three-dimensional piezoelectric MEMS actuator by using sputtering deposition of Pb(Zr,Ti)O3 on microstructure sidewalls

    Science.gov (United States)

    Kanda, Kensuke; Moriue, Shingo; Fujita, Takayuki; Maenaka, Kazusuke

    2017-04-01

    For the realization of piezoelectric microelectromechanical systems (MEMS) with multiple degrees-of-freedom, lead zirconate titanate thin films were deposited and micropatterned on the sidewalls of a pre-etched substrate with a feature depth of several hundred micrometers. The piezoelectric test structures, consisting of concave geometries and cantilevers with vertical and sloped sidewalls were successfully fabricated onto a 4 inch full sized wafer. Characterization of the fundamental properties of the lead zirconate titanate thin films indicated values comparable to those deposited on flat substrates. Actuation tests demonstrated that the triangular column cantilevers can be driven both in-plane and out-of-plane. The deposition of lead zironate titanate thin films onto a vertical sidewall created bimorph cantilevers composed of piezo/non-piezo/piezo structures in the horizontal direction. The use of microfabrication techniques to deposit lead zironate titanate thin films on pre-etched substrates gives MEMS actuators with multiple degrees-of-freedom and batch process compatibility.

  8. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites

    Directory of Open Access Journals (Sweden)

    Gollapudi Sreenivasulu

    2016-02-01

    Full Text Available Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i a bimorph of oppositely-poled lead zirconate titanate (PZT platelets and (ii a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  9. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    Science.gov (United States)

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-02-20

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  10. Automated in-situ optimization of bimorph mirrors at Diamond Light Source

    Science.gov (United States)

    Sutter, John P.; Alcock, Simon G.; Sawhney, Kawal J. S.

    2011-09-01

    Bimorph mirrors are used on many synchrotron beamlines to focus or collimate light. They are highly adaptable because not only their overall figure but also their local slope errors can be corrected. However, the optimization procedure is complex. At Diamond Light Source, highly repeatable and accurate pencil beam measurements are used to determine a mirror's slope errors. These data are then used by automated scripts to calculate the necessary corrections. This procedure may be applied to any type of active mirror, but for hard X-ray mirrors, diffraction from the slits must be considered.

  11. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    Directory of Open Access Journals (Sweden)

    Cheng-Hua Tsai

    2015-06-01

    Full Text Available Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA. A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  12. State Feedback Control for Adjusting the Dynamic Behavior of a Piezoactuated Bimorph Atomic Force Microscopy Probe

    CERN Document Server

    Orun, Bilal; Basdogan, Cagatay; Guvenc, Levent

    2012-01-01

    We adjust the transient dynamics of a piezo-actuated bimorph Atomic Force Microscopy (AFM) probe using a state feedback controller. This approach enables us to adjust the quality factor and the resonance frequency of the probe simultaneously. First, we first investigate the effect of feedback gains on dynamic response of the probe and then show that the time constant of the probe can be reduced by reducing its quality factor and/or increasing its resonance frequency to reduce the scan error in tapping mode AFM.

  13. Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications

    Science.gov (United States)

    Pozzi, Michele; Zhu, Meiling

    2012-05-01

    Wearable medical and electronic devices demand a similarly wearable electrical power supply. Human-based piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harvester designed to be attached to the knee-joint is here implemented and characterized. The wearable harvester is based on the plucking method of frequency up-conversion, where a piezoelectric bimorph is deflected by a plectrum and permitted to vibrate unhindered upon release. Experiments were conducted to characterize the energy produced by the rotary piezoelectric energy harvester with different electric loads and different excitation speeds, covering the range between 0.1 and 1 rev s-1 to simulate human gait speeds. The electrical loads were connected to the generator either directly or through a rectifying bridge, as would be found in most power management circuits. The focus of the paper is to study the capability of energy generation of the harvester for knee-joint wearable applications, and study the effects of the different loads and different excitation speeds. It is found that the energy harvested is around 160-490 µJ and strongly depends on the angular speed, the connected electric loads and also the manufacturing quality of the harvester. Statistical analysis is used to predict the potential energy production of a harvester manufactured to tighter tolerances than the one presented here.

  14. Engineering of piezoelectric properties in ferroelectric ceramics and thin films

    Directory of Open Access Journals (Sweden)

    Damjanovic, D.

    1999-12-01

    Full Text Available The paper discusses different possibilities for controlling piezoelectric properties of ferroelectric materials and devices. The piezoelectric properties engineering can be made on different scales. Tuning of the piezoelectric response by controlling contributions from domain walls displacement is used to illustrate engineering on nanometer scale. Texture control in ferroelectric films and grain size control is discussed as an example of property control on micrometer scale. Finally, engineering on macroscopic (millimeter scale is illustrated by amplification methods employed in multilayer actuators and different bimorph-type structures as well as by control of electro-mechanical properties in polymer-ceramic composites.

    El presente trabajo discute las diferentes posibilidades existentes en el control de las propiedades piezoeléctricas de materiales ferroeléctricos y dispositivos piezoeléctricos. La ingeniería de las propiedades piezoeléctricas se puede llevar a cabo a diferentes niveles. El ajuste de dichas propiedades controlando las contribuciones del desplazamiento de paredes de dominios se usa para ilustrar el diseño a escala nanométrica. El control de la textura en láminas delgadas ferroeléctricas y el control del tamaño de grano serán tratados como un ejemplo del control de propiedades a nivel micrométrico. Por último, la ingeniería de materiales a escala macroscópica (milimétrica será ilustrada mediante algunos métodos de amplificación empleados en actuadores multicapa y diferentes estructuras de tipo bimorfo, al igual que por métodos de control de las propiedades electromecánicas en materiales compuestos polímerico-cerámicos.

  15. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....

  16. Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner

    Science.gov (United States)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2017-07-01

    This article extends a recent publication [MSSP (2016), 176-196] by developing a Rayleigh-Ritz model of a thin cylindrical shell to predict its response subject to concurrent active and passive damping treatments. These take the form of piezoelectric patches and a distributed cardboard liner, since the effects of such combined treatments are yet to be investigated. Furthermore, prior literature typically considers only the ;bimorph; active patch configuration (with patches on the inner and outer shell surfaces), which is not feasible with an interior passive liner treatment. Therefore, a novel configuration-termed as ;unimorph;-is proposed and included in the model. Experiments are performed on a shell with active patches (under harmonic excitation from 200 to 2000 Hz) in both the bimorph and unimorph configurations to provide evidence for the analytical model predictions. The proposed model is then employed to assess competing control system designs by examining local vs. global control schemes as well as considering several alternate active patch locations, both with and without the passive damping. Non-dimensional performance metrics are devised to facilitate comparisons of vibration attenuation among different designs. Finally, insertion loss values are measured under single-frequency excitation to evaluate several vibration control designs, and to compare the effects of alternate damping treatments.

  17. Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators

    Science.gov (United States)

    Wongweerayoot, E.; Srituravanich, W.; Pimpin, A.

    2015-02-01

    This study aims to examine the effect of annealing conditions on nitinol (NiTi) characteristics and applies this knowledge to fabricate a NiTi-copper shape memory alloy bimorph actuator. The effect of the annealing conditions was investigated at various temperatures, i.e., 500, 600, and 650 °C, for 30 min. With the characterizations using x-ray diffraction, energy dispersive spectroscopy, and differential scanning calorimetry techniques, the results showed that annealing temperatures at 600 and 650 °C were able to appropriately form the crystalline structure of NiTi. However, at these high annealing temperatures, the oxide on a surface was unavoidable. In the fabrication of actuator, the annealing at 650 °C for 30 min was chosen, and it was performed at two pre-stressing conditions, i.e., straight and curved molds. From static and dynamic response experiments, the results suggested that the annealing temperature significantly affected the deflection of the actuator. On the other hand, the effect of pre-stressing conditions was relatively small. Furthermore, the micro gripper consisting of two NiTi-copper bimorph actuators successfully demonstrated for the viability of small object manipulation as the gripper was able to grasp and hold a small plastic ball with its weight of around 0.5 mg.

  18. Beam cleanup of a 532-nm pulsed solid-state laser using a bimorph mirror

    Institute of Scientific and Technical Information of China (English)

    Xiang Lei; Bing Xu; Ping Yang; Lizhi Dong; Wenjin Liu; Hu Yan

    2012-01-01

    A successful beam cleanup of a 5-mJ/200-μs pulsed solid-state laser system operating at 532-nm wavelength is demonstrated. In this beam cleanup system, a wave-front sensor-less adaptive optics (AO) system is set up with a 20-element bimorph mirror (BM), a high-voltage amplifier, a charge-coupled device camera, and a control software implementing the stochastic parallel gradient descent (SPGD) algorithm. The brightness of the laser focal spot is improved because the wave-front distortions have been compensated. The performance of this system is presented and the experimental results are analyzed.%A successful beam cleanup of a 5-mJ/200-μs pulsed solid-state laser system operating at 532-nm wavelength is demonstrated.In this beam cleanup system,a wave-front sensor-less adaptive optics (AO) system is set up with a 20-element bimorph mirror (BM),a high-voltage amplifier,a charge-coupled device camera,and a control software implementing the stochastic parallel gradient descent (SPGD) algorithm.The brightness of the laser focal spot is improved because the wave-front distortions have been compensated.The performance of this system is presented and the experimental results are analyzed.

  19. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  20. Notes on Piezoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  1. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  2. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  3. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers

    Science.gov (United States)

    Moro, L.; Benasciutti, D.

    2010-11-01

    This paper presents a preliminary investigation on energy harvesting from human walking via piezoelectric vibrating cantilevers. Heel accelerations during human gait are established by correlating data gathered from the literature with direct experimental measurements. All the observed relevant features are synthesized in a typical (standard) acceleration signal, used in subsequent numerical simulations. The transient electromechanical response and the harvested power of a shoe-mounted bimorph cantilever excited by the standard acceleration signal is computed by numerical simulations and compared with measurements on a real prototype. A sensitivity analysis is finally developed to estimate the mean harvested power for a wide range of scavenger configurations. Acceptability criteria based on imposed geometrical constraints and resistance strength limits (e.g. fatigue limit) are also established. This analysis allows a quick preliminary screening of harvesting performance of different scavenger configurations.

  4. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  5. Energy collection via Piezoelectricity

    Science.gov (United States)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  6. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators

    Science.gov (United States)

    Ngernchuklin, Piyalak

    In the past few decades, significant advances have been achieved to replace the conventional actuators, including hydraulic, shape memory alloy, electromagnetic and linear induction, with piezoelectric actuators since they are light weight and small in size, have precision positioning capabilities, offer a wide range of generative force, consume less power, and provide higher durability and reliability. The strain produced by bulk polycrystalline piezoelectric ceramics and single crystals are typically in the range of 0.1 to 1%, respectively, which is still low for many applications. Therefore, various strain amplification designs including multilayer, bimorph, unimorph, flextensional actuators (Moonie and cymbal), co-fired and functionally graded ceramics have been proposed to enhance the displacement. In this investigation, Piezoelectric/Electrostrictive Bi-Layer Monolithic Composites (PE-MBLC) were fabricated by co-pressing and co-sintering of the piezoelectric (PMN-PT 65/35: P) and electrostrictive (PMN/PT 90/10: E) powders. Flat and dome shaped of PE-MBLCs were obtained by optimizing processing conditions such as pressing pressure and sintering temperature. In addition, poling conditions of bilayer composite actuators were thoroughly studied to maximize their electromechanical properties. It was found that composites had lower d33eff and Keff values than the calculated values. This was attributed to a significant difference between relative permittivities of P and E materials as well as the presence of induced stresses in both P and E layers after sintering that hindered domain switching within piezoelectric layer during poling. The shape change (planar to dome), electromechanical properties, and actuation performance of PE-MBLC actuators were examined as a function of volume percent of piezoelectric phase. The highest displacement ˜15 mum was obtained from PE-MBLC actuator with 50 volume % piezoelectric phase due to the transverse strain response of

  7. 蝴蝶式多层悬臂梁压电发电装置研究%Study on Butterfly Piezoelectric Generator with Multilayer Cantilever Beams

    Institute of Scientific and Technical Information of China (English)

    龚俊杰; 沈丽佳; 唐春秀; 陈骁尧

    2014-01-01

    A butterfly piezoelectric generator with multilayer cantilever beams is designed for improving the gen-erating performance of piezoelectric generator.To investigate the generating performance of piezoelectric bimorph beam in the equipment,the output voltage theoretical model of piezoelectric cantilever beam with load on free end is established for analyzing the open-circuit output voltage of piezoelectric bimorph beam.The experimental setup is put up and physical device is also fabricated to measure the output voltage.The present theoretical results of multilayer piezoelectric generator coincide well with the related experimental data;the error is less then 10%.After the six layers of piezoelectric generator are in series,the output power can be up to six times that of the single layer,while the output voltage remains the same.It indicates that the novel butterfly multilayer piezoelectric cantilever can signif-icantly improve the generating capacity of piezoelectric generator.%为了提高压电发电装置的发电能力,设计了一种新型的蝴蝶式多层压电悬臂梁。为了研究该装置中每个压电双晶梁的发电性能,建立了在自由端外力作用下压电悬臂梁的输出电压理论模型,以此用来分析压电双晶梁的开路输出电压。制作了多层压电发电装置,并搭建实验平台对装置的发电电压进行实验测试,将实验测试数据与理论计算结果进行比较,两者误差小于10%。将发电装置中的6层压电片串联后研究发现,装置的发电电压基本不变,而发电功率可达单层的6倍,说明该新型蝴蝶式多层压电悬臂梁结构可提高发电能力。

  8. Piezoelectric Energy Harvesting Solutions

    Directory of Open Access Journals (Sweden)

    Renato Caliò

    2014-03-01

    Full Text Available This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

  9. Piezoelectrically Enhanced Photocathodes

    Science.gov (United States)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  10. Stretchable piezoelectric nanocomposite generator

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  11. Energy Harvesting via Piezoelectricity

    Directory of Open Access Journals (Sweden)

    Tanvi Dikshit

    2010-01-01

    Full Text Available In the present era, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. For example, in the applications such as villages, border areas, forests, hilly areas, where generally remote controlled devices are used, continuous charging of the microcells is not possible by conventional charging methods .So, some alternative methods needs to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries.. To resolve such problems, Energy harvesting technique is proposed as the best alternative. There exists variety of energy harvesting techniques but mechanical energy harvesting happens to be the most prominent. This technique utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. In this paper two important techniques are stressed upon to harness the energy viz Piezoelectric Windmill and Increased Bandwidth Piezoelectric Crystal. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  12. 惯性冲击驱动管内移动机器人设计%A piezoelectric in-pipe micro robot actuated by impact drive mechanism

    Institute of Scientific and Technical Information of China (English)

    刘品宽; 温志杰; 李锦

    2008-01-01

    A piezoelectric in-pipe micro robot with bimorph structure and actuated by the Impact Drive Mechanism(IDM)theory is presented in this paper.The basic structure of this actuator is composed of two piezoelectric bimorph sheets and an inertia mass connected in series.While operating,the deflection of the two piezoelectric bimorph sheets is translated into linear movement by the IDM to complete the system actuation.AS the essence of the IDM theory,the relationship between the inertia impact force generated by the deflection of the bimorph sheets and the friction between moving body and pipe inwall is analyzed theoretically.Then,the dynamic performance of the system is simulated both by MATLAB and by ANSYS.The results show that the step displacement could be minified to 0.15μm,and the proposed actuator is higher accurate and higher efficient for medical and industrial applications.%设计了一种以压电双层膜为基本结构,通过惯性冲击原理达到运动驱动目的的管内移动机器人.该机器人主要由一个典型的压电双层膜结构和惯性质量串联构成.工作时,压电双层膜的变形由惯性冲击转化为整体结构的直线位移.从理论上分析了惯性冲击原理的核心问题:惯性冲击力与管壁和机器人之间摩擦力的关系,并通过MATLAB和AN-SYS等软件对整个系统的动态响应做了仿真.相关的验证表明,所设计的管内移动机器人运动步长可以达到0.15μm,具有精密运动和高效率的优点,可以在工业中广泛应用.

  13. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy ( SMA ) by Merric D Srour, Cory R Knick, and Christopher J Morris...Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy ( SMA ) by Merric D Srour, Cory R Knick, and Christopher J Morris Sensors and...Shape Memory Alloy ( SMA ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Merric D Srour, Cory R Knick, and

  14. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  15. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome.

    Science.gov (United States)

    Carney, J Aidan; Young, William F; Stratakis, Constantine A

    2011-09-01

    McCune-Albright syndrome (polyostotic fibrous dysplasia, café-au-lait skin spots, and precocious puberty) is a genetically mosaic disorder with populations of mutant and normal cells in affected organs. Cushing syndrome, a rare feature of the condition, usually affects infants and is the result of corticotropin-independent primary bilateral adrenal disease, usually interpreted as nodular adrenocortical hyperplasia. In this study of 9 patients with Cushing syndrome and McCune-Albright syndrome, light microscopy revealed a characteristic bimorphic pattern of diffuse and nodular hyperplasia and a distinctive form of cortical atrophy with apparent zona glomerulosa hyperplasia in 8 patients, all very young. The pattern could be explained by the presence of a mosaic distribution of mutant and normal cells in the adrenal glands. The findings are different from those in inherited or other forms of genetically caused Cushing syndrome. The ninth patient, aged 17 years, had an adrenal adenoma and diffuse cortical hyperplasia in each adrenal gland.

  16. Parameters Identification for a Composite Piezoelectric Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Mohammad Saadeh

    2015-03-01

    Full Text Available This work presents an approach for identifying the model of a composite piezoelectric (PZT bimorph actuator dynamics, with the objective of creating a robust model that can be used under various operating conditions. This actuator exhibits nonlinear behavior that can be described using backlash and hysteresis. A linear dynamic model with a damping matrix that incorporates the Bouc–Wen hysteresis model and the backlash operators is developed. This work proposes identifying the actuator’s model parameters using the hybrid master-slave genetic algorithm neural network (HGANN. In this algorithm, the neural network exploits the ability of the genetic algorithm to search globally to optimize its structure, weights, biases and transfer functions to perform time series analysis efficiently. A total of nine datasets (cases representing three different voltage amplitudes excited at three different frequencies are used to train and validate the model. Four cases are considered for training the NN architecture, connection weights, bias weights and learning rules. The remaining five cases are used to validate the model, which produced results that closely match the experimental ones. The analysis shows that damping parameters are inversely proportional to the excitation frequency. This indicates that the suggested hysteresis model is too general for the PZT model in this work. It also suggests that backlash appears only when dynamic forces become dominant.

  17. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  18. Stability analysis of piezoelectric beams

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.

    2011-01-01

    Piezoelectric materials are used in many engineering application. When modeling piezoelectric materials the standard assumption is that the electromagnetic field which is used to actuate the piezoelectric material is quasi static. In this paper we show that although the assumption of a quasi static

  19. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  20. Lead-Free Piezoelectrics

    CERN Document Server

    Nahm, Sahn

    2012-01-01

    Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.

  1. Piezoelectric allostery of protein

    Science.gov (United States)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  2. Piezoelectric Accelerometers Development

    DEFF Research Database (Denmark)

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  3. Piezoelectric accelerometeres development

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient....

  4. Piezoelectric Ceramics Characterization

    Science.gov (United States)

    2001-09-01

    alloys, electrostrictive materials, magnetostrictive materials, electrorheological fluids are some examples of currently available smart materials...piezoelectric coefficients but also increase the dielectric constant and loss. They are utilized as actuators in vibration and noise control, benders, optical...or strain and electric field (equations (2) and (3)). High d-coefficients are desirable in materials utilized as actuators , such as in motional and

  5. Piezoelectric actuator renaissance

    Science.gov (United States)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  6. Adaptive Q control for tapping-mode nanoscanning using a piezoactuated bimorph probe.

    Science.gov (United States)

    Gunev, Ihsan; Varol, Aydin; Karaman, Sertac; Basdogan, Cagatay

    2007-04-01

    A new approach, called adaptive Q control, for tapping-mode atomic force microscopy (AFM) is introduced and implemented on a homemade AFM setup utilizing a laser Doppler vibrometer and a piezoactuated bimorph probe. In standard Q control, the effective Q factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q factor of an AFM probe. The Q factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using standard Q control is not possible. In adaptive Q control, the Q factor of the probe is set to an initial value as in standard Q control, but then modified on the fly during scanning when necessary to achieve this goal. In this article, we present the basic theory behind adaptive Q control, the electronics enabling the online modification of the probe's effective Q factor, and the results of the experiments comparing three different methods: scanning (a) without Q control, (b) with standard Q control, and (c) with adaptive Q control. The results show that the performance of adaptive Q control is superior to the other two methods.

  7. Optimization of piezoelectric energy harvester for wireless smart sensors in railway health monitoring

    Science.gov (United States)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2013-04-01

    Wireless sensor network is one of the prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. Nowadays, most of vibration based energy harvesters are designed at resonance. However, as railway vibration frequency is a wide band range, how to design an energy harvester working at that range is critical. In this paper, the energy consumption of the wireless smart sensor platform, Imote2, at different working states were investigated. Based on the energy consumption, a design of a bimorph cantilever piezoelectric energy harvester has been optimized to generate maximum average power between a wide-band frequency range. Significant power and current outputs have been increased after optimal design. Finally, the rechargeable battery life for supplying the Imote2 for railway monitoring is predicted by using the optimized piezoelectric energy harvesting system.

  8. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    Science.gov (United States)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  9. Piezoelectric Resonator with Two Layers

    Science.gov (United States)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  10. Piezoelectric step-motion actuator

    Science.gov (United States)

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  11. Theoretical analysis and experimental verification on valve-less piezoelectric pump with hemisphere-segment bluff-body

    Science.gov (United States)

    Ji, Jing; Zhang, Jianhui; Xia, Qixiao; Wang, Shouyin; Huang, Jun; Zhao, Chunsheng

    2014-05-01

    Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H2O at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment.

  12. High-fidelity piezoelectric loudspeaker

    OpenAIRE

    Fernández Martínez, Javier

    2014-01-01

    This project reports on a literature review about piezoelectric loudspeakers and on an experimental research about how to improve some features of a particular horned piezoelectric tweeter. The work involves an investigation of the performance and principle of operation of piezoelectric loudspeakers to understand how the sound is generated and what its main parameters are. Also, previous research papers about how to improve this type of speakers are reported. The knowledge gained was us...

  13. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  14. ANALYSIS OF BEAMS WITH PIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    林启荣; 刘正兴; 王宗利

    2001-01-01

    Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezoelectric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.

  15. Black Branes as Piezoelectrics

    CERN Document Server

    Armas, Jay; Obers, Niels A

    2012-01-01

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  16. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  17. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  18. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  19. Piezoelectric Torsional Vibration Driven Motor

    Science.gov (United States)

    2000-10-29

    20 which can provide large amplitude rotational motion with a high torque. 21 Piezoelectric ultrasonic motors have been developed using traveling...Motor for High Torque", T. S. Glenn, W.G. Hagwood, SPIE Volume 3041, 4 1997. These piezoelectric ultrasonic motors are of limited application

  20. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  1. Piezoelectric Transformers: An Historical Review

    Directory of Open Access Journals (Sweden)

    Alfredo Vazquez Carazo

    2016-04-01

    Full Text Available Piezoelectric transformers (PTs are solid-state devices that transform electrical energy into electrical energy by means of a mechanical vibration. These devices are manufactured using piezoelectric materials that are driven at resonance. With appropriate design and circuitry, it is possible to step up and step down the voltages between the input and output sections of the piezoelectric transformer, without making use of magnetic materials and obtaining excellent conversion efficiencies. The initial concept of a piezoelectric ceramic transformer was proposed by Charles A. Rosen in 1954. Since then, the evolution of piezoelectric transformers through history has been linked to the relevant work of some excellent researchers as well as to the evolution in materials, manufacturing processes, and driving circuit techniques. This paper summarizes the historical evolution of the technology.

  2. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  3. Piezoelectric extraction of ECG signal

    Science.gov (United States)

    Ahmad, Mahmoud Al

    2016-11-01

    The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.

  4. Simple piezoelectric translation device

    Science.gov (United States)

    Niedermann, Ph.; Emch, R.; Descouts, P.

    1988-02-01

    We describe a piezoelectric device which allows continuous movement and high-resolution micropositioning, without distance limitation. Both mechanical construction and the electronics for the device are very simple. The movement is obtained via a stick-slip mechanism, and steps as small as 10 nm are obtained. A displacement speed of 0.4 mm/s has been attained, and the device was capable of carrying several times its own weight, exerting a horizontal force, or climbing a plane inclined by 7°. Due to its compact construction, the device shows prospects for miniaturization.

  5. Enhanced Piezoelectric Shunt Design

    Directory of Open Access Journals (Sweden)

    Chul H. Park

    2003-01-01

    Full Text Available Piezoceramic material connected to an electronic shunt branch circuit has formed a successful vibration reduction device. One drawback of the conventional electronic shunt circuit is the large inductance required when suppressing low frequency vibration modes. Also, the large internal resistance associated with this large inductance exceeds the optimal design resistance needed for low frequency vibration suppression. To solve this problem, a modified and enhanced piezoelectric shunt circuit is designed and analyzed by using mechanical-electrical analogies to present the physical interpretation. The enhanced shunt circuit developed in this paper is proved to significantly reduce the targeted vibration mode of a cantilever beam, theoretically and experimentally.

  6. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  7. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    Science.gov (United States)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-04-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively.

  8. High Temperature, High Power Piezoelectric Composite Transducers

    OpenAIRE

    Hyeong Jae Lee; Shujun Zhang; Yoseph Bar-Cohen; Stewart Sherrit

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have le...

  9. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.

    Science.gov (United States)

    Sutter, John P; Alcock, Simon G; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-11-01

    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

  10. Relaxor-PT Single Crystal Piezoelectric Sensors

    OpenAIRE

    Xiaoning Jiang; Jinwook Kim; Kyugrim Kim

    2014-01-01

    Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and futu...

  11. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...... and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacememnt and electric potential is given. The influence of a fluid half-space is also...

  12. Piezoelectric Rotary Tube Motor

    Science.gov (United States)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  13. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of high frequency oscillation of high force precision ceramic elements. The high power oscillations are converted to...

  14. NEW PRECISION PIEZOELECTRIC STEP ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    LIU Jianfang; YANG Zhigang; FAN Zunqiang; CHENG Guangming

    2006-01-01

    A new precision piezoelectric actuator is proposed to improve its drive capabilities. The actuator is based on the piezoelectric technology. It adopts the principle of bionics and works with a new method of stator initiative anchoring/loosen and a distortion structure of double-side thin flexible hinge. It solves the problem of anchoring/loosen, frequency, journey, resolution and velocity. The experiment shows that the new linear piezoelectric actuator works with high frequency (100 Hz), high speed (502 μm/s), large travel (>10 mm), high resolution (0.05 μm) and high load (100 N). This kind of new piezoelectric actuator will be applied for large travel and high resolution driving device, optics engineering, precision positioning and some micromanipulation field.

  15. Piezoelectric enhancement under negative pressure

    Science.gov (United States)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  16. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of converting the high-frequency oscillation of high-force, precision ceramic elements into useful continuous motion....

  17. An autonomous battery-less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals

    Science.gov (United States)

    Ferrari, Marco; Ferrari, Vittorio; Guizzetti, Michele; Marioli, Daniele

    2009-08-01

    An energy-autonomous battery-less sensor module is presented, entirely powered by a piezoelectric energy converter driven by mechanical vibrations from the environment. The module manages and stores the converted energy, interfaces to one or more passive sensors and periodically sends the corresponding measurement signals over a radio-frequency (RF) link. As an additional variant, the module can send a programmable identification (ID) code on the RF carrier, in order to enable module tagging and tracking by the external receiver unit. The module's general architecture is presented and the strategy used for sensor signal conditioning and transmission is illustrated. The architecture and principle have been experimentally validated on a fabricated prototype including a piezoelectric bimorph converter, two passive sensors made by a resistive-capacitive sensor pair and purposely designed electronic circuitry based on low-power off-the-shelf components. In the tested experimental conditions, the prototype features a typical time interval between measurement-and-transmission events of a few tens of seconds, with event durations of the order of tens of milliseconds, corresponding to an operation duty cycle of the order of 0.1%. Peak power consumption during transmission is of the order of 20 mW and operative range is of the order of meters in a laboratory environment. The obtained results show that the proposed approach has attractive characteristics because of the total absence of batteries and, despite the inherent intermittent operation, provides significant measurement performances in terms of achievable sensitivity and resolution.

  18. Piezoelectric Nanowires in Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Zhao Wang

    2015-01-01

    Full Text Available Recently, the nanogenerators which can convert the mechanical energy into electricity by using piezoelectric one-dimensional nanomaterials have exhibited great potential in microscale power supply and sensor systems. In this paper, we provided a comprehensive review of the research progress in the last eight years concerning the piezoelectric nanogenerators with different structures. The fundamental piezoelectric theory and typical piezoelectric materials are firstly reviewed. After that, the working mechanism, modeling, and structure design of piezoelectric nanogenerators were discussed. Then the recent progress of nanogenerators was reviewed in the structure point of views. Finally, we also discussed the potential application and future development of the piezoelectric nanogenerators.

  19. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    Science.gov (United States)

    1985-05-01

    Structure Ferroelastic Silicates" Alan Hain, Jr. B.S. Engineering Science, May 1984. "New Bimorph Structures with High Flexural Resonance Frequency" Eric ...Applications of PZT/Polymer Composite Materials,’ Ferroelectrics 39, 1245-1248 (1981). 22. Erikson , K.R. ’Tone-Burst Testing of Pulse-Echo Transducer...burst pulse-echo method described by Erikson [2]. A schematic diagram of the experimental set up is shown in Figure 1. The composite transducer was

  20. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency

    Science.gov (United States)

    Jafferis, Noah T.; Lok, Mario; Winey, Nastasia; Wei, Gu-Yeon; Wood, Robert J.

    2016-05-01

    In previous work we presented design and manufacturing rules for optimizing the energy density of piezoelectric bimorph actuators through the use of laser-induced melting, insulating edge coating, and features for rigid ground attachments to maximize force output, as well as a pre-stacked technique to enable mass customization. Here we adapt these techniques to bending actuators with four active layers, which utilize thinner material layers. This allows the use of lower operating voltages, which is important for overall power usage optimization, as typical small-scale power supplies are low-voltage and the efficiency of boost-converter and drive circuitry increases with decreasing output voltage. We show that this optimization results in a 24%-47% reduction in the weight of the required power supply (depending on the type of drive circuit used). We also present scaling arguments to determine when multi-layer actuator are preferable to thinner actuators, and show that our techniques are capable of scaling down to sub-mg weight actuators.

  1. Intraoral conversion of occlusal force to electricity and magnetism by biting of piezoelectric elements.

    Science.gov (United States)

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.

  2. Energy harvesting using piezoelectric thick films fabricated by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Moisan, J.F.; Jen, C.K. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.

    2008-07-01

    Energy harvesting has been touted as a promising technology to power wireless devices. One of the common energies to be harvested is induced by mechanical vibrations. Piezoelectric materials are often used to get such energy. This study focused on a vibration-based energy harvesting device. Very flexible vibrators using lead-zirconate-titanate (PZT) ceramics were needed. Therefore, a sol-gel spray technology was used to fabricate PZT thick film directly onto metal membranes to serve as mechanical vibrators. The sol-gel process is an economical approach with excellent mass production appeal for both unimorph and bimorph sensors. For this study, the density of the PZT film was less than 85 per cent of the bulk PZT. Using a 20 mm diameter unimorph, the voltage generated from a 5 mm deflection displacement was 13.6 volts peak-to-peak at 10 Hz. With a load resistance of 150 K ohms, the measured average power generated by this sensor was estimated to be 41 {mu}W. A vibration test that lasted for 60 days with a frequency of 10 Hz and at a displacement of approximately 1 mm showed that the sensor is both durable and rugged. 14 refs., 7 figs.

  3. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  4. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  5. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  6. Cryogenic Piezoelectric Actuator

    Science.gov (United States)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  7. Giant piezoelectric response in piezoelectric/dielectric superlattices due to flexoelectric effect

    Science.gov (United States)

    Liu, Chang; Wu, Huaping; Wang, Jie

    2016-11-01

    Flexoelectricity describes the linear response of electrical polarization to a strain gradient, which can be used to enhance the piezoelectric effect of piezoelectric material or realize the piezoelectric effect in nonpiezoelectric materials. Here, we demonstrate from thermodynamics theory that a giant piezoelectric effect exists in piezoelectric/dielectric superlattices due to flexoelectric effect. The apparent piezoelectric coefficient is calculated from the closed-form of analytical expression of the polarization distribution in the piezoelectric/dielectric superlattice subjected to a normal stress, in which the flexoelectric effect is included. It is found that there exists a strong nonlinear coupling between the flexoelectric and piezoelectric effects, which significantly enhances the apparent piezoelectric coefficient in the piezoelectric/dielectric superlattice. For a specific thickness ratio of the piezoelectric and dielectric layers, the enhanced apparent piezoelectric coefficient in the superlattice is ten times larger than that of its pure piezoelectric counterpart. The present work suggests an effective way to obtain giant apparent piezoelectric effect in piezoelectric/dielectric superlattices through flexoelectric effect.

  8. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  9. Note: Direct piezoelectric effect microscopy.

    Science.gov (United States)

    Mori, T J A; Stamenov, P; Dorneles, L S

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ∼ 50 mV, for a piezoelectric coefficient of d33 = - 2.27  ×  10(-12) m/V, and applied stress of about T3 ∼ 5.7 kPa.

  10. Electrohydroelastic Euler-Bernoulli-Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers

    Science.gov (United States)

    Shahab, S.; Erturk, A.

    2016-10-01

    Bio-inspired hydrodynamic thrust generation using smart materials has received growing attention over the past few years to enable improved maneuverability and agility, small form factor, reduced power consumption, and ease of fabrication in next-generation aquatic swimmers. In order to develop a high-fidelity model to predict the electrohydroelastic dynamics of macro-fiber composite (MFC) piezoelectric structures, in this work, mixing rules-based (i.e. rule of mixtures) electroelastic mechanics formulation is coupled with the global electroelastic dynamics based on the Euler-Bernoulli kinematics and nonlinear fluid loading based on Morison’s semi-empirical model. The focus is placed on the dynamic actuation problem for the first two bending vibration modes under geometrically and materially linear, hydrodynamically nonlinear behavior. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two subsequent interdigitated electrodes are correlated to homogenized parameters of MFC bimorphs and validated for a set of MFCs that have the same overhang length but different widths. Following this process of electroelastic model development and validation, underwater actuation experiments are conducted for different length-to-width aspect ratios (L/b) in quiescent water, and the empirical drag and inertia coefficients are extracted from Morison’s equation to establish the electrohydroelastic model. The repeatability of these empirical coefficients is demonstrated for experiments conducted using aluminum cantilevers of different aspect ratios with a focus on the first two bending modes. The convergence of the nonlinear electrohydroelastic Euler-Bernoulli-Morison model to its hydrodynamically linear counterpart for increased L/b values is also reported. The proposed model, its harmonic balance analysis, and experimental results can be used not only for underwater piezoelectric actuation, but also for

  11. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  12. General solutions for special orthotropic piezoelectric media

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur'e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized E-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.

  13. 基于Hamilton原理的压电悬臂梁模型建立与分析%Modeling and Analysis of Piezoelectric Cantilever Beams Based on Hamilton Principle

    Institute of Scientific and Technical Information of China (English)

    闫世伟; 杨建文; 杨志刚

    2014-01-01

    根据哈密顿(Hamilton)原理建立了压电悬臂梁(压电梁)能量转换模型,利用数值模拟和实验测试的方法研究了压电梁在固定端受到位移激励时结构尺寸、材料特性和激振频率等对其发电能力的影响规律。研究表明,当基板材料相同时,单、双晶压电梁均存在最佳厚度比(基板/总厚)使其输出电能最多;当基板材料不同时,最佳厚度比随杨氏模量比(基板/陶瓷)增加而减小,铜、钼基板构成的单、双晶压电梁的最佳厚度比分别为(0.7,0.35)和(0.45,0.2);当厚度比(0.5)和激励条件相同时,杨氏模量比对单、双晶压电梁发电能力影响不同;调整单、双晶压电梁自由端质量块使其工作在谐振状态,可显著提高压电梁的发电能力。%The energy conversion model of the piezoelectric cantilever beam (piezoelectric beam)under displace-ment excitation in the fixed end was established according to Hamilton principle to study the influence of structural parameters,material properties as well as excitation frequency of the piezoelectric beam on energy generation by u-sing the method of numerical simulation and experimental testing.The research results showed that there were opti-mal thickness ratios (OTRs)respectively for the piezoelectric monomorph cantilever beam generator and piezoelec-tric bimorph cantilever beam generator to obtain maximal electrical energy in the same metal-plate materials.With the increasing of the Young’s modulus ratio,the OTRs of the two generators decreased in different metal-plate ma-terials.When copper and molybdenum plates were used as the substrates,the monomorph and the bimorph cantile-ver beams achieved the OTRs of (0.7,0.35)and (0.45,0.2),respectively.In the same thickness ratio (0.5)and external excitation condition,the Young's modulus showed different influences on energy generation of the two gen-erators.By adj usting the

  14. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  15. Vacuum mounting for piezoelectric transducers

    Science.gov (United States)

    Tiede, D. A.

    1977-01-01

    Special housing couples piezoelectric transducers to nonporous surfaces for ultrasonic or acoustic-emission testing. Device, while providing sound isolation on flat or nonflat surfaces, can be attached and detached quickly. Vacuum sealing mechanism eliminates need for permanent or semipermanent bonds, viscous coupling liquids, weights, magnets, tape, or springs ordinarily used.

  16. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  17. High Power Piezoelectric Characterization for Piezoelectric Transformer Development

    Science.gov (United States)

    Ural, Seyit O.

    The major goal was to develop characterization techniques to identify and define guidelines to manufacture high power density actuators. We particularly aim at improving the strengths of piezoelectric transformers, namely the high efficiency, ease of manufacturing, low electromagnetic noise, and high power to weight ratio resulting in an adaptor application by identifying material limitations, geometrical limitations and offer guidelines to counter drawbacks limiting the power density. There are 3 losses present in piezoelectrics. Namely dielectric, elastic and piezoelectric losses. These losses can be calculated using mechanical quality factors of the resonating piezoelectric actuator. But in order to calculate all three losses, the mechanical quality factor for resonance and anti resonance need to be measured. Although the mechanical quality factor for resonance is conventionally measured, measurements in antiresonance have been ignored. Since there was no unique measurement technique to address antiresonance and resonance Q in one single sweep, in this study constant vibration velocity method was developed. During the constant vibration velocity measurement, the input electrical energy is monitored and significant differences between resonance and antiresonance drives are observed. For the same output work (identical vibration velocity) significant differences in the losses were observed. Thermographic images have shown increasing temperature differences for resonance and antiresonance nodal point temperatures, with higher vibration velocities. The theoretical evaluation identified the difference observed in the mechanical quality factors at resonance and antiresonance to stem from the piezoelectric loss. In order to investigate losses in the absence of thermal effects a transient characterization technique was adopted. The burst technique, originally developed for characterization of the mechanical quality factor at resonance, has been modified with a switch

  18. Virus-based piezoelectric energy generation.

    Science.gov (United States)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-05-13

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  19. Virus-based piezoelectric energy generation

    Science.gov (United States)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-06-01

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  20. Adaptive Q control for Tapping-mode Nano-scanning Using a Piezo-actuated Bimorph Probe

    CERN Document Server

    Gunev, Ihsan; Karaman, Sertac; Basdogan, Cagatay

    2012-01-01

    A new approach, called Adaptive Q-control, for tapping-mode Atomic Force Microscopy (AFM) is introduced and implemented on a home-made AFM set-up utilizing a Laser Doppler Vibrometer (LDV) and a piezo-actuated bimorph probe. In the standard Q-control, the effective Q-factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q-factor of an AFM probe. The Q-factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using the standard Q-control is not possible. In adaptive Q-control, the Q-factor of the probe is set to an initial value as in standard Q-control, but then modified on the fly during scanning when necessary to achieve this goal. In this paper, we present the basic theory behind the adaptive Q-control, the electronics enabling the on-line modification of the probe's effective Q-factor, and the results of the expe...

  1. Optimum Operating Conditions of (PbxX1−x(ZryTizY1−y−z Piezoelectric Transducer for Vibrational Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Funda Demir

    2016-01-01

    Full Text Available The electrical energy production capability of bimorph (PbxX1-x(ZryTizY1-y-z fiber composite piezoelectric transducer has been investigated for energy harvesting applications. The material has been analyzed under different frequencies, bending amounts, and temperatures. The operating conditions for maximum electrical energy outcome have been determined. The natural frequencies of oscillations in the macro dimensions have been found to be inversely proportional to the length of the material. On the other hand, the voltage output with respect to the oscillation frequency exhibits an interesting behavior such that the characteristic curve shifts to higher frequencies as the bending radius is decreased. This behavior has been interpreted as a result of possible overtone transitions of the oscillations to a stiffer mode. The increasing temperature has been observed to have a negative effect on the piezoelectric energy harvesting property. When the determined optimum conditions were utilized, the amount of electrical energy stored in 6300 s by an energy harvester circuitry has been found to be 0.8 J.

  2. Coupled improvement between thermoelectric and piezoelectric materials

    Science.gov (United States)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  3. Piezoelectric Power Requirements for Active Vibration Control

    Science.gov (United States)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  4. Introduction to Piezoelectric Actuators and Transducers

    Science.gov (United States)

    2007-11-02

    1 Introduction to Piezoelectric Actuators and Transducers Kenji Uchino, International Center for Actuators and Transducers, Penn State University...REPORT DATE 00 JUN 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Introduction to Piezoelectric Actuators and Transducers...now used in various fields. The sound source is made from piezoelectric ceramics as well as magnetostrictive materials. Piezoceramics are generally

  5. Piezoelectric field in strained GaAs.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  6. Heartbeat detection system using piezoelectric transducer

    Science.gov (United States)

    Hamonangan, Yosua; Purnamaningsih, Wigajatri

    2017-02-01

    This paper presents a simple piezoelectric based heartbeat detection system. The signal produced by the piezoelectric will undergo signal conditioning and then converted into digital data by Arduino Nano. Using serial communication, the data will be sent to a computer for display and further analysis. The detection of heartbeat is carried out on three locations; wrist, chest, and diaphragm. From the measurement results, it is shown that the system work best when the piezoelectric is placed on wrist.

  7. Piezoelectric actuator for pulsating jets

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    2000-08-01

    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  8. Piezoelectric Vibration Energy Harvesting Device Combined with Damper

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2014-05-01

    Full Text Available Piezoelectricity is a type of material that enables mechanical energy and electrical energy to be interchangeable, which can be divided into positive piezoelectric effect and inverse piezoelectric effect. The positive piezoelectric effect is that the electric dipole moment of material generates changes when the piezoelectric material is subjected to pressure, resulting in electrical energy. Conversely, the inverse piezoelectric effect is the process of electrical energy converted into mechanical energy.

  9. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  10. Piezoelectric Energy Harvesting for Roadways

    OpenAIRE

    Xiong, Haocheng

    2015-01-01

    Energy harvesting technologies have drawn much attention as an alternative power source of roadway accessories in different scales. Piezoelectric energy harvesting consisting of PZT piezoceramic disks sealed in a protective package is developed in this work to harness the deformation energy of pavement induced by traveling vehicles and generate electrical energy. Six energy harvesters are fabricated and installed at the weigh station on I-81 at Troutville, VA to perform on-site evaluation. T...

  11. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  12. FLUTTER SUPPRESSION USING DISTRIBUTED PIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.

  13. Fabrication of Piezoelectric Cellulose Paper and Audio Application

    Institute of Scientific and Technical Information of China (English)

    Jung-Hwan Kim; Sungryul Yun; Joo-Hyung Kim; Jaehwan Kim

    2009-01-01

    We report the fabrication process of piezoelectric cellulose paper and the enhancement method of its piezoelectric property.Stretching method with different wet-drawing ratios was introduced to increase the piezoelectric property of cellulose paper during regeneration process. It is observed that the Young's modulus and the piezoelectric charge constants are very dependent on the drawing ratio and the direction of nanofibrils of piezoelectric paper. Using the enhanced piezoelectric property, we prove that the flexible regenerated piezoelectric cellulose can be applied to the potential acoustic applications such as thin piezoelectric paper speaker.

  14. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  15. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  16. Variational principles for nonlinear piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)

    2004-12-01

    In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)

  17. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  18. Special topics in the theory of piezoelectricity

    CERN Document Server

    Yang, Jiashi

    2009-01-01

    Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.

  19. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  20. Structured Piezoelectric Composites: Materials and Applications

    NARCIS (Netherlands)

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits t

  1. Design of a piezoelectric rotation actuator

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Babakhani, B.; Brouwer, Dannis Michel

    2012-01-01

    In order to facilitate active damping within a linear motion system, a self-sensing piezoelectric rotation actuator has been designed. The rotation actuator consists of two piezoelectric stacks that function as linear actuators, embedded in a mechanical interface with several elastic elements, thus

  2. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  3. COMBINED DAMAGE FRACTURE CRITERIA FOR PIEZOELECTRIC CERAMICS

    Institute of Scientific and Technical Information of China (English)

    Yang Xinhua; Chen Chuanyao; Hu Yuantai; Wang Cheng

    2005-01-01

    Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun's. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric field impedes fracture whereas the effect of a positive electric field on fracture depends on its magnitude.

  4. Giant piezoelectricity on Si for hyperactive MEMS.

    Science.gov (United States)

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  5. Analytical Optimization of Piezoelectric Circular Diaphragm Generator

    Directory of Open Access Journals (Sweden)

    S. Mohammadi

    2013-01-01

    Full Text Available This paper presents an analytical study of the piezoelectric circular diaphragm microgenerator using strain energy method. Piezoelectrics are the intelligent materials that can be used as transducer to convert mechanical energy into electrical energy and vice versa. The aim of this paper is to optimize produced electrical energy from mechanical pressure. Therefore, the circular metal plate equipped with piezoelectric circular patch has been considered with simply and clamped supports. A comprehensive modeling, parametrical study and the effect of the boundary conditions on the performance of the microgenerator have been investigated. The system is under variable pressure from an oscillating pressure source. Results are presented for PZT and PMN-PT piezoelectric materials with steel and aluminum substrates. An optimal value for the radius and thickness of the piezoelectric layer with a special support condition has been obtained.

  6. Applications of piezoelectric materials in oilfield services.

    Science.gov (United States)

    Goujon, Nicolas; Hori, Hiroshi; Liang, Kenneth K; Sinha, Bikash K

    2012-09-01

    Piezoelectric materials are used in many applications in the oilfield services industry. Four illustrative examples are given in this paper: marine seismic survey, precision pressure measurement, sonic logging-while-drilling, and ultrasonic bore-hole imaging. In marine seismics, piezoelectric hydrophones are deployed on a massive scale in a relatively benign environment. Hence, unit cost and device reliability are major considerations. The remaining three applications take place downhole in a characteristically harsh environment with high temperature and high pressure among other factors. The number of piezoelectric devices involved is generally small but otherwise highly valued. The selection of piezoelectric materials is limited, and the devices have to be engineered to withstand the operating conditions. With the global demand for energy increasing in the foreseeable future, the search for hydrocarbon resources is reaching into deeper and hotter wells. There is, therefore, a continuing and pressing need for high-temperature and high-coupling piezoelectric materials.

  7. Polymeric Piezoelectric Transducers for Hydrophone Applications

    Directory of Open Access Journals (Sweden)

    D. K. Kharat

    2007-01-01

    Full Text Available Conventional ceramic piezoelectric materials have been used in hydrophones for sonarapplications since 1940's. In the last few years since the discovery of polymeric piezoelectrichydrophones, the technology has matured, applications have emerged in extraordinary number ofcases such as underwater navigation, biomedical applications, biomimetics, etc. Hydrophones areused underwater at high hydrostatic pressures. In the presence of hydrostatic pressures, theanisotropic piezoelectric response of ceramic materials is such that it has poor hydrophone performancecharacteristics whereas polymeric piezoelectric materials show enough hydrostatic piezoelectriccoefficients. Moreover, piezoelectric polymers have low acoustic impedance, which is only 2-6 timethat of water, whereas in piezoelectric ceramics, it is typically 11-time greater than that of water. Aclose impedance match permits efficient transduction of acoustic signals in water and tissues. Newlydeveloped hydrostatic-mode polyvinylidene flouride (PVDF hydrophones use a pressure-releasesystem to achieve improved sensitivity. Recently, voided PVDF materials have been used for makinghydrophones having higher sensitivity and figure of merit than unvoided PVDF materials.

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  9. Piezoelectric accelerometers with integral electronics

    CERN Document Server

    Levinzon, Felix

    2014-01-01

    This book provides an invaluable reference to Piezoelectric Accelerometers with Integral Electronics (IEPE). It describes the design and performance parameters of IEPE accelerometers and their key elements, PE transducers and FET-input amplifiers. Coverage includes recently designed, low-noise and high temperature IEPE accelerometers. Readers will benefit from the detailed noise analysis of the IEPE accelerometer, which enables estimation of its noise floor and noise limits. Other topics useful for designers of low-noise, high temperature silicon-based electronics include noise analysis of FET

  10. Using Diffusion Bonding in Making Piezoelectric Actuators

    Science.gov (United States)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature

  11. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO...

  12. Piezoelectric materials and devices applications in engineering and medical sciences

    CERN Document Server

    Vijaya, M S

    2012-01-01

    Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences provides a complete overview of piezoelectric materials, covering all aspects of the materials starting from fundamental concepts. The treatment includes physics of piezoelectric materials, their characteristics and applications. The author uses simple language to explain the theory of piezoelectricity and introduce readers to the properties and design of different types of piezoelectric materials, such as those used in engineering and medical device applications.This book: Introduces various types of dielect

  13. A continuum damage model for piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Yiming Fu; Xianqiao Wang

    2008-01-01

    In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks.The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helmhotlz free energy of piezoelectric mate-rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the ten-sorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of the piezoelectric mate-rial, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With theKirchhoff hypothesis of plate, the free vibration equationsof the piezoelectric rectangular plate considering damage isestablished. By using Galerkin method, the equations are sol-ved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.

  14. Piezoelectric paint sensor for ultrasonic NDE

    Science.gov (United States)

    Li, X.; Zhang, Y.

    2007-04-01

    This paper deals with a distributed acoustic emission sensing method, which is especially suitable for piezoelectric paint. Piezoelectric paint is a composite piezoelectric material that is comprised of tiny piezoelectric particles randomly dispersed within a polymer matrix phase. An overview of the distributed acoustic emission sensing method for defect monitoring is given in this paper. The use of piezoelectric materials for ultrasonic signal measurements is next discussed along with a series of ultrasonic tests performed to verify the ultrasonic sensing capability of piezoelectric paint. To examine the mechanism of the distributed acoustic emission sensing method for crack initiation detection, the results of a finite element simulation based study is presented in this paper. The finite element model used in the parametric study is calibrated with experimental data. The effect of sensor numbers included in the array has been studied using both simulation and experimental data. Based on the preliminary results of this study, piezoelectric paint sensor appears to hold a potential for use in on-line monitoring of cracks such as those caused by fatigue in metal structures although more work is still needed before successful practical application can be made.

  15. Derivation of Piezoelectric Losses from Admittance Spectra

    Science.gov (United States)

    Zhuang, Yuan; Ural, Seyit O.; Rajapurkar, Aditya; Tuncdemir, Safakcan; Amin, Ahmed; Uchino, Kenji

    2009-04-01

    High power density piezoelectrics are required to miniaturize devices such as ultrasonic motors, transformers, and sound projectors. The power density is limited by the heat generation in piezoelectrics, therefore, clarification of the loss mechanisms is necessary. This paper provides a methodology to determine the electromechanical losses, i.e., dielectric, elastic and piezoelectric loss factors in piezoelectrics by means of a detailed analysis of the admittance/impedance spectra. This method was applied to determine the piezoelectric losses for lead zirconate titanate ceramics and lead magnesium niobate-lead titanate single crystals. The analytical solution provides a new method for obtaining the piezoelectric loss factor, which is usually neglected in practice by transducer designers. Finite element simulation demonstrated the importance of piezoelectric losses to yield a more accurate fitting to the experimental data. A phenomenological model based on two phase-shifts and the Devonshire theory of a polarizable-deformable insulator is developed to interpret the experimentally observed magnitudes of the mechanical quality factor at resonance and anti-resonance.

  16. Gradient scaling phenomenon of piezoelectricity in non-piezoelectric polyvinylidene fluoride films

    OpenAIRE

    Baskaran, Sivapalan; He, Xiangtong; Fu, John Y.

    2011-01-01

    It has been well known that flexoelectricity can be exploited to generate an analogous piezoelectric response in non-piezoelectric materials. For the direct flexoelectric effect, the induced electric polarization is linearly proportional to the applied strain gradient. Therefore, it is logical to expect that such a piezoelectric response would be enhanced in the materials with reduced dimensions. In this paper, we will report our experimental observation of such a gradient scaling phenomenon ...

  17. Miniature Piezoelectric Macro-Mass Balance

    Science.gov (United States)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA

  18. Asymptotic curved interface models in piezoelectric composites

    Science.gov (United States)

    Serpilli, Michele

    2016-10-01

    We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.

  19. The nonlinear piezoelectric tuned vibration absorber

    Science.gov (United States)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  20. Analysis of Asymmetric Piezoelectric Composite Beam

    CERN Document Server

    Chen, J -S; Wu, K -C

    2008-01-01

    This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

  1. Piezoelectric Voltage Coupled Reentrant Cavity Resonator

    CERN Document Server

    Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund

    2014-01-01

    A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.

  2. Functionally graded piezoelectric cantilever beam under load

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.F.; Chen, Y. [Beijing Jiaotong University, School of Civil Engineering, Beijing (China)

    2004-12-01

    In the present paper, the problem of a functionally graded piezoelectric cantilever beam subjected to different loadings is studied. The piezoelectric beam is characterized by continuously graded properties for one elastic parameter and the material density. A pair of stress and induction functions in the form of polynomials is proposed and determined. Based on these functions, a set of analytical solutions for the beam subjected to different loadings is obtained. As particular cases, series of solutions for some canonical problems can be directly obtained from the solutions of the present paper, such as for the problems of a piezoelectric cantilever beam with constant body force or without body forces, etc. (orig.)

  3. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  4. A novel resonantly-driven piezoelectric gas pump%一种新型共振式气体压电泵

    Institute of Scientific and Technical Information of China (English)

    吴越; 杨志刚; 刘勇; 王龙; 谢海峰

    2012-01-01

    The pumps driven directly by piezoelectric membrane not only have a poor performance when pumping gas, but also they may be damaged with a high temperature generated by the piezoelectric membrane when the flow of gas is blocked. Even though the pumps driven by piezoelectric stack have an excellent performance, they are quite costing. To solve the problems above, a novel piezoelectric pump was presented. The pump was driven by an annular bimorph and the displacement of the diaphragm was amplified at the resonance frequency. Firstly, the working principle of the pump was described, and a mechanic model of vibration was built to clarify displacement amplification principle. The analysis shows that the amplification factor is related to the stiffness of spring lamination and piezoelectric vibrator, viscous damping coefficient of system and driving frequency. The experimental prototypes were manufactured and the experiments indicate that the amplification factor of displacement amplifier is more than 4.2 at a 70 V sinusoidal AC driving voltage, the maximum flow rate could be up to 1 685 mL/min; when the gas flow is blocked, the pump can operate continuously as long as 2 000 h without a noted temperature rise in bimorph.%针对膜片式压电泵气体驱动能力不足,被输送气体流动受阻时压电振子易发热受损,以及叠堆式共振压电泵造价高昂等问题,提出了一种以圆环状压电双晶片为动力源,通过位移放大机构驱动的新型共振式气体压电泵.对新型共振式气体压电泵的工作原理及其位移放大原理进行了分析,建立了该泵的振动力学模型.分析结果表明,该泵位移放大效果与压电双晶片提供的驱动位移有关,系统放大倍数与弹簧片和压电振子的刚度、系统的黏性阻尼因子及激励频率有关,设计并制作了新型共振式气体压电泵的试验样机,使用阻抗分析及激光测量方法测试了其位移放大效果,并验证了气体输出

  5. Piezoelectric and Semiconducting Coupled Nanogenerators

    Science.gov (United States)

    Wang, Zhong L. (Inventor); Song, Jinhui (Inventor); Wang, Xudong (Inventor)

    2012-01-01

    An electrical generator includes a substrate, a semiconductor piezoelectric structure having a first end and an opposite second end disposed adjacent to the substrate, a first conductive contact and a second conductive contact. The structure bends when a force is applied adjacent to the first end, thereby causing an electrical potential difference to exist between a first side and a second side of the structure. The first conductive contact is in electrical communication with the first end and includes a material that creates a Schottky barrier between a portion of the first end of the structure and the first conductive contact. The first conductive contact is also disposed relative to the structure in a position so that the Schottky barrier is forward biased when the structure is deformed, thereby allowing current to flow from the first conductive contact into the first end.

  6. Piezoelectric nanoparticle-polymer composite foams.

    Science.gov (United States)

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  7. Piezoelectric RL shunt damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2015-01-01

    Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...

  8. Guided wave propagation in multilayered piezoelectric structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A general formulation of the method of the reverberation-ray matrix (MRRM) based on the state space formalism and plane wave expansion technique is presented for the analysis of guided waves in multilayered piezoelectric structures. Each layer of the structure is made of an arbitrarily anisotropic piezoelectric material. Since the state equation of each layer is derived from the three-dimensional theory of linear piezoelectricity, all wave modes are included in the formulation. Within the framework of the MRRM, the phase relation is properly established by excluding exponentially growing functions, while the scattering relation is also appropriately set up by avoiding matrix inversion operation. Consequently, the present MRRM is unconditionally numerically stable and free from computational limitations to the total number of layers, the thickness of individual layers, and the frequency range. Numerical examples are given to illustrate the good performance of the proposed formulation for the analysis of the dispersion characteristic of waves in layered piezoelectric structures.

  9. Piezoelectric devices for generating low power

    Science.gov (United States)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  10. Development of Vibrating Disc Piezoelectric Gyroscope

    Directory of Open Access Journals (Sweden)

    A.K. Singh

    2004-07-01

    Full Text Available The paper presents an indigenously developed vibrating disc piezoelectric gyroscope, in which both excitation and detection have been done through piezoelectric, using PZT-5H material. The gyroscope has been driven to resonant state by direct piezoelectric effect, using 20 V ac signal at 93 kHz, and the output has been detected by the reverse piezoelectric effect.The performance of this gyroscope has been tested with 3 microprocessor-controlled turntable, and the output of the gyroscope has been found" to be linearly proportional to the rotationspeed within a range ± 150 °/s. The sensitivity of the gyroscope is about 0.5 mV/°/s, which is comparable to that of other gyroscopes of similar category

  11. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric actuators constructed with the "smart material" PZT offer many potential advantages for use in NASA cryo-valve missions relative to conventional...

  12. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  13. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator.

    Science.gov (United States)

    Lee, Ju-Hyuck; Lee, Keun Young; Gupta, Manoj Kumar; Kim, Tae Yun; Lee, Dae-Yeong; Oh, Junho; Ryu, Changkook; Yoo, Won Jong; Kang, Chong-Yun; Yoon, Seok-Jin; Yoo, Ji-Beom; Kim, Sang-Woo

    2014-02-01

    A highly stretchable hybrid nanogenerator has been developed using a micro-patterned piezoelectric polymer P(VDF-TrFE), PDMS-CNT composite, and graphene nanosheets. Mechanical and thermal energies are simultaneously harvested from a single cell of the device. The hybrid nanogenerator exhibits high robustness behavior even after 30% stretching and generates very stable piezoelectric and pyroelectric power outputs due to micro-pattern designing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gap Waves in Piezoelectric layered Medium

    Directory of Open Access Journals (Sweden)

    Danoyan Z.N.

    2007-03-01

    Full Text Available In the present paper the conditions of existence of shear electroelastic gap waves in piezoelectric-vacuum-dielectric layered system are found. It is shown that in the discontact layered system the gap electroelastic waves can be propagated. It is considered the limiting case when the thickness of vacuuming layer tends to zero. It is proved that the statement of the problem is true when there is no acoustic contact between piezoelectric and dielectric grounded media.

  15. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  16. Analysis of piezoelectric structures and devices

    CERN Document Server

    Chen, Weiqiu; Wang, Ji

    2013-01-01

    This edited work covers piezoelectric materials in the form of beams, plates, shells, and other structural components in modern devices and structures. Applications are frequency control and detection functions in resonators, sensors, actuators, oscillations, and other smart and intelligent structures. The contributions cover novel methods for the analysis of piezoelectric structures including wave propagation, high frequency vibration, material characterization, and optimization of structures. Understanding of these methods is increasingly important in the design and modelling of next generat

  17. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  18. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  19. Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions

    NARCIS (Netherlands)

    Ende, D.A. van den; Kempen, S.E. van; Wu, X.; Groen, W.A.; Randall, C.A.; Zwaag, S. van der

    2012-01-01

    Piezoelectric composites were prepared by dielectrophoretic alignment of high aspect ratio piezoelectric particles in a thermosetting polymer matrix. A high level of alignment was achieved in the cured composite from a resin containing randomly oriented high aspect ratio particles. Upon application

  20. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-08-31

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  1. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  2. Piezoelectric microcantilever serum protein detector

    Science.gov (United States)

    Capobianco, Joseph A.

    The development of a serum protein detector will provide opportunities for better screening of at-risk cancer patients, tighter surveillance of disease recurrence and better monitoring of treatment. An integrated system that can process clinical samples for a number of different types of biomarkers would be a useful tool in the early detection of cancer. Also, screening biomarkers such as antibodies in serum would provide clinicians with information regarding the patient's response to treatment. Therefore, the goal of this study is to develop a sensor which can be used for rapid, all-electrical, real-time, label-fee, in-situ, specific quantification of cancer markers, e.g., human epidermal receptor 2 (Her2) or antibodies, in serum. To achieve this end, piezoelectric microcantilever sensors (PEMS) were constructed using an 8 mum thick lead magnesium niobate-lead titanate (PMN-PT) freestanding film as the piezoelectric layer. The desired limit of detection is on the order of pg/mL. In order to achieve this goal the higher frequency lateral extension modes were used. Also, as the driving and sensing of the PEMS is electrical, the PEMS must be insulated in a manner that allows it to function in aqueous solutions. The insulation layer must also be compatible with standardized bioconjugation techniques. Finally, detection of both cancer antigens and antibodies in serum was carried out, and the results were compared to a standard commercialized protocol. PEMS have demonstrated the capability of detecting Her2 at a concentration of 5 pg/mL in diluted human serum (1:40) in less than 1 hour. The approach can be easily translated into the clinical setting because the sensitivity is more than sufficient for monitoring prognosis of breast cancer patients. In addition to Her2 detection, antibodies in serum were assayed in order to demonstrate the feasibility of monitoring the immune response for antibody-dependent cellular cytotoxicity (ADCC) in patients on antibody therapies

  3. Analysis of nonlinear transient responses of piezoelectric resonators.

    Science.gov (United States)

    Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2011-09-01

    The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.

  4. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Liping Shi

    2015-04-01

    Full Text Available Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient of piezoelectric actuators. These data from theoretical and experimental research show the following: (1 The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2 Under external field, E n ( ex = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3 According to the piezoelectric strain S i ( 1 , piezoelectric displacement D m ( 2 and piezoelectric strain S i ( 3 of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric

  5. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  6. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  7. Lead-Free Metamaterials with Enormous Apparent Piezoelectric Response.

    Science.gov (United States)

    Zhou, Wanfeng; Chen, Pan; Pan, Qi; Zhang, Xiaotong; Chu, Baojin

    2015-11-01

    Lead-free flexoelectric piezoelectric metamaterials are created by applying an asymmetric chemical reduction to Na1/2 Bi1/2 TiO3 -BaTiO3 ceramics. The reduction induces two gradient-generating mechanisms, curvature structure and chemical inhomogeneity, and enhances the flexoelectric effect. The ceramics behave like piezoelectric materials, exhibiting an enormous and high-temperature stable apparent piezoelectric response, outperforming existing lead-oxide-based piezoelectrics.

  8. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  9. Self-oscillating loop based piezoelectric power converter

    OpenAIRE

    Rødgaard, Martin Schøler; Andersen, Michael A. E.; Esbern, Andreas; Meyer, Kasper Sinding

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Elec...

  10. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  11. Piezoelectric Energy Harvester for Batteryless Switch Devices

    Science.gov (United States)

    Kim, Min-Soo; Lee, Sung-Chan; Kim, Sin-Woong; Jeong, Soon-Jong; Kim, In-Sung; Song, Jaesung

    2013-10-01

    This study investigated a piezoelectric energy-harvesting system for a mechanical switch device. Piezoelectric ceramics of 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 were prepared by using a conventional solid-state reaction method. Li2O, Bi2O3, and CuO additions were used as sintering aids to develop piezoelectric ceramics for low-temperature sintering. Multilayer piezoelectric ceramics with 10×10×3 mm3 sizes and with Ag-Pd inner electrodes were manufactured by using the conventional tape-casting method with the prepared powder. A prototype of a piezoelectric batteryless switch device using the multilayer ceramics was produced. It showed an output peak-to-peak voltage of 3.8 V and an output power per strike of 18 µW. The performance of the device was good enough for practical use.

  12. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    Science.gov (United States)

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications.

  13. Piezoelectric Actuators : Expansion from IT/Robotics to Ecological/Energy Applications(Lead-Free Piezoelectric Material and Devices)

    OpenAIRE

    Kenji, Uchino; International Center for Actuators and Transducers, The Pennsylvania State University, University Park

    2007-01-01

    Piezoelectric actuators have been commercialized in various areas such as information technology, robotics, bio-, medical engineering, ecological and energy engineering. This paper reviews their recent application developments and foresees the future of piezoelectric actuators.

  14. Low-power piezoelectric micro-machined valve

    Science.gov (United States)

    Gianchandani, Yogesh B. (Inventor); Nellis, Gregory Francis (Inventor); Klein, Sanford A. (Inventor); Park, John Moon (Inventor); Evans, Allan Thomas (Inventor); Taylor, Ryan (Inventor); Brosten, Tyler R. (Inventor)

    2010-01-01

    A piezoelectric microvalve employs a valve element formed of hermetically sealed and opposed plates flexed together by a cross axis piezoelectric element. Large flow modulation with small piezoelectric actuator displacement is obtained by perimeter augmentation of the valve seat which dramatically increases the change in valve flow area for small deflections.

  15. Characterization of a Piezoelectric Buzzer Using a Michelson Interferometer

    Science.gov (United States)

    Lloyd, S.; Paetkau, M.

    2010-01-01

    A piezoelectric material generates an electric potential across its surface when subjected to mechanical stress; conversely, the inverse piezoelectric effect describes the expansion or contraction of the material when subjected to some applied voltage. Piezoelectric materials are used in devices such as doorbell buzzers, barbeque igniters, and…

  16. Comparison of Stabilization of Piezoelectric Euler-Bernoulli Beam Models

    NARCIS (Netherlands)

    de Jong, Matthias; Scherpen, Jacquelien M.A.; Morris, Kirsten

    2016-01-01

    Piezoelectric materials are used in many control and sensing applications via a strip of piezoelectric material also known as a piezoelectric beam. Applications can be vibration control in (complex) mechanical structures and on-line measurement or compensation in high-precision technology for shape

  17. Parametric block diagrams of a multi-layer piezoelectric transducer of nano- and microdisplacements under transverse piezoelectric effect

    Science.gov (United States)

    Afonin, S. M.

    2017-01-01

    A structural-parametric model and parametric block diagrams of a piezoelectric transducer in the transverse piezoelectric effect are obtained with regard to the counter-electromotive force. The transfer functions of the multi-layer piezoelectric transducer of nano- and microdisplacements are determined with regard to the influence of geometric and physical parameters of the multi-layer piezoelectric transducer, the counter-electromotive force, and the external load.

  18. Piezoelectric surgery in implant dentistry: clinical applications

    Directory of Open Access Journals (Sweden)

    Lydia Masako Ferreira

    2009-01-01

    Full Text Available Pizosurgery has therapeutic characteristics in osteotomies, such as extremely precise, selective and millimetric cuts and a clear operating field. Piezoelectricity uses ultrasonic frequencies, which cause the points specially designed for osteotomy to vibrate. The points of the instrument oscillate, allowing effective osteotomy with minimal or no injury to the adjacent soft tissues, membranes and nerve tissues. This article presents the various applications of piezoelectricity in oral implant surgery such as: removal of autogenous bone; bone window during elevation of the sinus membrane and removal of fractured implants. The cavitational effect caused by the vibration of the point and the spray of physiological solution, provided a field free of bleeding and easy to visualize. The study showed that the piezoelectric surgery is a new surgical procedurethat presents advantages for bone cutting in many situations in implant dentistry, with great advantages in comparison with conventional instrumentation. Operating time is longer when compared with that of conventional cutters.

  19. Green piezoelectric for autonomous smart textile

    Science.gov (United States)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  20. Ciliae-based actuator with piezoelectric excitation

    Science.gov (United States)

    Pott, Peter P.; Carrasco, Alvaro; Schlaak, Helmut F.

    2012-06-01

    Small actuators based on the inverse piezoelectric effect are successfully deployed in commercial applications. Usually, ultrasonic motors are used. Based on resonance effects these motors provide a pronounced nonlinearity at low speeds and thus put high demands on the control algorithm. In contrast, piezoelectric stepping motors are mechanically complex and provide only low speeds. The contribution at hand describes a proposed design for a new piezoelectric motor based on cilia friction that can be manufactured at low costs. The cilia are made from uniaxial carbon-fibre reinforced plastics. The derived CFRP-brushes are pressed perpendicularly to the rotor surface to produce force or torque. First experiments prove the feasibility of the concept. A net pushing force of 500 mN is achieved.

  1. Piezoelectric energy harvesting computer controlled test bench.

    Science.gov (United States)

    Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  2. Charge Capacity of Piezoelectric Membrane Wings

    Science.gov (United States)

    Grybas, Matthew; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) have small wings often fabricated with flexible frames and membranes. These membranes flex and vibrate. Piezoelectric films have the ability to convert induced stress or strain into electrical energy. Thus, it is of interest to investigate if piezoelectric films can be used as a structural member of an MAV wing and generate both lift and energy through passive vibrations. Both a shaker test and a wind tunnel test have been conducted to characterize and assess energy production and aerodynamic characteristics including lift, drag and efficiency. The piezoelectric film has been successful as a lifting surface and produces a measurable charge. This work was supported by NSF REU Site Award 1358991.

  3. Piezoelectric energy harvesting computer controlled test bench

    Science.gov (United States)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  4. Energy Harvesting Based on a Novel Piezoelectric 0.7PbZn0.3Ti0.7O3-0.3Na2TiO3 Nanogenerator

    Directory of Open Access Journals (Sweden)

    Zainab Radeef

    2017-05-01

    Full Text Available Recently, piezoelectric materials have achieved remarkable attention for charging wireless sensor nodes. Among piezoelectric materials, non-ferroelectric materials are more cost effective because they can be prepared without a polarization process. In this study, a non-ferroelectric nanogenerator was manufactured from 0.7PbZn0.3Ti0.7O3-0.3Na2TiO3 (PZnT-NT. It was demonstrated that the increment of conductivity via adding the Na2TiO3 plays an essential role in increasing the permittivity of the non-ferroelectric nanogenerator and hence improved the generated power density. The dielectric measurements of this material demonstrated high conductivity that quenched the polarization phase. The performance of the device was studied experimentally over a cantilever test rig; the vibrating cantilever (0.4 ms−2 was excited by a motor operated at 30 Hz. The generated power successfully illuminated a light emitting diode (LED. The PZnT-NT nanogenerator produced a volume power density of 0.10 μw/mm3 and a surface power density of 10 μw/cm2. The performance of the proposed device with a size of (20 × 15 × 1 mm3 was higher in terms of power output than that of the commercial microfiber composite (MFC (80 × 57 × 0.335 mm3 and piezoelectric bimorph device (70 × 50 × 0.7 mm3. Compared to other existing ferroelectric and non-ferroelectric nanogenerators, the proposed device demonstrated great performance in harvesting the energy at low acceleration and in a low frequency environment

  5. Simulation Analysis of Effective Electromechanical Coupling Coefficients of Piezoelectric Energy Harvester Based on ANSYS%基于ANSYS的压电换能器有效机电耦合系数的仿真分析

    Institute of Scientific and Technical Information of China (English)

    魏胜

    2012-01-01

    The paper describes principles of bimorph cantilever beam and its effective electromechanical coupling coefficients (EMCC), develops finite element model of piezoelectric energy harvester based on ANSYS software with three different element types including Solid5 (piezoelectric), Solid45 (substrate) and Circu94 (resistor). By using harmonic simulation, short circuit and open circuit natural frequency are gained, and effective EMCC are deduced from them. The simulation result indicates that the effective EMCC of piezoelectric energy harvester is smaller than that of piezoelectric material itself, and is consistent with theoretical calculation. This method may evaluate the performance of PZT energy harvester effectively and provide theoretical guidance for subsequent experiments.%研究了双层压电悬臂梁的工作原理及其有效机电耦合系数,借助ANSYS软件并选用Solid5(压电材料),Solid45(中间金属层),Circu94(电阻)3种元素类型建立压电换能器的有限元模型,通过谐振仿真分别求出压电装置的短路和开路谐振频率,得到其有效机电耦合系数.仿真结果表明,压电装置的有效机电耦合系数要小于压电材料的耦合系数,且与理论计算结果基本一致,仿真方法可有效地评价压电换能器的工作性能,并为后续实验提供理论指导.

  6. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  7. Design considerations for piezoelectric polymer ultrasound transducers.

    Science.gov (United States)

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  8. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.

    Science.gov (United States)

    Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping

    2008-01-01

    This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times.

  9. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dongyu, Xu [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Xin, Cheng; Shifeng, Huang [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Banerjee, Sourav [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  10. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  11. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  12. Micromechanics-BEM Analysis for Piezoelectric Composites

    Institute of Scientific and Technical Information of China (English)

    QIN Qinghua

    2005-01-01

    The effective material properties of piezoelectric composites are predicted using micromechanics models of the composite structure combined with a boundary element method (BEM) solution of the governing equation. The composites consist of inclusion and matrix phases. The micromechanics method gives formulae for the overall material constants as functions of the concentration matrix, while the boundary element simulation gives numerical solutions of the boundary displacement and electric potential equations for inclusion or hole problems. Numerical results for a piezoelectric plate with circular inclusions are presented to illustrate applications of the proposed micromechanics-BEM formulation.

  13. A Resistivity Gradient Piezoelectric FGM Actuator

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A resistivity gradient actuator based on lead zirconate titanate ceramics was successfully developed and the bending deflections up to 140 μm were obtained. The actuator material was a matrix of PZT ceramic into which smooth gradient of piezoelectric activity was introduced. The application of an electric field then causes the actuator to bend due to differential strains induced by the piezoelectric effect. The resistivity gradient of the actuator was achieved by doping PZT with suitable donor and acceptor dopants. PZT powder was modified and synthesized by using two stage powder fabrication method. The actuator was fabricated by uniaxial pressing followed by isostatic pressing with two layers of different resistivities.

  14. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  15. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    Science.gov (United States)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  16. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  17. Modeling of a piezoelectric micro-scanner

    CERN Document Server

    Chaehoi, A; Cornez, D; Kirk, K

    2008-01-01

    Micro-scanners have been widely used in many optical applications. The micro-scanner presented in this paper uses multimorph-type bending actuators to tilt a square plate mirror. This paper presents a complete analytical model of the piezoelectric micro-scanner. This theoretical model based on strength of material equations calculates the force generated by the multimorphs on the mirror, the profile of the structure and the angular deflection of the mirror. The proposed model, used to optimize the design of the piezoelectric silicon micro-scanner, is intended for further HDL integration, allowing in this way system level simulation and optimization.

  18. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  19. Nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    Science.gov (United States)

    Wang, Zhong L. (Inventor); Wang, Xudong (Inventor); Song, Jinhui (Inventor); Zhou, Jun (Inventor); He, Jr-Hau (Inventor)

    2011-01-01

    A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.

  20. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output...... voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Electrical characteristics of the feedback loop are configured to set the excitation frequency of the self......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  1. The development of piezoelectric crystal gyroscopes in China

    Science.gov (United States)

    Chen, Feng-Yu; Qing, Rong-Kang

    The operation principles and basic characteristics of a newly-developed vibrating-beam piezoelectric crystal angular rate gyroscope are discussed along with the gyroscope applications. Several applications of piezoelectric gyroscopes are described, including its use as a telemetering sensor, attidude measuring device in automobiles, in geological exploraton drilling, and as a sensing element in ship and aircraft control systems. Specifications are presented for several gyroscopes, including those for two piezoelectric angular rate gyros with different applications (telemetering and control), a typical piezoelectric angular displacement gyro, and a piezoelectric inclinometer.

  2. TECHNICAL NOTE: Dielectric and piezoelectric properties of piezoelectric ceramic sulphoaluminate cement composites

    Science.gov (United States)

    Cheng, Xin; Huang, Shifeng; Chang, Jun; Lu, Lingchao; Liu, Futian; Ye, Zengmao; Wang, Shoude

    2005-10-01

    Using cement as the matrix of piezoelectric smart composites can solve the problem of mismatch of smart composites and concrete structure in civil engineering. 0 3 cement based piezoelectric composites were fabricated by a compression technique using PMN and sulphoaluminate cement as raw materials. The influence of the PMN content on the dielectric and piezoelectric properties of the composites was investigated. The temperature dependence of the dielectric properties of the composites was discussed in detail. The results indicate that the dielectric constants are almost constant in the temperature range from -30 to 50 °C, which shows excellent dielectric temperature stability. With increasing PMN content, the piezoelectric and dielectric properties of the composites increase. The theoretical values of the dielectric constants show good agreement with the experimental values for the composites.

  3. Fundamentals of piezoelectric sensorics mechanical, dielectric, and thermodynamical properties of piezoelectric materials

    CERN Document Server

    Tichý, Jan; Kittinger, Erwin; Prívratská, Jana; Privatska, Jana; Janovec, Vaclav

    2010-01-01

    This book presents the physics of piezoleletric sensors in a straight-forward and easy-to-grasp way, from the fundamentals of phenomenological crystal physics through more complex concepts, to its explanation of several important piezoelectric materials.

  4. A Novel Approach to a Piezoelectric Sensing Element

    Directory of Open Access Journals (Sweden)

    M. Martinez

    2010-01-01

    Full Text Available Piezoelectric materials have commonly been used in pressure and stress sensors; however, many designs consist of thin plate structures that produce small voltage signals when they are compressed or extended under a pressure field. This study used finite element methods to design a novel piezoelectric pressure sensor with a C-shaped piezoelectric element and determine if the voltage signal obtained during hydrostatic pressure application was enhanced compared to a standard thin plate piezoelectric element. The results of this study demonstrated how small deformations of this C-shaped sensor produced a large electrical signal output. It was also shown that the location of the electrodes for this sensor needs to be carefully chosen and that the electric potential distribution varies depending on the poling of the piezoelectric element. This study indicated that the utilization of piezoelectric materials of different shapes and geometries embedded in a polymer matrix for sensing applications has several advantages over thin plate solid piezoelectric structures.

  5. Bone-inducing Activity of Biological Piezoelectric Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium riobate (LNK) ceramic of which the ratio of HA/ LNK was 1: 10 and 5:5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7,14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF,the thickest apatite crystal on the negatively charged surfaces increased to 3.337μm. The novel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.

  6. Modeling of composite piezoelectric structures with the finite volume method.

    Science.gov (United States)

    Bolborici, Valentin; Dawson, Francis P; Pugh, Mary C

    2012-01-01

    Piezoelectric devices, such as piezoelectric traveling- wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, at least one of which is a piezoelectric transducer. Piezoelectric structures have mainly been numerically modeled using the finite element method. An alternative approach based on the finite volume method offers the following advantages: 1) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits; and 2) phenomena occurring at boundaries can be treated exactly. This paper presents a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures modeled with the finite volume method. The paper concludes with a modeling example of a unimorph structure.

  7. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  8. Piezoelectric multilayer actuator life test.

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  9. Fabrication and characterization of a piezoelectric accelerometer

    DEFF Research Database (Denmark)

    Reus, Roger De; Gulløv, Jens; Scheeper, Patrick

    1999-01-01

    Zinc oxide based piezoelectric accelerometers were fabricated by bulk micromachining. A high yield was obtained in a relatively simple process sequence. For two electrode configurations a direction selectivity better than 100 was obtained for acceleration in the vertical direction and a selectivity...

  10. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  11. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Rotor damage detection by using piezoelectric impedance

    Science.gov (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  13. Piezoelectric actuators control applications of smart materials

    CERN Document Server

    Choi, Seung-Bok

    2010-01-01

    Newer classes of smart materials are beginning to display the capacity for self-repair, self-diagnosis, self-multiplication, and self-degradation. While there are other candidates, piezoelectric actuators and sensors are proving to be the best choice. This title details the authors' research and development in this area.

  14. Piezoelectric Nanoparticle-Polymer Composite Materials

    Science.gov (United States)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  15. Power performance of circular piezoelectric diaphragm generators

    Institute of Scientific and Technical Information of China (English)

    Kehong TANG; Junwu KAN; Taijiang PENG; Zhigang YANG; Guangming CHENG

    2008-01-01

    Energy generation performance of a piezo-electric generator depends mainly on several elements such as the structural style, boundary conditions, geo-metry parameters, materials, vibration-source frequency, and external load. To obtain the optimal energy-harvest-ing device, the Raleigh method is used to establish the analysis model of circular piezoelectric composite dia-phragms. Simply supported and clamped boundary con-ditions were considered. The relationships between the output power and the structural parameters of piezo-electric composite diaphragms, and the external load res-istance and frequency were shown. Given the correlative material parameters and boundary conditions, the output power, using structural parameters, external load, or vibrating frequency as variables, can be calculated. Simulation results show that there are optimal structural parameters and load for a composite diaphragm to achieve the maximum output power. A piezoelectric dia-phragm generator with given dimensions tends to achieve higher output power under clamped boundary conditions than that under simply supported boundary conditions.

  16. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits, modul...

  17. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... interface for sensors including mixed-mode communication protocols and transducer electronic data sheet (TEDS)....

  18. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  19. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  20. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  1. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  2. Structure Construction and Position Signals Analysis of the Single-Axis Piezoelectric Actuated Stage by using a novel Piezoelectric Actuator

    Directory of Open Access Journals (Sweden)

    Shann-Chyi Mou

    2013-09-01

    Full Text Available In this study, a novel piezoelectric actuator structure -4-9-9-14 piezoelectric actuator is constructed and it is made of piezoelectric buzzer to drive a piezoelectric actuated stage. The 4-9-9-14 piezoelectric actuator offers a better balanced capability of forward rotation and reverse rotation than the conventional edge-driving piezoelectric actuator. According to the rotational speed experiment, the CW/CCW ratio of the 4-9-9-14 piezoelectric actuator is probably 1: 0.8. The movement of the piezoelectric actuated stage is read and analyzed by means of data acquisition card and LabVIEW software operating in conjunction with a linear encoder. In a natural environment, plenty of noise interferes with linear encoder signals and results in erroneous addition performed by a counter. Therefore, the LabVIEW program set forth the means of filtering and the method for retrieving a correct position signal. The piezoelectric actuated stage by using 4-9-9-14 piezoelectric actuator can be expanded and applied easily to a longer distance moved stage.

  3. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe;

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...

  4. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe;

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor ...

  5. Interaction between a piezoelectric screw dislocation and a finite crack with surface piezoelectricity

    Science.gov (United States)

    Wang, Xu; Xu, Yang

    2015-12-01

    We analytically investigate the contribution of surface piezoelectricity to the interaction between a piezoelectric screw dislocation and a finite crack in a hexagonal piezoelectric solid. The piezoelectric screw dislocation suffers jumps in the displacement and in the electric potential across the slip plane, and meanwhile it is subjected to a line force and a line charge at its core. The original boundary value problem is reduced to two sets of coupled first-order Cauchy singular integro-differential equations by considering a distribution of line dislocations, electric-potential-dislocations, line forces and line charges on the crack. By using a diagonalization method, the two sets of equations are decoupled into four independent singular integro-differential equations, each of which can be numerically solved by means of the collocation method. Our analysis reveals that in general the stresses, strains, electric displacements and electric fields exhibit both the weak logarithmic and the strong square root singularities at the two crack tips. The image force acting on the piezoelectric screw dislocation due to its interaction with the finite crack is calculated.

  6. The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent?

    CERN Document Server

    Kisi, E H; Forrester, J S; Howard, C J

    2003-01-01

    Lead zinc niobate-lead titanate (PZN-PT) single crystals show very large piezoelectric strains for electric fields applied along the unit cell edges e.g. [001] sub R. It has been widely reported that this effect is caused by an electric field induced phase transition from rhombohedral (R3m) to monoclinic (Cm or Pm) symmetry in an essentially continuous manner. Group theoretical analysis using the computer program ISOTROPY indicates phase transitions between R3m and Cm (or Pm) must be discontinuous under Landau theory. An analysis of the symmetry of a strained unit cell in R3m and a simple expansion of the piezoelectric strain equation indicate that the piezoelectric distortion due to an electric field along a cell edge in rhombohedral perovskite-based ferroelectrics is intrinsically monoclinic (Cm), even for infinitesimal electric fields. PZN-PT crystals have up to nine times the elastic compliance of other piezoelectric perovskites and it might be expected that the piezoelectric strains are also very large. ...

  7. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    Science.gov (United States)

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  8. Piezoelectric effects and electromechanical theories at the nanoscale.

    Science.gov (United States)

    Zhang, Jin; Wang, Chengyuan; Bowen, Chris

    2014-11-21

    Considerable effort has been made to study the piezoelectric effect on the nanoscale, which serves as a physical basis for a wide range of smart nanodevices and nanoelectronics. This paper reviews recent progress in the research on the piezoelectric properties and electromechanical effects of piezoelectric nanomaterials (PNs). The review begins with an introduction to existing PNs which exhibit a diverse range of atomic structures and configurations. The nanoscale measurement of their effective piezoelectric coefficients (EPCs) is summarised with an emphasis on the major factors determining the piezoelectric properties of PNs. The paper concludes with a review of the electromechanical theories that are able to capture the small-scale effects on PNs, which include the surface piezoelectricity, flexoelectricity and Eringen's nonlocal theory. In contrast to the classical theories, two types of EPCs are defined, which were found to be size-dependent and loading condition-selective.

  9. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  10. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  11. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  12. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    OpenAIRE

    Zhou, Qifa; Lau, Sienting; WU, DAWEI; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the curr...

  13. Fronts of Stress Wave in Anisotropic Piezoelectric Media

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣; 高凌天

    2004-01-01

    The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.

  14. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    Science.gov (United States)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  15. Natural frequency of beams with embedded piezoelectric sensors and actuators

    OpenAIRE

    Della, Christian N.; Shu, Dongwei

    2007-01-01

    A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoel...

  16. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    OpenAIRE

    Yue Wu; Jingshi Dong; Xinbo Li; Zhigang Yang; Qingping Liu

    2015-01-01

    Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used t...

  17. Piezoelectric Response of Ferroelectric Ceramics Under Mechanical Stress

    Science.gov (United States)

    2015-09-17

    and piezoelectric [eg] moduli that are provided by the user for the particular material are transformed into Voight- Mandel representations [C̃g] and...problem coordinates elastic [C̃G], piezoelectric [ẽG], and permittivity [K G] moduli, using the Voight- Mandel orthogonal rotation matrices [51]. The...final step of the setup phase is transforming the global Voight- Mandel representations of the elastic [C̃G], and piezoelectric [ẽG] moduli into the

  18. Towards a two dimensional model of surface piezoelectricity

    OpenAIRE

    Monge Víllora, Oscar

    2016-01-01

    We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...

  19. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  20. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. Development of a piezoelectric bone substitute material

    CERN Document Server

    Al-Bader, Y A

    2000-01-01

    The thesis deals with the preparation and testing of ceramic compositions to be used as bone substitute. The proposed composition consisted of calcium enriched calcium phosphate, kaolin and barium titanate in different ratios. The homogeneous powder mixture was dry pressed at different pressures and fired at temperatures up to 1350 degC for different soaking times. The physical properties of the fired compacts that were tested are bulk density and porosity. These were determined as function of pressing pressure, firing temperature and soaking time for different compositions. The mechanical properties investigated were the ultimate compressive strength and Young's modulus, which were determined for different compositions and forming pressures. The electrical properties investigated were D.C. characteristics (resistivity) and A.C. characteristics (A.C. resistivity, dielectric constant, dielectric loss and loss tangent). The piezoelectric behaviour of the fired compacts was investigated and the piezoelectric coe...

  2. Flexible energy harvesting from hard piezoelectric beams

    Science.gov (United States)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  3. Energy Harvesting Using PVDF Piezoelectric Nanofabric

    Science.gov (United States)

    Shafii, Chakameh Shafii

    Energy harvesting using piezoelectric nanomaterial provides an opportunity for advancement towards self-powered electronics. The fabrication complexities and limited power output of these nano/micro generators have hindered these advancements thus far. This thesis presents a fabrication technique with electrospinning using a grounded cylinder as the collector. This method addresses the difficulties with the production and scalability of the nanogenerators. The non-aligned nanofibers are woven into a textile form onto the cylindrical drum that can be easily removed. The electrical poling and mechanical stretching induced by the electric field and the drum rotation increase the concentration of the piezoelectric beta phase in the PVDF nanofabric. The nanofabric is placed between two layers of polyethylene terephthalate (PET) that have interdigitated electrodes painted on them with silver paint. Applying continuous load onto the flexible PVDF nanofabric at 35Hz produces a peak voltage of 320 mV and maximum power of 2200 pW/(cm2) .

  4. Power Consideration in a Piezoelectric Generator

    Directory of Open Access Journals (Sweden)

    Rémi Tardiveau

    2013-01-01

    Full Text Available A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.

  5. Electro-hydrodynamic synchronization of piezoelectric flags

    CERN Document Server

    Xia, Yifan; Michelin, Sebastien

    2016-01-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  6. Topological Insulator Realized with Piezoelectric Resonators

    Science.gov (United States)

    McHugh, S.

    2016-07-01

    We propose a realization of a two-dimensional topological insulator using an array of microwave piezoelectric resonators. The resonators are coupled electrically, but acoustically isolated. The inter-resonator electromagnetic coupling required to reproduce an effective mechanical topological insulator is found explicitly. Both the acoustic and electric response show the essential features of topological insulator, e.g., helical edge states. The helical edge states may be useful for engineering nonreciprocal electronic devices like isolators and circulators. These components do not often appear in the radios of modern mobile phones since they traditionally require bulky magnetic material. However, a nonreciprocal device based on piezoelectric resonators may meet the demands of phone manufacturers due to their small size, high-linearity, and ease of fabrication.

  7. AN EXACT ANALYSIS OF FORCED THICKNESS-TWIST VIBRATIONS OF MULTI-LAYERED PIEZOELECTRIC PLATES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equations of linear piezoelectricity. The solution is useful to the understanding and design of composite piezoelectric devices. A piezoelectric resonator, a piezoelectric transformer, and a piezoelectric generator are analyzed as examples.

  8. Characterization of Piezoelectric Energy Harvesting MEMS

    Science.gov (United States)

    2015-12-01

    INTENTIONALLY LEFT BLANK xiii LIST OF ACRONYMS AND ABBREVIATIONS AC alternating current AlN aluminum nitride APS acoustic power systems DC direct current...pavement, roads, and railways [5]. Piezoelectric energy harvesters can be used to convert ambient vibrations into electrical energy for storage or as a... acoustic and vibrational actuation brought forward proof of concept [8]. To further improve finite element model accuracy, Householder [8] determined

  9. Challenges and New Trends for Piezoelectric Actuators

    Science.gov (United States)

    Sehirlioglu, Alp

    2008-01-01

    BiScO3-PbTiO3 ceramics with TC greater than 400 C has been successfully processed. Despite the increase in TC, excess Pb addition increases both the bulk conductivity and the grain boundary contribution to conductivity at elevated temperatures. Conductivity at elevated temperatures, that limits the operating temperature for actuators, has been greatly reduced by excess Bi additions. Excess Bi doping improves poling conditions resulting in enhanced piezoelectric coefficient (d(sub 33) = 408 pC/N).

  10. Piezoelectric technology for pediatric autologous cranioplasty.

    Science.gov (United States)

    Phillips, Benjamin Z; Taylor, Helena O; Klinge, Petra M; Sullivan, Stephen R

    2014-05-01

    Objective : Pediatric patients with skull defects larger than available sources for splitting bicortical bone have limited options for autogenous cortical bone cranioplasty. Piezoelectric instruments allow donor bone to be chosen based on the best possible contour rather than the presence of bicortical bone. We present the use of piezoelectric technology to split thin unicortical calvarium for autogenous cranioplasty in a series of pediatric patients. Design : Retrospective review of a series of pediatric patients requiring reconstruction for skull defects. Patients/Intervention : Our series included a 2-year-old with a parietal skull tumor and resultant 3 × 3-cm defect after craniectomy, a 2-year-old with a 3 × 3-cm defect after excision of an occipital skull tumor, a 10-year-old with a 4 × 5-cm skull defect after excision of an occipital skull tumor, and a 13-year-old who suffered a gunshot to the forehead with a 12 × 7-cm frontal skull defect. We used a piezoelectric saw to precisely and safely split unicortical and bicortical cranium that ranged from 1 to 3 mm in thickness. The inner layer was used to reconstruct the donor site; whereas, the outer layer was used for the craniectomy defect. Conclusion : The piezoelectric saw allows unicortical bone to be split and used for cortical bone cranioplasty. This technology allows choice of donor site based on the best contour rather than the presence of bicortical bone. This technique expands the possibilities of autogenous cranioplasty and enables primary repair of cranial defects that would otherwise require secondary cranioplasty with remote donor sites, foreign materials, or unstable particulate cranioplasty.

  11. Growth of piezoelectric crystals by Czochralski method

    OpenAIRE

    Cochet-Muchy, D.

    1994-01-01

    The Czochralski method is one of the most widely used industrial technique to grow single-crystals, since it applies to a very large range of compounds, such as semiconductors, oxides, fluorides, etc... Many exhibit piezoelectric properties and some of them find applications in Surface-Acoustic-Waves or Bulk-Acoustic-Waves devices. That explains the large amount of work made on the development of the corresponding growth processes and the high levels of production achieved in the world today....

  12. Fundamental solutions for transversely isotropic piezoelectric media

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 梁剑; 陈波

    1996-01-01

    A general solution for the.equilibrium equations of pieajelectric media under body forces is obtained. With regard to the transversely isotropic piezoelectric material, closed forms for the displacements and electric potential function for an infinite solid loaded with point forces and point charge are then obtained by using the general solution together with potential theory and constructing a kind of harmonic functions. Thus, the fundamental solutions which are utilizable in boundary element method are obtained.

  13. Energy harvesting through piezoelectricity - technology foresight

    DEFF Research Database (Denmark)

    Laumann, Felix; Sørensen, Mette Møller; Hansen, Tina Mølholm

    2017-01-01

    Energy harvesting is important in designing low power intelligent networks, such as Internet-of-Things. Energy harvesting can ensure wireless and lossless energy supply to energy dependent technological solutions with independence of infrastructure. Electrical energy created through piezoelectric......Energy harvesting is important in designing low power intelligent networks, such as Internet-of-Things. Energy harvesting can ensure wireless and lossless energy supply to energy dependent technological solutions with independence of infrastructure. Electrical energy created through...

  14. Modeling piezoelectric crystals on the Intel delta

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, T.; Jones, M.; Plassmann, P.; Tang, M. [Argonne National Lab., IL (United States)

    1993-12-31

    Piezoelectric crystals are an important component in electronic appliances such as cellular phones and pagers and a critical component of almost all resonant circuits. We are particularly interested in quartz strip resonators mounted onto a surface. These crystals must resonate in a particular vibrational manding design goal, engineers would like to be able to accurately model the behavior of the crystals in a timely fashion from their disktop workstation.

  15. Model-Based Torque Control of Piezoelectric Ultrasonic Motors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric ultrasonic motors (PUMs) are ideal actuators for a variety of spaced-based robotics applications. These motors replace conventional drive systems...

  16. Finite element modeling and feedback control of piezoelectric smart structures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the general formula derived with a smart beam structure bonded with piezoelectric material using the piezoelectricity theory, elastic mechanism and Hamilton principle for eleetromechanically coupled piezoelectric fi nite element and dynamic equations, the second order dynamic model built, and the expression of state space, and the analysis of conventional speed and position feedback and the design of optimum feedback controller for output, the fi nite element models built for a piezoelectric cantilever beam, and the feedback controller designed eventually, and concludes with simulation results that the vibration suppression obtained is very satisfactory and the algorithms proposed are very useful.

  17. Electrospinning of continuous piezoelectric yarns for composite application

    Science.gov (United States)

    Lagoudas, Natasha C.; Ounaies, Zoubeida

    2008-03-01

    The focus of this research is to electrospin continuous yarns of piezoelectric nanofibers. Incorporating piezoelectric polymer fibers in traditional composites can add sensing and actuation capabilities, which creates a wide array of potential applications. To process nanofibers with piezoelectric properties, we are pursuing the electrospinning of poly (vinylidene fluoride) (PVDF) in DMAc. A method of electrospinning on water is used to form the continuous fibers, which are then tested using DSC, XRD, and microscopy. Through this technique, we see evidence that the non-polar α-phase of PVDF is converted to the polar β-phase, which is responsible for its piezoelectric behavior.

  18. Micromachined Piezoelectric Actuators for Cryogenic Adaptive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes micromachined single crystal piezoelectric actuator arrays to enable ultra-large stroke, high precision shape control for large aperture,...

  19. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  20. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  1. Preparation and Properties of Orthogonal Piezoelectric Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Lu Ying; Zhang Xingguo; Shen Yi; Chen Chun

    2004-01-01

    . PZT piezoelectric ceramic with La2O3, SrCO3, BaO and Sb2O5 was prepared. It has high value of the piezoelectric strain constant d33 ( -681 PC/N) and high value of-d33/d31 (2.65). Orthogonal piezoelectric composite materials was designed and prepared by PZT, DAD- 40 electric conductive adhesive and E51 epoxy resin. The OPCM shows obvious orthogonal anisotropy. The matching property of the interface between piezoelectric ceramic and polymer of OPCM relies on the defects of interface. The proper conductive mid-layer could improve the matching property of the interface.

  2. Effect of garment design on piezoelectricity harvesting from joint movement

    Science.gov (United States)

    Yang, Jin-Hee; Cho, Hyun-Seung; Park, Seon-Hyung; Song, Seung-Hwan; Yun, Kwang-Seok; Lee, Joo Hyeon

    2016-03-01

    The harvesting of piezoelectricity through the human body involves the conversion of mechanical energy, mostly generated by the repeated movements of the body, to electrical energy, irrespective of the time and location. In this research, it was expected that the garment design would play an important role in increasing the efficiency of piezoelectricity scavenged in a garment because the mechanical deformation imposed on the energy harvester could increase through an optimal design configuration for the garment parts supporting a piezoelectricity harvester. With this expectation, this research aimed to analyze the effect of the clothing factors, and that of human factors on the efficiency of piezoelectricity harvesting through clothing in joint movements. These analyses resulted in that the efficiency of the piezoelectricity harvesting was affected from both two clothing factors, tightness level depending upon the property of the textile material and design configuration of the garment part supporting the piezoelectricity harvesting. Among the three proposed designs of the garment part supporting the piezoelectricity harvesting, ‘reinforced 3D module design,’ which maximized the value of radius in the piezoelectricity harvester, showed the highest efficiency across all areas of the joints in the human body. The two human factors, frequency of movement and body part, affected the efficiency of the piezoelectricity harvesting as well.

  3. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  4. Piezoelectric Structural Microensor Technology for Extreme Environments (> 1800 F) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature piezoelectric crystal (HTPC) sensors are desired for future propulsion component structure health monitoring, operating parameters optimization,...

  5. Voltage generation of piezoelectric cantilevers by laser heating.

    Science.gov (United States)

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-15

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

  6. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  7. Piezoelectrical Structural Sensor Technology for Extreme Environments (> 1800 F) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature piezoelectric crystal (HTP) sensors are desired for future propulsion component structure health monitoring, operating parameters optimization,...

  8. Energy harvesting from low frequency applications using piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  9. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  10. A Capacitance-Based Methodology for the Estimation of Piezoelectric Coefficients of Poled Piezoelectric Materials

    KAUST Repository

    Al Ahmad, Mahmoud

    2010-10-04

    A methodology is proposed to estimate the piezoelectric coefficients of bulk piezoelectric materials using simple capacitance measurements. The extracted values of d33 and d31 from the capacitance measurements were 506 pC/N and 247 pC/N, respectively. The d33 value is in agreement with that obtained from the Berlincourt method, which gave a d33 value of 500 pC/N. In addition, the d31 value is in agreement with the value obtained from the optical method, which gave a d 31 value of 223 pC/V. These results suggest that the proposed method is a viable way to quickly estimate piezoelectric coefficients of bulk unclamped samples. © 2010 The Electrochemical Society.

  11. Precise Measurement of Losses in Piezoelectric Transducer and Its Application to Evaluation of Piezoelectric Transformer Efficiency

    Science.gov (United States)

    Endow, Tsutomu; Hirose, Seiji; Kanno, Tomoyuki

    2004-05-01

    Mechanical and dielectric losses were measured by the measurement method proposed in this paper in a piezoelectric transducer with input and output terminals. These losses must be considered in designing piezoelectric transformers used as power sources. In the method proposed here, the losses can be obtained using the experimental results of resonance angular frequency, quality factor and the resistive component of input impedance when the output terminals are short-circuited and opened, and using the measured phase angle difference between current and voltage when the output terminals are opened. In the method, a resonance frequency tracking circuit is utilized. Hence, there is an advantage that the measurement can be performed easily and in a short time. The results obtained by this method have also been used in the evaluation of the efficiency of piezoelectric transformers.

  12. Dissolvable microneedle fabrication using piezoelectric dispensing technology.

    Science.gov (United States)

    Allen, Evin A; O'Mahony, Conor; Cronin, Michael; O'Mahony, Thomas; Moore, Anne C; Crean, Abina M

    2016-03-16

    Dissolvable microneedle (DMN) patches are novel dosage forms for the percutaneous delivery of vaccines. DMN are routinely fabricated by dispensing liquid formulations into microneedle-shaped moulds. The liquid formulation within the mould is then dried to create dissolvable vaccine-loaded microneedles. The precision of the dispensing process is critical to the control of formulation volume loaded into each dissolvable microneedle structure. The dispensing process employed must maintain vaccine integrity. Wetting of mould surfaces by the dispensed formulation is also an important consideration for the fabrication of sharp-tipped DMN. Sharp-tipped DMN are essential for ease of percutaneous administration. In this paper, we demonstrate the ability of a piezoelectric dispensing system to dispense picolitre formulation volumes into PDMS moulds enabling the fabrication of bilayer DMN. The influence of formulation components (trehalose and polyvinyl alcohol (PVA) content) and piezoelectric actuation parameters (voltage, frequency and back pressure) on drop formation is described. The biological integrity of a seasonal influenza vaccine following dispensing was investigated and maintained voltage settings of 30 V but undermined at higher settings, 50 and 80 V. The results demonstrate the capability of piezoelectric dispensing technology to precisely fabricate bilayer DMN. They also highlight the importance of identifying formulation and actuation parameters to ensure controlled droplet formulation and vaccine stabilisation.

  13. Fpga-based control of piezoelectric actuators

    Directory of Open Access Journals (Sweden)

    Juhász László

    2011-01-01

    Full Text Available In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 μm/s up to 5 cm/s are given.

  14. Michelson interferometer for the piezoelectric coefficient measurements

    Directory of Open Access Journals (Sweden)

    Muensit, S.

    2002-01-01

    Full Text Available The present work has described the Michelson interferometer which is capable of measuring the vibrational amplitudes in a sub-angstrom range. In the system, a He-Ne laser is used as a monochromatic source of light and a photodiode as a detector to convert an optical signal into an electronic one. Lock-in detections of the electronic signals are applied to relate the vibrational amplitudes to the wavelength of the laser beam. A feedback circuit is introduced in order to stabilize the sensitivity of the interferometric system. With this setup, a mechanical displacement referred to a change in thickness of a vibrating sample can be measured and the corresponding piezoelectric coefficient, i.e. the ratio of the change in sample thickness to the applied voltage, evaluated. In order to check the performance of the system, measurements on lithium niobate (LiNbO3 have been made and its piezoelectric coefficient d33 was confirmed with 2% accuracy. The piezoelectric coefficient d33 for lead zirconate titanate (PZT ceramics was, therefore, determined by this interferometer and found to be 270 pm/V.

  15. Modeling of functionally graded piezoelectric ultrasonic transducers.

    Science.gov (United States)

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  16. Geometrically nonlinear behavior of piezoelectric laminated plates

    Science.gov (United States)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  17. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  18. Analysis of a piezoelectric screw dislocation inside an elliptical inhomogeneity with confocal rigid line in piezoelectric material

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper deals with the electro-elastic coupling interaction between a piezoelectric screw dislocation which is located inside the elliptical inhomogeneity and an electrically conductive confocal rigid line under remote anti-plane shear stresses and in-plane electrical loads in piezoelectric composite material. The analytical-functions of the complex potentials, stress fields and the image force acting on the piezoelectric screw dislocation are obtained based on the principle of conformal mapping, the met...

  19. A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core

    Institute of Scientific and Technical Information of China (English)

    蒋纯志; 谢超; 刘又文

    2011-01-01

    The electro-elastic interaction between a piezoelectric screw dislocation and an elliptical piezoelectric inhomogeneity, which contains an electrically conductive confocal elliptical rigid core under remote anti-plane shear stresses and in-plane electrical load is dealt with. The anaJytical solutions to the elastic field and the electric field, the interracial stress fields of inhomogeneity and matrix under longitudinal shear and the image force acting on the dislocation are derived by means of complex method. The effect of material properties and geometric configurations of the rigid core on interracial stresses generated by a remote uniform load, rigid core and material electroelastic properties on the image force is discussed.

  20. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  1. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Science.gov (United States)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  2. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  3. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  4. Piezoelectric characteristics of PZT thin films on polymer substrate

    Science.gov (United States)

    Kang, Min-Gyu; Do, Younh-Ho; Oh, Seung-Min; Rahayu, Rheza; Kim, Yiyein; Kang, Chong-Yun; Nahm, Sahn; Yoon, Seok-Jin

    2012-02-01

    The goal of piezoelectric energy harvesting is to improve the power efficiency of devices. One of the approaches for the improvement of power efficiency is to apply the large strain on the piezoelectric materials and then many scientists approached using thin films or nano-structured piezoelectric materials to obtain flexibility. However, the conventional thin film processes available for the fabrication of piezoelectric materials as PbZr0.52Ti0.48O3 (PZT) are not compatible with flexible electronics because they require high processing temperatures (>700^oC) to obtain piezoelectricity. Excimer laser annealing (ELA) is attractive heat process for the low-temperature crystallization, because of its material selectivity and short heating time. In this study, the amorphous PZT thin films were deposited on polymer substrate by rf-sputtering. To crystallize the amorphous films, the ELA was carried out with various conditions as function of the applied laser energy density, the number of pulse, and the repetition rate. To evaluate the piezoelectric characteristics, piezoelectric force microscopy (PFM) and electrometer are used. As a result, we obtained the crystallized PZT thin film on flexible substrate and obtained flexible piezoelectric energy harvester.

  5. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...

  6. Magnetostrictive-piezoelectric magnetic sensor with current excitation

    CERN Document Server

    Prieto, J L; López, E; Sanchez, M C; Sanchez, P

    2000-01-01

    A new working configuration for magnetostrictive-piezoelectric magnetic sensors is presented. In this configuration, the excitation is caused using an electrical current flowing through the ferromagnetic sample and the induced signal is sensed in the piezoelectric support as an electrical voltage. This new idea allows a magnetic field detection without any coil and opens a possibility for a future miniaturisation of the sensor.

  7. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  8. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    Science.gov (United States)

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  9. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  10. Switchable static friction of piezoelectric composite-silicon wafer contacts

    NARCIS (Netherlands)

    Ende, D.A. van den; Fischer, H.R.; Groen, W.A.; Zwaag, S. van der

    2013-01-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and

  11. Switchable static friction of piezoelectric composite—silicon wafer contacts

    NARCIS (Netherlands)

    Van den Ende, D.A.; Fischer, H.R.; Groen, W.A.; Van der Zwaag, S.

    2013-01-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and

  12. Acoustics of the piezo-electric pressure probe

    Science.gov (United States)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  13. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  14. Advances in Piezoelectric Systems: An Application-Based Approach

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel

    . First, the capacitive behavior is studied, with the Piezoelectric Actuator Drive motor as a direct application. At low frequencies, piezoelectric devices are ideal as micro-and nanoscale positioning actuators but they are plagued by high levels of hysteretic nonlinearities. A model is developed...

  15. Systematic modeling for free stators of rotary - Piezoelectric ultrasonic motors

    DEFF Research Database (Denmark)

    Mojallali, Hamed; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    An equivalent circuit model with complex elements is presented in this paper to describe the free stator model of traveling wave piezoelectric motors. The mechanical, dielectric and piezoelectric losses associated with the vibrator are considered by introducing the imaginary part to the equivalent...

  16. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    Science.gov (United States)

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-06-07

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential.

  17. Tonpilz Piezoelectric Transducer with a Bending Piezoelectric Disk on The Radiation Surface

    Science.gov (United States)

    Yamamoto, Mitsuru; Shiba, Hiroshi; Fujii, Taro; Hama, Yoshinori; Hoshino, Takamichi; Inoue, Takeshi

    2003-05-01

    In recent years, it has become necessary to use wide-band signals in various kinds of signal processing and communication technology fields. One of these is the field of underwater acoustic technology, and therefore wide-band transducers are needed in this field. To address this need, we developed a Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface of the front mass. This transducer was designed by providing a bending piezoelectric disk on the radiation surface of the front mass of a conventional Tonpilz piezoelectric transducer to enable it to generate in two resonance modes: the longitudinal vibration resonance mode and the bending vibration resonance mode of the bending disk. Coupling these two resonance modes makes it possible to achieve low-frequency transmission, and wide-band signals can be attained by adjusting the phase in the two modes. We obtained the optimum design dimensions of the transducer through analysis using the finite element method (FEM), and constructed a prototype based on the analysis. Experiments verified that the measured results for the prototype correspond well to the simulation results and that the bandwidth can be widened without changing the external size of the conventional transducer.

  18. Piezoelectric and electromechanical properties with textured NKLNT lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Soo; Lee, Sung-Chan; Kim, Sin-Woong; Jeong, Soon-Jong; Kim, In-Sung; Song, Jae-Sung [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2012-09-15

    Crystal-oriented 1-mol% Li{sub 2}O-excess (Na{sub 0.51}K{sub 0.47}Li{sub 0.02})(Nb{sub 0.8}Ta{sub 0.2})O{sub 3} (NKLNT) was manufactured from variously-sized NaNbO{sub 3} (NN) templates via reactive template grain growth. The effect of NN template size was investigated in regard to the degree of orientation and the piezoelectric properties of NKLNT. A planar NN template was prepared via the topochemical microcrystal conversion method, and its size was controlled by adding excess Na{sub 2}CO{sub 3} to Bi{sub 2.5}Na{sub 3.5}Nb{sub 5}O{sub 18} (BNN) precursor. The NN template size increased with the amount of Na{sub 2}CO{sub 3} that was added to the BNN. The degree of orientation was high in tape-casted NKLNT, and its piezoelectric properties were considerably improved. The piezoelectric properties of oriented NKLNT varied with the NN template size, which was not exhibited in a non-oriented state, which state is related to the change in the degree of orientation. The results show that the template size has an effect on the degree of orientation and on the piezoelectric properties of oriented NKLNT.

  19. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.;

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...... exhibited by piezoelectric ceramics causes losses. Therefore, this paper presents a straightforward method to measure piezoelectric stack actuator equiv- alent parameters that includes nonlinearities. By folding the nonlinearities into a newly-defined cou- pling coefficient, the inherent hysteretic behavior...... of piezoelectric stack actuators can be greatly reduced through precompensation. Experimental results show a fitting accuracy of 98.8 % between the model and measurements and a peak absolute error reduction by a factor of 10 compared to the manufacturer- provided parameter. This method improves both the static...

  20. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  1. WAVE LOCALIZATION IN RANDOMLY DISORDERED PERIODIC PIEZOELECTRIC RODS

    Institute of Scientific and Technical Information of China (English)

    Li Fengming; Wang Yuesheng; Chen Ali

    2006-01-01

    The wave propagation in periodic and disordered periodic piezoelectric rods is studied in this paper. The transfer matrix between two consecutive unit cells is obtained according to the continuity conditions. The electromechanical coupling of piezoelectric materials is considered.According to the theory of matrix eigenvalues, the frequency bands in periodic structures are studied. Moreover, by introducing disorder in both the dimensionless length and elastic constants of the piezoelectric ceramics, the wave localization in disordered periodic structures is also studied by using the matrix eigenvalue method and Lyapunov exponent method. It is found that tuned periodic structures have the frequency passbands and stopbands and localization phenomenon can occur in mistuned periodic structures. Furthermore, owing to the effect of piezoelectricity, the frequency regions for waves that cannot propagate through the structures are slightly increased with the increase of the piezoelectric constant.

  2. Human-computer interface glove using flexible piezoelectric sensors

    Science.gov (United States)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  3. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  4. Piezoelectricity in planar boron nitride via a geometric phase

    Science.gov (United States)

    Droth, Matthias; Burkard, Guido; Pereira, Vitor M.

    2016-08-01

    Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of the piezoelectric effect previously obtained ab initio.

  5. Design and Fabrication of the Large Thrust Force Piezoelectric Actuator

    Directory of Open Access Journals (Sweden)

    Shyang-Jye Chang

    2013-01-01

    Full Text Available This paper presents a novel piezoelectric actuator containing double pushers. By using finite element analysis software, this study simulated the vibration mode and amplitude of piezoelectric actuators. The Taguchi method was used to design the parameters of piezoelectric actuators including length, width, height, and electrodes setting. This paper also presents a discussion regarding the influence that the design parameters had on the actuator amplitudes. Based on optimal design parameters, a novel piezoelectric actuator containing double pushers is produced and some thrust tests are also carried out. From the experiment results, the piezoelectric actuator containing double pushers can provide a greater thrust force than that of traditional actuators containing a single pusher as the preload is greater. Comparing with the traditional actuators, the thrust force of new actuator can be increased by 48% with the double preload.

  6. Mechanical properties of metal-core piezoelectric fiber

    Science.gov (United States)

    Sato, Hiroshi; Nagamine, Masaru

    2005-05-01

    In the previous conference, we produced a new metal core-containing piezoelectric ceramics fiber by the hydrothermal method and extrusion method. The insertion of metal core is significant in view of its greater strength than ceramics materials, and electrodes are not required in the fiber's sensor and actuator applications. A new smart board was designed by mounting these piezoelectric fibers onto the surface of a CFRP composite. After that, this board is able to use this board to a sensor, actuator and vibration suppression. In this paper, we measured s mechanical properties of metal core piezoelectric fiber. We examined the tension test of a piezo-electric fiber, and measured the Young's modulus and breaking strength. Moreover, the expansion in the fiber unit was measured, and the displacement of the direction of d31 was measured. In addition, a piezo-electric fiber that used lead free material (BNT-BT-BKT) to correspond to environmental problems in recent years was made.

  7. The refined theory of transversely isotropic piezoelectric rectangular beams

    Institute of Scientific and Technical Information of China (English)

    GAO; Yang; WANG; Minzhong

    2006-01-01

    The problem of deducing one-dimensional theory from two-dimensional theory for a transversely isotropic piezoelectric rectangular beam is investigated. Based on the piezoelasticity theory, the refined theory of piezoelectric beams is derived by using the general solution of transversely isotropic piezoelasticity and Lur'e method without ad hoc assumptions. Based on the refined theory of piezoelectric beams, the exact equations for the beams without transverse surface loadings are derived, which consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beams under transverse loadings are derived directly from the refined beam theory. As a special case, the governing differential equations for transversely isotropic elastic beams are obtained from the corresponding equations of piezoelectric beams. To illustrate the application of the beam theory developed, a uniformly loaded and simply supported piezoelectric beam is examined.

  8. Piezoelectric materials mimic the function of the cochlear sensory epithelium

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-01-01

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application. PMID:22025702

  9. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    Science.gov (United States)

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  10. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  11. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits......, modulation schemes, LEDs and LED driving conditions are analyzed. A prototype radial mode PT optimized for ZVS (Zero Voltage Switching) is designed. FEM (Final Element Method) and measurements validates the PT design. A prototype PT based AC/DC converter operating from european mains is proposed...

  12. Ultrasonic motors using piezoelectric ceramic multimode vibrators.

    Science.gov (United States)

    Takano, T; Tomikawa, Y; Ogasawara, T; Sugawara, S; Konno, M

    1990-01-01

    The development is reported of an ultrasonic motor using piezoelectric ceramic multimode vibrators consisting of circular or annular plates in which degenerate horizontal vibration modes of the same or different form are used. Two orthogonal nonaxisymmetric vibration modes were used in the same-form case, and the combination of a nonaxisymmetric vibration mode and a radial vibration mode was used in the different-forms case. Some details of the motor design and its experimental characteristics are presented. The ultrasonic motor presented here has a special advantage in its thin construction.

  13. Piezoelectric pressure transducer technique for oxidizing atmospheres

    Science.gov (United States)

    Roberts, Ted A.; Burton, Rodney L.

    1992-07-01

    The diaphragm sensing tip of a high-speed piezoelectric pressure transducer can be destroyed when measuring transient impulse pressures in hot oxidizing atmospheres, e.g., oxygen at 3000 K and 34 atm for times of tens of milliseconds. A technique is presented to preserve the transducer under these conditions, which uses a protective layer of 0.025-0.050-mm-thick brass foil, held in place with double-sided tape. The integrity of the transducer is preserved, and the response time to a shock wave is increased from 1 to 2-6/microsec using the technique.

  14. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    Energy Technology Data Exchange (ETDEWEB)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  15. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    Science.gov (United States)

    1988-01-01

    accounts for the ’bulge’ in the number of papers presented this year. 2.0 PIEZOELECTRIC AND RELATED COMPOSITES The balance of topics under study has...alcohols. the "’-" reactive gases cause a change in the oxygen balance of the ceramic when ". . .the gases come into contact with the surface at...M.. Baley, . D.. Lewis. 1933-3 i R.M. 198l1. ". Am19. erSoc. 60: 34. Arakw. T.. K rachi . H.. Shioka ta, J. 202-5 1985. J. Mier N. 20:1207-10 12

  16. Frequency spectra of laminated piezoelectric cylinders

    Science.gov (United States)

    Siao, J. C.-T.; Dong, S. B.; Song, J.

    1994-07-01

    A finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (theta, z) and time t. Using solution form Q exp (i(xi(z) + n(theta) + (omega)t)), with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, xi, omega), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With omega as the eigenvalue and real values assigned to xi, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When xi is the eigenvalue and real values assigned to omega, this eigensystem admits both real and complex eigendata. Real xi's represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of xi 's describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.

  17. Flexural waves focusing through shunted piezoelectric patches

    Science.gov (United States)

    Yi, K.; Collet, M.; Ichchou, M.; Li, L.

    2016-07-01

    In this paper, we designed and analyzed a piezo-lens to focus flexural waves in thin plates. The piezo-lens is comprised of a host plate and piezoelectric arrays bonded on the surfaces of the plate. The piezoelectric patches are shunted with negative capacitance circuits. The effective refractive indexes inside the piezo-lens are designed to fit a hyperbolic secant distribution by tuning the negative capacitance values. A homogenized model of a piezo-mechanical system is adopted in the designing process of the piezo-lens. The wave focusing effect is studied by the finite element method. Numerical results show that the piezo-lens can focus flexural waves by bending their trajectories, and is effective in a large frequency band. The piezo-lens has the ability to focus flexural waves at different locations by tuning the shunting negative capacitance values. The piezo-lens is shown to be effective for flexural waves generated by different types of sources.

  18. Piezoelectricity in Single Crystal of Pentaerythritol Tetranitrate

    Directory of Open Access Journals (Sweden)

    K. Raha

    1991-07-01

    Full Text Available The piezoelectric constants perpendicular to (110 and (001 of single crystal f pentaerythritol tetranitrate (PETN are determined to be (3.2+-0.30x10/sup-13/and (1.5+-0.30x10/sub-13/CN/sub-1/. The charge development on these faces under static loading has been confirmed to be true piezoelectric in origin. The crystal seems to experience a quasi permanent deformation under repeated and successive compression with a very long relaxation time. This gives rise to a unique behaviour of individual crystal of PETN under identical stress condition. Mechanical stress relaxation measurements have also been carried out to provide additional evidence on the uniqueness of the crystal. Dielectric constant of the crystal along the directions perpendicular to (110 and (001 are 3.50+-0.12 and 4.57+-0.17; Young's modulus along the directions are (1.24+- 0.30x10/sub6/g cm/sup-2/ respectively. Single crystals of one cm/sub3/ of PETN develops about 10 V cm/sup-1/ field under a force of 1 kg across (110face.

  19. Synchronized switch harvesting applied to piezoelectric flags

    CERN Document Server

    Pineirua, Miguel; Vasic, Dejan; Doare, Olivier

    2016-01-01

    In this article the energy transfer between a flow and a fluttering piezoelectric plate is investigated. In particular, the benefits of the use of a Synchronized Switch Harvesting on Inductor (SSHI) circuit are studied. Both wind tunnel experiments and numerical simulations are conducted in order to analyse the influence of the switching process on the dynamics and the efficiency of the system. Numerical simulations consist of a weakly non-linear model of a plate in axial flow equipped with a single pair of piezoelectric patches, discretized using a Galerkin method where basis functions are the modes of the plate in vacuum. The discretized model is then integrated in time. The results presented in this paper show that a significant improvement of the harvested energy can be obtained using SSHI circuits compared to basic resistive circuits. It is also shown that for strongly coupled systems, the switching process inherent to he SSHI circuit has a significant impact on the dynamics of the flag, which tends to d...

  20. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    Science.gov (United States)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  1. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  2. Pyro- and piezo-electric nanotubes

    Science.gov (United States)

    Buongiorno Nardelli, Marco; Bernholc, J.

    2001-03-01

    Using large-scale ab-initio computer simulations we have shown that nanotube structures based on boron, nitrogen and carbon are pyro- and piezo-electric, due to the intrinsic polar nature of the B-N bond and the particular symmetry of the BN hexagonal ring. Strong polarization fields are present in BN/C nanotube superlattices, which makes them true pyro- and piezo-electric systems. Similar effects are also present in conjugate organic copolymers, where the BN hexagonal ring is part of the monomeric unit. Polarization fields in BN/C nanotubes are of the order of a few tenths of kV/cm and they are additive, so that large tubular systems (multiwalled nanotubes or ropes) will exhibit fields comparable and eventually larger than those observed in common piezo- and pyro-electric materials. This opens a broad avenue for applications of these structures as basic components of nano electro-mechanical systems (NEMS) such as switches, resonators, actuators, and transducers.

  3. Approach To Power Harvesting With Piezoelectric Material

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Awad

    2014-08-01

    Full Text Available Nowadays, most of the research in the energy field is to develop sources of energy for the future, With oil resources being over, tapped and eventually bound to end, it is time to find renewable Piezoelectric materials are being more and more studied as they turn out to be very unusual materials with very specific and interesting properties. In fact, these materials have the ability to produce electrical energy from mechanical energy, for example, they can convert mechanical behavior like vibrations into electricity. Recent work has shown that these materials could be used as power generators, the amount of energy produced is still very low, hence the necessity to optimize them. The objective of this work is to study the all of the piezoelectric material systems and calculated the possible power generated from it, and a special case to design and build a fully functional floor tile device that when stepped on will generate enough energy to light an LED, The system will be charge a temporary energy storage device, a capacitor bank, and then use this stored energy to power an LED.

  4. Synchronized switch harvesting applied to piezoelectric flags

    Science.gov (United States)

    Piñeirua, Miguel; Michelin, Sébastien; Vasic, Dejan; Doaré, Olivier

    2016-08-01

    In this article the energy transfer between a flow and a fluttering piezoelectric plate is investigated. In particular, the benefits of the use of a synchronized switch harvesting on inductor (SSHI) circuit are studied. Both wind tunnel experiments and numerical simulations are conducted in order to analyze the influence of the switching process on the dynamics and the efficiency of the system. Numerical simulations consist of a weakly nonlinear model of a plate in axial flow equipped with a single pair of piezoelectric patches, discretized using a Galerkin method where basis functions are the modes of the plate in vacuum. The discretized model is then integrated in time. The results presented in this paper show that a significant improvement of the harvested energy can be obtained using SSHI circuits compared to basic resistive circuits. It is also shown that for strongly coupled systems, the switching process inherent to he SSHI circuit has a significant impact on the dynamics of the flag, which tends to decrease the relative efficiency gain.

  5. Integrated piezoelectric actuators in deep drawing tools

    Science.gov (United States)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  6. Fatigue life characterization for piezoelectric macrofiber composites

    Science.gov (United States)

    Henslee, Isaac A.; Miller, David A.; Tempero, Tyler

    2012-10-01

    In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.

  7. Vibration of micromachined circular piezoelectric diaphragms.

    Science.gov (United States)

    Hong, Eunki; Trolier-McKinstry, Susan; Smith, Robert; Krishnaswamy, Silai V; Freidhoff, Carl B

    2006-04-01

    Electrically and mechanically excited resonances in micromachined circular piezoelectric diaphragms have been investigated. The diaphragm structures were piezoelectric unimorphs consisting of Pb(Zr0.52,Ti0.48)O3 (PZT) films and thermally grown silicon oxide (SiO2) layers. For electrical excitation, ring-shaped interdigitated (IDT) electrodes formed on the top of the PZT layer were used to induce strain in the diaphragms. The diaphragm structures behaved much like circular membranes in which the membrane tension was approximately 206 N/m, at the fundamental modes. For higher modes, the resonance frequencies deviated from the theoretical values due to the finite stiffness of the diaphragms. Under mechanical drive, both symmetric and asymmetric modes were excited. However, for electrical excitation, the symmetric modes were dominant due to the symmetry of the driving IDT electrodes. At a pressure of 727 Torr, the quality factor was approximately 250, and this rose to 2000 at pressures below 1 Torr. When a forward bias was applied to the diaphragm, the membrane tension decreased, but under reverse biases the tension increased. However, because of repoling under reverse biases greater than the coercive field of the PZT film, the achievable increase in the membrane tension was limited. In the diaphragm structure, the nonlinear vibration was governed by geometric nonlinearity rather than material nonlinearity. In addition, evidence of non-180 degrees domain wall motion of the PZT layer in released diaphragms was observed.

  8. Piezoelectric control of structures prone to instabilities

    Science.gov (United States)

    Kim, Sunjung

    Thin-walled structures such as stiffened panels fabricated out of high strength materials are ubiquitous in aerospace structures. These are prone to buckle in a variety of modes with strong possibility of adverse interaction under axial compression and/or bending. Optimally designed stiffened panels, at an appropriate combination of axial compression and suddenly applied lateral pressure undergo large amplitude oscillations and may experience divergence. Under aerodynamic loading, they can experience flutter instability with the amplitudes of oscillations attaining a limit (LCO) or escalating without any limit. Control of structures prone to these forms of instability using piezo-electric actuators is the theme of this dissertation. Issues involved in the control of stiffened panels under axial compression and liable to buckle simultaneously in local and overall modes are studied. The analytical approach employs finite elements in which are embedded periodic components of local buckling including the second order effects. It is shown that the adverse effects of mode interaction can be counteracted by simply controlling the overall bending of the stiffener by piezo-electric actuators attached its tips. Control is exercised by self-sensing actuators by direct negative feedback voltages proportional to the bending strains of the stiffener. In a dynamic loading environment, where vibrations are triggered by suddenly applied lateral pressure, negative velocity feedback is employed with voltages proportional to the bending strain-rate. The local plate oscillations are effectively controlled by a piezo-electric actuators placed along the longitudinal center line of the panel. The problem of flutter under aerodynamic pressure of stiffened panels in the linear and post-critical regimes is studied using modal analysis and finite strips. The analysis, control and interpretation of the response are facilitated by identification of two families of characteristic modes of

  9. Piezoelectric coefficients and spontaneous polarization of ScAlN.

    Science.gov (United States)

    Caro, Miguel A; Zhang, Siyuan; Riekkinen, Tommi; Ylilammi, Markku; Moram, Michelle A; Lopez-Acevedo, Olga; Molarius, Jyrki; Laurila, Tomi

    2015-06-24

    We present a computational study of spontaneous polarization and piezoelectricity in Sc(x)Al(1-x)N alloys in the compositional range from x = 0 to x = 0.5, obtained in the context of density functional theory and the Berry-phase theory of electric polarization using large periodic supercells. We report composition-dependent values of piezoelectric coefficients e(ij), piezoelectric moduli d(ij) and elastic constants C(ij). The theoretical findings are complemented with experimental measurement of e33 for a series of sputtered ScAlN films carried out with a piezoelectric resonator. The rapid increase with Sc content of the piezoelectric response reported in previous studies is confirmed for the available data. A detailed description of the full methodology required to calculate the piezoelectric properties of ScAlN, with application to other complex alloys, is presented. In particular, we find that the large amount of internal strain present in ScAlN and its intricate relation with electric polarization make configurational sampling and the use of large supercells at different compositions necessary in order to accurately derive the piezoelectric response of the material.

  10. Postbuckling investigations of piezoelectric microdevices considering damage effects.

    Science.gov (United States)

    Sun, Zhigang; Wang, Xianqiao

    2014-03-11

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  11. WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    Jinqiang Li; Fengming Li; Yuesheng Wang; Kikuo Kishimoto

    2008-01-01

    The wave propagation is studied in two-dimensional disordered piezoelectric phononie crystals using the finite-difference time-domain (FDTD) method. For different eases of disorder,the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder.In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.

  12. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.

    Science.gov (United States)

    Guo, Hong-Feng; Li, Zhen-Sheng; Dong, Shi-Wu; Chen, Wei-Jun; Deng, Ling; Wang, Yu-Fei; Ying, Da-Jun

    2012-08-01

    Previous studies have shown that piezoelectric materials may be used to prepare bioactive electrically charged surfaces. In the current study, polyurethane/polyvinylidene fluoride (PU/PVDF) scaffolds were prepared by electrospinning. The mechanical property and piezoelectric property of the scaffolds were evaluated. The crystalline phase of PVDF in the scaffolds was characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In vitro cell culture was performed to investigate cytocompatibility of the scaffolds. Wound-healing assay, cell-adhesion assay, quantitative RT-PCR and Western blot analyses were performed to investigate piezoelectric effect of the scaffolds on fibroblast activities. Further, the scaffolds were subcutaneously implanted in Sprague-Dawley (SD) rats to investigate their biocompatibility and the piezoelectric effect on fibrosis in vivo. The results indicated that the electrospinning process had changed PVDF crystalline phase from the nonpiezoelectric α phase to the piezoelectric β phase. The fibroblasts cultured on the scaffolds showed normal morphology and proliferation. The fibroblasts cultured on the piezoelectric-excited scaffolds showed enhanced migration, adhesion and secretion. The scaffolds that were subcutaneously implanted in SD rats showed higher fibrosis level due to the piezoelectrical stimulation, which was caused by random animal movements followed by mechanical deformation of the scaffolds. The scaffolds are potential candidates for wound healing applications.

  13. Advances in Valveless Piezoelectric Pump with Cone-shaped Tubes

    Science.gov (United States)

    Zhang, Jian-Hui; Wang, Ying; Huang, Jun

    2017-07-01

    This paper reviews the development of valveless piezoelectric pump with cone-shaped tube chronologically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new directions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes from the perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.

  14. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2014-03-01

    Full Text Available Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja’s tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman’s plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  15. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  16. Piezoelectric and pyroelectric effects of a crystalline polymer

    Science.gov (United States)

    Kundu, Nikhil K.; Kundu, Malay

    1990-01-01

    Polyvinylidene flouride (PVDF) is a crystalline polymer to both piezoelectric and pyroelectric nature. Piezoelectricity produces electrical signals when mechanically deformed, and pyroelectricity is the electrical polarization induced by thermal absorption in crystals. To demonstrate the piezoelectric effect PVDF is subjected to impact loads which produce electrical charges proportional to mechanical stresses. A heat source was used to demonstrate the pyroelectric nature of PVDF. The rise in temperature due to absorbed energy by the polymer produces electrical output. The qualitative test results obtained are graphically reproduced.

  17. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    Science.gov (United States)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  18. A Miniature Large Displacement Linear Nanopositioning Piezoelectric Actuator

    Institute of Scientific and Technical Information of China (English)

    Lu Qiuhong(卢秋红); Yan Guozheng

    2004-01-01

    A miniature linear piezoelectric actuator which moves based on inertia friction theory is described in this paper. The authors discuss its driving principle, dynamic model and experimental results.The piezoelectric actuator includes two piezoelectric elements.Through the sequentially deformations of the two piezo elements, the moving mass slides a miniature displacement. Many strokes will be added to be a large displacement.This type of piezoactuator has advantages in its dimension and motion type,so it can be miniaturized to do micro manipulation or micropositioning in microspace.

  19. Vibration Analysis of the Piezoelectric, Piezomagnetic Materials in Spherical Symmetry

    Directory of Open Access Journals (Sweden)

    Qun Guan

    2013-01-01

    Full Text Available Considering that the piezoelectric, piezomagnetic materials are in the spherical coordinate system and not accounting the body weight, body electric charge and body electric current, from the motion equation, gradient equation and the piezoelectric, piezomagnetic constructive equation, the steady-state solutions of variables such as stress, strain, displacement, electric displacement, electric field intensity, electric potential, magnetic intensity, magnetic potential under additional stimulations are deduced, thereof it can provide good theoretical basement for the dynamic control of the piezoelectric, piezomagnetic materials in the space spherical symmetry.

  20. On the buckling behavior of piezoelectric nanobeams: An exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghian, Ali Akbar; Rahmaini, Omid [University of Zanjan, Zanjan (Iran, Islamic Republic of)

    2015-08-15

    In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.

  1. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  2. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Piezoelectric and dielectric properties of Cr-doped PSN-PZN-PZT quaternary piezoelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    SUN Qingchi; WANG Lifeng; LIU Ping; NIE Qiang

    2005-01-01

    PSN-PZN-PZT + x wt.%Cr2O3, x = 0.0-0.9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220℃-1300℃ for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into Cr3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240C as the amount of Cr2O3 is 0.5 wt.%.

  4. THE ELECTRO-ELASTIC FIELD OF THE INFINITE PIEZOELECTRIC MEDIUM WITH TWO PIEZOELECTRIC CIRCULAR CYLINDRICAL INCLUSIONS

    Institute of Scientific and Technical Information of China (English)

    吴林志; Kunio Funami

    2002-01-01

    The electro-elastic field of the infinite piezoelectric medium with two piezoelectric circular cylindrical inclusions is derived under the antiplane shear stresses and inplane electric fields. The analytical solution is obtained. The proposed method is based upon the use of conformal mapping and the theorem of analytic continuation. From the results obtained, it can be found that the electro-elastic field depends on the material constants of individual phases, the geometric parameters of the system and the applied antiplane shear stresses and electric fields at infinity. In addition, the specific cases when two circular cylindrical inclusions are tangent to each other and they are holes and/or rigid ones, are also studied in this paper.

  5. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  6. Model Design of Piezoelectric Micromachined Modal Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiaojun Hu

    2011-01-01

    Full Text Available This paper reports a novel kind of solid-state microgyroscope, which is called piezoelectric micromachined modal gyroscope (PMMG. PMMG has large stiffness and robust resistance to shake and strike because there is no evident mass-spring component in its structure. This work focused on quantitative optimization of the gyroscope, which is still blank for such gyroscope. The modal analysis by the finite element method (FEM was firstly conducted. A set of quantitative indicators were developed to optimize the operation mode. By FEM, the harmonic analysis was conducted to find the way to efficiently actuate the operational mode needed. The optimal configuration of driving electrodes was obtained. At last, the Coriolis analysis was conducted to show the relation between angular velocity and differential output voltage by the Coriolis force under working condition. The results obtained in this paper provide theoretical basis for realizing this novel kind of micromachined gyroscope.

  7. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  8. Stability and scalability of piezoelectric flags

    CERN Document Server

    Wang, Xiaolin; Li, Chenyang; Young, Yin Lu

    2015-01-01

    We investigate the effect of piezoelectric (PZT) material on the flutter speed, vibration mode and frequency, and energy harvesting power and efficiency of a flexible flag in various fluids. We develop a fully coupled fluid-solid-electric model by combining the inviscid vortex sheet model with a linear electro-mechanical coupling model. A resistance only circuit and a resonant resistance-inductance (RL) circuit are considered. For a purely resistive circuit, an increased electro-mechanical coupling factor results in an increased flutter speed, vibration frequency, averaged electric power and efficiency. A consistent optimal resistance is found that maximizes the flutter speed and the energy harvesting power. For a resonant RL circuit, by tuning the inductance to match the circuit frequency to the flag's vibration frequency, the flutter speed can be greatly decreased, and a larger averaged power and efficiency are obtained. We also consider a model scale set-up with several commonly used commercial materials f...

  9. Complete Charging for Piezoelectric Energy Harvesting System

    Institute of Scientific and Technical Information of China (English)

    樊康旗; 徐春辉; 王卫东

    2014-01-01

    Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester (PEH), a bridge rectifier, a filter capacitor, a switch, a controller and a rechargeable battery. For the transient charging, the results indicate that the voltage across the filter capacitor increases as the charging proceeds, which is consistent with that reported in the literature. However, a new finding shows that the charging rate and energy harvesting efficiency decrease over time after their respective peak values are acquired. For the steady-state charging, the results reveal that the energy harvesting efficiency can be adjusted by altering the critical charging voltage that controls the transition of the system. The optimal energy harvesting efficiency is limited by the optimal efficiency of the transient charging. Finally, the relationship between the critical charging voltage and the equivalent resistance of the controller and rechargeable battery is established explicitly.

  10. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)

    2010-09-15

    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)

  11. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2001-07-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  12. Simulation of Piezoelectric Transformers with COMSOL

    DEFF Research Database (Denmark)

    Andersen, Thomas; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    In this work COMSOL is utilized to obtain the Mason lumped parameter model for a piezoelectric transformer (PT) design. The Mason lumped parameters are relevant in the design process of power converters. The magnitude of the impedance is simulated for a specific: interleaved multilayer thickness...... for simplifying the PT model are given in order to decrease the simulation time. This paper aims to aid electrical engineers with less knowledge within the field of mechanics, to be able to simulate a PT design with COMSOL and extract the key electrical parameters....... mode PT. Interleaved indicates that the primary section of the PT has been interleaved into the secondary section. Furthermore the primary section is build with interdigitated electrodes (IDE). The PT design has been prototyped and the measurements results are compared with simulations. Two methods...

  13. Mixed boundary conditions for piezoelectric plates

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.

  14. Tree-inspired piezoelectric energy harvesting

    Science.gov (United States)

    Hobbs, William B.; Hu, David L.

    2012-01-01

    We design and test micro-watt energy-harvesters inspired by tree trunks swaying in the wind. A uniform flow vibrates a linear array of four cylinders affixed to piezoelectric energy transducers. Particular attention is paid to measuring the energy generated as a function of cylinder spacing, flow speed, and relative position of the cylinder within the array. Peak power is generated using cylinder center-to-center spacings of 3.3 diameters and flow speeds in which the vortex shedding frequency is 1.6 times the natural frequency of the cylinders. Using these flow speeds and spacings, the power generated by downstream cylinders can exceed that of leading cylinders by more than an order of magnitude. We visualize the flow in this system by studying the behavior of a dynamically matched flowing soap film with imbedded styrofoam disks. Our qualitative visualizations suggest that peak energy harvesting occurs under conditions in which vortices have fully detached from the leading cylinder.

  15. Inverse Crack Problems in Piezoelectric Solids

    Science.gov (United States)

    Sladek, Jan; Sladek, Vladimir; Zhang, Chuanzeng

    2010-05-01

    In the present paper, the meshless local Petrov-Galerkin (MLPG) method is applied to cracked piezoelectric solids under a stationary or transient dynamic load and unspecified electrical conditions on the crack surfaces. On the outer surface of the cracked solid the electrical boundary conditions are over-specified. The coupled governing partial differential equations are satisfied in a weak-form on small fictitious sub-domains. Nodal points are introduced and spread on the analyzed domain and each node is surrounded by a small circle for simplicity, but without loss of generality. The spatial variations of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, a system of linear algebraic equations for unknown nodal values is obtained. Singular value decomposition (SVD) is applied to solve the ill-conditioned linear system of algebraic equations obtained from the local integral equations (LIEs) after the MLS approximation.

  16. Novel precision piezoelectric step rotary actuator

    Institute of Scientific and Technical Information of China (English)

    LIU Jianfang; YANG Zhigang; ZHAO Hongwei; CHENG Guangming

    2007-01-01

    A novel piezoelectric (PZT) precision step rotary actuator was developed on the basis of PZT technology.It adopts the principle of bionics and works with an inside anchoring/loosening of the stator and a distortion structure of the uniformly distributed thin flexible hinge to solve problems such as ineffective anchoring/loosening,low step rotary frequency,small travel,poor resolution,low speed and unsteady output.The developed actuator is characterized by high frequency (30 Hz),high speed (380 μrad/s),large travel (>270°),high resolution (1 μrad/step),and work stability.It greatly improves the ability to drive the existing PZT step rotary actuator.The new actuator can be applied in the field of micromanipulation and precision engineering,including precision driving and positioning and optics engineering.

  17. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  18. Power conditioning for low-voltage piezoelectric stack energy harvesters

    Science.gov (United States)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  19. Piezoelectric array elements for sound reconstruction with a digital input

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-10-13

    Various examples are provided for digital sound reconstruction using piezoelectric array elements. In one example, a digital loudspeaker includes a fixed frame and an array of transducers disposed on the fixed frame. Individual transducers of the array of transducers can include a flexible membrane disposed on a piezoelectric actuation element positioned over a corresponding opening that extends through the fixed frame. In another example, a method includes forming a flexible membrane structure on a substrate and backetching the substrate opposite the flexible membrane structure. The flexible membrane structure can be formed by disposing a first electrode layer on a substrate, disposing a piezoelectric layer on the first electrode layer and disposing a second electrode layer on the piezoelectric layer. A flexible membrane layer (e.g., polyimide) can be disposed on the second electrode layer.

  20. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...