WorldWideScience

Sample records for pid controllers

  1. Dynamic PID loop control

    International Nuclear Information System (INIS)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.

    2011-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  2. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  3. Designing PID-Fuzzy Controller for Pendubot System

    Directory of Open Access Journals (Sweden)

    Ho Trong Nguyen

    2017-12-01

    Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controllerPID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllersPID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.

  4. Improved fuzzy PID controller design using predictive functional control structure.

    Science.gov (United States)

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. The Parrot UAV Controlled by PID Controllers

    OpenAIRE

    Koszewnik Andrzej

    2014-01-01

    The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered dire...

  6. The Parrot UAV Controlled by PID Controllers

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2014-08-01

    Full Text Available The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.

  7. Robust PID Controller for a Pneumatic Actuator

    Directory of Open Access Journals (Sweden)

    Skarpetis Michael G.

    2016-01-01

    Full Text Available In this paper the position control pneumatic actuator using a robust PID controller is presented. The parameters of the PID controller are computed using a Hurwitz invariability technique enriched with a Simulated Annealing Algorithm. The nonlinear model involves uncertain parameters due to linearization of the servo valve, variations of the initial volume of the cylinder and variation of the external load. The problem is proven to be solvable and the controller parameters are chosen to provide a suboptimal solution for tracking error minimization. Simulation results are presented for the nonlinear model.

  8. Quadrotor trajectory tracking using PID cascade control

    Science.gov (United States)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  9. A Comparative Study on Temperature Control of CSTR using PI Controller, PID Controller and PID (Two Degree of Freedom) Controller

    OpenAIRE

    Bikash Dey; Lusika Roy

    2014-01-01

    This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR).CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for mo...

  10. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  11. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  12. Soft Real-Time PID Control on a VME Computer

    Science.gov (United States)

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  13. Research on digital PID control algorithm for HPCT

    International Nuclear Information System (INIS)

    Zeng Yi; Li Rui; Shen Tianjian; Ke Xinhua

    2009-01-01

    Digital PID applied in high-precision HPCT (High-precision current transducer) based on Digital Signal Processor (DSP) TMS320F2812 and special D/A converter was researched. By using increment style PID Control algorithm, the stability and precision of high-precision HPCT output voltage is improved. On basis of deeply analysing incremental digital PID, the scheme model of HPCT is proposed, the feasibility simulation using Matlab is given. Practical hardware circuit verified the incremental PID has closed-loop control process in tracking HPCT output voltage. (authors)

  14. Self tuning fuzzy PID type load and frequency controller

    International Nuclear Information System (INIS)

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  15. Analytical one parameter method for PID motion controller settings

    NARCIS (Netherlands)

    van Dijk, Johannes; Aarts, Ronald G.K.M.

    2012-01-01

    In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over

  16. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  17. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  18. Non-fragile multivariable PID controller design via system augmentation

    Science.gov (United States)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  19. Research on fuzzy PID control to electronic speed regulator

    Science.gov (United States)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  20. APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    OpenAIRE

    PENG, Xiaotao; CHENG, Shijie

    2011-01-01

    As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...

  1. Evaluation of RTD and thermocouple for PID temperature control in ...

    African Journals Online (AJOL)

    Evaluation of RTD and thermocouple for PID temperature control in distributed control system laboratory. D. A. A. Nazarudin, M. K. Nordin, A. Ahmad, M. Masrie, M. F. Saaid, N. M. Thamrin, M. S. A. M. Ali ...

  2. PID control for chaotic synchronization using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw

    2009-01-30

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  3. PID control for chaotic synchronization using particle swarm optimization

    International Nuclear Information System (INIS)

    Chang, W.-D.

    2009-01-01

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  4. Beam closed orbit feedback based on PID control

    International Nuclear Information System (INIS)

    Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang

    2013-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  5. Variable Structure PID Control to Prevent Integrator Windup

    Science.gov (United States)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  6. Tuning of PID load frequency controller for power systems

    International Nuclear Information System (INIS)

    Tan Wen

    2009-01-01

    PID tuning of load frequency controllers for power systems is discussed in this paper. The tuning method is based on a two-degree-of-freedom internal model control (IMC) design method, and the performance of the resulting PID controller is related to two tuning parameters thus detuning is easy when necessary. Then an anti-GRC scheme is proposed to overcome the generation rate constraints. Finally, the method is extended to two-area cases.

  7. Improved PID control for triaxial testing liquefied specimen

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    Using a frictionless triaxial apparatus, sand specimens can be tested at relatively high axial strains, even while liquefying. However, liquefying specimens have extremely nonlinear stiffness, thus standard PID control does not perform well. To maintain control over applied loads, the PID...... controller was modified to adapt to disturbed soil states. The proposed methods expand the scope of testing towards options which are otherwise inaccessible by triaxial testing....

  8. Computation of robustly stabilizing PID controllers for interval systems.

    Science.gov (United States)

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.

  9. PID controller simulator software for DC motor of gamma scanning

    International Nuclear Information System (INIS)

    Arjoni Amir

    2008-01-01

    Mostly PID controller (Proportional-Integral-Derivative) has been used in industry. For certain applications, it can be used as a Proportional (P) model only, or as a Proportional-Integral (PI) model. The aim of this paper is to design a PID controller simulator software for DC motor which is used in gamma scanning system. A DC motor is described as a plant of SISO (Single Input Single Output) which is used for pulling down the load (detector + casing) and gamma radiation source (Co-60 + container) by using sling cable. A DC motor consist of an armature and a rotor, the equivalent circuit of DC motor is shown in a transfer function equation between output parameter (angular speed DC motor) and input parameter (voltage of DC motor). Methods used for the process of PID controller design is to arrange the PID controller parameter (Kc, Ti, Td) so that there are more PID controller transfer function model which are able to control angular speed of DC motor in stable condition, as design criteria requirement is needed. Design criteria requirement for control system are the settling time < 3 second, overshoot < 5%, rise time = 0.25 second, steady state gain = 1 and peak time < 3 second with step response reference 1 rad/second. The result of simulation gives several models of PID controller in function transfer equation which is similar with design criteria requirement in a equation of function transfer of order 2 for numerator and order 1 for denominator. (author)

  10. Fractional order PID controller for load frequency control

    International Nuclear Information System (INIS)

    Sondhi, Swati; Hote, Yogesh V.

    2014-01-01

    Highlights: • The manuscript shows the design of FOPID controller for the load frequency control. • Performance of FOPID is given for non-reheated, reheated and hydro turbine. • Performance of FOPID is compared to IMC-PID and reduced order IMC-PID design scheme. • Performance of FOPID is better than the existing techniques. - Abstract: Load frequency control (LFC) plays a very important role in providing quality power both in the case of isolated as well as interconnected power systems. In order to maintain good quality power supply, the LFC should possess robustness toward the parametric uncertainty of the system and good disturbance rejection capability. The fractional order controller has the properties such as, eliminating steady state error, robustness toward plant gain variations and also good disturbance rejection. This makes the fractional order PID (FOPID) controller quite suitable for the LFC. Therefore, in this paper a FOPID is designed for single area LFC for all three types of turbines i.e., non-reheated, reheated and hydro turbines. It is observed that the FOPID controller shows better robustness toward ±50% parametric uncertainty and disturbance rejection capability than the existing techniques. Finally, the optimization of controller parameters and robustness evaluation of the control technique is done on the basis of the integral error criterion

  11. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  12. Novel intelligent PID control of traveling wave ultrasonic motor.

    Science.gov (United States)

    Jingzhuo, Shi; Yu, Liu; Jingtao, Huang; Meiyu, Xu; Juwei, Zhang; Lei, Zhang

    2014-09-01

    A simple control strategy with acceptable control performance can be a good choice for the mass production of ultrasonic motor control system. In this paper, through the theoretic and experimental analyses of typical control process, a simpler intelligent PID speed control strategy of TWUM is proposed, involving only two expert rules to adjust the PID control parameters based on the current status. Compared with the traditional PID controller, this design requires less calculation and more cheap chips which can be easily involved in online performance. Experiments with different load torques and voltage amplitudes show that the proposed controller can deal with the nonlinearity and load disturbance to maintain good control performance of TWUM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  14. Optimization Settings in the Fuzzy Combined Mamdani PID Controller

    Science.gov (United States)

    Kudinov, Y. I.; Pashchenko, F. F.; Pashchenko, A. F.; Kelina, A. Y.; Kolesnikov, V. A.

    2017-11-01

    In the present work the actual problem of determining the optimal settings of fuzzy parallel proportional-integral-derivative (PID) controller is considered to control nonlinear plants that is not always possible to perform with classical linear PID controllers. In contrast to the linear fuzzy PID controllers there are no analytical methods of settings calculation. In this paper, we develop a numerical optimization approach to determining the coefficients of a fuzzy PID controller. Decomposition method of optimization is proposed, the essence of which was as follows. All homogeneous coefficients were distributed to the relevant groups, for example, three error coefficients, the three coefficients of the changes of errors and the three coefficients of the outputs P, I and D components. Consistently in each of such groups the search algorithm was selected that has determined the coefficients under which we receive the schedule of the transition process satisfying all the applicable constraints. Thus, with the help of Matlab and Simulink in a reasonable time were found the factors of a fuzzy PID controller, which meet the accepted limitations on the transition process.

  15. Enhanced pid vs model predictive control applied to bldc motor

    Science.gov (United States)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  16. Design and optimization of fuzzy-PID controller for the nuclear reactor power control

    International Nuclear Information System (INIS)

    Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong

    2009-01-01

    This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.

  17. Comparison between MPC and PID control for compact hydro ...

    African Journals Online (AJOL)

    This paper presents water temperature of a hydro distillation that have been modelled by using linear ARX Modal. Based on the modal obtained, a model predictive controller and PID controller have been developed. Both controller undergone the performance of controller tests that includes set point, set point change and ...

  18. Pinched hysteresis behavior in a PID-controlled resistor

    Directory of Open Access Journals (Sweden)

    M.A. Carrasco-Aguilar

    2018-06-01

    Full Text Available A current-controlled grounded resistor that exhibits a frequency-dependent pinched hysteresis loop is described. A mathematical model describing this behavior is derived and validated numerically, which has the form of a Proportional Integral-Derivative (PID controller. The proposed topology is build by using AD844 commercially available active device configured as second-generation current conveyor and experimental tests are compared with numerical simulations, showing a good agreement among them. Moreover, the proposed PID-controlled resistor can be reconfigured in order to be used in future applications such as programmable analog circuits. Keyword: Pinched hysteresis, Current conveyors, Nonlinear resistor, Proportional-Integral-Derivative Controller

  19. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  20. PID controller tuning using the magnitude optimum criterion

    CERN Document Server

    Papadopoulos, Konstantinos

    2014-01-01

    An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model

  1. Design of a PID Controller for a PCR Micro Reactor

    Science.gov (United States)

    Dinca, M. P.; Gheorghe, M.; Galvin, P.

    2009-01-01

    Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…

  2. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  3. LMI designmethod for networked-based PID control

    Science.gov (United States)

    Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez

    2016-10-01

    In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.

  4. Performance Evaluation of a PID and a Fuzzy PID Controllers Designed for Controlling a Simulated Quadcopter Rotational Dynamics Model

    Directory of Open Access Journals (Sweden)

    Laith Jasim Saud

    2017-07-01

    Full Text Available This work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and compared using two performance indices which are the Integral Square Error (ISE and the Integral Absolute Error (IAE, and also some response characteristics like the rise time, overshoot, settling time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll, pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the simulated model and the controllers more realistic, the testing signals have been applied by a user through a joystick interfaced to the computer. The results obtained indicated a general superiority in performance for the Fuzzy PID controller over the PID controller used in this work. This conclusion is based by the following figures:lesser ISA for the roll, pitch, and yaw consequently, lesser IAE for the roll, pitch, and yaw consequently, lesser rise time and settling time for the roll and pitch consequently, and lesser settling time for the yaw. Moreover, the FPID gave zero overshoot versus and in the PID case for the roll, pitch, and yaw consequently. Both controllers gave zero steady state error with close rise times for the yaw. This superiority of the FPID controller is gained as the fuzzy part of it continuously and online adapts the parameters of the PID part.

  5. PID control of second-order systems with hysteresis

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene P.

    2008-01-01

    The efficacy of proportional, integral and derivative (PID) control for set point regulation and disturbance rejection is investigated in a context of second-order systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the

  6. PID control of second-order system with hysteresis

    NARCIS (Netherlands)

    Jayawardhana, B.; Logemann, H.; Ryan, E.P.

    2007-01-01

    The efficacy of proportional, derivative and integral (PID) control for set point regulation and disturbance rejection is investigated in a context of mechanical systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the

  7. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG....

  8. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  9. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    OpenAIRE

    A. Jayachitra; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  10. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-01-01

    Full Text Available Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.

  11. Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton.

    Science.gov (United States)

    Yu, Wen; Rosen, Jacob

    2013-04-01

    In order to minimize steady-state error with respect to uncertainties in robot control, proportional-integral-derivative (PID) control needs a big integral gain, or a neural compensator is added to the classical proportional-derivative (PD) control with a large derivative gain. Both of them deteriorate transient performances of the robot control. In this paper, we extend the popular neural PD control into neural PID control. This novel control is a natural combination of industrial linear PID control and neural compensation. The main contributions of this paper are semiglobal asymptotic stability of the neural PID control and local asymptotic stability of the neural PID control with a velocity observer which are proved with standard weight training algorithms. These conditions give explicit selection methods for the gains of the linear PID control. An experimental study on an upper limb exoskeleton with this neural PID control is addressed.

  12. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  13. Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization

    Science.gov (United States)

    Mohmad Kahar, Mohd Nizam; Noraziah, A.

    2017-01-01

    In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system’s gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics. PMID:28441390

  14. Application and Simulation of Fuzzy Neural Network PID Controller in the Aircraft Cabin Temperature

    Directory of Open Access Journals (Sweden)

    Ding Fang

    2013-06-01

    Full Text Available Considering complex factors of affecting ambient temperature in Aircraft cabin, and some shortages of traditional PID control like the parameters difficult to be tuned and control ineffective, this paper puts forward the intelligent PID algorithm that makes fuzzy logic method and neural network together, scheming out the fuzzy neural net PID controller. After the correction of the fuzzy inference and dynamic learning of neural network, PID parameters of the controller get the optimal parameters. MATLAB simulation results of the cabin temperature control model show that the performance of the fuzzy neural network PID controller has been greatly improved, with faster response, smaller overshoot and better adaptability.

  15. Cascade control of superheated steam temperature with neuro-PID controller.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Design of PID Controller Simulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fahri VATANSEVER

    2013-08-01

    Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically

  17. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vision-Based Robot Following Using PID Control

    OpenAIRE

    Chandra Sekhar Pati; Rahul Kala

    2017-01-01

    Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential) controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to ...

  19. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    Science.gov (United States)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  20. Model-reference robust tuning of PID controllers

    CERN Document Server

    Alfaro, Victor M

    2016-01-01

    This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...

  1. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  2. Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production.

    Science.gov (United States)

    Pachauri, Nikhil; Singh, Vijander; Rani, Asha

    2017-05-01

    This article presents the development of inferential control scheme based on Adaptive linear neural network (ADALINE) soft sensor for the control of fermentation process. The ethanol concentration of bioreactor is estimated from temperature profile of the process using soft sensor. The prediction accuracy of ADALINE is enhanced by retraining it with immediate past measurements. The ADALINE and retrained ADALINE are used along with PID and 2-DOF-PID leading to APID, A2PID, RAPID and RA2PID inferential controllers. Further the parameters of 2-DOF-PID are optimized using Non-dominated sorted genetic algorithm-II and used with retrained ADALINE soft sensor which leads to RAN2PID inferential controller. Simulation results demonstrate that performance of proposed RAN2PID controller is better in comparison to other designed controllers in terms of qualitative and quantitative performance indices. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Science.gov (United States)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  4. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.

    Science.gov (United States)

    Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David

    2017-01-01

    Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.

  5. The development of Gallstone solvent temperature adaptive PID control system

    Institute of Scientific and Technical Information of China (English)

    MA; BING; QIAO; BO; YAN

    2012-01-01

    The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.

  6. PID Controller of Sprayer Chassis by Sliding Mode

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2017-01-01

    Full Text Available In order to solve the straight line drive coordinated control problem of the four-wheel independent drive sprayer chassis, the dynamic model of sprayer chassis and electromagnetic proportional valve controlled hydraulic motor model are established. The additional yaw moment is designed to rectify the deviation with sliding mode variable structure control. PID control strategy is used to calculate the control voltage adjustment of the electromagnetic proportional valve. The simulation results show that the accumulative deviation of the chassis is 0.2 m out of 100 m when the coordinated control strategy is adopted on different adhesive coefficient pavement, which is much smaller than the value without control. The test results of test prototype show that the yaw acceleration of the chassis can be as low as −0.0132 m/s2 on different adhesive coefficient pavement with coordinated control, which is smaller than the value without control, and the straight line drive requirements are met. It is feasible to combine sliding mode variable structure with PID control and use the electromagnetic proportional control technology in the straight line drive coordinated control of sprayer chassis by adding the yaw moment to rectify the deviation of chassis based on the yaw acceleration detection.

  7. Comparison Analysis of Model Predictive Controller with Classical PID Controller For pH Control Process

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-12-01

    Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing   technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.

  8. Research on reactor power controller based on artificial immune P and PID cascade control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai

    2014-01-01

    The Reactor Power control system usually adopts the traditional PID controller, the traditional PID controller can meet the operating requirements, but the control effect is not very good. In order to improve this condition, the paper proposes an immune P and PID cascade controller which based the immune mechanism of B-cell co-operating with T-cell, the nuclear power controller based on artificial immune is less reported. In order to verify and validate the control strategy, the designed controller debugs with the full-scope real-time simulation system of nuclear power plants. The simulation results shows that the immune controller can effectively improve the dynamic operating characteristics of the reactor system, and the immune controller is superior to the traditional PID controller in control performance. (authors)

  9. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  10. Design of PID temperature control system based on STM32

    Science.gov (United States)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  11. CAS algorithm-based optimum design of PID controller in AVR system

    International Nuclear Information System (INIS)

    Zhu Hui; Li Lixiang; Zhao Ying; Guo Yu; Yang Yixian

    2009-01-01

    This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.

  12. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  13. Didactic System for the Experimental Study of Digital PID Control Structures

    OpenAIRE

    Stelian-Emilian OLTEAN; Mircea DULĂU; Adrian-Vasile DUKA

    2016-01-01

    The proportional integral derivative (PID) controller has a known structure used in feedback control of industrial processes. One of the most common applications is the control of the DC motor. The paper presents a didactic system designed for educational purposes used for studying various conventional PID structures and the influence of the PID components in the control process of the DC motor’s speed. The system contains a low cost acquisition board based on PIC 16F628A microcontroller. The...

  14. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    Science.gov (United States)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  15. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  16. Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions

    Directory of Open Access Journals (Sweden)

    Jimoh O. Pedro

    2013-01-01

    Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.

  17. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

    Science.gov (United States)

    Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David

    2017-01-01

    Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles’ premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO. PMID:28472050

  18. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Danping Yan

    Full Text Available Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO, we herein propose a chaotic proportional integral derivative (PID controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA and PSO.

  19. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    Science.gov (United States)

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  20. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Ali Motalebi [Young Researchers and Elite Club, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of); Ghanbari, Mahmood [Department of Electrical Engineering, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of)

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  1. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    International Nuclear Information System (INIS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-01-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear

  2. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  3. Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-11-15

    This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)

  4. The Design of Optimal PID Control Method for Quadcopter Movement Control

    Directory of Open Access Journals (Sweden)

    Hanum Arrosida

    2018-02-01

    Full Text Available Nowadays, quadcopter motion control has become a popular research topic because of its versatile ability as an unmanned aircraft can be used to alleviate human labor and also be able to reach dangerous areas or areas which is unreachable to humans. On the other hand, the Optimal PID control method, which incorporates PID and Linear Quadratic Regulator (LQR control methods, has also been widely used in industry and research field because it has advantages that are easy to operate, easy design, and a good level of precision. In the PID control method, the main problem to be solved is the accuracy of the gain value Kp, Ki, and Kd because the inappropriateness of those value will result in an imprecise control action. Based on these problems and referring to the previous study, the optimal PID control method was developed by using PID controller structure with tuning gain parameter of PID through Linear Quadratic Regulator (LQR method. Through the integration of these two control methods, the optimum solutions can be obtained: easier controller design process for quadcopter control when crossing the determined trajectories, steady state error values less than 5% and a stable quadcopter movement with roll and pitch angle stabilization at position 0 radians with minimum energy function.

  5. Greenhouse Environmental Control Using Optimized MIMO PID Technique

    Directory of Open Access Journals (Sweden)

    Fateh BOUNAAMA

    2011-10-01

    Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.

  6. Neuro-PID tracking control of a discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  7. Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller

    Directory of Open Access Journals (Sweden)

    Hossein ASHTIANI

    2012-01-01

    Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers

  8. Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Gerulf K.m.

    2006-01-01

    The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...

  9. Experimental studies on active vibration control of a smart composite beam using a PID controller

    International Nuclear Information System (INIS)

    Jovanović, Miroslav M; Lukić, Nebojša S; Ilić, Slobodan S; Simonović, Aleksandar M; Zorić, Nemanja D; Stupar, Slobodan N

    2013-01-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional–integral (PI) control and proportional–derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s). (paper)

  10. Gain Scheduling of PID Controller Based on Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2016-01-01

    Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.

  11. A fast PID controller Design for Modern PLC for Process Control Application

    International Nuclear Information System (INIS)

    Mirza, A.; Nafis, A.; Anees, R.M.; Idris, S.

    2004-01-01

    PID is the most widely used control scheme in the process industry. Pill controllers are utilized for the control of such varied parameters as pressure, flow, temperature, etc. One characteristic of these parameters is that they posses slow dynamics. Most of the available digital controllers can manipulate only a single parameter- multiple controllers are required for control of more than one parameter. The Fast PID Controller for Modem PLC (Programmable Logic Controller) developed by the authors, provides control of several parameters at a time (through a single Pill control element), enhanced programmability including variable sampling period, parameter monitoring and data storage, which may be easily implemented in a PLC. (author)

  12. Robotic excavator trajectory control using an improved GA based PID controller

    Science.gov (United States)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  13. A set of decentralized PID controllers for an n–link robot manipulator

    Indian Academy of Sciences (India)

    A class of stabilizing decentralized proportional integral derivative (PID) controllers for an -link robot manipulator system is proposed. The range of decentralized PID controller parameters for an -link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design ...

  14. Bidirectional active control of structures with type-2 fuzzy PD and PID

    Science.gov (United States)

    Paul, Satyam; Yu, Wen; Li, Xiaoou

    2018-03-01

    Proportional-derivative and proportional-integral-derivative (PD/PID) controllers are popular algorithms in structure vibration control. In order to maintain minimum regulation error, the PD/PID control require big proportional and derivative gains. The control performances are not satisfied because of the big uncertainties in the buildings. In this paper, type-2 fuzzy system is applied to compensate the unknown uncertainties, and is combined with the PD/PID control. We prove the stability of these fuzzy PD and PID controllers. The sufficient conditions can be used for choosing the gains of PD/PID. The theory results are verified by a two-storey building prototype. The experimental results validate our analysis.

  15. Implementation of PID autotuning procedure in PLC controller

    Directory of Open Access Journals (Sweden)

    Daniun Marcin

    2017-01-01

    Full Text Available In this paper, we present the automatic PID tuning procedure based on the Method of Moments and AMIGO tuning rules. The advantage of the Method of Moments is that the time constant and transport delay are estimated at the areas rather than on the individual points. This results in high resistance to the measurement noises. The sensitivity to measurement noises is a serious problem in other autotuning methods. The second advantage of this method is that it approximates plant during identification process to first order model with time delay. We combined the Method of Moments with the AMIGO tuning rules and implemented this combination as a stand-alone autotuning procedure in Siemens S7-1200 PLC controller. Next, we compared this method with two built-in PID autotuning procedures which were available in Siemens S7-1200 PLC controller. The procedure was tested for three types of plant models: with lag-dominated, balanced, and delay-dominated dynamics. We simulated the plants on a PC in Matlab R2013a. The connection between the PC and PLC was maintained through a National Instruments data acquisition board, NI PCI-6229. We conducted tests for step change in the set point, trajectory tracking, and load disturbances. To assess control quality, we used IAE index. We limited our research to PI algorithm. The results prove that proposed method was better than two built-in tuning methods provided by Siemens, oscillating between a few and even a dozen percent in most cases. The proposed method is universal and can be implemented in any PLC controller.

  16. Design of a new PID controller using predictive functional control optimization for chamber pressure in a coke furnace.

    Science.gov (United States)

    Zhang, Jianming

    2017-03-01

    An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Particle swarm optimization based PID controller tuning for level control of two tank system

    Science.gov (United States)

    Vincent, Anju K.; Nersisson, Ruban

    2017-11-01

    Automatic control plays a vital role in industrial operation. In process industries, in order to have an improved and stable control system, we need a robust tuning method. In this paper Particle Swarm Optimization (PSO) based algorithm is proposed for the optimization of a PID controller for level control process. A two tank system is considered. Initially a PID controller is designed using an Internal Model Control (IMC). The results are compared with the PSO based controller setting. The performance of the controller is compared and analyzed by time domain specification. In order to validate the robustness of PID controller, disturbance is imposed. The system is simulated using MATLAB. The results show that the proposed method provides better controller performance.

  18. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  19. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    Science.gov (United States)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  20. PID and predictive control of electrical drives and power converters using MATLAB/Simulink

    CERN Document Server

    Wang, Liuping; Yoo, Dae; Gan, Lu; Ng, Ki

    2015-01-01

    A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice.  The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis.    The book contains secti

  1. Optimized PID control of depth of hypnosis in anesthesia.

    Science.gov (United States)

    Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio

    2017-06-01

    This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A design method of compensators for multi-variable control system with PID controllers 'CHARLY'

    International Nuclear Information System (INIS)

    Fujiwara, Toshitaka; Yamada, Katsumi

    1985-01-01

    A systematic design method of compensators for a multi-variable control system having usual PID controllers in its loops is presented in this paper. The method itself is able: to determine the main manipulating variable corresponding to each controlled variable with a sensitivity analysis in the frequency domain. to tune PID controllers sufficiently to realize adequate control actions with a searching technique of minimum values of cost functionals. to design compensators improving the control preformance and to simulate a total system for confirming the designed compensators. In the phase of compensator design, the state variable feed-back gain is obtained by means of the OPTIMAL REGULATOR THEORY for the composite system of plant and PID controllers. The transfer function type compensators the configurations of which were previously given are, then, designed to approximate the frequency responces of the above mentioned state feed-back system. An example is illustrated for convenience. (author)

  3. Position Control of a Pneumatic Muscle Actuator Using RBF Neural Network Tuned PID Controller

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Pneumatic Muscle Actuator (PMA has a broad application prospect in soft robotics. However, PMA has highly nonlinear and hysteretic properties among force, displacement, and pressure, which lead to difficulty in accurate position control. A phenomenological model is developed to portray the hysteretic behavior of PMA. This phenomenological model consists of linear component and hysteretic component force. The latter component is described by Duhem model. An experimental apparatus is built up and sets of experimental data are acquired. Based on the experimental data, parameters of the model are identified. Validation of the model is performed. Then a novel cascade position PID controller is devised for a 1-DOF manipulator actuated by PMA. The outer loop of the controller is to cope with position control whilst the inner loop deals with pressure dynamics within PMA. To enhance the adaptability of the PID algorithm to the high nonlinearities of the manipulator, PID parameters are tuned online using RBF Neural Network. Experiments are performed and comparison between position response of RBF Neural Network based PID controller and that of classic PID controller demonstrates the effectiveness of the novel adaptive controller on the manipulator.

  4. A new PID controller design for automatic generation control of hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshian, A.; Hooshmand, R. [Electrical Engineering Department, University of Isfahan (Iran)

    2010-06-15

    This paper presents a new robust PID controller for automatic generation control (AGC) of hydro turbine power systems. The method is mainly based on a maximum peak resonance specification that is graphically supported by the Nichols chart. The open-loop frequency response curve is tangent to a specified ellipse and this makes the method to be efficient for controlling the overshoot, the stability and the dynamics of the system. Comparative results of this new load frequency controller with a conventional PI one and also with another PID controller design tested on a multimachine power system show the improvement in system damping remarkably. The region of acceptable performance of the new PID controller covers a wide range of operating and system conditions. (author)

  5. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    Science.gov (United States)

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  7. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    Science.gov (United States)

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Proportional–Integral–Derivative (PID Controller Tuning using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    J. S. Bassi

    2012-08-01

    Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

  9. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko [Aerospace and Aeronautics Electronics Research Group, Universitas Gadjah Mada, Yogyakarta (Indonesia); Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia); Dharmawan, Andi, E-mail: andi-dharmawan@ugm.ac.id [Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia)

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  10. Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID

    Directory of Open Access Journals (Sweden)

    Syed Najib Syed Salim

    2014-01-01

    Full Text Available The enhancement of nonlinear PID (N-PID controller for a pneumatic positioning system is proposed to improve the performance of this controller. This is executed by utilizing the characteristic of rate variation of the nonlinear gain that is readily available in N-PID controller. The proposed equation, namely, self-regulation nonlinear function (SNF, is used to reprocess the error signal with the purpose of generating the value of the rate variation, continuously. With the addition of this function, a new self-regulation nonlinear PID (SN-PID controller is proposed. The proposed controller is then implemented to a variably loaded pneumatic actuator. Simulation and experimental tests are conducted with different inputs, namely, step, multistep, and random waveforms, to evaluate the performance of the proposed technique. The results obtained have been proven as a novel initiative at examining and identifying the characteristic based on a new proposal controller resulting from N-PID controller. The transient response is improved by a factor of 2.2 times greater than previous N-PID technique. Moreover, the performance of pneumatic positioning system is remarkably good under various loads.

  11. Didactic System for the Experimental Study of Digital PID Control Structures

    Directory of Open Access Journals (Sweden)

    Stelian-Emilian OLTEAN

    2016-12-01

    Full Text Available The proportional integral derivative (PID controller has a known structure used in feedback control of industrial processes. One of the most common applications is the control of the DC motor. The paper presents a didactic system designed for educational purposes used for studying various conventional PID structures and the influence of the PID components in the control process of the DC motor’s speed. The system contains a low cost acquisition board based on PIC 16F628A microcontroller. The experimental results are shown graphically using a PC application made in Matlab environment.

  12. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    Science.gov (United States)

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  13. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    Science.gov (United States)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  15. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Directory of Open Access Journals (Sweden)

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  16. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    DEFF Research Database (Denmark)

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    2006-01-01

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  17. PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator

    Directory of Open Access Journals (Sweden)

    Yuanchang Zhong

    2014-01-01

    Full Text Available The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part (micromotor of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time, this paper presents an improved PID intelligent control algorithm which applies to the electric gas pressure regulator. The algorithm uses the improved RBF neural network based on PSO algorithm to make online adjustment on PID parameters. Theoretical analysis and simulation result show that the algorithm shortens the step response time and improves tracking performance.

  18. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    Science.gov (United States)

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  19. A comparative study of stabilizing control of a planer electromagnetic levitation using PID and LQR controllers

    Directory of Open Access Journals (Sweden)

    Mundher H.A. Yaseen

    Full Text Available Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB microcontroller. Proportional Integral Derivative (PID and Linear Quadratic Regulator (LQR controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response. Keywords: Magnetic levitation (Maglev, Linear Quadratic Regulator (LQR, PID controller, SIMLAB Platform

  20. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    Science.gov (United States)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  1. Comparison of tuning methods for design of PID controller as an A VR

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Ahmed, I.; Unar, M.A.

    2009-01-01

    The primary means of generator reactive power control is the generator-excitation Control, using Automatic Voltage Regulator (A VR). The role of A VR is to hold the terminal voltage magnitude of Synchronous generator at a specified level. This paper presents the design of a proportional integral-derivative (PID) controller as an A VR. The PID controller has been tuned by various tuning methods. From all methods, PID parameters are computed through various techniques i.e. Process-reaction curve, Closed-loop system, open-loop system gain margin and phase-margin specifications. From these methods, it has been found that Zhaung- Atherton method and Ho, Hang and Cao method are much superior to the conventional Ziegler-Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said methods, yields highly satisfactory closed-loop performance. (author)

  2. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Science.gov (United States)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  3. Effects of a GPC-PID control strategy with hierarchical structure for a cooling coil unit

    International Nuclear Information System (INIS)

    Xu Min; Li Shaoyuan; Cai Wenjian; Lu Lu

    2006-01-01

    This paper presents a GPC-PID control strategy for a cooling-coil unit in heating, ventilation and air conditioning systems. By analysis of the cooling towers and chillers, different models in the occupied period are considered in each operating condition. Because of the complication of components, well tuned PID controllers are unsatisfied, and the results are poor over a wide range of operation conditions. To solve this problem, a GPC-PID controller with hierarchical structure is proposed based on minimizing the generalized predictive control criterion to tune conventional PID controller parameters. Simulation and experiments show that the proposed controller is able to deal with a wide range of operating conditions and to achieve better performance than conventional methods

  4. Implementation of PID Controller in MATLAB for Real Time DC Motor Speed Control System

    Directory of Open Access Journals (Sweden)

    Manjunatha Reddy H. K.

    2011-03-01

    Full Text Available In this paper the implementation of PIDC (proportional + integral + derivative controller in MATLAB environment for real time DC motor speed control is presented. The MATLAB environment is chosen because of availability of tool boxes which allows the effective way of implementation and analysis of the control system. The performance of PID controller for different inputs is studied. To establish a communication between PC and process parameter, an indigenous Analog to digital and digital to analog (AD-DA board is designed. This board consists of 12-bit A/D converter and 12-bit D/A converter to facilitate the data acquisition and control. In the present study Advantech make PCI-1751 DIOT card is used to interface AD-DA board to PC externally. The data between the AD-DA board and the PC is communicated through the script file written in MATLAB environment. By applying different standard test commands such as step, square, staircase and triangular, the performance of PID controller is studied. The PID controller provides better system response in terms of transient as well as steady-state performances. The controller parameters are manually tuned (kp=0.232, ki=0.078 and kd=0.035 and the results of the best tuned PID controller are presented.

  5. The speed control of DC motor under the load condition using PI and PID controllers

    Science.gov (United States)

    Corapsiz, Muhammed Reşit; Kahveci, Hakan

    2017-04-01

    In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.

  6. Optimal control of inverted pendulum system using PID controller, LQR and MPC

    Science.gov (United States)

    Varghese, Elisa Sara; Vincent, Anju K.; Bagyaveereswaran, V.

    2017-11-01

    Inverted pendulum is a highly nonlinear system. Here we propose an optimal control technique for the control of an inverted Pendulum - cart system. The system is modeled, linearized and controlled. Here, the control objective is to control the system such that when the cart reaches a desired position the inverted pendulum stabilizes in the upright position. Initially PID controller is used to control the system. Later, Linear Quadratic Regulator (LQR) a well-known optimal control technique which makes use of the states of the dynamical system and control input to frame the optimal control decision is used. Various combinations of both PID and LQR controllers are implemented. To validate the robustness of the controller, the system is simulated with and without disturbance. Finally the system is also controlled using Model Predictive controller (MPC). MPC has well predictive ability to calculate future events and implement necessary control actions. The performance of the system is compared and analyzed.

  7. Design and implementation of a new fuzzy PID controller for networked control systems.

    Science.gov (United States)

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  8. Air Compressor Pressure Control System Based On Gearshift Integral PID Controller

    OpenAIRE

    PAN Chunyue

    2017-01-01

    The application of gearshift integral PID controller to air compressor pressure control system is introduced, Its kernel is single chip microcomputer PIC16F877.The design of hardware and solfware are introduced too. Practical application shows that this system has many advantages.

  9. Air Compressor Pressure Control System Based On Gearshift Integral PID Controller

    Directory of Open Access Journals (Sweden)

    PAN Chunyue

    2017-01-01

    Full Text Available The application of gearshift integral PID controller to air compressor pressure control system is introduced, Its kernel is single chip microcomputer PIC16F877.The design of hardware and solfware are introduced too. Practical application shows that this system has many advantages.

  10. Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

    OpenAIRE

    Sanjay Kr. Singh; D. Boolchandani; S.G. Modani; Nitish Katal

    2014-01-01

    This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II) against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine...

  11. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  12. A normalized PID controller in networked control systems with varying time delays.

    Science.gov (United States)

    Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun

    2013-09-01

    It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Application of Genetic Algorithm for Tuning of a PID Controller for a Real Time Industrial Process

    Directory of Open Access Journals (Sweden)

    S. M. Giri RAJKUMAR

    2010-10-01

    Full Text Available PID (Proportional Integral Derivative controller has become inevitable in the process control industries due to its simplicity and effectiveness, but the real challenge lies in tuning them to meet the expectations. Although a host of methods already exist there is still a need for an advanced system for tuning these controllers. Computational intelligence (CI has caught the eye of the researchers due to its simplicity, low computational cost and good performance, makes it a possible choice for tuning of PID controllers, to increase their performance. This paper discusses in detail about Genetic Algorithm (GA, a CI technique, and its implementation in PID tuning for a real time industrial process which is closed loop in nature. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the proposed method.

  14. A novel auto-tuning PID control mechanism for nonlinear systems.

    Science.gov (United States)

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Dominant pole placement with fractional order PID controllers: D-decomposition approach.

    Science.gov (United States)

    Mandić, Petar D; Šekara, Tomislav B; Lazarević, Mihailo P; Bošković, Marko

    2017-03-01

    Dominant pole placement is a useful technique designed to deal with the problem of controlling a high order or time-delay systems with low order controller such as the PID controller. This paper tries to solve this problem by using D-decomposition method. Straightforward analytic procedure makes this method extremely powerful and easy to apply. This technique is applicable to a wide range of transfer functions: with or without time-delay, rational and non-rational ones, and those describing distributed parameter systems. In order to control as many different processes as possible, a fractional order PID controller is introduced, as a generalization of classical PID controller. As a consequence, it provides additional parameters for better adjusting system performances. The design method presented in this paper tunes the parameters of PID and fractional PID controller in order to obtain good load disturbance response with a constraint on the maximum sensitivity and sensitivity to noise measurement. Good set point response is also one of the design goals of this technique. Numerous examples taken from the process industry are given, and D-decomposition approach is compared with other PID optimization methods to show its effectiveness. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    Science.gov (United States)

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  17. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  18. Performance-based parameter tuning method of model-driven PID control systems.

    Science.gov (United States)

    Zhao, Y M; Xie, W F; Tu, X W

    2012-05-01

    In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Tuning method for multi-variable control system with PID controllers

    International Nuclear Information System (INIS)

    Fujiwara, Toshitaka

    1983-01-01

    Control systems, including thermal and nuclear power plants, generally and mainly use PID controllers consisting of proportional, integral and differential actions. These systems consist of multiple control loops which interfere with each other. Therefore, it is present status that the fine control of the system is carried out by the trial and error method because the adjusting procedure for a single control loop cannot be applied to a multi-loop system in most cases. In this report, a method to effectively adjust PID controller parameters in a short time in a control system which consists of multi-loops that interfere with each other. This method makes adjustment by using the control area as the evaluation function, which is the time-dependent integration of control deviation, the input to the PID controllers. In other words, the evaluation function is provided for each control result for every parameter (gain constant, reset rate, and differentiation time), and all parameters are simultaneously changed in the direction of minimizing the values of these evaluation functions. In the report, the principle of tuning method, the evaluation function for each of three parameters, and the adjusting system configuration for separately using for actual plant tuning and for control system design are described. It also shows the examples of application to the actual tuning of the control system for a thermal power plant and to a control system design. (Wakatsuki, Y.)

  20. Coordinate control of integral reactor based on single neuron PID controller

    International Nuclear Information System (INIS)

    Liu Yan; Xia Hong

    2014-01-01

    As one of the main type of reactors in the future, the development of the integral reactor has attracted worldwide attention. On the basis of understanding the background of the integral reactor, the author will be familiar with and master the power control of reactor and the feedwater flow control of steam generator, and the speed control of turbine (turbine speed control is associated with the turbine load control). According to the expectative program 'reactor power following turbine load' of the reactor, it will make coordinate control of the three and come to a overall control scheme. The author will use the supervisory learning algorithm of Hebb for single neuron PID controller with self-adaptation to study the coordinate control of integral reactor. Compared with conventional PI or PID controller, to a certain extent, it solves the problems that traditional PID controller is not easy to tune real-time parameters and lack of effective control for a number of complex processes and slow-varying parameter systems. It improves the security, reliability, stability and flexibility of control process and achieves effective control of the system. (authors)

  1. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  2. A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back

    Directory of Open Access Journals (Sweden)

    Emre Sariyildiz

    2015-08-01

    Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.

  3. PID Control in the Third Millennium Lessons Learned and New Approaches

    CERN Document Server

    Visioli, Antonio

    2012-01-01

    The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-derivative (PID) controllers. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: ·        new approaches for controller tuning; ·        control structures and configurations for more efficient control; ·        practical issues in PID implementation; and ·        non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resumé of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series o...

  4. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    OpenAIRE

    Tsonyo Slavov; Olympia Roeva

    2011-01-01

    This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP) control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For...

  5. A comparative study of stabilizing control of a planer electromagnetic levitation using PID and LQR controllers

    Science.gov (United States)

    Yaseen, Mundher H. A.

    Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.

  6. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  7. Heat control in HVDC resistive divider by PID and NN controllers

    International Nuclear Information System (INIS)

    Yilmaz, S.; Dincer, H.; Eksin, I.; Kalenderli, O.

    2007-01-01

    In this study, a control system is presented that is devised to increase measurement precisions within a prototype high voltage DC resistive divider (HVDC-RD). Since one of the major sources of measurement errors in such devices is the self heating effect, a system controlling the temperature within the high voltage DC resistive divider is devised so that suitable and stable temperature conditions are maintained that, in return, will decrease the measurement errors. The resistive divider system is cooled by oil, and PID and neural network (NN) controllers try to keep the temperature within the prescribed limits. The system to be controlled exhibits a nonlinear character, and therefore, a control approach based on NN controllers is proposed. Thus, a system that can fulfill the various requirements dictated by the designer is constructed. The performance of the NN controller is compared with that of the PID controller developed for the same purpose, and the values of the performance indices indicate the superiority of the NN controller over that of the classical PID controller

  8. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  9. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    Science.gov (United States)

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. © 2013 Published by ISA on behalf of ISA.

  10. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    International Nuclear Information System (INIS)

    Kavaklioglu, K.; Ikonomopoulos, A.

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint

  11. Fuzzy Logic and PID control of a 3 DOF Robotic Arm

    Directory of Open Access Journals (Sweden)

    Korhan Kayışlı

    2017-12-01

    Full Text Available The robotic arms are used in many industrial applications at the present time. At this point, high precision control is required for robotics used in fields such as healthcare area. Therefore, the control method applied to robots is also important. In this study, a force was applied to the end function of a three degree-of-freedom robot and the robustness of the controllers are tested. PID and Fuzzy Logic control method are used for this process. The control process of robotic arm which is designed and simulated is obtained by using Fuzzy Logic and classical PID controllers and the results are presented comparatively

  12. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  13. Optimal design of PID controller for second order plus time delay systems

    International Nuclear Information System (INIS)

    Srivastava, S.; Misra, A.; Kumar, Y.; Thakur, S.K.

    2015-01-01

    It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)

  14. Design and Simulation of a PID Controller for Motion Control Systems

    Science.gov (United States)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  15. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    Science.gov (United States)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  16. An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes.

    Science.gov (United States)

    Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin

    2011-04-01

    In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

    OpenAIRE

    Khulood A. Dagher; Ahmed S. Al-Araji

    2013-01-01

    A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation resu...

  18. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Science.gov (United States)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  19. Design of PID controller as an AVR in frequency-domain

    International Nuclear Information System (INIS)

    Shaikh, S.A.; Ahmed, I.

    2008-01-01

    The primary means of generator reactive-power control is the generator-excitation control, using Automatic Voltage Regulator (AVR). The role of AVR is to hold the terminal-voltage of Synchronous generator at a specified level. This paper presents the design of a proportional integral- derivative (PID) controller to work as an A VR. The PID controller has been tuned by HO-HANG-CAO method. In this method, pm parameters are computed from the gain-margin and phase-margin specifications. This method has been found much superior to the conventional Ziegler- Nichols rules. The performance of the controller has been evaluated through Simulation Studies in MATLAB environment. It has been demonstrated that the PID controller, tuned with the said method, yields highly satisfactory closed loop performance. (author)

  20. Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Deepak Gautam

    2013-11-01

    Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra's algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.

  1. A 2-Dof LQR based PID controller for integrating processes considering robustness/performance tradeoff.

    Science.gov (United States)

    Srivastava, Saurabh; Pandit, V S

    2017-11-01

    This paper focuses on the analytical design of a Proportional Integral and Derivative (PID) controller together with a unique set point filter that makes the overall Two-Degree of-Freedom (2-Dof) control system for integrating processes with time delay. The PID controller tuning is based on the Linear Quadratic Regulator (LQR) using dominant pole placement approach to obtain good regulatory response. The set point filter is designed with the calculated PID parameters and using a single filter time constant (λ) to precisely control the servo response. The effectiveness of the proposed methodology is demonstrated through a series of illustrative examples using real industrial integrated process models. The whole range of PID parameters is obtained for each case in a tradeoff between the robustness of the closed loop system measured in terms of Maximum Sensitivity (M s ) and the load disturbance measured in terms of Integral of Absolute Errors (IAE). Results show improved closed loop response in terms of regulatory and servo responses with less control efforts when compared with the latest PID tuning methods of integrating systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Integrated tuning of PID-derivative load frequency controller for two ...

    African Journals Online (AJOL)

    Results of the proposed derivative controller have been compared with conventional proportional integral derivative controller in time domain analysis. A remarkable improvement in stability of the system has ... the feasibility of the proposed PID-derivative filter controller. Keywords: controller; derivative filter; tie line; two area ...

  3. Demonstration of the improved PID method for the accurate temperature control of ADRs

    International Nuclear Information System (INIS)

    Shinozaki, K.; Hoshino, A.; Ishisaki, Y.; Mihara, T.

    2006-01-01

    Microcalorimeters require extreme stability (-bar 10μK) of thermal bath at low temperature (∼100mK). We have developed a portable adiabatic demagnetization refrigerator (ADR) system for ground experiments with TES microcalorimeters, in which we observed residual temperature between aimed and measured values when magnet current was controlled with the standard Proportional, Integral, and Derivative control (PID) method. The difference increases in time as the magnet current decreases. This phenomenon can be explained by the theory of the magnetic cooling, and we have introduced a new functional parameter to improve the PID method. With this improvement, long-term stability of the ADR temperature about 10μK rms is obtained up to the period of ∼15ks down to almost zero magnet current. We briefly describe our ADR system and principle of the improved PID method, showing the temperature control result. It is demonstrated that the controlled time of the aimed temperature can be extended by about 30% longer than the standard PID method in our system. The improved PID method is considered to be of great advantage especially in the range of small magnet current

  4. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  5. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    Science.gov (United States)

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2011-01-01

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  7. Numerical simulation and analysis of fuzzy PID and PSD control methodologies as dynamic energy efficiency measures

    International Nuclear Information System (INIS)

    Ardehali, M.M.; Saboori, M.; Teshnelab, M.

    2004-01-01

    Energy efficiency enhancement is achieved by utilizing control algorithms that reduce overshoots and undershoots as well as unnecessary fluctuations in the amount of energy input to energy consuming systems during transient operation periods. It is hypothesized that application of control methodologies with characteristics that change with time and according to the system dynamics, identified as dynamic energy efficiency measures (DEEM), achieves the desired enhancement. The objective of this study is to simulate and analyze the effects of fuzzy logic based tuning of proportional integral derivative (F-PID) and proportional sum derivative (F-PSD) controllers for a heating and cooling energy system while accounting for the dynamics of the major system components. The procedure to achieve the objective includes utilization of fuzzy logic rules to determine the PID and PSD controllers gain coefficients so that the control laws for regulating the heat exchangers heating or cooling energy inputs are determined in each time step of the operation period. The performances of the F-PID and F-PSD controllers are measured by means of two cost functions that are based on quadratic forms of the energy input and deviation from a set point temperature. It is found that application of the F-PID control algorithm, as a DEEM, results in lower costs for energy input and deviation from a set point temperature by 24% and 17% as compared to a PID and 13% and 8% as compared to a PSD, respectively. It is also shown that the F-PSD performance is better than that of the F-PID controller

  8. Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation

    Directory of Open Access Journals (Sweden)

    Jin-Hong Jeon

    2011-09-01

    Full Text Available Recently, interest in microgrids, which are composed of distributed generation (DG, distributed storage (DS, and loads, has been growing as a potentially effective clean energy system to mitigate against climate change. The microgrid is operated in the grid-connected mode and the islanded mode according to the conditions of the upstream power grid. The role of the energy storage system (ESS is especially important to maintain constant the frequency and voltage of an islanded microgrid. For this reason, various approaches for ESS control have been put forth. In this paper, a fuzzy PID controller is proposed to improve the frequency control performance of the ESS. This fuzzy PID controller consists of a fuzzy logic controller and a conventional PI controller, connected in series. The fuzzy logic controller has two input signals, and then the output signal of the fuzzy logic controller is the input signal of the conventional PI controller. For comparison of control performance, gains of each PI controller and fuzzy PID controller are tuned by the particle swam optimization (PSO algorithm. In the simulation study, the control performance of the fuzzy PID was also tested under various operating conditions using the PSCAD/EMTDC simulation platform.

  9. Circuit Implementation of Coronary Artery Chaos Phenomenon and Optimal PID Synchronization Controller Design

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2012-01-01

    Full Text Available This study aimed at the implementation and synchronization control of cardiac circuit. First, the MATLAB-Simulink was used to simulate the dynamic behavior of cardiac chaotic circuit, and simple electronic modules were used to implement the cardiac system. Then the Particle Swarm Optimization (PSO was used to seek for the proportional, integral, and derivative gains of optimal PID controller, and the PID controller which could synchronize the slave cardiac circuit and the master cardiac circuit was obtained, in order to synchronize the master/slave chaotic cardiac circuits. This method can be provided for cardiac doctors to diagnose and medicate cardiac abnormality.

  10. Multivariable PID controller design tuning using bat algorithm for activated sludge process

    Science.gov (United States)

    Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan

    2018-04-01

    The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.

  11. PID controller auto-tuning based on process step response and damping optimum criterion.

    Science.gov (United States)

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    Science.gov (United States)

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Oscillations-free PID control of anesthetic drug delivery in neuromuscular blockade.

    Science.gov (United States)

    Medvedev, Alexander; Zhusubaliyev, Zhanybai T; Rosén, Olov; Silva, Margarida M

    2016-07-25

    The PID-control of drug delivery or the neuromuscular blockade (NMB) in closed-loop anesthesia is considered. The NMB system dynamics portrayed by a Wiener model can exhibit sustained nonlinear oscillations under realistic PID gains and for physiologically feasible values of the model parameters. Such oscillations, also repeatedly observed in clinical trials, lead to under- and over-dosing of the administered drug and undermine patient safety. This paper proposes a tuning policy for the proportional PID gain that via bifurcation analysis ensures oscillations-free performance of the control loop. Online estimates of the Wiener model parameters are needed for the controller implementation and monitoring of the closed-loop proximity to oscillation. The nonlinear dynamics of the PID-controlled NMB system are studied by bifurcation analysis. A database of patient models estimated under PID-controlled neuromuscular blockade during general anesthesia is utilized, along with the corresponding clinical measurements. The performance of three recursive algorithms is compared in the application at hand: an extended Kalman filter, a conventional particle filter (PF), and a PF making use of an orthonormal basis to estimate the probability density function from the particle set. It is shown that with a time-varying proportional PID gain, the type of equilibria of the closed-loop system remains the same as in the case of constant controller gains. The recovery time and frequency of oscillations are also evaluated in simulation over the database of patient models. Nonlinear identification techniques based on model linearization yield biased parameter estimates and thus introduce superfluous uncertainty. The bias and variance of the estimated models are related to the computational complexity of the identification algorithms, highlighting the superiority of the PFs in this safety-critical application. The study demonstrates feasibility of the proposed oscillation-free control

  14. The performance of the DC motor by the PID controlling PWM DC-DC boost converter

    OpenAIRE

    Can, Erol; Sayan, Hasan Hüseyin

    2017-01-01

    This paper presents the PID controlling direct current (DC) to the direct current boost converter feds DC motor which has a 3.68 kW and 240 V of DC voltage input on its characteristics. What is first formed is the boost converter mathematical model at the design stage. Secondly, a mathematical model of the DC motor is created so that the boost converter with the machine can be established and modeled at the Matlab Simulink. The PID controller is considered for arranging a pulse width modulati...

  15. Note: Split PID control--two sensors can be better than one.

    Science.gov (United States)

    Znaimer, Leith; Bechhoefer, John

    2014-10-01

    The traditional proportional-integral-derivative (PID) algorithm for regulation suffers from a tradeoff: placing the sensor near the sample being regulated ensures that its steady-state temperature matches the desired setpoint. However, the propagation delay (lag) between heater and sample can limit the control bandwidth. Moving the sensor closer to the heater reduces the lag and increases the bandwidth but introduces offsets and drifts into the temperature of the sample. Here, we explore the consequences of using two probes-one near the heater, one near the sample-and assigning the integral term to the sample probe and the other terms to the heater probe. The split-PID algorithm can outperform PID control loops based on one sensor.

  16. Closed-loop step response for tuning PID-fractional-order-filter controllers.

    Science.gov (United States)

    Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M

    2016-09-01

    Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Control de velocidad de un motor de CD con un controlador PID Wavenet

    Directory of Open Access Journals (Sweden)

    Abraham Christian Pedroza Araujo

    2014-01-01

    Full Text Available El controlador más utilizado actualmente en la industria es el controlador PID. Sin embargo, el algoritmo PID lineal tiene bajo desempeño cuando el proceso a controlar presenta dinámicas complejas como zonas muertas y características no lineales. El funcionamiento del controlador PID en general, se basa en la actuación en forma proporcional, integral y derivativa sobre la señal de error e(t, definida como e(t = yref(t - y(t, con la finalidad de efectuar la señal de control u(t que manipula la salida del proceso en forma deseada como se muestra la Figura 1. Figura 1. Esquema de un control clásico. Figura 1. Esquema de un control clásico. Las constantes kp ki kd son las ganancias del PID. Existen distintas técnicas analíticas y experimentales con el fin de sintonizar esas ganancias. Una alternativa a este problema de sintonización es el controlador PID wavenet, donde por medio de una wavenet y un filtro IIR se estima la salida del sistema a controlar, lo cual se utiliza para re-sintonizar las ganancias de un PID discreto, todo esto en línea. Esta es la alternativa que se emplea en el presente trabajo de investigación y enfocada a la simulación y control de un motor de cd obteniendo resultados.

  18. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    Science.gov (United States)

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-09-05

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  19. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Hernández-Alvarado

    2016-09-01

    Full Text Available For decades, PID (Proportional + Integral + Derivative-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles where parameters (weight, buoyancy, added mass, among others change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  20. Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller

    Directory of Open Access Journals (Sweden)

    Ahmad M. El-Nagar

    2014-06-01

    Full Text Available In this study, we propose an embedded real-time interval type-2 fuzzy proportional – integral – derivative (IT2F-PID controller which is a parallel combination of the interval type-2 fuzzy proportional – integral (IT2F-PI controller and the interval type-2 fuzzy proportional – derivative (IT2F-PD controller. The proposed IT2F-PID controller is able to handle the effect of the system uncertainties due to the structure of the interval type-2 fuzzy logic controller. The proposed IT2F-PID controller is implemented practically using a low cost PIC microcontroller for controlling the uncertain nonlinear inverted pendulum to minimize the effect of the system uncertainties due to the uncertainty in the mass of the pendulum, the measurement error in the rotation angle of the pendulum and the structural uncertainty. The test is carried out using the hardware-in-the-loop (HIL simulation. The experimental results show that the performance of the IT2F-PID controller improves significantly the performance over a wide range of system uncertainties.

  1. Speed response of brushless DC motor using fuzzy PID controller under varying load condition

    Directory of Open Access Journals (Sweden)

    Akash Varshney

    2017-09-01

    Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.

  2. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    Directory of Open Access Journals (Sweden)

    Arturo Y. Jaen-Cuellar

    2013-09-01

    Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.

  3. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  4. Application of a PID controller based on fuzzy logic to reduce variations in the control parameters in PWR reactors

    International Nuclear Information System (INIS)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Brito, Thiago Souza Pereira de; Afonso, Antonio Claudio Marques; Cruz Filho, Antonio Jose da; Marques, Jose Antonio; Teixeira, Marcello Goulart

    2013-01-01

    Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)

  5. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  6. Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control

    Directory of Open Access Journals (Sweden)

    Tsonyo Slavov

    2011-07-01

    Full Text Available This paper focuses on design of a glucose concentration control system based on nonlinear model plant of E. coli MC4110 fed-batch cultivation process. Due to significant time delay in real time glucose concentration measurement, a correction is proposed in glucose concentration measurement and a Smith predictor (SP control structure based on universal PID controller is designed. To reduce the influence of model error in SP structure the estimate of measured glucose concentration is used. For the aim an extended Kalman filter (EKF is designed. To achieve good closed-loop system performance genetic algorithm (GA based optimal controller tuning procedure is applied. A standard binary encoding GA is applied. The GA parameters and operators are specified for the considered here problem. As a result the optimal PID controller settings are obtained. The simulation experiments of the control systems based on SP with EKF and without EKF are performed. The results show that the control system based on SP with EKF has a better performance than the one without EKF. For a short time the controller sets the control variable and maintains it at the desired set point during the cultivation process. As a result, a high biomass concentration of 48.3 g·l-1 is obtained at the end of the process.

  7. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    Science.gov (United States)

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  8. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  9. MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER

    Directory of Open Access Journals (Sweden)

    Artur Wodołażski

    2016-09-01

    Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.

  10. Implementation of FPGA based PID Controller for DC Motor Speed Control System

    Directory of Open Access Journals (Sweden)

    Savita SONOLI

    2010-03-01

    Full Text Available In this paper, the implementation of software module using ‘VHDL’ for Xilinx FPGA (XC3S400 based PID controller for DC motor speed control system is presented. The tools used for building and testing the software modules are Xilinx ISE 9.2i and ModelSim XE III 6.3c. Before verifying the design on FPGA the complete design is simulated using Modelsim Simulation tool. A test bench is written where the set speed can be changed for the motor. It is observed that the motor speed gradually changes to the set speed and locks to the set speed.

  11. Comparison of Energy Consumption in the Classical (PID and Fuzzy Control of Foundry Resistance Furnace

    Directory of Open Access Journals (Sweden)

    Ziółkowskia E.

    2012-09-01

    Full Text Available Foundry resistance furnaces are thermal devices with a relatively large time delay in their response to a change in power parameters. Commonly used in automation classical PID controllers do not meet the requirements of high-quality control. Developed in recent years, fuzzy control theory is increasingly being used in various branches of economy and industry. Fuzzy controllers allow to introduce new developments in control systems of foundry furnaces as well. Correctly selected fuzzy controller can significantly reduce energy consumption in a controlled thermal process of heating equipment. The article presents a comparison of energy consumption by control system of foundry resistance furnace, equipped with either a PID controller or fuzzy controller optimally chosen.

  12. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  13. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-01-01

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822

  14. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    Science.gov (United States)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  15. Development of a PID-Fuzzy controller in the water level control of a pressurizer of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Thiago S.P.; Lira, Carlos A.B.O.; Vasconcelos, Wagner E., E-mail: thiago.brito86@yahoo.com.br, E-mail: cabol@ufpe.br, E-mail: wagner@unicap.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Centro de Ciencias e Tecnologia

    2017-11-01

    It is well known that safety in the operation of nuclear power plants is a primary requirement because a failure of this system can result in serious problems to the environment. A nuclear reactor has several systems that help keep it in normal operation, within safety margins. Many of these systems operate in the control of variable quantities in the primary circuit of a reactor. However, nuclear reactors are nonlinear physical systems, and this introduces a complexity in the control strategies. Among several mechanisms in the thermal-hydraulic system of a reactor that actuate as a controller, the pressurizer is the component responsible for absorbing pressure variations that occur in the primary circuit. This work aims at the development of a PID controller (Proportional Integral Derivative) based on fuzzy logic to operate in a pressurizer of a nuclear Pressurized Water Reactor. A Fuzzy Controller was developed using the process of fuzzification, inference, and defuzzification of the variables of interest to a pressurizer, then this controller was coupled to a PID Controller building a PID Controller, but oriented by Fuzzy logic. Subsequently, the PID-Fuzzy Controller was experimentally validated in a Simulation Plant in which transients like those in a PWR were conducted. The PID parameters were analyzed and adjusted for better responses and results. The results of the validation were also compared to simple controllers (on / off). (author)

  16. Development of a PID-Fuzzy controller in the water level control of a pressurizer of a nuclear reactor

    International Nuclear Information System (INIS)

    Brito, Thiago S.P.; Lira, Carlos A.B.O.; Vasconcelos, Wagner E.; Universidade Catolica de Pernambuco

    2017-01-01

    It is well known that safety in the operation of nuclear power plants is a primary requirement because a failure of this system can result in serious problems to the environment. A nuclear reactor has several systems that help keep it in normal operation, within safety margins. Many of these systems operate in the control of variable quantities in the primary circuit of a reactor. However, nuclear reactors are nonlinear physical systems, and this introduces a complexity in the control strategies. Among several mechanisms in the thermal-hydraulic system of a reactor that actuate as a controller, the pressurizer is the component responsible for absorbing pressure variations that occur in the primary circuit. This work aims at the development of a PID controller (Proportional Integral Derivative) based on fuzzy logic to operate in a pressurizer of a nuclear Pressurized Water Reactor. A Fuzzy Controller was developed using the process of fuzzification, inference, and defuzzification of the variables of interest to a pressurizer, then this controller was coupled to a PID Controller building a PID Controller, but oriented by Fuzzy logic. Subsequently, the PID-Fuzzy Controller was experimentally validated in a Simulation Plant in which transients like those in a PWR were conducted. The PID parameters were analyzed and adjusted for better responses and results. The results of the validation were also compared to simple controllers (on / off). (author)

  17. Supervisory System and Multivariable Control Applying Weighted Fuzzy-PID Logic in an Alcoholic Fermentation Process

    Directory of Open Access Journals (Sweden)

    Márcio Mendonça

    2015-10-01

    Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.

  18. Research on frequency control strategy of interconnected region based on fuzzy PID

    Science.gov (United States)

    Zhang, Yan; Li, Chunlan

    2018-05-01

    In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.

  19. Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas.

    Science.gov (United States)

    Pinsker, Jordan E; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E; Bradley, Paige K; Gondhalekar, Ravi; Bevier, Wendy C; Huyett, Lauren; Zisser, Howard C; Doyle, Francis J

    2016-07-01

    To evaluate two widely used control algorithms for an artificial pancreas (AP) under nonideal but comparable clinical conditions. After a pilot safety and feasibility study (n = 10), closed-loop control (CLC) was evaluated in a randomized, crossover trial of 20 additional adults with type 1 diabetes. Personalized model predictive control (MPC) and proportional integral derivative (PID) algorithms were compared in supervised 27.5-h CLC sessions. Challenges included overnight control after a 65-g dinner, response to a 50-g breakfast, and response to an unannounced 65-g lunch. Boluses of announced dinner and breakfast meals were given at mealtime. The primary outcome was time in glucose range 70-180 mg/dL. Mean time in range 70-180 mg/dL was greater for MPC than for PID (74.4 vs. 63.7%, P = 0.020). Mean glucose was also lower for MPC than PID during the entire trial duration (138 vs. 160 mg/dL, P = 0.012) and 5 h after the unannounced 65-g meal (181 vs. 220 mg/dL, P = 0.019). There was no significant difference in time with glucose PID control for the AP indicates that MPC performed particularly well, achieving nearly 75% time in the target range, including the unannounced meal. Although both forms of CLC provided safe and effective glucose management, MPC performed as well or better than PID in all metrics. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Directory of Open Access Journals (Sweden)

    Ameer L. Saleh

    2018-02-01

    Full Text Available This paper present an optimal Fractional Order PID (FOPID controller based on Particle Swarm Optimization (PSO for controlling the trajectory tracking of Wheeled Mobile Robot(WMR.The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods.

  1. Control of baker’s yeast fermentation : PID and fuzzy algorithms

    OpenAIRE

    Machado, Carlos; Gomes, Pedro; Soares, Rui; Pereira, Silvia; Soares, Filomena

    2001-01-01

    A MATLAB/SIMULINK-based simulator was employed for studies concerning the control of baker’s yeast fed-batch fermentation. Four control algorithms were implemented and compared: the classical PID control, two discrete versions- modified velocity and position algorithms, and a fuzzy law. The simulation package was seen to be an efficient tool for the simulation and tests of control strategies of the non-linear process.

  2. The hierarchical expert tuning of PID controllers using tools of soft computing.

    Science.gov (United States)

    Karray, F; Gueaieb, W; Al-Sharhan, S

    2002-01-01

    We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.

  3. Demonstrative fractional order - PID controller based DC motor drive on digital platform.

    Science.gov (United States)

    Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu

    2017-09-21

    In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A design of LED adaptive dimming lighting system based on incremental PID controller

    Science.gov (United States)

    He, Xiangyan; Xiao, Zexin; He, Shaojia

    2010-11-01

    As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.

  5. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  6. Optimal PID settings for first and second-order processes - Comparison with different controller tuning approaches

    OpenAIRE

    Pappas, Iosif

    2016-01-01

    PID controllers are extensively used in industry. Although many tuning methodologies exist, finding good controller settings is not an easy task and frequently optimization-based design is preferred to satisfy more complex criteria. In this thesis, the focus was to find which tuning approaches, if any, present close to optimal behavior. Pareto-optimal controllers were found for different first and second-order processes with time delay. Performance was quantified in terms of the integrat...

  7. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    International Nuclear Information System (INIS)

    Shayeghi, H.; Shayanfar, H.A.; Jalili, A.

    2006-01-01

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  8. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. BP neural network tuned PID controller for position tracking of a pneumatic artificial muscle.

    Science.gov (United States)

    Fan, Jizhuang; Zhong, Jun; Zhao, Jie; Zhu, Yanhe

    2015-01-01

    Although Pneumatic Artificial Muscle (PAM) has a promising future in rehabilitation robots, it's difficult to realize accurate position control due to its highly nonlinear properties. This paper deals with position control of PAM. To describe the hysteresis inside PAM, a polynomial based phenomenological function is developed. Based on the phenomenological model for PAM and analysis of pressure dynamics within PAM, an adaptive cascade controller is proposed. Both outer loop and inner loop employ BP Neural Network tuned PID algorithm. The outer loop is to handle high nonlinearities and unmodeled dynamics of PAM, while the inner loop is responsible for nonlinearities caused by pressure dynamics. Experimental results show high tracking accuracy as compared with a convention PID controller. The proposed controller is effective in improving performance of PAM and will be implemented in a rehabilitation robot.

  10. IMC-PID-fractional-order-filter controllers design for integer order systems.

    Science.gov (United States)

    Maâmar, Bettayeb; Rachid, Mansouri

    2014-09-01

    One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Controlling Chaos and Voltage Collapse using Layered Recurrent Network-based PID-SVC in Power Systems

    Directory of Open Access Journals (Sweden)

    I Made Ginarsa

    2013-11-01

    Full Text Available Chaos and voltage collapse occurred in critical power systems due to disturbing of energy. PID-SVC layered reccurrent neural network-based (LRN-based PID-SVC was proposed to solve this problem. A PID was used to control chaos and voltage collapse. Then, an SVC LRN-based to maintan the load voltage. By using the proposed controller, chaos and voltage collapse were able to suppress and maintain the load voltage around the setting value. Furthemore, the proposed controller gives better response than PI-SVC controller.

  12. Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades

    Directory of Open Access Journals (Sweden)

    Jorge Villagrá

    2010-10-01

    Full Text Available Resumen: A pesar de sus limitaciones, la técnica de control mas utilizada en el mundo industrial sigue siendo todavía hoy el control PID. En este artículo se presenta un nuevo enfoque, el control basado en PID inteligentes (i-PID, que aprovecha las virtudes que han hecho tan popular al PID, mejorando uno de sus puntos débiles: la perdida de prestaciones en presencia de términos no-lineales o de dinámicas no modeladas. Para ilustrar las características del i-PID, se ha probado su comportamiento en una aplicación real, el control de crucero de un vehículo experimental a bajas velocidades. Palabras Clave: Controladores PID, Sistemas de control no lineales, Vehículos autónomos, Control de velocidad

  13. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  14. Evaluation of PD/PID controller for insulin control on blood glucose regulation in a Type-I diabetes

    Science.gov (United States)

    Mahmud, Farhanahani; Isse, Nadir Hussien; Daud, Nur Atikah Mohd; Morsin, Marlia

    2017-01-01

    This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB-Simulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.

  15. An optimal PID controller via LQR for standard second order plus time delay systems.

    Science.gov (United States)

    Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S

    2016-01-01

    An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fuzzy Logic Based Set-Point Weighting Controller Tuning for an Internal Model Control Based PID Controller

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2009-10-01

    Full Text Available Controller tuning is the process of adjusting the parameters of the selected controller to achieve optimum response for the controlled process. For many of the control problems, a satisfactory performance is obtained by using PID controllers. One of the main problems with mathematical models of physical systems is that the parameters used in the models cannot be determined with absolute accuracy. The values of the parameters may change with time or various effects. In these cases, conventional controller tuning methods suffer when trying a lot to produce optimum response. In order to overcome these difficulties a fuzzy logic based Set- Point weighting controller tuning method is proposed. The effectiveness of the proposed scheme is analyzed through computer simulation using SIMULINK software and the results are presented. The fuzzy logic based simulation results are compared with Cohen-Coon (CC, Ziegler- Nichols (ZN, Ziegler – Nichols with Set- Point weighting (ZN-SPW, Internal Model Control (IMC and Internal model based PID controller responses (IMC-PID. The effects of process modeling errors and the importance of controller tuning have been brought out using the proposed control scheme.

  17. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    Directory of Open Access Journals (Sweden)

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  18. IMPLEMENTATION OF PID ON PIC24F SERIES MICROCONTROLLER FOR SPEED CONTROL OF A DC MOTOR USING MPLAB AND PROTEUS

    OpenAIRE

    Sohaib Aslam; Sundas Hannan; Umar Sajjad; Waheed Zafar

    2016-01-01

    Speed control of DC motor is very critical in most of the industrial systems where accuracy and protection are of essence. This paper presents the simulations of Proportional Integral Derivative Controller (PID) on a 16-bit PIC 24F series microcontroller for speed control of a DC motor in the presence of load torque. The PID gains have been tuned by Linear Quadratic Regulator (LQR) technique and then it is implemented on microcontroller using MPLAB and finally simulated for speed control of D...

  19. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    Science.gov (United States)

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A GA-based PID active queue management control design for TCP/IP networks

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, H-H; Chen, C-K; Liao, T-L [Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Yan, J-J [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: tlliao@mail.ncku.edu.tw

    2008-02-15

    In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes.

  1. A GA-based PID active queue management control design for TCP/IP networks

    International Nuclear Information System (INIS)

    Kuo, H-H; Chen, C-K; Liao, T-L; Yan, J-J

    2008-01-01

    In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes

  2. Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System

    Directory of Open Access Journals (Sweden)

    Shan Zuo

    2014-01-01

    Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.

  3. Experimental results on the design for the APS PID global orbit control system

    International Nuclear Information System (INIS)

    Chung, Y.; Kirchman, J. A.

    1997-01-01

    The Advanced Photon Source third generation synchrotrons light source needs a stabilized particle beam position to produce high brightness and low emittance radiation. Global orbit correction control is introduced and is utilized to satisfy the demanding needs of the accelerator. This paper presents the experimental results for determining an effective and optimal controller to meet the global orbit correction requirements. These requirements include frequency/time domain demands consisting of vibrational noise attenuation, limiting of controller gains for stability and improving the system time response. Experiments were conducted with a digital signal processor implementing various PID sets to make comparisons between simulations and experiments. Measurements at these PID sets supported the results of software simulation

  4. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan

    2017-10-24

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  5. MPC-based auto-tuned PID controller for the steam generator water level

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, proportional-integral-derivative (PID) control gains are automatically tuned by using a model predictive control (MPC) method. The MPC has received much attention as a powerful tool for the control of industrial process systems. An MPC-based PID controller can be derived from the second order linear model of a process. The steam generator is usually described by the well-known 4 th order linear model which consists of the mass capacity, reverse dynamics and mechanical oscillations terms. But the important terms in this linear model are the mass capacity and reverse dynamics terms, both of which can be described by a 2 nd order linear system. The proposed auto-tuned PID controller was applied to a linear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The proposed controller showed good performance for the water level deviation and sudden steam flow disturbances that are typical in the existing power plants by changing only the input-weighting factor according to the power level

  6. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    Science.gov (United States)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  7. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan; Guo, Xingang; Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  8. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    Science.gov (United States)

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  9. Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation.

    Science.gov (United States)

    Tahoun, A H

    2017-01-01

    In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  11. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  12. New results on the robust stability of PID controllers with gain and phase margins for UFOPTD processes.

    Science.gov (United States)

    Jin, Q B; Liu, Q; Huang, B

    2016-03-01

    This paper considers the problem of determining all the robust PID (proportional-integral-derivative) controllers in terms of the gain and phase margins (GPM) for open-loop unstable first order plus time delay (UFOPTD) processes. It is the first time that the feasible ranges of the GPM specifications provided by a PID controller are given for UFOPTD processes. A gain and phase margin tester is used to modify the original model, and the ranges of the margin specifications are derived such that the modified model can be stabilized by a stabilizing PID controller based on Hermite-Biehlers Theorem. Furthermore, we obtain all the controllers satisfying a given margin specification. Simulation studies show how to use the results to design a robust PID controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism.

    Science.gov (United States)

    Goher, K M; Fadlallah, S O

    2017-01-01

    This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink ® environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme.

  14. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Directory of Open Access Journals (Sweden)

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  15. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  16. Optimal Design for PID Controller Based on DE Algorithm in Omnidirectional Mobile Robot

    Directory of Open Access Journals (Sweden)

    Wu Peizhang

    2017-01-01

    Full Text Available This paper introduces a omnidirectional mobile robot based on Mecanum wheel, which is used for conveying heavy load in a small space of the automatic warehousing logistics center. Then analyzes and establishes the omnidirectional chassis inverse and forward kinematic model. In order to improve the performance of motion, the paper proposes the optimal PID controller based on differential evolution algorithm. Finally, through MATLAB simulation, the results show that the kinematic model of mobile robot chassis is correct, further more the controller optimized by the DE algorithm working better than the traditional Z-N PID tuned. So the optimal scheme is reasonable and feasible, which has a value for engineering applications.

  17. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    Science.gov (United States)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  18. Regular self-oscillating and chaotic behaviour of a PID controlled gimbal suspension gyro

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel

    2004-01-01

    The dynamics of a gyro in gimbal with a PID controller to obtain steady state, self-oscillating and chaotic motion is considered in this paper. The mathematical model of the whole system is deduced from the gyroscope nutation theory and from a feedback control system formed by a PID controller with constrained integral action. The paper shows that the gyro and the associated PID feedback control system have multiple equilibrium points, and from the analysis of a Poincare-Andronov-Hopf bifurcation at the equilibrium points, it is possible to deduce the conditions, which give regular and self-oscillating behaviour. The calculation of the first Lyapunov value is used to predict the motion of the gyro in order to obtain a desired equilibrium point or self-oscillating behaviour. The mechanism of the stability loss of the gyro under small vibrations of the gyro platform and the appearance of chaotic motion is also presented. Numerical simulations are performed to verify the analytical results

  19. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.

  20. Design of Multiregional Supervisory Fuzzy PID Control of pH Reactors

    Directory of Open Access Journals (Sweden)

    Shebel AlSabbah

    2015-01-01

    Full Text Available This work concerns designing multiregional supervisory fuzzy PID (Proportional-Integral-Derivative control for pH reactors. The proposed work focuses, mainly, on two themes. The first one is to propose a multiregional supervisory fuzzy-based cascade control structure. It would enable modifying dynamics and enhance system’s stability. The fuzzy system (master loop has been chosen as a tuner for PID controller (slave loop. It takes into consideration parameters uncertainties and reference tracking. The second theme concerns designing a hybrid neural network-based pH estimator. The proposed estimator would overcome the industrial drawbacks, that is, cost and size, found with conventional methods for pH measurement. The final end-user-interface (EUI front panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based estimator have been presented using the compatibility found between LabView and MatLab. They lead to conclude that the proposed algorithms are appropriate to systems nonlinearities encountered with pH reactors.

  1. Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.

    Science.gov (United States)

    Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I

    2017-09-01

    Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. PID Testing Method Suitable for Process Control of Solar Cells Mass Production

    Directory of Open Access Journals (Sweden)

    Xianfang Gou

    2015-01-01

    Full Text Available Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID, in normal photovoltaic (PV installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, and V-Q test are conducted on solar cells or wafers with SiNx of different refractive index. All comparisons between test results of Rsh, V-Q, and minimodule tests have shown equal results. It is shown that Rsh test can be used as quality inspection of solar cells and V-Q test of coated wafer can be used as process control of solar cells.

  3. Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop.

    Science.gov (United States)

    Tepljakov, Aleksei; Gonzalez, Emmanuel A; Petlenkov, Eduard; Belikov, Juri; Monje, Concepción A; Petráš, Ivo

    2016-01-01

    The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    Science.gov (United States)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  5. PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance

    Directory of Open Access Journals (Sweden)

    Hossein Rouhani

    2017-06-01

    Full Text Available Closed-loop controlled functional electrical stimulation (FES applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i quiet-standing; (ii sudden change of targeted pendulum angle (step response; (iii balance perturbations that simulate arm movements; and (iv sudden change of targeted angle of a pendulum with individual-specific body-weight (step response. In paradigms (i to (iii, a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms, rise time, settle time, and overshoot [paradigms (ii and (iv] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled

  6. PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance.

    Science.gov (United States)

    Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R

    2017-01-01

    Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled

  7. Method’s and Test Stand for Electronic PID Controller

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.

  8. Immune algorithm based active PID control for structure systems

    International Nuclear Information System (INIS)

    Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon

    2006-01-01

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  9. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    Science.gov (United States)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  10. Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Parinya Anantachaisilp

    2017-01-01

    Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.

  11. PID Controller Settings Based on a Transient Response Experiment

    Science.gov (United States)

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  12. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2013-01-01

    Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.

  13. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{sub p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.

  14. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    International Nuclear Information System (INIS)

    Saha, Sourav; Mojumder, Satyajit; Saha, Sumon

    2016-01-01

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k p ), integral gain (k i ), and derivative gain (k d ) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.

  15. A robust fractional-order PID controller design based on active queue management for TCP network

    Science.gov (United States)

    Hamidian, Hamideh; Beheshti, Mohammad T. H.

    2018-01-01

    In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.

  16. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    OpenAIRE

    Ziqiang Chi; Minping Jia; Qingsong Xu

    2014-01-01

    Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to deri...

  17. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  18. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    Science.gov (United States)

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  19. PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants

    Science.gov (United States)

    Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va

    2017-09-01

    The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.

  20. Pengembangan Bioelectrical Impedance Sebagai Control Commands Pengaturan Kecepatan Gerak Kursi Roda Dengan Metoda PID Controller

    Directory of Open Access Journals (Sweden)

    Juli Sardi

    2014-09-01

    Full Text Available In the present study, bioimpedance signals of human body was utilized to control speed of a wheelchair movement. A bioimpedance is electrically passive part contained the body tissues. The research is one of alternative solutions for patients with paralysis of the upper and lower limb. Firstly, design of system of the research consisted of bioimpedance measuring instruments and a mechanical design of the wheelchair. Bioimpedance measurement was performed by injecting a sinusoidal current source of 0.5 mArms with a frequency of 50 kHz to muscle tissue (shoulder to obtain the output voltage in the range of 0-5 Vdc. With impulse and manual thresholding methods, the voltage signal was classified into several controls command to adjust the speed and direction of the wheelchair control based on PID Controller. The experimental result of the research was realization of bioimpedance signal that used as a reference to control the direction and speed of the wheelchair with a success rate of 86.7 %. A wheelchair velocity was classified into three types of motion, namely slow, medium and fast. Slow speed has a rated speed of 30 Cm/s, medium speed value speed of 40 Cm/s and fast speed value of 50 Cm/s. The wheelchair can also turn to the left and the right in accordance with the wishes of wheelchair user beside to moving forward.

  1. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Directory of Open Access Journals (Sweden)

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  2. Grid Connected WECS with A Five Level DCMLI using PID Controller

    Directory of Open Access Journals (Sweden)

    G.Balaji

    2014-07-01

    Full Text Available This paper deals with the analysis, modeling and control system for permanent magnet synchronous generator (PMSG based wind turbine connected to the grid. A wind energy conversion using DC-DC Buck- Boost Converter for permanent magnet synchronous generator (PMSG based variable speed wind energy conversion system (WECS has been proposed which is integrated with grid using five-level diode clamped multilevel (DCMLI inverter. In this work the instantaneous values of input side current and voltage of DC-DC buck-boost converter are utilized for implementing the PID controller. The proposed work is verified by the simulation in Powersim.

  3. Balancing Inverted Pendulum by Angle Sensing Using Fuzzy Logic Supervised PID Controller Optimized by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ashutosh K. AGARWAL

    2011-10-01

    Full Text Available Genetic algorithms are robust search techniques based on the principles of evolution. A genetic algorithm maintains a population of encoded solutions and guides the population towards the optimum solution. This important property of genetic algorithm is used in this paper to stabilize the Inverted pendulum system. This paper highlights the application and stability of inverted pendulum using PID controller with fuzzy logic genetic algorithm supervisor . There are a large number of well established search techniques in use within the information technology industry. We propose a method to control inverted pendulum steady state error and overshoot using genetic algorithm technique.

  4. Proportional-Integral-Derivative (PID) Control of Secreted Factors for Blood Stem Cell Culture.

    Science.gov (United States)

    Caldwell, Julia; Wang, Weijia; Zandstra, Peter W

    2015-01-01

    Clinical use of umbilical cord blood has typically been limited by the need to expand hematopoietic stem and progenitor cells (HSPC) ex vivo. This expansion is challenging due to the accumulation of secreted signaling factors in the culture that have a negative regulatory effect on HSPC output. Strategies for global regulation of these factors through dilution have been developed, but do not accommodate the dynamic nature or inherent variability of hematopoietic cell culture. We have developed a mathematical model to simulate the impact of feedback control on in vitro hematopoiesis, and used it to design a proportional-integral-derivative (PID) control algorithm. This algorithm was implemented with a fed-batch bioreactor to regulate the concentrations of secreted factors. Controlling the concentration of a key target factor, TGF-β1, through dilution limited the negative effect it had on HSPCs, and allowed global control of other similarly-produced inhibitory endogenous factors. The PID control algorithm effectively maintained the target soluble factor at the target concentration. We show that feedback controlled dilution is predicted to be a more cost effective dilution strategy compared to other open-loop strategies, and can enhance HSPC expansion in short term culture. This study demonstrates the utility of secreted factor process control strategies to optimize stem cell culture systems, and motivates the development of multi-analyte protein sensors to automate the manufacturing of cell therapies.

  5. Computation of stabilizing PI and PID controllers using the stability boundary locus

    International Nuclear Information System (INIS)

    Tan, Nusret; Kaya, Ibrahim; Yeroglu, Celaleddin; Atherton, Derek P.

    2006-01-01

    In this paper, a new method for the calculation of all stabilizing PI controllers is given. The proposed method is based on plotting the stability boundary locus in the (k p , k i )-plane and then computing the stabilizing values of the parameters of a PI controller. The technique presented does not require sweeping over the parameters and also does not need linear programming to solve a set of inequalities. Thus it offers several important advantages over existing results obtained in this direction. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. Computation of stabilizing PI controllers which achieve user specified gain and phase margins is studied. It is shown via an example that the stabilizing region in the (k p , k i )-plane is not always a convex set. The proposed method is also used to design PID controllers. The limiting values of a PID controller which stabilize a given system are obtained in the (k p , k i )-plane (k p , k d )-plane and (k i , k d )-plane. Furthermore, the proposed method is used to compute all the parameters of a PI controller which stabilize a control system with an interval plant family. Examples are given to show the benefits of the method presented

  6. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  7. Reducing the energy consumption of an earth–air heat exchanger with a PID control system

    International Nuclear Information System (INIS)

    Diaz-Mendez, S.E.; Patiño-Carachure, C.; Herrera-Castillo, J.A.

    2014-01-01

    Highlights: • The application of control actions to green technologies has been simulated. • Energy consumption of green technologies can be reduced even more. • The efficiency of green technologies can be raised. • Environmental concerns can be diminished. • The sustainability of the planet can be increased. - Abstract: Reducing environmental emissions is one of the challenges that human being has to overcome. It can only be reached with a proper energetic efficiency and management of the processes that exist in the society nowadays. Several academic works have mentioned that raising the efficiency of a process it also increases sustainability and in turn decreases the environmental impact. One process that requires much attention is the cooling and heating of buildings; this process contributes to the major part of the electric bill, in particular, if a conventional and old air conditioning is used as commonly occurs in many countries. In recent years there have been developed new alternatives that are used in few countries, such as the earth–air heat exchanger, where air is passed through a heat exchanger buried a few meters below the ground. The heat exchanger takes advantage of the well-known difference between the temperature of the surrounding air and the temperature of the ground for cooling or heating the air that is subsequently injected into the buildings. This process requires less energy, then in the present work is thought that a PID (Proportional, Integral and Derivative) controller can be applied to an earth–air heat exchanger to reduce even more the energy consumption. Therefore, a simulation of a thermodynamic model of an earth–air heat exchanger was done and used along with a PID controller, to estimate savings in energy consumption. The results show that the energy consumption can be reduced up to 87% with the PID control, hence the efficiency of the process is increased as well as the sustainability of the planet and thus the

  8. Two degree of freedom internal model control-PID design for LFC of power systems via logarithmic approximations.

    Science.gov (United States)

    Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B

    2018-01-01

    Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A fuzzy PID-controlled SMA actuator for a two-DOF joint

    Directory of Open Access Journals (Sweden)

    Shi Zhenyun

    2014-04-01

    Full Text Available Shape memory alloy (SMA actuator is a potential advanced component for servo-systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.

  10. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  11. PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient

    Directory of Open Access Journals (Sweden)

    Alrijadjis .

    2014-12-01

    Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.

  12. An Implementation Method of the Fractional-Order PID Control System Considering the Memory Constraint and its Application to the Temperature Control of Heat Plate

    Science.gov (United States)

    Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo

    Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.

  13. Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time

    Directory of Open Access Journals (Sweden)

    Paula A. Ortiz-Valencia

    2013-11-01

    Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.

  14. Design and development of the Macpherson Proton Preve Magneto rheological damper with PID controller

    Science.gov (United States)

    Amiruddin, I. M.; Pauziah, M.; Aminudin, A.; Unuh, M. H.

    2017-10-01

    Since the creation of the first petrol-fuelled vehicle by Karl Benz in the late nineteenth century, car industry has grown considerably to meet the industrial demands. Luxurious looks and agreeable rides are the primary needs of drivers. The Magneto-rheological damper balanced their damping trademark progressively by applying the damping coefficient depending on the control system. In this research, the control calculations are assessed by utilizing the MR damper. The capacity and reliably of the target force for the damper speed is investigated from control algorithm. This is imperative to defeat the damper limitation. In this study, the simulation results of the semi-dynamic MR damper with the PID controller shows better performance in sprung mass acceleration, unsprung mass acceleration and suspension dislodging with permitting over the top tyre acceleration. The altered model of the MR damper is specially designed for Proton Preve specifications and semi-active PID control. The procedure for the advancement incorporates the numerical model to graphically recreate and break down the dynamic framework by utilizing Matlab.

  15. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    Science.gov (United States)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  16. IMPLEMENTATION OF PID ON PIC24F SERIES MICROCONTROLLER FOR SPEED CONTROL OF A DC MOTOR USING MPLAB AND PROTEUS

    Directory of Open Access Journals (Sweden)

    Sohaib Aslam

    2016-09-01

    Full Text Available Speed control of DC motor is very critical in most of the industrial systems where accuracy and protection are of essence. This paper presents the simulations of Proportional Integral Derivative Controller (PID on a 16-bit PIC 24F series microcontroller for speed control of a DC motor in the presence of load torque. The PID gains have been tuned by Linear Quadratic Regulator (LQR technique and then it is implemented on microcontroller using MPLAB and finally simulated for speed control of DC motor in Proteus Virtual System Modeling (VSM software.Proteus has built in feature to add load torque to DC motor so simulation results have been presented in three cases speed of DC motor is controlled without load torque, with 25% load torque and with 50% load torque. In all three cases PID effectively controls the speed of DC motor with minimum steady state error.

  17. Energy Management System Based on Fuzzy fractional order PID Controller for Transient Stability Improvement in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Moafi, Milad; Marzband, Mousa; Savaghebi, Mehdi

    2016-01-01

    in the islanded Microgrid (MG). To increase performance for a wide range of power system operating conditions, an energy management systems (EMS) is proposed based on a fuzzy fractional order PID (FFOPID) controller. It is able to analyze and simulate the dynamic behavior in grid connected MGs. This controller...... is proposed in the MG encompassing distributed generation resources with “plug and play” ability. The performance of FFOPID controller is verified for frequency control purposes and to support internal bus voltage in both islanded and grid connected operating modes in accordance with the failure time. Energy...... combined with a PID-controller (termed as FLPID) and Fuzzy fractional order PID (termed as FFOPID) are implemented according to the characteristics and limitations of overloading and state of charge (SOC). The obtained results show good performance of FFOPID controllers by improving the transient stability...

  18. Simulated Annealing-based Optimal Proportional-Integral-Derivative (PID) Controller Design: A Case Study on Nonlinear Quadcopter Dynamics

    Science.gov (United States)

    Nemirsky, Kristofer Kevin

    In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.

  19. A novel multi-drive electric vehicle system control based on multi-input multi-output PID controller

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2012-01-01

    Full Text Available In-wheel-motor drive electric vehicle (EV is an innovative configuration of the modern EV, in which each wheel is driven individually by an electric motor. The classical traction motor control called the Independent Machine Control Structure (IMCS using a PID speed controller presents major inconveniences in modern EV safety, when the proposed control can not ensure stability of the EV with differing road topology and variations of speed. A new approach is proposed for a control of a two-in-wheel-motor drive EV, called the Maximum Control Structure MCS. This is based on a multivariable PID (MIMO-PID strategy, which is employed to estimate the linear speed error of each of the two back driving wheels, when the error of each wheel is taken into account in the other speed control computations. Simulation results show that the new control system presents increased safety for the EVs compared with the IMCS strategy and can maintain the error slip rate within the optimal range, ensuring the stability of the vehicle either in a straight or a curved line.

  20. A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning.

    Science.gov (United States)

    Kumar, Anupam; Kumar, Vijay

    2017-05-01

    In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Design Of A Novel Online Experiment Setup For PID Controller Applications

    Directory of Open Access Journals (Sweden)

    Sezgin Kaçar

    2017-02-01

    Full Text Available In this study, an internet based remote access experiment setup was developed for induction direct current motor speed control with PID controller which can be used as a support material in engineering education. The experiment setup is wireless and communicates with the remote server using transfer control protocol/internet protocol through a wireless ADSL modem. Users can perform the experiments as real time accessing the web pages in the remote server by using any computer which has internet connection. By means of interactively-designed web pages, users can monitor the speed change executing alterations of the PID controller parameter and motor reference speed. Also users can save the measured values on their own computers. In addition to this, with the support of a webcam, the running of the experimental set can be monitored on the web page. Additionally, for the experimental set, preparing the peripheral units card, the interaction was expanded between the user and the experimental set. Relatively to this, the user can monitor the ambient temperature of the experimental set’s current place on the web page and can make his/her own message write on LCD of the experimental set and can enlighten it if he/she wants.

  2. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  3. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  4. PID Controllers Design Applied to Positioning of Ball on the Stewart Platform

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2014-12-01

    Full Text Available The paper presents the design and practical implementation of PID controllers for a Stewart platform. The platform uses a resistance touch panel as a sensor and servo motors as actuators. The complete control system stabilizing the ball on the platform is realized with the Arduino microcontroller and the Matlab/Simulink software. Two processes required to acquire measurement signals from the touch panel in two perpendicular directions X and Y, are discussed. The first process includes the calibration of the touch panel, and the second process - the filtering of measurement signals with the low pass Butterworth filter. The obtained signals are used to design the algorithm of the ball stabilization by decoupling the global system into two local subsystems. The algorithm is implemented in a soft real time system. The parameters of both PID controllers (PIDx and PIDy are tuned by the trial-error method and implemented in the microcontroller. Finally, the complete control system is tested at the laboratory stand.

  5. Tuning of PID Controllers for Quadcopter System using Cultural Exchange Imperialist Competitive Algorithm

    Directory of Open Access Journals (Sweden)

    Nizar Hadi Abbas

    2018-02-01

    Full Text Available Quadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL capability. With the vast advancements in small-size sensors, actuators, and processors, researchers are now focusing on developing mini UAV’s to be used in both research and commercial applications. This work presents a detailed mathematical nonlinear dynamic model of the quadrotor which is formulated using the Newton-Euler method. Although the quadrotor is a 6 DOF under-actuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is under-actuated. The derivation of the mathematical model was followed by the development of the controller to control the altitude, attitude, heading and position of the quadrotor in space, which is, based on the linear Proportional-Derivative- Integral (PID controller; thus, a simplified version of the model is obtained. The gains of the controllers will be tuned using optimization techniques to improve the system's dynamic response. The standard Imperialist Competitive Algorithm (ICA was applied to tune the PID parameters and then it was compared to Cultural Exchange Imperialist Competitive algorithm (CEICA tuning, and the results show improvement in the proposed algorithm. The objective function results were enhanced by (23.91% in the CEICA compared with ICA.

  6. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  7. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  8. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    International Nuclear Information System (INIS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  9. CONTROL SYSTEM DESIGN WITH FUZZY LOGIC PID-СONTROLLER TYPE 2

    Directory of Open Access Journals (Sweden)

    A. Tунік

    2011-04-01

    Full Text Available This paper presents a fuzzy logic PID-controller synthesis method for solid body guidance. Formany nonlinear systems with nonlinearities and uncertainties, the performance of fuzzy controllertype 1 may not be satisfactory. Therefore, in this work, fuzzy logic type 2 controller design isintroduced. These controllers capture the advantage of a linear controller in terms of simplicity andalso can handle nonlinearity because of their inference mechanism.The main feature of the proposedmethod constitutes in a membership functions type 2 applications. The membership function type 2is represented by upper and lower membership functions of type 1. The interval between these twofunctions represent the footprint of uncertainty, which give an opportunity to synthesize commonregulator for set of a models. The structure of fuzzy logic controller for solid body control isgrounded. Simulation results confirm the effectiveness of the proposed approach.

  10. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.

    Science.gov (United States)

    Hu, Ruiqiang; Li, Chengwei

    2015-01-01

    Automated closed-loop insulin infusion therapy has been studied for many years. In closed-loop system, the control algorithm is the key technique of precise insulin infusion. The control algorithm needs to be designed and validated. In this paper, an improved PID algorithm based on insulin-on-board estimate is proposed and computer simulations are done using a combinational mathematical model of the dynamics of blood glucose-insulin regulation in the blood system. The simulation results demonstrate that the improved PID algorithm can perform well in different carbohydrate ingestion and different insulin sensitivity situations. Compared with the traditional PID algorithm, the control performance is improved obviously and hypoglycemia can be avoided. To verify the effectiveness of the proposed control algorithm, in silico testing is done using the UVa/Padova virtual patient software.

  11. Laboratorio Web SCORM de Control PID con Integración Avanzada

    Directory of Open Access Journals (Sweden)

    Ildefonso Ruano Ruano

    2016-10-01

    Full Text Available Resumen: Los laboratorios Web (WebLabs son recursos cada vez más utilizados en las carreras técnicas universitarias. Cuando se presentan integrados en un sistema de gestión de aprendizaje (LMS, Learning Management System se obtienen una serie de ventajas para alumnos y docentes entre las que destaca el hecho de mostrarse en un entorno conocido y la posibilidad de personalizar la experiencia gracias a la identificación de usuarios que realiza el LMS. Este trabajo muestra un WebLab sobre control Proporcional-Integral-Derivativo (PID, un contenido fundamental de las asignaturas de Automática que se encuentra en todos los grados de Ingeniería Industrial. Este WebLab ha sido desarrollado mediante una metodología innovadora con la que se obtiene un recurso de aprendizaje eficaz basado en un paquete SCORM (Shared Content Object Reference Model. SCORM es el estándar de contenidos de e-learning más utilizado y es compatible con la mayoría de los LMS del mercado, esto permite que el WebLab pueda ser reutilizado fácilmente en diferentes entornos LMS. El WebLab contiene un plan de aprendizaje que incluye una serie de recursos de utilidad docente como teoría de control PID, pruebas de evaluación, un laboratorio virtual de control PID de un motor de corriente continua y experimentos personalizados para cada alumno cuyos resultados son almacenados en el LMS. Este WebLab se ha presentado en el LMS institucional de la Universidad de Jaén a 340 alumnos de la asignatura “Automática Industrial” en el curso 2014-15. Los datos de uso han permitido realizar diversas evaluaciones que demuestran que los alumnos que lo han completado han obtenido un rendimiento excelente en el propio WebLab, han conseguido unos resultados muy superiores al resto de alumnos en la evaluación final de la asignatura y lo han valorado muy positivamente. También se ha demostrado la reusabilidad del WebLab en diferentes LMS

  12. A low power flash-FPGA based brain implant micro-system of PID control.

    Science.gov (United States)

    Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick

    2017-07-01

    In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.

  13. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.; Shah, D.K.

    2015-01-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  14. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.

    Science.gov (United States)

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-07-01

    Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  16. GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design.

    Science.gov (United States)

    Sarkar, B K; Mandal, P; Saha, R; Mookherjee, S; Sanyal, D

    2013-11-01

    Rugged electrohydraulic systems are preferred for remote and harsh applications. Despite the low bandwidth, large deadband and flow nonlinearities in proportional valves valve and highly nonlinear friction in industry-grade cylinders that comprise rugged systems, their maintenance are much easier than very sophisticated and delicate servocontrol and servocylinder systems. With the target of making the easily maintainable system to perform comparably to a servosystem, a feedforward control has been designed here for compensating the nonlinearities. A PID feedback of the piston displacement has been employed in tandem for absorbing the unmodeled effects. All the controller parameters have been optimized by a real-coded genetic algorithm. The agreement between the achieved real-time responses for step and sinusoidal demands with those achieved by modern servosystems clearly establishes the acceptability of the controller design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Directory of Open Access Journals (Sweden)

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  19. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.

    Science.gov (United States)

    Lee, Chengming; Chen, Rongshun

    2015-05-20

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  20. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System

    Directory of Open Access Journals (Sweden)

    Chengming Lee

    2015-05-01

    Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  1. Performance Analysis of a Neuro-PID Controller Applied to a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Saeed Pezeshki

    2012-11-01

    Full Text Available The performance of robot manipulators with nonadaptive controllers might degrade significantly due to the open loop unstable system and the effect of some uncertainties on the robot model or environment. A novel Neural Network PID controller (NNP is proposed in order to improve the system performance and its robustness. The Neural Network (NN technique is applied to compensate for the effect of the uncertainties of the robot model. With the NN compensator introduced, the system errors and the NN weights with large dispersion are guaranteed to be bounded in the Lyapunov sense. The weights of the NN compensator are adaptively tuned. The simulation results show the effectiveness of the model validation approach and its efficiency to guarantee a stable and accurate trajectory tracking process in the presence of uncertainties.

  2. PID control design for chaotic synchronization using a tribes optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Andrade Bernert, Diego Luis de [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: dbernert@gmail.com

    2009-10-15

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  3. PID control design for chaotic synchronization using a tribes optimization approach

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Andrade Bernert, Diego Luis de

    2009-01-01

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  4. Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration.

    Science.gov (United States)

    Zamani, Abbasali; Barakati, S Masoud; Yousofi-Darmian, Saeed

    2016-09-01

    Load-frequency control is one of the most important issues in power system operation. In this paper, a Fractional Order PID (FOPID) controller based on Gases Brownian Motion Optimization (GBMO) is used in order to mitigate frequency and exchanged power deviation in two-area power system with considering governor saturation limit. In a FOPID controller derivative and integrator parts have non-integer orders which should be determined by designer. FOPID controller has more flexibility than PID controller. The GBMO algorithm is a recently introduced search method that has suitable accuracy and convergence rate. Thus, this paper uses the advantages of FOPID controller as well as GBMO algorithm to solve load-frequency control. However, computational load will higher than conventional controllers due to more complexity of design procedure. Also, a GBMO based fuzzy controller is designed and analyzed in detail. The performance of the proposed controller in time domain and its robustness are verified according to comparison with other controllers like GBMO based fuzzy controller and PI controller that used for load-frequency control system in confronting with model parameters variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Liberia PIDS

    Data.gov (United States)

    US Agency for International Development — PIDS is the web-based system designed to allow data input and consultative sessions by USAID/Liberia's IPs and USAID personnel. It is established and maintained by...

  6. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  7. Energetically efficient proportional-integral-differential (PID) control of wake vortices behind a circular cylinder

    International Nuclear Information System (INIS)

    Das, Pramode K; Mathew, Sam; Shaiju, A J; Patnaik, B S V

    2016-01-01

    The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response. (paper)

  8. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  9. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    Directory of Open Access Journals (Sweden)

    Gaining Han

    2017-05-01

    Full Text Available The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS, the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  10. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Directory of Open Access Journals (Sweden)

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  11. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed

    2017-09-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing the produced heat to follow a desired reference despite the unevenly varying solar irradiance. In addition to the unpredictable variations of the energy source, the parabolic solar collectors are subject to inhomogeneous distributed efficiency parameters affecting the heat production. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness with respect to disturbances. Thus, we propose a control strategy based on FOPID to achieve the control objectives. First, the FOPID controller is designed based on a linear approximate model describing the system dynamics under nominal working conditions. Then, the FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. Numerical simulations are carried out to evaluate the performance of the proposed FOPID controller. A comparison to the robust integer order PID is also provided. Robustness tests are performed for the nominal model to show the effectiveness of the FOPID. Furthermore, the proposed FOPID is numerically tested to control the distributed solar collector under real working conditions.

  12. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller

    International Nuclear Information System (INIS)

    Cui, J; Guo, Z Y; Yang, Z C; Hao, Y L; Yan, G Z

    2011-01-01

    In this paper, we demonstrate a novel control strategy for the drive mode of a microgyroscope using ascending frequency drive (AFD) with an AGC-2DOF PID controller, which drives a resonator with a modulation signal not at the resonant frequency and senses the vibration signal at the resonant frequency, thus realizing the isolation between the actual mechanical response and electrical coupling signal. This approach holds the following three advantages: (1) it employs the AFD signal instead of the resonant frequency drive signal to excite the gyroscope in the drive direction, suppressing the electrical coupling from the drive electrode to the sense electrode; (2) it can reduce the noise at low frequency and resonant frequency by shifting flicker noise to the high-frequency part; (3) it can effectively improve the performance of the transient response of the closed-loop control with a 2-DOF (degree of freedom) PID controller compared with the conventional 1-DOF PID. The stability condition of the whole loop is investigated by utilizing the averaging and linearization method. The control approach is applied to drive a lateral tuning fork microgyroscope. Test results show good agreement with the theoretical and simulation results. The non-ideal electrical antiresonance peak is removed and the resonant peak height increases by approximately 10 dB over a 400 Hz span with a flicker noise reduction of 30 dB within 100 Hz using AFD. The percent overshoot is reduced from 36.2% (1DOF PID) to 8.95% (2DOF PID, about 75.3% overshoot suppression) with 15.3% improvement in setting time

  13. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  14. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  15. Tuning of PI/PID controllers by developing an Android application

    International Nuclear Information System (INIS)

    Wu Wu, Steven

    2013-01-01

    The guidelines are defined for the implementation of the tuning rules uSORT_1 and uSORT_2, to an Android application. This is based on the parameters of a process model, which has allowed to perform the calculation of PI/PID type controllers of 1GdL and 2GdL respectively. The tuning rule mentioned above was revised, its functionality was checked calculating and analyzing the results for the various values of the relation of time constants. The use on the linear interpolation of the normalized parameters of the controllers has allowed to observe for the extreme cases of the chosen 'a' value, values that have fulfilled the own characteristics of the tuning rules. Eclipse ADT was used for the development of the application, as it has turned out to be a very functional tool that has facilitated the execution and debugging of the application, as well as the management of libraries and Android resources. The functionality of the parameters of the controller product of the application was verified, since it was possible to control a real process, obtaining congruent and very successful results to the expected product of the simulations performed, both in the operation of servo control and in regulatory control. (author) [es

  16. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  17. Stabilization Using a Discrete Fuzzy PDC Control with PID Controllers and Pole Placement: Application to an Experimental Greenhouse

    Directory of Open Access Journals (Sweden)

    Amine Chouchaine

    2011-01-01

    Full Text Available This paper proposes a control strategy for complex and nonlinear systems, based on a parallel distributed compensation (PDC controller. A solution is presented to solve a stability problem that arises when dealing with a Takagi-Sugeno discrete system with great numbers of rules. The PDC controller will use a classical controller like a PI, PID, or RST in each rule with a pole placement strategy to avoid causing instability. The fuzzy controller presented combines the multicontrol approach and the performance of the classical controllers to obtain a robust nonlinear control action that can also deal with time-variant systems. The presented method was applied to a small greenhouse to control its inside temperature by variation in ventilation rate inside the process. The results obtained will show the efficiency of the adopted method to control the nonlinear and complex systems.

  18. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.

    Science.gov (United States)

    Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M

    2016-07-01

    In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models

    Directory of Open Access Journals (Sweden)

    Christer Dalen

    2017-10-01

    Full Text Available A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.

  20. Avaliação de controles PID adaptativos para um sistema de aquecimento resistivo de água Evaluation of adaptive PID controls for a resistive system of heating water

    Directory of Open Access Journals (Sweden)

    Maria Isabel Berto

    2004-09-01

    Full Text Available O trabalho consiste na implementação de um controle convencional PID/SISO-feedback para obter um ajuste fino na temperatura de entrada da água de aquecimento em um processo de pasteurização. Para isto utilizou-se uma resistência de 2500 Watts instalada na linha do fluido secundário da seção de aquecimento do pasteurizador e um Pt100 para a medição de sua temperatura. Como o comportamento desta temperatura em função de uma mesma perturbação degrau de potência na resistência é dependente da vazão de trabalho, objetivou-se encontrar um controle único para que a mesma fosse mantida no set-point desejado na faixa de operação de vazão da água do processo (300 a 700L/h. Três sintonias para o controlador adaptativo PID foram testadas: a primeira consistiu na implementação de uma função adaptativa dos parâmetros PID, ajustada através dos valores individuais obtidos para cada vazão de trabalho conforme metodologia da curva de reação do processo; a segunda consistiu em configurar os parâmetros do PID com os valores médios destes calculados individualmente para cada vazão, e a terceira consistiu na sintonia através de uma função adaptativa ajustada pelos parâmetros de sintonia obtidos pela metodologia de Aström & Hägglund. A avaliação do desempenho das sintonias dos controladores adaptativos foi realizada por comparação dos valores dos índices de erro, obtidos por perturbações do sistema em malha fechada na vazão de água. Os resultados obtidos mostraram que dentre as sintonias testadas, a terceira sintonia, popularmente conhecida como "Bang-Bang", apresentou menores oscilações e os menores valores dos índices de erros.The aim of this work is to implement a conventional PID/SISO feedback control to obtain a fine adjustment of the water inlet temperature at a pasteurization process. For that, a resistance of 2500 Watts and a Pt100 to measure the temperature were installed in the water inlet line of the

  1. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  2. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.

    Science.gov (United States)

    Sharma, Richa; Gaur, Prerna; Mittal, A P

    2015-09-01

    The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment

    Science.gov (United States)

    Molina, Daniel

    2017-09-01

    The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.

  4. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    Science.gov (United States)

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.

  5. A Low Cost Mobile Robot Based on Proportional Integral Derivative (PID) Control System and Odometer for Education

    Science.gov (United States)

    Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.

    2018-03-01

    In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.

  6. Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time.

    Science.gov (United States)

    Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang

    2016-03-01

    Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Optimal Design and Tuning of PID-Type Interval Type-2 Fuzzy Logic Controllers for Delta Parallel Robots

    Directory of Open Access Journals (Sweden)

    Xingguo Lu

    2016-05-01

    Full Text Available In this work, we propose a new method for the optimal design and tuning of a Proportional-Integral-Derivative type (PID-type interval type-2 fuzzy logic controller (IT2 FLC for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.

  8. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    Science.gov (United States)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  9. Design and Testing of a Low Cost PID Controller Combined with Inverse Derivative Control Action and Its Application in Voltage Control Systems of DC Generator

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-01-01

    Full Text Available A single PID controller in a process control loop may suffer from high frequency oscillations without offset or low frequency oscillation with offset. An inverse derivative control action can eliminate both of these errors. In the present paper, a low cost operational amplifier based PID controller with inverse derivative control action has been described. Its transfer function has been derived and is found to be identical with the form already derived by other workers. It has been tested with a process plant analogue and implemented in the voltage control system of a DC generator. Its transfer function along with its characteristics in a process plant analogue and the load characteristics of DC generator with and without this controller have been determined experimentally and reported in this paper.

  10. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II

    International Nuclear Information System (INIS)

    Chen, Zhihuan; Yuan, Xiaohui; Ji, Bin; Wang, Pengtao; Tian, Hao

    2014-01-01

    Highlights: • Multi-objective optimization based fractional order controller is designed for HTRS. • NSGAII is improved by iterative chaotic map with infinite collapses (ICMIC) operator. • ISE and ITSE are as chosen as objective functions in tuning parameters of HTRS. • FOPID controller outperforms the PID controller under various running conditions. • Trade-off between speed of reference tracking and damping of oscillation are shown. - Abstract: Fractional-order PID (FOPID) controller is a generalization of traditional PID controller using fractional calculus. Compared to the traditional PID controller, in FOPID controller, the order of derivative portion and integral portion is not integer, which provides more flexibility in achieving control objectives. Design stage of such an FOPID controller consists of determining five parameters, i.e. proportional, integral and derivative gains {Kp, Ki, Kd}, and extra integration and differentiation orders {λ,μ}, which has a large difference comparing with the conventional PID tuning rules, thus a suitable optimization algorithm is essential to the parameters tuning of FOPID controller. This paper focuses on the design of the FOPID controller using chaotic non-dominated sorting genetic algorithm II (NSGAII) for hydraulic turbine regulating system (HTRS). The parameters chosen of the FOPID controller is formulated as a multi-objective optimization problem, in which the objective functions are composed by the integral of the squared error (ISE) and integral of the time multiplied squared error (ITSE). The chaotic NSGAII algorithm, which is an incorporation of chaotic behaviors into NSGAII, is used as the optimizer to search true Pareto-front of the FOPID controller and designers can implement each of them based on objective functions priority. The designed chaotic NSGAII based FOPID controller procedure is applied to a HTRS system. A comparison study between the optimum integer order PID controller and optimum

  11. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  12. Qualitative vs. quantitative data: Controls on the accuracy of PID field screening in petroleum contamination assessment applications

    International Nuclear Information System (INIS)

    Luessen, M.J.; Allex, M.K.; Holzel, F.R.

    1995-01-01

    The use of photoionization detectors (PIDs) for field screening of soils for volatile organic contaminants has become a standard industry practice. PID screening data is generally utilized as a qualitative basis for selection of samples for laboratory analysis to quantify concentrations of specific contaminants of concern. Both qualitative field screening data and quantitative laboratory analytical data were reviewed for more than 100 hydrogeologic assessment sites in Ohio to evaluate controls on the effectiveness of field screening data. Assessment data evaluated was limited to sites at which the suspected contaminant source was a gasoline underground storage tanks system. In each case, a 10.0 eV (or greater) PID calibrated for benzene was used to screen soils which were analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) by SW 846 method 8020. Controls on field screening which were evaluated for each site included (1) soil classification, (2) soil moisture, (3) weather conditions, (4) background levels, (5) equipment quality, (6) screening methodology, and (7) laboratory QA/QC. Statistical data analysis predictably indicated a general overestimate of total BTEX levels based on field screening (gasoline is approximately 25 weight percent BTEX). However, data locally indicated cases of both significant (i.e., more than an order of magnitude difference) over- and under-estimation of actual BTEX concentrations (i.e., quantitative laboratory data) by field screening data

  13. New Algorithm for the Smoothing Speed Control of Induction Motor in Electric Car based on Self-Tuning Parameter PID-Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Dedid Cahya Happyanto

    2012-05-01

    Full Text Available Driving system of electric car for low speed has a performance of controller that is not easily set up on large span so it does not give a comfort to passengers. The study has been tested in the bumpy road conditions, by providing disturbances in the motor load, it is to describe the condition of the road. To improve the system performance, the speed and torque controller was applied using Field Oriented Control (FOC method. In this method, On-Line Proportional Integral Derivative Fuzzy Logic Controller (PID-FLC is used to give dynamic response to the change of speed and maximum torque on the electric car and this results the smooth movement on every change of car performance both in fast and slow movement when breaking action is taken. Optimization of membership functions in Fuzzy PID controller is required to obtain a new PID parameter values which is done in autotuning in any changes of the input or disturbance. PID parameter tuning in this case using the Ziegler-Nichols method based on frequency response. The mechanism is done by adjusting the PID parameters and the strengthening of the system output. The test results show that the controller Fuzzy Self-Tuning PID appropriate for Electric cars because they have a good response about 0.85% overshoot at to changes in speed and braking of electric cars.

  14. Reduction of observer order by differentiation, almost controllability subspace covers and minimal order PID-observers

    NARCIS (Netherlands)

    TRENTELMAN, HL

    1984-01-01

    This note generalizes the geometric theory around minimal and reduced order observers to the situation in which differentiation of certain components of the observed output is allowed. A geometric theory involving the notion of PID-observer is introduced, using the concept of almost complementary

  15. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    Science.gov (United States)

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. The comparison respond of braking torque control between PID and SMC controller for electric powered wheelchair descending on slope condition

    Science.gov (United States)

    Asyraf, S. M.; Heerwan, P. M.; Izhar, I. M.

    2018-04-01

    During descending on a slope, the speed of Electric Powered Wheelchair (EPW) tends to changed rapidly. Normally, most EPW is provided with mechanical braking system which transfers human pulling force of the lever creating friction at the tire. However, the task is difficult for the users are elderly or paralyses. However, even for normal user with good strength, in fear condition they tend to give sudden braking which leads to tire locking up and skidding, eventually EPW unstable. These problems will cause accident and injuries to the users if speed does not properly control. In this paper, the automated braking torque control method was proposed in EPW as alternative to solve this problem and increase the mobility and stability especially during descending on slope in other to help the user of the EPW as their daily transportation. In this research, Proportional-Integral-Derivative and Sliding Mode Control controller are compared to determine the best response for torque braking control. The rapid change of speed can be controlled by the braking torque using proposed controllers based on the desired constant speed set by the control designer. Moreover, the sudden braking that caused tire to lock up and skid can be avoided. Furthermore, result from SMC shows this controller have good time respond to maintain the speed based on desired value when descending at slope condition by controlling the braking torque compared to the PID controller.

  17. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    Science.gov (United States)

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  18. Estudio del comportamiento de un Control MPC [Control Predictivo Basado en el Modelo] comparado con un Control PID en una Planta de Temperatura

    Directory of Open Access Journals (Sweden)

    Emil Hernández-Arroyo

    2014-07-01

    Full Text Available Presenta un estudio comparativo entre el Control Predictivo basado en el Modelo [MPC] y el control PID, en una planta piloto de temperatura. Se encontró que el control MPC presenta mejor comportamiento, con un tiempo de asentamiento de 1000 segundos y una sobre-elongación de 5 °C, y que el PID presenta un tiempo de asentamiento de 2000 segundos y una sobre-elongación de 40 °C. Simultáneamente, se presenta una forma alternativa para controlar y monitorear en tiempo real la variable temperatura; para ello se dispone de un computador de escritorio que utiliza el software MATLAB 7.1 y la herramienta Real-Time Windows Target.

  19. Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2017-10-01

    Full Text Available Fractional order proportional-integral-derivative(FOPID controllers have attracted increasing attentions recently due to their better control performance than the traditional integer-order proportional-integral-derivative (PID controllers. However, there are only few studies concerning the fractional order control of microgrids based on evolutionary algorithms. From the perspective of multi-objective optimization, this paper presents an effective FOPID based frequency controller design method called MOEO-FOPID for an islanded microgrid by using a Multi-objective extremal optimization (MOEO algorithm to minimize frequency deviation and controller output signal simultaneously in order to improve finally the efficient operation of distributed generations and energy storage devices. Its superiority to nondominated sorting genetic algorithm-II (NSGA-II based FOPID/PID controllers and other recently reported single-objective evolutionary algorithms such as Kriging-based surrogate modeling and real-coded population extremal optimization-based FOPID controllers is demonstrated by the simulation studies on a typical islanded microgrid in terms of the control performance including frequency deviation, deficit grid power, controller output signal and robustness.

  20. Real Time Implementation of PID and Fuzzy PD Controllers for DC-Servo Motor Based on Lab View Environment

    Directory of Open Access Journals (Sweden)

    Safaa M. Z. Al-Ubaidi

    2012-06-01

    Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time.  The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.

  1. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  2. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  3. Desain Proportional Integral Derrivative (Pid) Controller Pada Model Arm Robot Manipulator

    OpenAIRE

    Pratama, Adhityanendra Pandu; Munadi, Munadi

    2014-01-01

    Dalam rangka menuju proses industrialisasi modern di negara Indonesia, harus didukung dengan teknologi yang canggih, contoh nya adalah arm robot manipulator. sebagai pelaku proses produksi sehingga dihasilkan ketepatan,kepresisian, dan kefektifan pada proses produksi. Dengan hal tersebut dibuat sebuah desain kontrol PID pada arm robot manipulator dengan tujuan menghasilkan tingkat presisi dan kestabilan yang lebih baik. Kontroler tersebut didesain, disimulasikan, dan diaplikasikan pada ha...

  4. Performance analysis for bounded persistent disturbances in PD/PID-controlled robotic systems with its experimental demonstrations

    Science.gov (United States)

    Kim, Jung Hoon; Hur, Sung-Moon; Oh, Yonghwan

    2018-03-01

    This paper is concerned with performance analysis of proportional-derivative/proportional-integral-derivative (PD/PID) controller for bounded persistent disturbances in a robotic manipulator. Even though the notion of input-to-state stability (ISS) has been widely used to deal with the effect of disturbances in control of a robotic manipulator, the corresponding studies cannot be directly applied to the treatment of persistent disturbances occurred in robotic manipulators. This is because the conventional studies relevant to ISS consider the H∞ performance for robotic systems, which is confined to the treatment of decaying disturbances, i.e. the disturbances those in the L2 space. To deal with the effect of persistent disturbances in robotic systems, we first provide a new treatment of ISS in the L∞ sense because bounded persistent disturbances should be intrinsically regarded as elements of the L∞ space. We next derive state-space representations of trajectory tracking control in the robotic systems which allow us to define the problem formulations more clearly. We then propose a novel control law that has a PD/PID control form, by which the trajectory tracking system satisfies the reformulated ISS. Furthermore, we can obtain a theoretical argument about the L∞ gain from the disturbance to the regulated output through the proposed control law. Finally, experimental studies for a typical 3-degrees of freedom robotic manipulator are given to demonstrate the effectiveness of the method introduced in this paper.

  5. One Nonlinear PID Control to Improve the Control Performance of a Manipulator Actuated by a Pneumatic Muscle Actuator

    Directory of Open Access Journals (Sweden)

    Jun Zhong

    2014-05-01

    Full Text Available Braided pneumatic muscle actuator shows highly nonlinear properties between displacements and forces, which are caused by nonlinearity of pneumatic system and nonlinearity of its geometric construction. In this paper, a new model based on Bouc-Wen differential equation is proposed to describe the hysteretic behavior caused by its structure. The hysteretic loop between contractile force and displacement is dissolved into linear component and hysteretic component. Relationship between pressure within muscle actuator and parameters of the proposed model is discussed. A single degree of freedom manipulator actuated by PMA is designed. On the basis of the proposed model, a novel cascade position controller is designed. Single neuron adaptive PID algorithm is adopted to cope with the nonlinearity and model uncertainties of the manipulator. The outer loop of the controller is to handle position tracking problem and the inner loop is to control pressure. The controller is applied to the manipulator and experiments are conducted. Results demonstrate the effectiveness of the proposed controller.

  6. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    International Nuclear Information System (INIS)

    Wei, Xinyu; Wang, Pengfei; Zhao, Fuyu

    2016-01-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  7. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com

    2016-08-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  8. Solution Approach to Automatic Generation Control Problem Using Hybridized Gravitational Search Algorithm Optimized PID and FOPID Controllers

    Directory of Open Access Journals (Sweden)

    DAHIYA, P.

    2015-05-01

    Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.

  9. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    Science.gov (United States)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-07-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  10. Feature Extraction for Digging Operation of Excavator Based on Data-Driven Skill-Based PID Controller

    Directory of Open Access Journals (Sweden)

    Kazushige Koiwai

    2017-11-01

    Full Text Available Improvement of the work efficiency is demanded by aging and reducing of the working population in the construction field, so that some automation technologies are applied to construction equipment, such as bulldozers and excavators. However, not only the automation technologies but also expert skills are necessary to improve the work efficiency. In this paper, the human skill evaluation is proposed by the data-driven skill-based PID controller. The proposed method is applied to the excavator digging operation. As the result, the difference between the novice operation and the skilled operation is extracted. Moreover, the numerical difference is clarified based on the result.

  11. Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays.

    Science.gov (United States)

    Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K

    2017-05-01

    Internal model control (IMC) with optimal H 2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV). Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

  13. Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case.

    Science.gov (United States)

    Camcıoğlu, Ş; Özyurt, B; Doğan, I C; Hapoğlu, H

    2017-12-01

    In this work the application of response surface methodology (RSM) to proportional-integral-derivative (PID) controller parameter tuning for electrocoagulation (EC) treatment of pulp and paper mill wastewater was researched. Dynamic data for two controlled variables (pH and electrical conductivity) were obtained under pseudo random binary sequence (PRBS) input signals applied to manipulated variables (acid and supporting electrolyte flow rates). Third order plus time delay model parameters were evaluated through System Identification Toolbox™ in MATLAB ® . Four level full factorial design was applied to form a design matrix for three controller tuning parameters as factors and to evaluate statistical analysis of the system in terms of integral of square error (ISE), integral of absolute error (IAE), integral of time square error (ITSE) and integral of time absolute error (ITAE) performance criteria as response. Numerical values of the responses for the runs in the design matrices were determined using closed-loop PID control system simulations designed in Simulink ® . Optimum proportional gain, integral action and derivative action values for electrical conductivity control were found to be 1,500 s, 0 s and 16.4636 s respectively. Accordingly, the same optimization scheme was followed for pH control and optimum controller parameters were found to be -8.6970 s, 0.0211 s and 50 s, respectively. Theoretically optimized controller parameters were applied to batch experimental studies. Chemical oxygen demand (COD) removal efficiency and energy consumption of pulp and paper mill wastewater treatment by EC under controlled action of pH at 5.5 and electrical conductivity at 2.72 mS/cm was found to be 85% and 3.87 kWh/m 3 respectively. Results showed that multi input-multi output (MIMO) control action increased removal efficiency of COD by 15.41% and reduced energy consumption by 6.52% in comparison with treatment under uncontrolled conditions.

  14. A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2017-12-01

    Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.

  15. Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing pada Pesawat UAV Quadcopter

    Directory of Open Access Journals (Sweden)

    Teddy Sudewo

    2012-09-01

    Full Text Available Pada fase penerbangan quadcopter, fase landing (pendaratan merupakan fase paling kritis, dimana resiko terjadi kecelakaan paling besar. Permasalahan tersebut muncul karena adanya beberapa kendala, seperti kendala pada struktur rangka pesawat yang kecil, peningkatan beban pada sayap pesawat serta pengaruh angin sehingga menyebabkan pesawat tidak stabil. Pada penelitian tugas akhir ini, didesain suatu sistem kontrol pada UAV quadcopter menggunakan kontrol PID dengan Model Reference Adaptive Control (MRAC. Sistem pengendalian berbasis MRAC menawarkan beberapa kelebihan untuk mengatasi karakteristik plant non-linear salah satunya quadcopter. MRAC merupakan kontrol adaptif dimana performansi keluaran sistem (proses akan mengikuti performansi keluaran model referensinya. Pada tugas akhir ini, model referensi sudah ditentukan diawal dan spesifikasinya tetap sehingga dapat langsung didisain mekanisme adaptasi dari MRAC. Parameter proses θ (a1,a2,b0,b1 diestimasi menggunakan metode Extended Least Square, parameter proses tersebut akan mentuning parameter kontroler (k0,k1,k2,k3 sehingga menghasilkan sinyal kontrol PID. Hasil pengujian menunjukkan bahwa ketika terjadi perubahan parameter pada plant, kontroler mampu memperbaiki respon agar tetap dapat mengikuti model referensinya dan dalam mengatasi gangguan metode adaptasi MRAC memiliki kemampuan yang baik dilihat dari waktu yang dibutuhkan yang relatif singkat.

  16. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    Science.gov (United States)

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Compensation of Actuator’s Saturation by Using Fuzzy Logic and Imperialist Competitive Algorithm in a System with PID Controller

    Directory of Open Access Journals (Sweden)

    Abbas Ali Zamani

    2012-07-01

    Full Text Available Physical systems always include constraints and limits. Usually, the limits and constraints, in the control systems, are appeared as temperature and pressure limits or pumps capacity. One of the existing limits in the systems with PID controller is associated with the actuator’s saturation limits. With the saturating of the actuator, the controller’s output and plant’s input will be different and the output signal of controller do not lead the system and their states could not update correctly where this issue makes the system response undesirable. In this paper, by adding a fuzzy compensator that it’s parameters are tuned using imperialist competitive algorithm, the actuator saturation is prevented and the important parameters of the system response, such as setting time and overshoot, are improved.

  18. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  19. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. PI and PID controller tuning rule design for processes with delay, to achieve constant gain and phase margins for all values of delay

    OpenAIRE

    O'Dwyer, Aidan

    2001-01-01

    This paper will discuss the design of PI and PID controller tuning rules to compensate processes with delay, that are modelled in a number of ways. The rules allow the achievement of constant gain and phase margins as the delay varies.

  1. Pelvic Inflammatory Disease (PID)

    Science.gov (United States)

    ... a serious condition, in women. 1 in 8 women with a history of PID experience difficulties getting pregnant. You can prevent PID if you know how to protect yourself. What is PID? Pelvic inflammatory disease is an infection of a woman’s reproductive organs. It is a complication often caused ...

  2. Perancangan Kendali Pid Dengan Matlab

    OpenAIRE

    Sukamta, Sri

    2010-01-01

    Perancangan PID Controller selama ini menggunakan metoda trial and error dengan perhitungan yangmemakan waktu lama. MatLab yang dilengkapi Control Toolbox, membantu perancang untuk melihatrespon berbagai kombinasi konstanta dengan variasi input yang berbeda. Penggunaan MatLab ini sangatmembantu perancang dalam menentukan kombinasi di antara P, I, dan D Controller untuk menghasilkansistem pengaturan yang baik dan sederhana.

  3. Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach.

    Science.gov (United States)

    Zamani, Abbas-Ali; Tavakoli, Saeed; Etedali, Sadegh

    2017-03-01

    Fractional order PID (FOPID) controllers are introduced as a general form of classical PID controllers using fractional calculus. As this controller provides good disturbance rejection and is robust against plant uncertainties it is appropriate for the vibration mitigation in structures. In this paper, an FOPID controller is designed to adjust the contact force of piezoelectric friction dampers for semi-active control of base-isolated structures during far-field and near-field earthquake excitations. A multi-objective cuckoo search algorithm is employed to tune the controller parameters. Considering the resulting Pareto optimal front, the best input for the FOPID controller is selected. For seven pairs of earthquakes and nine performance indices, the performance of the proposed controller is compared with those provided by several well-known control techniques. According to the simulation results, the proposed controller performs better than other controllers in terms of simultaneous reduction of the maximum base displacement and story acceleration for various types of earthquakes. Also, it provides acceptable responses in terms of inter-story drifts, root mean square of base displacements and floor acceleration. In addition, the evaluation of robustness for a stiffness uncertainty of ±10% indicates that the proposed controller gives a robust performance against such modeling errors. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. dSPACE real time implementation of fuzzy PID position controller for vertical rotating single link arm robot using four-quadrant BLDC drive

    Directory of Open Access Journals (Sweden)

    Manikandan Ramasamy

    2017-07-01

    Full Text Available Automation has been growing in recent years for the manufacturing industries to increase productivity. Multiple robotic arms are used to handle materials for lifting in flexible directions. The vertical rotation of a 360 degree single arm is considered in this research on a position servo drive with brushless DC motor. The load torque of an arm varies depending upon the angular displacement due to gravity, so it requires four-quadrant operation of the drive with a robust feedback controller. This paper deals with the design and performance comparison of a conventional PID feedback controller with a fuzzy-based PID controller and suggests the most suitable controller. The design was implemented in real time through the dSPACE DS1104 controller environment to verify the dynamic behaviors of the arm.

  5. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  6. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  7. Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES

    Directory of Open Access Journals (Sweden)

    Pratap Chandra Pradhan

    2016-03-01

    Full Text Available In this paper, a Firefly Algorithm (FA optimized fuzzy PID controller is proposed for Automatic Generation Control (AGC of multi-area multi-source power system. Initially, a two area six units power system is used and the gains of the fuzzy PID controller are optimized employing FA optimization technique using an ITAE criterion. The superiority of the proposed FA optimized fuzzy PID controller has been demonstrated by comparing the results with some recently published approaches such as optimal control and Differential Evolution (DE optimized PID controller for the identical interconnected power system. Then, physical constraints such as Time Delay (TD, reheat turbine and Generation Rate Constraint (GRC are included in the system model and the superiority of FA is demonstrated by comparing the results over DE, Gravitational Search Algorithm (GSA and Genetic Algorithm (GA optimization techniques for the same interconnected power system. Additionally, a Unified Power Flow Controller (UPFC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Simulation results show that the system performances are improved significantly with the proposed UPFC and SMES units. Sensitivity analysis of the system is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters. Finally, the effectiveness of the proposed controller design is verified by considering different types of load patterns.

  8. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    Science.gov (United States)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  9. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics.

    Science.gov (United States)

    Gomaa Haroun, A H; Li, Yin-Ya

    2017-11-01

    In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by

  10. A set of decentralized PID controllers for an n – link robot manipulator

    Indian Academy of Sciences (India)

    The solution of decentralized tracking control problem for robot manipulator is slightly comp- lex since we .... Figure 1 shows decentralized control scheme for the ith joint of system (10). ...... Automatic Control 49(11): 2081–2084. Gahinet P ...

  11. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing

  12. On the fragility of fractional-order PID controllers for FOPDT processes.

    Science.gov (United States)

    Padula, Fabrizio; Visioli, Antonio

    2016-01-01

    This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2017-08-01

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  14. Tuning of PID controller using optimization techniques for a MIMO process

    Science.gov (United States)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  15. Genetic algorithm based PID controller design for a multi-area AGC ...

    African Journals Online (AJOL)

    user

    conventional AGC model the variations of frequency and tie-line power exchanges are ... Simulation results show that the proposed. GAPID Controller complies with NERC's standards. The performance studies have been carried out by using the MATLAB ..... The Indian power system is in the process of restructuring.

  16. Applying fractional order PID to design TCSC-based damping controller in coordination with automatic generation control of interconnected multi-source power system

    Directory of Open Access Journals (Sweden)

    Javad Morsali

    2017-02-01

    Full Text Available In this paper, fractional order proportional-integral-differential (FOPID controller is employed in the design of thyristor controlled series capacitor (TCSC-based damping controller in coordination with the secondary integral controller as automatic generation control (AGC loop. In doing so, the contribution of the TCSC in tie-line power exchange is extracted mathematically for small load disturbance. Adjustable parameters of the proposed FOPID-based TCSC damping controller and the AGC loop are optimized concurrently via an improved particle swarm optimization (IPSO algorithm which is reinforced by chaotic parameter and crossover operator to obtain a globally optimal solution. The powerful FOMCON toolbox is used along with MATLAB for handling fractional order modeling and control. An interconnected multi-source power system is simulated regarding the physical constraints of generation rate constraint (GRC nonlinearity and governor dead band (GDB effect. Simulation results using FOMCON toolbox demonstrate that the proposed FOPID-based TCSC damping controller achieves the greatest dynamic performance under different load perturbation patterns in comparison with phase lead-lag and classical PID-based TCSC damping controllers, all in coordination with the integral AGC. Moreover, sensitivity analyses are performed to show the robustness of the proposed controller under various uncertainty scenarios.

  17. Projeto e desenvolvimento de uma unidade didática de apoio ao ensino da teoria clássica de controle PID

    OpenAIRE

    Kleber Batistela Pereira

    2012-01-01

    Este trabalho foi concebido inicialmente através de projeto, montagem e ensaios preliminares de uma unidade analógica, para propósito didático, composta de um servomecanismo controlado pelas clássicas estratégias Proporcional, Integral e Derivativa (PID). Com este equipamento foi demonstrado os conceitos fundamentais da engenharia de controle com seus ensaios e medidas que permitem exemplificar, de forma simples e bastante pedagógica, o funcionamento e os limites operacionais de um control...

  18. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Science.gov (United States)

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Application of integral-separated PID algorithm in orbit feedback

    International Nuclear Information System (INIS)

    Xuan, K.; Bao, X.; Li, C.; Li, W.; Liu, G.; Wang, J.; Wang, L.

    2012-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. PID (Proportion Integration Differentiation) algorithm is widely used in the beam orbit feedback system; however, the deficiency of PID algorithm is a big overshooting in strong perturbations. In order to overcome the deficiencies, the integral-separated PID algorithm is developed. When the closed orbit distortion is too large, it cancels integration action until the closed orbit distortion is lower than the separation threshold value. The implementation of integral-separated PID algorithm with MATLAB is described in this paper. The simulation results show that this algorithm can improve the control precision. (authors)

  20. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    Science.gov (United States)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  1. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system

    International Nuclear Information System (INIS)

    Menhas, Muhammad Ilyas; Fei Minrui; Wang Ling; Qian Lin

    2012-01-01

    Highlights: ► We extend the concept of co-operation and co-evolution in some PSO variants. ► We use developed co-operative PSOs in multivariable PID controller design/tuning. ► We find that co-operative PSOs converge faster and give high quality solutions. ► Dividing the search space among swarms improves search efficiency. ► The proposed methods allow the practitioner for heterogeneous problem formulation. - Abstract: In this paper, multivariable PID controller design based on cooperative and coevolving multiple swarms is demonstrated. A simplified multi-variable MIMO process model of a ball mill pulverizing system with steady state decoupler is considered. In order to formulate computational models of cooperative and coevolving multiple swarms three different algorithms like real coded PSO, discrete binary PSO (DBPSO) and probability based discrete binary PSO (PBPSO) are employed. Simulations are carried out on three composite functions simultaneously considering multiple objectives. The cooperative and coevolving multiple swarms based results are compared with the results obtained through single swarm based methods like real coded particle swarm optimization (PSO), discrete binary PSO (DBPSO), and probability based discrete binary PSO (PBPSO) algorithms. The cooperative and coevolving swarms based techniques outperform the real coded PSO, PBPSO, and the standard discrete binary PSO (DBPSO) algorithm in escaping from local optima. Furthermore, statistical analysis of the simulation results is performed to calculate the comparative reliability of various techniques. All of the techniques employed are suitable for controller tuning, however, the multiple cooperative and coevolving swarms based results are considerably better in terms of mean fitness, variance of fitness, and success rate in finding a feasible solution in comparison to those obtained using single swarm based methods.

  2. Improvement of Frequency Fluctuations in Microgrids Using an Optimized Fuzzy P-PID Controller by Modified Multi Objective Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    H. Shayeghi

    2016-12-01

    Full Text Available Microgrids is an new opportunity to reduce the total costs of power generation and supply the energy demands through small-scale power plants such as wind sources, photo voltaic panels, battery banks, fuel cells, etc. Like any power system in micro grid (MG, an unexpected faults or load shifting leads to frequency oscillations. Hence, this paper employs an adaptive fuzzy P-PID controller for frequency control of microgrid and a modified multi objective Chaotic Gravitational Search Algorithm (CGSA in order to find out the optimal setting parameters of the proposed controller. To provide a robust controller design, two non-commensurable objective functions are formulated based on eigenvalues-domain and time-domain and multi objective CGSA algorithm is used to solve them. Moreover, a fuzzy decision method is applied to extract the best and optimal Pareto fronts. The proposed controller is carried out on a MG system under different loading conditions with wind turbine generators, photovoltaic system, flywheel energy, battery storages, diesel generator and electrolyzer. The simulation results revealed that the proposed controller is more stable in comparison with the classical and other types of fuzzy controller.

  3. Development of an On-Line Self-Tuning FPGA-PID-PWM Control Algorithm Design for DC-DC Buck Converter in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Sabah Al-Araji

    2017-08-01

    Full Text Available This paper presents a new development of an on-line hybrid self-tuning control algorithm of the Field Programmable Gate Array - Proportional Integral Derivative - Pulse Width Modulation (FPGA-PID-PWM controller for DC-DC buck converter which is used in battery operation of mobile applications. The main goal in this work is to propose structure of the hybrid Bees-PSO tuning control algorithm which has a capability of quickly and precisely searching in the global regions in order to obtain optimal gain parameters for the proposed controller to generate the best voltage control action to achieve the desired performance of the Buck converter output. Matlab simulation results and Xilinx development tool Integrated Software Environment (ISE experimental work show the robustness and effectiveness of the proposed on-line hybrid Bees-PSO tuning control algorithm in terms of obtaining smooth and unsaturated state voltage control action and minimizing the tracking voltage error of the Buck converter output. Moreover, the fitness evaluation number is reduced.

  4. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  5. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-10-01

    Full Text Available High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID neural network (FCPIDNN and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  6. Load Frequency Control (LFC Menggunakan Metode Noise-Tolerable PID Feedback pada Power Generation Plant Simulator PLTU PT. Pembangkitan Jawa dan Bali (PJB Unit Pembangkitan (UP Paiton

    Directory of Open Access Journals (Sweden)

    Rahmadhi Prihandono

    2017-01-01

    Full Text Available Frekuensi sebesar 50 Hz harus dijaga agar memberikan kualitas energi listrik yang baik. Pengaruh dari switching pada sisi beban akan membuat frekuensi energi listrik menjadi fluktuatif. Nilai frekuensi yang fluktuatif akan membuat fungsi derivatif pada kontroler Proportional Integral Derivative (PID menjadi sangat besar, sehingga akan mempengaruhi sinyal kontrol. Nilai tersebut memaksa aktuator bekerja sangat cepat dan akan mengurangi masa pemakaian aktuator. Penambahan filter pada kontroler PID untuk sistem pengaturan pembangkitan energi listrik mampu meredam noise yang timbul akibat fluktuasi beban. Penambahan Low Pass Filter (LPF pada sisi derivatif memberikan redaman noise begitu pula menggunakan fungsi Averaged Derivative (AD. Dengan beban acak yang dimodelkan dengan Pseudo Random Binary Sequences (PRBS, nilai kesalahan dengan perhitungan Integral Absolute Error (IAE terkecil dimiliki oleh PID dengan averaged derivative sebesar 110,246 Hz dan PID dengan low pass filter sebesar 110,486 Hz

  7. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  8. ANALISIS DE SENSIBILIDAD Y APLICACIÓN DE LA ESTRTEGIA DE CONTROL POR PROGRAMACION DE GANANCIAS BASADA EN CONTROLADORES PID AL MODELO DE REGULACION DE GLUCOSA

    Directory of Open Access Journals (Sweden)

    Oriana José Pérez Dávila

    2018-01-01

    Full Text Available La diabetes mellitus ha sido considerada como un grupo de alteraciones metabólicas caracterizada por hiperglucemias o hipoglucemias. Esta enfermedad aparece i cuando la cantidad de insulina que produce el páncreas no es suficiente para mantener las necesidades del organismo ii cuando la insulina no tiene efecto sobre el organismo o iii cuando el páncreas deja de funcionar y la producción de insulina desaparece. En este trabajo se propone un análisis de sensibilidad usando el modelo de regulación de glucosa para un sujeto sano. Este análisis consiste en la variación de los parámetros del modelo hasta obtener cambios en las condiciones basales del paciente. Se encontraron tres parámetros con alta sensibilidad los cuales permitieron generar una población de ocho pacientes con diferentes condiciones basales de glucosa e insulina. Debido que para las personas con diabetes es difícil mantener los valores de glucosa durante 24 horas, se propuso aplicar para esta población de pacientes una estrategia de control por programación de ganancias basada en controladores PID para mantener los niveles de glucosa estables. Tres zonas de operación del modelo fueron escogidas para la aplicación del controlador, una zona alta para valores de glucosa mayores a 120 mg/dl, una zona media para valores de glucosa comprendidos entre 100 a 120 mg/dl y una zona baja para valores de glucosa menores a 100 mg/dl. Como resultado se obtuvo que utilizando la estrategia de control propuesta se logra una mayor velocidad de respuesta y se logra mantener los valores de glucosa en sangre dentro de los rangos normales que cuando se usa un controlador PID sencillo, es decir, no se producen episodios de hipoglucemia o hiperglucemia. Usando la estrategia por programación de ganancias se tiene un mejor tiempo de asentamiento antes y después de las comidas sin producir valores de glicemia que puedan poner en riesgo la vida del paciente.

  9. Implementasi Kontrol PID pada Mesin Pengembang Roti

    Directory of Open Access Journals (Sweden)

    Novianti Yuliarmas

    2015-04-01

    Full Text Available Besides the ingredient composition, another important thing in the process of making dough is proofing, ie. dough rising process prior to roasting process. Proofing process requires a stable temperature to ensure that the dough is well rising. The purpose of this research is to make a proofing machine that uses DHT11 as a temperature sensor. Proportional-Integral-Derivative (PID controller is implemented to guarantee that the machine remains at the temperature of 350Celcius, in which the fermentation process would success. PID control has been implemented in fluorescent lamp which been set its dim light to generate heat until it reach a predetermined set point value. The temperature was monitored using LCD and set to remain stable with the help of fan. The proofing process will last for 15 minutes which ended by the sound of the buzzer. The testing result shows that the value of , , will reach set point value within 120 seconds.

  10. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  11. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Directory of Open Access Journals (Sweden)

    Anton Civit-Balcells

    2012-03-01

    Full Text Available In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN, which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  12. Design and Simulation of PID parameters self-tuning based on DC speed regulating system

    Directory of Open Access Journals (Sweden)

    Feng Wei Jie

    2016-01-01

    Full Text Available The DC speed regulating system has many difficult issues such as system parameters and PID control parameters are difficult to determine. On the basis of model for a single closed-loop DC speed regulating system, this paper puts forward a method of PID parameters self-tuning based on the step response detection and reduced order equivalent. First, detect system step response and get response parameters. Then equal it to a second order system model, and achieve optimal PID control parameters based on optimal second order system to realize of PID parameters self-tuning. The PID parameters self-tuning process of DC speed regulating system is simulated with the help of MATLAB/Simulink. The simulation results show that the method is simple and effective. The system can obtain good dynamic and static performance when the PID parameters are applied to DC speed regulating system.

  13. Kriging modeling and SPSA adjusting PID with KPWF compensator control of IPMC gripper for mm-sized objects

    Science.gov (United States)

    Chen, Yang; Hao, Lina; Yang, Hui; Gao, Jinhai

    2017-12-01

    Ionic polymer metal composite (IPMC) as a new smart material has been widely concerned in the micromanipulation field. In this paper, a novel two-finger gripper which contains an IPMC actuator and an ultrasensitive force sensor is proposed and fabricated. The IPMC as one finger of the gripper for mm-sized objects can achieve gripping and releasing motion, and the other finger works not only as a support finger but also as a force sensor. Because of the feedback signal of the force sensor, this integrated actuating and sensing gripper can complete gripping miniature objects in millimeter scale. The Kriging model is used to describe nonlinear characteristics of the IPMC for the first time, and then the control scheme called simultaneous perturbation stochastic approximation adjusting a proportion integration differentiation parameter controller with a Kriging predictor wavelet filter compensator is applied to track the gripping force of the gripper. The high precision force tracking in the foam ball manipulation process is obtained on a semi-physical experimental platform, which demonstrates that this gripper for mm-sized objects can work well in manipulation applications.

  14. Diseño e implementación de un sistema fuzzy-pid pera el control del ángulo de inclinación del panel solar monocristalino de 30 watt

    OpenAIRE

    Recalde Regalado, Néstor Xavier; Prieto Briceño, Fernando Javier

    2014-01-01

    In the project the difference by putting a solar panel on static mode compared with a solar panel in dynamic mode, the dynamic mode solar panel system works with a Fuzzy-PID controller is implemented in a microcontroller is shown, this control system is to position the solar panel in a good position to take advantage of solar radiation and thus, it is possible to store the energy collected by the solar panel in a battery. En el proyecto se demuestra la diferencia que existe al colocar un p...

  15. Optimization of PID Parameters Utilizing Variable Weight Grey-Taguchi Method and Particle Swarm Optimization

    Science.gov (United States)

    Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.

  16. A PID autotuner utilizing GPC and constraint optimization

    DEFF Research Database (Denmark)

    Henningsen, Arne; Christensen, Anders; Ravn, Ole

    1990-01-01

    A solution to the PID autotuning problem is presented which involves constraining the parameters of a discrete second-order discrete-time controller. The integrator is forced into the regulator by using a CARIMA model. The discrete-time regulator parameters are calculated by optimizing...... a generalized predictive control criterion, and the PID structure is ensured by constraining the parameters to a feasible set defined by the discrete-time Euler approximation of the ideal continuous-time PID controller. The algorithm is extended by incorporating constraints on the amplitude and slew......-rate of the control signal. Simulation studies for a system of coupled tanks have indicated that the method performs well, and that signal limitations can be included in a straightforward manner...

  17. Investigation on the use digital controls instead of PID analog controls in the level control of steam generators of nuclear power PWR

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout

    2012-01-01

    The aim of this study is to identify current alternatives for the implementation of digital controllers in the level control of steam generators of nuclear power PWR (Pressurized Water Reaetor). It is intended to identify the types of digital controls that are available from the theoretical and conceptual viewpoints for this purpose. We investigate the advantages and disadvantages of each controller model. From this assessment are pointed the most suitable models in hierarchical scale. This evaluation also serves to suggest possible types of control installation as a whole, where the level control of the steam generators becomes just one of many controls that are part of the plant. In this case, the use of digital controls allows the non-linear and multivariable treatment which is characteristic of complex systems, such as the nuclear power generation. The treatment of nonlinearities and multivariable aspects allows a more detailed study of the stability of these plants when they are subject to transients or several accidents, such as the case of losing external power of transients. In the specific case of steam generators, the instabilities result from the emergence of the shrink and swell phenomenas, depending on the load variations of thermonuclear plant. The application of several types and digital controllers, considering these inherent characteristics of the level control of steam generators, allows to infer which types of controllers are more appropriate to treat instabilities of this type and to make conjectures in its use for the cases of more complex instabilities, considering the integration of all nucleus-plant controls.

  18. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    Science.gov (United States)

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID

    Science.gov (United States)

    Wicaksono, H.; Yusuf, Y. G.; Kristanto, C.; Haryanto, L.

    2017-11-01

    This paper presents a design of altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID. This practical design is implemented outdoor. Barometric and sonar sensor were used in this experiment as an input for the controller YoHe. The throttle signal as a control input was provided by the controller to leveling QuadRotor in particular altitude and known well as altitude stabilization. The parameter of type-2 fuzzy and fuzzy PID was tuned in several heights to get the best control parameter for any height. Type-2 fuzzy produced better result than fuzzy PID but had a slow response in the beginning.

  20. Tuning PID attitude stabilization of a quadrotor using particle swarm optimization (experimental

    Directory of Open Access Journals (Sweden)

    Khodja Mohammed Abdallah

    2017-01-01

    Full Text Available Proportional, Integral and Derivative (PID controllers are the most popular type of controller used in industrial applications because of their notable simplicity and effective implementation. However, manual tuning of these controllers is tedious and often leads to poor performance. The conventional Ziegler-Nichols (Z-N method of PID tuning was done experimentally enables easy identification stable PID parameters in a short time, but is accompanied by overshoot, high steady-state error, and large rise time. Therefore, in this study, the modern heuristics approach of Particle Swarm Optimization (PSO was employed to enhance the capabilities of the conventional Z-N technique. PSO with the constriction coefficient method experimentally demonstrated the ability to efficiently and effectively identify optimal PID controller parameters for attitude stabilization of a quadrotor.

  1. Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment

    International Nuclear Information System (INIS)

    Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman

    2013-01-01

    This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.

  2. An Application for the Improvement of the Transportation System of the Flour in a Grain Mill using "PID Compact"

    Directory of Open Access Journals (Sweden)

    Eugen Răduca

    2016-10-01

    Full Text Available The paper presents an application based on a PLC Simatic S7-1200, using the "PID_Compact" logical function, which can be used for the improvement of control systems. We also present a practical application: a system for the improvement of the transportation system of the flour in a grain mill using "PID Compact" .

  3. Implementasi Sensor Cahaya Sebagai Pengontrol Keseimbangan Robot Beroda Dua Menggunakan Kontroler PID

    Directory of Open Access Journals (Sweden)

    Barlian Henryranu P.

    2014-07-01

    Full Text Available Abstrak Dengan menggabungkan Sistem Kontrol, sensor dan motor Servo diharapkan Robot segway dapat direalisasikan. Dalam penelitian ini Sistem Kontrol yang digunakan adalah metode PID, sedangkan sensor yang akan digunakan adalah cahaya yang merepresentasikan sudut kemiringan terhadap bumi. Dengan input berupa Error sudut dan Del Error sudut terhadap bumi maka didapatkan hasil PID kontroller berupa angular rate yang digunakan untuk mengontrol kedua rodanya. Robot Segway memiliki rise time/fall time, settling time dan Robot Segway mampu mencapai kesetimbangannya kembali (steady state setelah mendapatkan gangguan dari luar. Kata kunci: Robot kesetimbangan, sensor cahaya, PID kontroler Abstract By combining the Control System, sensors and Servos motors are expected to Segway can be realized. In this research use the PID method, while the sensor to be used is the light that represents the elevation angle of the earth. With the input is angel Error and angel Del Error of the earth then the results obtained in the form of angular rate PID Controller is used to Control the two wheels. Segway Robot has a rise time / fall time, settling time and Segway Robot can reach the balance again (steady state after get a outside disturbance. Keywords: Self-balancing robot, light sensor, PID Controller

  4. PIDs, Types and the Semantic Web

    Science.gov (United States)

    Schwardmann, Ulrich

    2017-04-01

    PID Information Types are becoming a crucial role in scientific data management because they can provide state (what) and binding (where) information about digital objects as attributes of the PID. This is a similar but much more flexible approach than the well known mime type characterization, because both of these types concepts allow to decide about preconditions for processes in advance and before touching the data. One aspect of this is the need for standards and correctness of the used types to ensure reliability for the processes operating on the digital objects. This requires registries and schemas for PID InfoTypes and suggests an automated schema generation process. Such a process in combination with data type registries will be described in more detail in the intended talk. Another aspect of PID InfoTypes is its intrinsic grammar as subject-predicate-object triple, with the PID as subject, the type as predicate and its value (often again a PID) as object in this relation. Given the registration of types and the proposed syntactical rigidness of the value, guaranteed by the schema, together with the use of PIDs in subject and predicate, the type concept has the ability to overcome the fuzziness and lack of reliability of semantic web categories with its URL references and possibly changing locations and content. The intended talk will also describe this approach in more detail, discusses the differences to linked data and describes some necessary technological developments for the type concept to keep up with the possibilities currently provided by the semantic web.

  5. Investigation on the use digital controls instead of PID analog controls in the level control of steam generators of nuclear power PWR; Investigacao sobre o uso de controladores digitais em substituicao aos controladores analogicos PID para o controle de nivel de geradores de vapor de centrais nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout

    2012-07-01

    The aim of this study is to identify current alternatives for the implementation of digital controllers in the level control of steam generators of nuclear power PWR (Pressurized Water Reaetor). It is intended to identify the types of digital controls that are available from the theoretical and conceptual viewpoints for this purpose. We investigate the advantages and disadvantages of each controller model. From this assessment are pointed the most suitable models in hierarchical scale. This evaluation also serves to suggest possible types of control installation as a whole, where the level control of the steam generators becomes just one of many controls that are part of the plant. In this case, the use of digital controls allows the non-linear and multivariable treatment which is characteristic of complex systems, such as the nuclear power generation. The treatment of nonlinearities and multivariable aspects allows a more detailed study of the stability of these plants when they are subject to transients or several accidents, such as the case of losing external power of transients. In the specific case of steam generators, the instabilities result from the emergence of the shrink and swell phenomenas, depending on the load variations of thermonuclear plant. The application of several types and digital controllers, considering these inherent characteristics of the level control of steam generators, allows to infer which types of controllers are more appropriate to treat instabilities of this type and to make conjectures in its use for the cases of more complex instabilities, considering the integration of all nucleus-plant controls.

  6. Brushless DC motor speed control strategy of simulation research

    Directory of Open Access Journals (Sweden)

    Xiang Wen

    2017-01-01

    Full Text Available In view of the brushless DC motor speed regulation problem, an ideal control strategy is designed. Through the model and analysis of Brushless DC motor, the mathematical model of the brushless DC motor is obtained. By comparing three control strategies of PID control strategy, fuzzy control strategy and fuzzy PID control strategy, PID controller, fuzzy controller and fuzzy PID controller are designed respectively for simulation test. The simulation results show that the fuzzy PID controller has good control effect.

  7. Mathematic Model of Digital Control System with PID Regulator and Regular Step of Quantization with Information Transfer via the Channel of Plural Access

    Science.gov (United States)

    Abramov, G. V.; Emeljanov, A. E.; Ivashin, A. L.

    Theoretical bases for modeling a digital control system with information transfer via the channel of plural access and a regular quantization cycle are submitted. The theory of dynamic systems with random changes of the structure including elements of the Markov random processes theory is used for a mathematical description of a network control system. The characteristics of similar control systems are received. Experimental research of the given control systems is carried out.

  8. Partial synchronization of different chaotic oscillators using robust PID feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco, 02200 Mexico, D.F. (Mexico)]. E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx

    2007-07-15

    This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology.

  9. Partial synchronization of different chaotic oscillators using robust PID feedback

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2007-01-01

    This work deals with the partial synchronization problem of two different chaotic oscillators considering model uncertainties in the slave system via control approach. The slave system is forced to follow the master signal via a linearizing controller based on model uncertainty reconstructor which leads to proportional-integral-derivative (PID) control structure. This reconstructor is related with a proportional-derivative (PD) reduced-order observer, it would be considered as a sub-slave system for the original slave of the synchronization procedure. The asymptotic performance of the synchronization methodology is proven via the dynamic of the synchronization error. Numerical experiment illustrates the closed-loop behavior of the proposed methodology

  10. Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas

    Directory of Open Access Journals (Sweden)

    Gilberto Reynoso-Meza

    2013-07-01

    Full Text Available Resumen: Los controladores PID continúan siendo una solución fiable, robusta, práctica y sencilla para el control de procesos. Actualmente constituyen la primera capa de control de la gran mayoría de las aplicaciones industriales. De ahí que un número importante de trabajos de investigación se han orientado a mejorar su rendimiento y prestaciones. Las líneas de investigación en este campo van desde nuevos métodos de ajuste, pasando por nuevos tipos de estructura hasta metodologías de diseño integrales. Particularizando en el ajuste de parámetros, una de las formas de obtener una solución novedosa consiste en plantear un problema de optimización, el cual puede llegar a ser no-lineal, no-convexo y con restricciones. Dado que los algoritmos evolutivos han mostrado un buen desempeño para solucionar problemas complejos de optimización, han sido utilizados en diversas propuestas relacionadas con el ajuste de controladores PID. Este trabajo muestra un revisión de estas propuestas y las prestaciones obtenidas en cada caso. Así mismo, se identifican algunas tendencias y posibles líneas de trabajo futuras. Abstract: PID controllers are a reliable, robust, practical and easy to implement control solution for industrial processes. They provide the first control layer for a vast majority of industrial applications. Owing to this, several researches invest time and resources to improve their performance. The research lines in this field scope with new tuning methods, new types of structures and integral design methods. For tuning methods, improvements could be fulfilled stating an optimization problem, which could be non-linear, non-convex and highly constrained. In such instances, evolutionary algorithms have shown a good performance and have been used in various proposals related with PID controllers tuning. This work shows a review of these proposals and the benefits obtained in each case. Some

  11. JACoW Automatic PID performance monitoring applied to LHC cryogenics

    CERN Document Server

    Bradu, Benjamin; Marti, Ruben; Tilaro, Filippo

    2018-01-01

    At CERN, the LHC (Large Hadron Collider) cryogenic system employs about 5000 PID (Proportional Integral Derivative) regulation loops distributed over the 27 km of the accelerator. Tuning all these regulation loops is a complex task and the systematic monitoring of them should be done in an automated way to be sure that the overall plant performance is improved by identifying the poorest performing PID controllers. It is nearly impossible to check the performance of a regulation loop with a classical threshold technique as the controlled variables could evolve in large operation ranges and the amount of data cannot be manually checked daily. This paper presents the adaptation and the application of an existing regulation indicator performance algorithm on the LHC cryogenic system and the different results obtained in the past year of operation. This technique is generic for any PID feedback control loop, it does not use any process model and needs only a few tuning parameters. The publication also describes th...

  12. Analytical design of feedback compensators based on Robustness/Performance and Servo/Regulator trade-offs. Utility in PID control applications

    OpenAIRE

    Alcántara Cano, Salvador

    2011-01-01

    Tot i la seva senzillesa, la idea de la realimentació negativa (o "feedback" en anglès) és extremadament poderosa i ha tingut un gran impacte en la societat des de la revolució industrial ençà. En l'actualitat, els sistemes de control estan a tot arreu. A la indústria de processos, per exemple, s'encarreguen de mantenir les variables d'interès aprop dels valors de consigna. Encara més, els sistemes de control han de garantir aquests objectius tot i la presència d'incertesa en el procés i l'ex...

  13. KENDALI KECEPATAN MOTOR INDUKSI TIGA FASA DENGAN KONTROLER PID

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Speed control for three-phase induction motor with PID controller. The weakness of an induction motor is its disability to maintain the speed constantly during load changes; it will reduce the speed of induction motor. It needs a controller which enables an induction motor to maintain its speed in various set points and changing loads by determining system performance. The system is tested by referring settling point, rise time, delay time, time constant, and error state. The PID controller with 8,032 micro-controller can produce a good performance in following state: in starting phase, changing load torques, and achieving set point in t = 1.68 s, TR = 2.30 s, TS = 3.80 s, TD = 1.56 s, 1.29% error steady state (% Ess, and 1.50 Newton of load. In quick response (in mil-second, the induction motor becomes more stable, while in plant response there is no overshoot because the motor has been tied by a power brake that acts as a load.

  14. Programa de Inclusión Digital - PID: el uso de la información como estrategia para el fortalecimiento del control social.

    Directory of Open Access Journals (Sweden)

    André Luis Bonifácio de CARVALHO

    2009-11-01

    Full Text Available información de salud como una herramienta estratégica para ayudar a ampliar la capacidad de los argumentos de los ciudadanos en defensa de sus intereses, convirtiéndose en una poderosa herramienta para garantizar el derecho de la ciudadanía. Para poner de relieve tanto la ejecución por el Oficina de Gestión Estratégica y Participativa del Programa de Inclusión Digital, aprobado por el Consejo Nacional de Salud, cuyo objetivo es ayudar a garantizar que los consejeros de salud a una información adecuada y adquirir las habilidades necesarias para la comunicación digital para el ejercicio de control social, utilizando tres estrategias, a saber, la adquisición de equipo, conectividad, y la formación de consejeros.

  15. PID Based on Attractive Ellipsoid Method for Dynamic Uncertain and External Disturbances Rejection in Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Jesus Patricio Ordaz Oliver

    2015-01-01

    Full Text Available This paper presents a stability analysis for LNDS (Lagrangian nonlinear dynamical systems with dynamic uncertain using a PID controller with external disturbances rejection based on attractive ellipsoid methods, since the PID-CT (proportional integral derivative computed torque compensator has been used for the nonlinear trajectory tracking of an LNDS, when there are external perturbations and system uncertainties. The global system convergence of the trivial solution has not been proved. In this sense, we propose an approach to find the gains of the nonlinear PID-CT controller to guarantee the boundedness of the trivial solution by means of the concept of the UUB (uniform-ultimately bounded stability. In order to show the effectiveness of the methodology proposed, we applied it in a real 2-DoF robot system.

  16. On the Robustness of Hysteretic Second-Order Systems with PID : iISS approach

    NARCIS (Netherlands)

    Ouyang, Ruiyue; Jayawardhana, Bayu; Andrieu, Vincent

    2012-01-01

    In this paper, we study the robustness property of a second-order linear plant controlled by a proportional, integral and derivative (PID) controller with a hysteretic actuator. The hysteretic actuator is modeled by a Duhem model that exhibits clockwise (CW) input-output (I/O) dynamics (such as the

  17. Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor

    International Nuclear Information System (INIS)

    Fang Hongqing; Chen Long; Shen Zuyi

    2011-01-01

    In this paper, an improved particle swarm optimization (IPSO) algorithm is proposed. Besides the individual best position and the global best position, a nominal average position of the swarm is introduced in IPSO. The performance of IPSO is compared to different PSO variants with five well-known benchmark functions. The experimental results show that the proposed IPSO algorithm improves the searching performance on the benchmark functions. And then, IPSO, as well as other PSO variants, is applied to optimal tuning of Proportional-Integral-Derivative (PID) gains for a typical PID control system of water turbine governor. The computer simulation results of an actual hydro power plant in China show that IPSO algorithm has stable convergence characteristic and good computational ability, and it is an effective and easily implemented method for optimal tuning of PID gains of water turbine governor.

  18. Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali UAV Quadcopter

    Directory of Open Access Journals (Sweden)

    Muhammad Jadid Anggarjito

    2013-09-01

    Full Text Available Quadcopter merupakan salah salah satu jenis rotorcraft yang memiliki 4 buah rotor yang harus dikendalikan masing-masing rotornya untuk dapat menggerakkan quadcopter. Gerak lateral merupakan gerak quadcopter secara horizontal pada ketinggian atau gerak translasi, gerakan ini sangat vital untuk memenuhi kebutuhan quadcopter dalam mencapai way-to-way point yang telah ditentukan. Pada tugas akhir ini untuk mengatur gerakan lateral dari quadcopter digunakan sistem kendali PID dengan Decoupling Nonlinear. Ada 2 buah kontroler individual yang digunakan yaitu kontroler PID dengan Nonlinear Decoupling untuk mengatur pitch dan roll gerak rotasi, serta kontroler PD untuk mengatur translasi sumbu X dan sumbu Y. Perancangan sistem kontrol PID Decoupling Nonlinear pada simulasi yang digunakan untuk mempertahankan gerak lateral quadcopter dalam mencapai way-to-way point yang ditentukan. Nilai parameter yang didapatkan dari hasil tuning terstruktur pada simulasi adalah pada kontroler PID dengan Nonlinear Decoupling pitch dan roll Kp=5 Ki=0,01 Kd=10 sedangkan pada kontroler PD sumbu X dan sumbu Y Kp=0,05 Kd=0,2. Respon hasil implementasi pada quadcopter belum sesuai pada hasil simulasi. Pada hasil simulasi masih terdapat koreksi pada translasi sumbu X dan sumbu Y masih terdapat kesalahan sebesar ± 0,02 cm, sedangkan pada implementasi gerak lateral menggunakan remote control sistem dapat bergerak stabil menuju way-to-way point yang ditentukan.

  19. Impact of PID on industrial rooftop PV-installations

    Science.gov (United States)

    Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.

    2017-08-01

    Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.

  20. O přímé syntéze PID regulátorů

    Czech Academy of Sciences Publication Activity Database

    Klán, Petr

    2006-01-01

    Roč. 12, č. 11 (2006), s. 61-64 ISSN 1210-9592 Institutional research plan: CEZ:AV0Z10300504 Keywords : PID control * direct synthesis * control ler design Subject RIV: BC - Control Systems Theory http://www.odbornecasopisy.cz/index.php?id_document=31500

  1. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    International Nuclear Information System (INIS)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A.

    2008-01-01

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control

  2. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    Energy Technology Data Exchange (ETDEWEB)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)

    2008-10-15

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)

  3. Robust PID based power system stabiliser: Design and real-time implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)

  4. A survey on the autotuning of PID parameter

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Ha, Jae Hong; Sin, Hae Kon; Kim, Dong Wan; Nam, Sang Ku

    1996-06-01

    A significant advance in science and technology during the last few decades has resulted in the evolution and use of automatic control equipment in various areas of industry. The automatic control equipment monitor various parameters associated with the process and make decisions accordingly. In the area of process control, extensive research has been carried out for PID parameter auto-tunig techniques since the middle of 1980's. This paper covers two auto-tuning techniques namely system transient response performance and experimental method to analyze dynamic characteristics of process systems. In this paper auto-tunig technology used in commercial models is analyzed in detail. It is reported by industry that by optimum application of the auto-tuning controller, the operator load is significantly reduced while the reliability of process control is greatly enhanced. It is recommended that the application of auto-tuning controller should be evaluated for automatic process control in nuclear plant. 4 tabs., 12 figs., 21 refs. (Author)

  5. Design and Research on Vehicles Motor Testing System Based on Improvement PID

    Directory of Open Access Journals (Sweden)

    Fan Kuangang

    2014-08-01

    Full Text Available Motor is the important parts in vehicles. It is the key parts for achieving automation. It is the critical technology to test vehicle motors. We take the PID (Proportion Integration Differentiation as based fundamental controlling algorithm, and we test motor parameters through LabVIEW for single-chip AT89C52. According to practical working condition, we build circuit electric field boundary, and analyze electric field distribution of hard circuit. In addition, we also design filtering circuit for main interrupt frequency (below 1 kHz, and we improved PID for direct motor speed which is controlled by PWM (pulse-width modulation to reach speed astatic regulation. At the same time, the system achieves soft start-up.

  6. Analisis Penalaan Kontrol PID pada Simulasi Kendali Kecepatan Putaran Motor DC Berbeban menggunakan Metode Heuristik

    Directory of Open Access Journals (Sweden)

    WALUYO WALUYO

    2017-06-01

    Full Text Available ABSTRAK Motor DC banyak digunakan di industri kecil dan besar.Kecepatan motor DC sering tidak stabil akibat gangguan dari luar maupun perubahan parameter dan torsi beban sehingga perlu dilakukan rancangan kontroler.Kontroler yang dirancang menggunakan PID yang terdiri dari tiga jenis cara pengaturan yang dikombinasikan, yaitu kontrol P (Proportional, kontrol I (Integral dan kontrol D (Derivatif.Kontroler yang dirancang disimulasikan menggunakan perangkat lunak. Hasil simulasi menunjukan kontroler PID untuk kendali kecepatan motor DC ini menghasilkan kondisi robust (kokoh saat nilai Kp = 1,1, Ti = 0,1, Td = 3,7. Hasil dari parameter kendali yang dirancang memiliki error steady state 0,99 % dan dengan settling time 3,7 detik pada rise time 2,00 detik dan nilai peak terletak pada 0,99. Kecepatan awal yang dihasilkan mendekati set point yang diinginkan pada detik ke 6 dan kecepatannya tidak ada penurunan atau tetap konstan sampai dengan detik ke 100. Kata kunci : Motor DC, PID, Heuristik, Steady State, Rise Time   ABSTRACT DC motors are widely used in small and large industries. Their speeds are often unstable due to interference from outside or change the parameters and load torque, so that it was necessary to design a controller. The controller was designed using a PIDconsists of three types of arrangements, which are mutually combined way, namely the control P (Proportional, control I (Integral and control D (Derivative. The controllers were designed using software for simulation. The simulation results showed the PID controller for DC motor speed control produced robust conditionswhen the value of Kp, Ti and Tdwere 1.1,  0.1 and 3.7 respectively. The results of the control parameters had error steady state 0.99 % and the settling time of 3.7 seconds at 2.0 sec rise time and the peak value was 0,99. The resulted initial velocity was very fast to approach the desired set point in the sixth second and its speed was remain constant until 100

  7. Analisis Penalaan Kontrol PID pada Simulasi Kendali Kecepatan Putaran Motor DC Berbeban menggunakan Metode Heuristik

    Directory of Open Access Journals (Sweden)

    WALUYO WALUYO

    2013-07-01

    Full Text Available ABSTRAK Motor DC banyak digunakan di industri kecil dan besar.Kecepatan motor DC sering tidak stabil akibat gangguan dari luar maupun perubahan parameter dan torsi beban sehingga perlu dilakukan rancangan kontroler.Kontroler yang dirancang menggunakan PID yang terdiri dari tiga jenis cara pengaturan yang dikombinasikan, yaitu kontrol P (Proportional, kontrol I (Integral dan kontrol D (Derivatif.Kontroler yang dirancang disimulasikan menggunakan perangkat lunak. Hasil simulasi menunjukan kontroler PID untuk kendali kecepatan motor DC ini menghasilkan kondisi robust (kokoh saat nilai Kp = 1,1, Ti = 0,1, Td = 3,7. Hasil dari parameter kendali yang dirancang memiliki error steady state 0,99 % dan dengan settling time 3,7 detik pada rise time 2,00 detik dan nilai peak terletak pada 0,99. Kecepatan awal yang dihasilkan mendekati set point yang diinginkan pada detik ke 6 dan kecepatannya tidak ada penurunan atau tetap konstan sampai dengan detik ke 100. Kata kunci: Motor DC, PID, Heuristik, Steady State, Rise Time   ABSTRACT DC motors are widely used in small and large industries. Their speeds are often unstable due to interference from outside or change the parameters and load torque, so that it was necessary to design a controller. The controller was designed using a PIDconsists of three types of arrangements, which are mutually combined way, namely the control P (Proportional, control I (Integral and control D (Derivative. The controllers were designed using software for simulation. The simulation results showed the PID controller for DC motor speed control produced robust conditionswhen the value of Kp, Ti and Tdwere 1.1,  0.1 and 3.7 respectively. The results of the control parameters had error steady state 0.99 % and the settling time of 3.7 seconds at 2.0 sec rise time and the peak value was 0,99. The resulted initial velocity was very fast to approach the desired set point in the sixth second and its speed was remain constant until 100

  8. Koordinasi Optimal Capacitive Energy Storage (CES dan Kontroler PID Menggunakan Differential Evolution Algorithm (DEA pada Sistem Tenaga Listrik

    Directory of Open Access Journals (Sweden)

    Akbar Swandaru

    2012-09-01

    Full Text Available Peningkatan suplai daya listrik diperlukan untuk memenuhi kebutuhan daya listrik. Generator cenderung beroperasi dalam beban penuh.Hal ini berpengaruh pada keamanan generator dalam operasi sistem tenaga listrik.Salah satu masalah adalah osilasi frekuensi.Bila perubahan beban terjadi, kontroler diperlukan untuk meredam osilasi frekuensi ini.Pada tugas akhir ini diusulkan sebuah koordinasi antara Kontroler Capacitive Energy Storage (CES dan Kontroler PID. CES disini berfungsi untuk membantu kinerja Governor agar meredam osilasi frekuensi dengan cepat. Kontroler CES ini digunakan bersama dengan PID controller yang dioptimalkan dengan  Differential Evolution Algorithm (DEA.

  9. Genetic design of interpolated non-linear controllers for linear plants

    International Nuclear Information System (INIS)

    Ajlouni, N.

    2000-01-01

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  10. PENGENDALIAN PID PADA ROBOT MIROSOT UPN “VETERAN” YOGYAKARTA BERBASIS SENSOR GYROSCOPE DAN ACCELEROMETER

    Directory of Open Access Journals (Sweden)

    Awang Hendrianto Pratomo

    2015-07-01

    Full Text Available MiRoSoT Robot movement is influenced by the speed control from right and left wheels. Wheels speed control on MiroSot robot is determined by parameter PID (Proportional Integral and Derevative value. PID value determined by robot position and angle. MiroSot robot movement is still not stable and can not move in accordance with the instruction have been made. Instability of the robot movement in the game is affected by friction wheels against the ground, friction gear and robot load. In this study, implemented a gyroscope and accelerometer sensors to stabilize robot movement. Based on both sensors are controlled by using a microcontroller ATmega64. Speed control system based on gyroscope and accelerometer sensor is obtained that the robot is able to face a certain angle more precisely. The accelerometer sensor is used as a parameter for the braking system, so the robot is able to move more stable without the loss of power from the motor during a reduction speed from the strategy control.

  11. A conserved two-component regulatory system, PidS/PidR, globally regulates pigmentation and virulence-related phenotypes of Burkholderia glumae.

    Science.gov (United States)

    Karki, Hari Sharan; Barphagha, Inderjit Kaur; Ham, Jong Hyun

    2012-09-01

    Burkholderia glumae is a rice pathogenic bacterium that causes bacterial panicle blight. Some strains of this pathogen produce dark brown pigments when grown on casamino-acid peptone glucose (CPG) agar medium. A pigment-positive and highly virulent strain of B. glumae, 411gr-6, was randomly mutagenized with mini-Tn5gus, and the resulting mini-Tn5gus derivatives showing altered pigmentation phenotypes were screened on CPG agar plates to identify the genetic elements governing the pigmentation of B. glumae. In this study, a novel two-component regulatory system (TCRS) composed of the PidS sensor histidine kinase and the PidR response regulator was identified as an essential regulatory factor for pigmentation. Notably, the PidS/PidR TCRS was also required for the elicitation of the hypersensitive response on tobacco leaves, indicating the dependence of the hypersensitive response and pathogenicity (Hrp) type III secretion system of B. glumae on this regulatory factor. In addition, B. glumae mutants defective in the PidS/PidR TCRS showed less production of the phytotoxin, toxoflavin, and less virulence on rice panicles and onion bulbs relative to the parental strain, 411gr-6. The presence of highly homologous PidS and PidR orthologues in other Burkholderia species suggests that PidS/PidR-family TCRSs may exert the same or similar functions in different Burkholderia species, including both plant and animal pathogens. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  12. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    Science.gov (United States)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  13. Coupling dynamic modeling and simulation of three-degree-of-freedom micromanipulator based on piezoelectric ceramic of fuzzy PID

    Science.gov (United States)

    Li, Dongjie; Fu, Yu; Yang, Liu

    2017-08-01

    For further research on the microparticles trajectory in the process of micromanipulation, the paper modeled on the coupling dynamic of three-degree-of-freedom micromanipulator which is based on piezoelectric ceramic. In the micromanipulation, the transformation of certain movement direction can generate a corresponding change in the coupling in three-degree-of-freedom micromanipulator movement, the fuzzy PID method was adopted by the control system of this study, and the modeling analysis was performed on the control system. After completing the above modeling, the simulation model is built by the MATLAB Simulink software. The simulation output results are basically in accordance with the actual trajectory, which achieve the successful research purposes of coupling dynamics model for three-degree-of-freedom micromanipulator and application of fuzzy PID method.

  14. PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID DENGAN MEMANFAATKAN SENSOR KMZ51

    Directory of Open Access Journals (Sweden)

    L Khakim

    2013-07-01

    Full Text Available Penelitian ini adalah penelitian pengembangan desain rancang bangun sistem pengendalian otomatis yang digerakkan dengan dua motor DC sehingga mampu mempertahankan kelembaman pada arahnya. Sistem otomatis ini terdiri dari sensor KMZ51 sebagai komponen feedback dan dua motor DC sebagai komponen plant. Pengujian dari sistem otomatis dibagi menjadi tiga yaitu pengujian sensor KMZ51, pengujian PWM sebagai penggerak motor DC dan pengujian performansi kontrol PID. Hasil pengujian menunjukkan nilai ketelitian sensor 99.17%. Pada pengujian PWM diperoleh error pengukuran 1.07% dan pengujian performansi sistem didapatkan bahwa penerapan kontrol PID dapat mengatur putaran motor DC sehingga model sistem mampu mempertahankan arahnya pada set point yang telah ditentukan dengan nilai overshoot maximum kurang dari 10%, rise time 2 detik dan settling time kurang dari 5% yang diperoleh pada Kp= 27, Ki= 6, dan Kd= 40 menggunakan metode trial and error. This research is design of automatic control system which driven by two DC motors that can keep the inertia of direction. The system is composed of sensor KMZ51 as feedback component and two DC motors as plant component. Testing of the automated system divided into three, KMZ51 sensor testing, PWM testing as drive DC motors, and performance testing of PID control system. The results show that the sensor accuracy values 99.17%, on testing the PWM measurement error obtained 1.07%, and testing of performance system obtained that the application of PID control can adjust DC motors rotation so that the model system is able to maintain direction the set point specified with maximum overshoot less than 10%, rise time of 2 seconds and settling time less than 5% were obtained at Kp= 27, Ki= 6, and Kd= 40 using trial and error method

  15. Osta ja pidä: yritysten joukkovelkakirjat vs. osakkeet

    OpenAIRE

    Nyqvist, Kim

    2012-01-01

    Opinnäytetyö käsittelee yrityksen joukkovelkakirjojen tuottoa ja siihen vaikuttavia tekijöitä osta ja pidä –sijoitusstrategian näkökulmasta. Vertailukohdaksi yrityksen joukkovelkakirjoille on valittu osakkeet, niiden tunnettavuuden ja vuotuisen tuoton takia, joka on vertauskelpoinen joukkovelkakirjojen maksamalle kupongille. Työn teoreettinen viitekehys koostuu yritysten joukkovelkakirjoista ja osakkeista. Painotus on yritysten joukkovelkakirjoissa, sillä ne ovat huomattavasti tuntemattom...

  16. Theoretical model and experimental verification on the PID tracking method using liquid crystal optical phased array

    Science.gov (United States)

    Wang, Xiangru; Xu, Jianhua; Huang, Ziqiang; Wu, Liang; Zhang, Tianyi; Wu, Shuanghong; Qiu, Qi

    2017-02-01

    Liquid crystal optical phased array (LC-OPA) has been considered with great potential on the non-mechanical laser deflector because it is fabricated using photolithographic patterning technology which has been well advanced by the electronics and display industry. As a vital application of LC-OPA, free space laser communication has demonstrated its merits on communication bandwidth. Before data communication, ATP (acquisition, tracking and pointing) process costs relatively long time to result in a bottle-neck of free space laser communication. Meanwhile, dynamic real time accurate tracking is sensitive to keep a stable communication link. The electro-optic medium liquid crystal with low driving voltage can be used as the laser beam deflector. This paper presents a fast-track method using liquid crystal optical phased array as the beam deflector, CCD as a beacon light detector. PID (Proportion Integration Differentiation) loop algorithm is introduced as the controlling algorithm to generate the corresponding steering angle. To achieve the goal of fast and accurate tracking, theoretical analysis and experimental verification are demonstrated that PID closed-loop system can suppress the attitude random vibration. Meanwhile, theoretical analysis shows that tracking accuracy can be less than 6.5μrad, with a relative agreement with experimental results which is obtained after 10 adjustments that the tracking accuracy is less than12.6μrad.

  17. Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car

    Directory of Open Access Journals (Sweden)

    Andreas Parluhutan Bonor Sinaga

    2014-03-01

    Full Text Available Pengiriman logistik ke daerah-daerah rawan bencana merupakan hal yang sangat sulit dilakukan, tentunya diperlukan pengetahuan mengenai kondisi medan jalan. Salah satu dampak yang utama adalah sulitnya melakukan manuver dalam pengendalian performansi  truk logistik yang pada umumnya berupa truk-truk gandeng. Untuk membantu pengemudi truk dalam berkendara pada kondisi tersebut, dirancang sebuah prototype mobil mandiri (Autonomous Car yang mampu melakukan manuver-manuver pergerakan secara sendirinya, salah satu manuver tersebut ialah Following Car.  Dalam Tugas Akhir ini perancangan sistem yang akan dilakukan dengan  memodelkan  dua buah kendaraan mobil RC (remote control yang bertindak sebagai  follower dan leader car. Pengoperasian dari  following car dilakukan dengan memodifikasi dari kendaraan RC-1, sedangkan RC-2 bertindak sebagai leader car yang dikondisikan secara manual. Dengan penerapan kontroler PID pada implementasi sistem didapatkan penurunan time settling menjadi 2,7 Detik dan peningkatan error steady state sebesar 2,44%. Pada implementasi diberikan kecepatan leader secara acak, dengan implementasi kontroler PID, kondisi jarak antara autonomous car dengan leader car masih dalam range keadaan ideal pada set point.

  18. A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization

    Directory of Open Access Journals (Sweden)

    Qingyang Xu

    2014-01-01

    Full Text Available Estimation of distribution algorithm (EDA is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.

  19. A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.

    Science.gov (United States)

    Xu, Qingyang; Zhang, Chengjin; Zhang, Li

    2014-01-01

    Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.

  20. Fuzzy control of pressurizer dynamic process

    International Nuclear Information System (INIS)

    Ming Zhedong; Zhao Fuyu

    2006-01-01

    Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)

  1. Plasma control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To obtain the optimum controllability for the plasmas and the thermonuclear device by selectively executing control operation for proportion, integration and differentiation (PID) by first and second controllers respectively based on selection instruction signals. Constitution: Deviation between a vertical direction equilibrium position: Zp as the plasma status amount measured in a measuring section and an aimed value Zref thereof is inputted to a first PID selection controller. The first controller selectively executes one of the PID control operations in accordance with the first selection signal instruction instructed by a PID control operation instruction circuit. Further, Zp is also inputted to a second PID selection controller, which selectively executes one of the PID control operations in accordance with the second selection instruction signal in the same manner as in the first controller. The deviation amount u between operations signals u1 and u2 from the first and second PID selection controllers is inputted to a power source to thereby supply a predetermined current value to control coils that generate equilibrium magnetic fields for making the vertical direction equilibrium position of plasmas constant. (Kamimura, M.)

  2. Efficient dynamic simulation of flexible link manipulators with PID control

    NARCIS (Netherlands)

    Aarts, Ronald G.K.M.; Jonker, Jan B.; Mook, D.T.; Balachandran, B.

    2001-01-01

    For accurate simulations of the dynamic behavior of flexible manipulators the combination of a perturbation method and modal analysis is proposed. First, the vibrational motion is modeled as a first-order perturbation of a nominal rigid link motion. The vibrational motion is then described by a set

  3. Study on automatic tuning of ship`s PID regulators; Hakuyo seigyo system no gain jido chosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, T. [Toyama Mercantile Marine College, Toyama (Japan); Otsu, K.; Moriyoshi, N. [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Okazaki, T. [Nagoya Institute of Technology, Nagoya (Japan)

    1996-12-31

    Proportional, integral and derivative (PID) controls are used for a steering system and a main engine control unit installed in a vessel. Among them, this paper describes effectiveness of a PID gain tuning method using a limit cycle by means of relay control which is safer and simpler than conventional limit sensitivity methods. The present method was applied to an actual marine control system to conduct an actual vessel experiment. As a result of applying the method to a bow azimuth control system using a rudder, a new azimuth setting was set with an overshoot of 1.6 degrees in a ten-degree azimuth changing experiment. With respect to direction maintaining steering performance, the present method was capable of controlling the direction at a speed loss to about 80% of the ship`s autopilot. As a result of applying the method to a bow azimuth control system using a bow thruster, direction maintaining and changing control was realized in a low speed range in which rudder effect is lost. As a result of applying it to a main engine governor system and performing control of main engine rotation speed, it was found possible to derive control gains in a safe state without applying an excessive load to the main engine both under load and no load conditions. 14 refs., 8 figs., 11 tabs.

  4. Study on automatic tuning of ship`s PID regulators; Hakuyo seigyo system no gain jido chosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, T [Toyama Mercantile Marine College, Toyama (Japan); Otsu, K; Moriyoshi, N [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Okazaki, T [Nagoya Institute of Technology, Nagoya (Japan)

    1997-12-31

    Proportional, integral and derivative (PID) controls are used for a steering system and a main engine control unit installed in a vessel. Among them, this paper describes effectiveness of a PID gain tuning method using a limit cycle by means of relay control which is safer and simpler than conventional limit sensitivity methods. The present method was applied to an actual marine control system to conduct an actual vessel experiment. As a result of applying the method to a bow azimuth control system using a rudder, a new azimuth setting was set with an overshoot of 1.6 degrees in a ten-degree azimuth changing experiment. With respect to direction maintaining steering performance, the present method was capable of controlling the direction at a speed loss to about 80% of the ship`s autopilot. As a result of applying the method to a bow azimuth control system using a bow thruster, direction maintaining and changing control was realized in a low speed range in which rudder effect is lost. As a result of applying it to a main engine governor system and performing control of main engine rotation speed, it was found possible to derive control gains in a safe state without applying an excessive load to the main engine both under load and no load conditions. 14 refs., 8 figs., 11 tabs.

  5. Using PIDs to Support the Full Research Data Publishing Lifecycle

    Science.gov (United States)

    Waard, A. D.

    2016-12-01

    Persistent identifiers can help support scientific research, track scientific impact and let researchers achieve recognition for their work. We discuss a number of ways in which Elsevier utilizes PIDs to support the scholarly lifecycle: To improve the process of storing and sharing data, Mendeley Data (http://data.mendeley.com) makes use of persistent identifiers to support the dynamic nature of data and software, by tracking and recording the provenance and versioning of datasets. This system now allows the comparison of different versions of a dataset, to see precisely what was changed during a versioning update. To present research data in context for the reader, we include PIDs in research articles as hyperlinks: https://www.elsevier.com/books-and-journals/content-innovation/data-base-linking. In some cases, PIDs fetch data files from the repositories provide that allow the embedding of visualizations, e.g. with PANGAEA and PubChem: https://www.elsevier.com/books-and-journals/content-innovation/protein-viewer; https://www.elsevier.com/books-and-journals/content-innovation/pubchem. To normalize referenced data elements, the Resource Identification Initiative - which we developed together with members of the Force11 RRID group - introduces a unified standard for resource identifiers (RRIDs) that can easily be interpreted by both humans and text mining tools. https://www.force11.org/group/resource-identification-initiative/update-resource-identification-initiative, as can be seen in our Antibody Data app: https://www.elsevier.com/books-and-journals/content-innovation/antibody-data To enable better citation practices and support robust metrics system for sharing research data, we have helped develop, and are early adopters of the Force11 Data Citation Principles and Implementation groups (https://www.force11.org/group/dcip) Lastly, through our work with the Research Data Alliance Publishing Data Services group, we helped create a set of guidelines (http

  6. State-PID Feedback for Pole Placement of LTI Systems

    Directory of Open Access Journals (Sweden)

    Sarawut Sujitjorn

    2011-01-01

    Full Text Available Pole placement problems are especially important for disturbance rejection and stabilization of dynamical systems and regarded as algebraic inverse eigenvalue problems. In this paper, we propose gain formulae of state feedback through PID-elements to achieve desired pole placement for a delay-free LTI system with single input. Real and complex stable poles can be assigned with the proposed compact gain formulae. Numerical examples show that our proposed gain formulae can be used effectively resulting in very satisfactory responses.

  7. DIRC-based PID for the EIC central detector

    Energy Technology Data Exchange (ETDEWEB)

    Dzhygadlo, Roman; Schwarz, Carsten; Schwiening, Jochen [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Peters, Klaus [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt (Germany); Collaboration: DIRC at EIC RD-Collaboration

    2015-07-01

    One of the key requirements for the central detector of a future Electron-Ion Collider (EIC) is to provide radially compact Particle Identification (PID) (e/π,π/K,K/p) over a wide momentum range. It is expected that the PID system will need to include one or more Cherenkov counters to achieve this goal. With a radial size of only a few cm, a DIRC counter (Detector of Internally Reflected Cherenkov light) is potentially an attractive option. The DIRC rate at EIC R and D Collaboration was formed by groups in the United States and Germany in 2011 with funding from DOE to investigate ways to extend the momentum coverage of DIRC counters for the EIC detector by up to 50% beyond the current state of the art. Possible design improvements include a complex focusing system, multi-anode sensors with smaller pixels, a time-based reconstruction algorithm, and chromatic dispersion mitigation. Both Geant and ray-tracing simulations are used to optimize the design configuration of the DIRC counter in terms of the performance and the best integration with the EIC detector. We discuss the current status of the design studies and the possible improvements to the Cherenkov angle resolution and the photon yield.

  8. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  9. Implementation of Fuzzy Logic Based Temperature-Controlled Heat ...

    African Journals Online (AJOL)

    This research then compares the control performance of PID (Proportional Integral and Derivative) and Fuzzy logic controllers. Conclusions are made based on these control performances. The results show that the control performance for a Fuzzy controller is quite similar to PID controller but comparatively gives a better ...

  10. Development and validation of an Overreporting Scale for the Personality Inventory for DSM-5 (PID-5).

    Science.gov (United States)

    Sellbom, Martin; Dhillon, Sonya; Bagby, R Michael

    2018-05-01

    Our aim in the current study was to develop a validity scale for the Personality Inventory for DSM-5 (PID-5) to detect noncredible overreported responding. To this end, we used a rare symptoms approach and identified extreme response options on PID-5 items that were infrequently endorsed by students in 3 different university samples (N = 1,370) and in a psychiatric patient sample (N = 194). The resulting 10-item scale (the PID-5-ORS) produced adequate-to-good estimates of internal reliability and was significantly correlated with the Minnesota Multiphasic Personality Inventory-2 Restructued Form (MMPI-2-RF) overreporting validity scales, providing evidence of concurrent validity. The criterion validity of the PID-5-ORS was demonstrated in an analog simulation design study. More specifically, university students instructed to overreport (n = 80) scored substantially higher on the PID-5-ORS relative to both a group of genuine psychiatric patients and students instructed to complete the PID-5 under standard (honest) instructions (n = 161); the effect size magnitudes associated with these differences were large. Classification accuracy analyses further revealed that high scores on the PID-5-ORS were associated with high specificity (and thus, low rates of false positive classifications) in differentiating overreporters from genuine patients, with sensitivity being somewhat weaker. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm

    Directory of Open Access Journals (Sweden)

    Lakhdar Chaib

    2017-06-01

    Full Text Available This paper proposes a novel robust power system stabilizer (PSS, based on hybridization of fractional order PID controller (PIλDμ and PSS for optimal stabilizer (FOPID-PSS for the first time, using a new metaheuristic optimization Bat algorithm (BA inspired by the echolocation behavior to improve power system stability. The problem of FOPID-PSS design is transformed as an optimization problem based on performance indices (PI, including Integral Absolute Error (IAE, Integral Squared Error (ISE, Integral of the Time-Weighted Absolute Error (ITAE and Integral of Time multiplied by the Squared Error (ITSE, where, BA is employed to obtain the optimal stabilizer parameters. In order to examine the robustness of FOPID-PSS, it has been tested on a Single Machine Infinite Bus (SMIB power system under different disturbances and operating conditions. The performance of the system with FOPID-PSS controller is compared with a PID-PSS and PSS. Further, the simulation results obtained with the proposed BA based FOPID-PSS are compared with those obtained with FireFly algorithm (FFA based FOPID-PSS. Simulation results show the effectiveness of BA for FOPID-PSS design, and superior robust performance for enhancement power system stability compared to other with different cases.

  12. Distribution épidémiologique de l'infection à VIH chez les femmes ...

    African Journals Online (AJOL)

    Introduction: le Cameroun se situe dans un contexte d'épidémie généralisée du VIH. La sous-population des femmes enceintes, facilement accessible au sein de la population générale, représente une cible robante pour mener la surveillance du VIH et estimer l'évolution épidémiologique. L'objectif de notre étude était ...

  13. Caractéristiques épidémiologiques, cliniques, histo-pathologiques ...

    African Journals Online (AJOL)

    N. Harir

    Objectifs : Notre étude avait pour objectif d'effectuer une étude épidémiologique rétrospective afin de déterminer les caractéristiques .... nous nous sommes fixé comme objectif d'étudier les différents aspects épidémiologiques, .... A l'issue de notre recrutement, nous avons obtenu 115 patients atteints d'un cancer du rein sur ...

  14. PENERAPAN KENDALI HYBRID LOGIKA FUZZY- PID UNTUKMENINGKATKAN PERFORMANAVIGASI ROBOT BERODA WALL FOLLOWER

    OpenAIRE

    Utis Sutisna; Wahyu Diputra Siregar; Siswanto Nurhadiyono

    2017-01-01

    Dalam penelitian ini dirancang sistem kendali hybrid logika fuzzy-PID untuk mengendalikan navigasi pada robot wall follower. Sistem logika fuzzy dirancang untuk mengatur nilai-nilai parameter kendali PID berdasarkan dua masukan, yaitu error dan perubahan error.Nilai error didapat dari selisih antara set point jarak yang ditetapkan dengan nilai pembacaan sensor jarak, sedangkan nilai perubahan error didapat dari selisih antara error sekarang dengan error sebelumnya saat robot bernavigasi. Kelu...

  15. Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network

    OpenAIRE

    Jing Wang; Yourui Huang

    2013-01-01

    In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...

  16. Aerogel RICH for the Belle II forward PID

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2014-12-01

    The Belle II spectrometer, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity focusing ring-imaging Cherenkov (RICH) counter with an aerogel radiator is being developed. The counter will provide a 4σ separation of pions and kaons up to momenta of 4 GeV/c. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector (HAPD) has been developed with Hamamatsu Photonics K.K. The readout electronics is based on the custom developed ASIC. The design of the components is currently being finalized and part of their mass production have already started. Herein, we report the final design of the counter and a prototype test conducted with test beams at DESY. - Highlights: • We are constructing a RICH counter with aerogel radiator for Belle II. • Beam test for the prototype Aerogel RICH shows its good performance. • The effect of the neutron irradiation of the photodetector is examined.

  17. Model-free control

    Science.gov (United States)

    Fliess, Michel; Join, Cédric

    2013-12-01

    'Model-free control'and the corresponding 'intelligent' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.

  18. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  19. Investigating PID Shunting in Polycrystalline Silicon Modules via Multiscale, Multitechnique Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moseley, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Norman, Andrew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Al-Jassim, Mowafak M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stokes, Adam [Colorado School of Mines; Gorman, Brian [Colorado School of Mines

    2018-02-27

    We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis. By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.

  20. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  1. On the application of bezier surfaces for GA-Fuzzy controller design for use in automatic generation control

    CSIR Research Space (South Africa)

    Boesack, CD

    2012-03-01

    Full Text Available Automatic Generation Control (AGC) of large interconnected power systems are typically controlled by a PI or PID type control law. Recently intelligent control techniques such as GA-Fuzzy controllers have been widely applied within the power...

  2. Diseño implementación de un controlador proporcional integral derivativo pid, en un arreglo analógico proglamable en campo fpaa

    Directory of Open Access Journals (Sweden)

    José Armando Becerra-Vargas

    2016-07-01

    Full Text Available The present article the development of the prototype of a controller PID is described, this is implemented in an analog array FPAA (Field Programmable Analog Array, designed and constructed in the laboratory of microelectronics of the Francisco de Paula Santander university and the group of investigation in automation and control (GIAC, validated with the control of speed for motor DC of the MRCC900 ALECOP module, installed in the Power Electronics laboratory of the Servicio Nacional de Aprendizaje SENA, regional Norte de Santander.

  3. Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Elevasi Gun Pada Turret-Gun Kaliber 20 Milimeter

    Directory of Open Access Journals (Sweden)

    Dimas Kunto Ariwibowo

    2017-01-01

    Full Text Available Pertahanan negara pada hakikatnya adalah segala upaya pertahanan yang bersifat semesta yang didasarkan pada kesadaran atas hak dan kewajiban warga negara serta keyakinan pada kekuatan sendiri dengan tujuan untuk menjaga dan melindungi kedaulatan negara, keutuhan wilayah NKRI dan keselamatan segenap bangsa. Salah satu alat pendukung pertahanan yaitu senjata laras panjang, Turret-Gun.  Adapun langkah-langkah yang dilakukan dalam merancang pengendali PID Turret-Gun kaliber 20mm ini diawali dengan studi literatur serta studi lapangan mengenai mekanisme dan parameter-parameter yang terdapat pada Turret-Gun pada sumbu elevasi. Setelah itu dilakukan perancangan transmisi dan sistem kontrol Turret-Gun untuk dievaluasi grafik responnya yang akan digunakan sebagai acuan untuk merancang pengendali PID yang sesuai. Selanjutnya pengendali PID yang telah dirancang lalu disimulasikan, sehingga menghasilkan grafik respon yang sesuai dengan kriteria yang dibutuhkan. Hasil yang telah didapatkan dari penelitian ini adalah konstanta PID yang direkomendasikan untuk , , dan secara berturut-turut adalah sebesar 23061.024, 37820.07 dan 3515.4 yang menghasilkan transient response dengan nilai overshoot sebesar 19.9 % , steady state error sebesar 0 % serta settling time sebesar 0.935 detik. Hasil analisa kestabilan untuk sistem kontrol dengan konstanta PID tersebut menunjukkan bahwa sistem kontrol telah stabil, baik menggunakan metode Root Locus maupun metode Routh-Hurwitz.

  4. BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition

    Directory of Open Access Journals (Sweden)

    Abdullah Makkeh

    2018-04-01

    Full Text Available Makkeh, Theis, and Vicente found that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decomposition (BROJA PID measure. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then, we describe in detail our software, explain how to use it, and perform some experiments comparing it to other estimators. Finally, we show that the software can be extended to compute some quantities of a trivaraite PID measure.

  5. Aspects épidémiologiques du suicide à Dakar

    Science.gov (United States)

    Soumah, Mohamed Maniboliot; Eboué, Brice Angwé; Ndiaye, Mor; Sow, Mamadou Lamine

    2013-01-01

    Introduction Le suicidé est le sujet mort par suicide et le suicidant est la personne ayant fait des tentatives de suicide. L'objectif de cette étude porte sur l'analyse épidémiologique des suicides dans la région de Dakar. Méthodes Par une étude rétrospective portant sur les registres du service d'anatomie pathologique de l'Hôpital Aristide Le Dantec, nous rapportons 143 suicides sur 10 ans. Le traitement et l'analyse des données ont été faits sur Epidata version 2.1 b pour la saisie et Epiinfo version 6.04 fr pour l'analyse. Résultats A Dakar, les morts par suicide restent peu fréquentes au regard de la mortalité générale. Les hommes se suicident deux fois plus que les femmes et le suicide reste l'apanage de l'adulte jeune dont l'âge se situe entre 21 et 30 ans. Les suicidés résident le plus souvent en zone périurbaine et ils commettent cet acte dans la majorité des cas en période de froid (pendant les mois de janvier, février et mars), plus avant midi et en soirée qu'en après-midi. Aussi 97.2% des suicidés ont utilisé un seul moyen pour se suicider et le suicide complexe (utilisation de plusieurs moyens) a concerné seulement un cas dans notre étude. La pendaison reste le mode le plus utilisé. Conclusion Les hommes préfèrent donc des moyens de suicides violents (pendaison, arme à feu et arme blanche) alors que les femmes et les adolescents (tout sexe confondu) utilisent les intoxications. Le recueil des facteurs concourant au suicide permettrait une prévention de ce dernier. PMID:23847707

  6. Adaptive proportional–integral–derivative tuning sliding mode control for a shape memory alloy actuator

    International Nuclear Information System (INIS)

    Tai, Nguyen Trong; Ahn, Kyoung Kwan

    2011-01-01

    In this paper, a novel adaptive sliding mode control with a proportional–integral–derivative (PID) tuning method is proposed to control a shape memory alloy (SMA) actuator. The goal of the controller is to achieve system robustness against the SMA hysteresis phenomenon, system uncertainties and external disturbances. In the controller, the PID controller is employed to approximate the sliding mode equivalent control along the direction that makes the sliding mode asymptotically stable. Due to the system nonlinearity, the PID control gain parameters are systematically computed online according to the adaptive law. To improve the transient performance, the initial PID gain parameters are optimized by the particle swarm optimization (PSO) method. Simulation and experimental results demonstrate that the controller performs well for the desired trajectory tracking, and the hysteresis phenomenon is compensated for completely. The control results are also compared with the optimized PID controller

  7. Mitigation of PID in commercial PV modules using current interruption method

    Science.gov (United States)

    Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy

    2017-08-01

    Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.

  8. Personality Inventory for DSM-5 (PID-5) in Clinical Versus Nonclinical Individuals

    DEFF Research Database (Denmark)

    Bach, Bo; Sellbom, Martin; Simonsen, Erik

    2017-01-01

    The Personality Inventory for Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (PID-5) was developed for the assessment of pathological traits in clinical settings. However, most research on the PID-5 is derived from nonclinical samples. To date, the comparability...... with nonpsychotic disorders (81% women; mean age = 28.95), whereas a matched nonclinical sample ( n = 598) comprised community-dwelling individuals (81% women; mean age = 29.59). Measurement invariance was analyzed using a 13-step, two-group exploratory structural equation modeling approach. The results...

  9. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  10. Simple Models for Process Control

    Czech Academy of Sciences Publication Activity Database

    Gorez, R.; Klán, Petr

    2011-01-01

    Roč. 22, č. 2 (2011), s. 58-62 ISSN 0929-2268 Institutional research plan: CEZ:AV0Z10300504 Keywords : process model s * PID control * second order dynamics Subject RIV: JB - Sensors, Measurment, Regulation

  11. AI-based adaptive control and design of autopilot system for ...

    Indian Academy of Sciences (India)

    The stability in terms of energy of an UAV with automatic throttle and elevator controls has ... The various disturbances parameters such as wind speed, air density, mass ..... The structure of the proposed self-tuning fuzzy PID controller is shown ... the PID controller and the characteristic of the plant (Yadav & Gaur 2014).

  12. Uso de controlador PID como tecnologia eficiente em sistema de aquecimento de creche suína

    Directory of Open Access Journals (Sweden)

    Juliana de S. G. Barros

    2015-05-01

    Full Text Available O uso racional de energia elétrica em creches suínas pode ser viabilizado sem afetar o desempenho produtivo dos animais visando à sustentabilidade do setor razão por que o objetivo deste trabalho foi avaliar a eficiência de duas tecnologias de controle de temperatura em sistema de aquecimento resistivo em creche suína, no uso de energia elétrica e no ganho de peso dos leitões. Os sistemas avaliados foram: resistências elétricas suspensas com controle PID (proporcional, integral e derivativo e resistências elétricas suspensas com termostato. O experimento foi realizado durante o período de inverno, entre maio e setembro de 2013. Os critérios de comparação foram: consumo de energia elétrica (kWh, consumo específico (kWh kg-1, custo específico (R$ kg-1, indicador de eficiência elétrica no aquecimento, ganho de peso (kg e ganho de peso diário (kg d-1. O sistema de aquecimento com controlador PID, apesar de apresentar maior consumo médio, foi mais eficiente quanto ao uso de energia elétrica para produzir 1 kg de peso vivo (2,88 kWh kg-1, quanto ao custo específico (0,75 R$ kg-1 e quanto ao ganho de peso dos leitões (7,3 kg em comparação com o sistema com termostato (3,98 kWh kg-1, 1,03 R$ kg-1 e 5,2 kg, respectivamente.

  13. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  14. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  15. Perancangan dan Implementasi Sistem Pengaturan Kecepatan Motor Arus Searah Tanpa Sikat Menggunakan Metode PID-Robust

    Directory of Open Access Journals (Sweden)

    Ahmad Fachrudin Istiananda

    2017-01-01

    Full Text Available BLDCM merupakan suatu jenis motor sinkron yang artinya medan magnet yang dihasilkan oleh stator dan medan magnet yang dihasilkan rotor berputar di frekuensi yang sama. Dalam BLDCM, salah satu hal yang sangat penting untuk dikontrol adalah kecepata. Permasalahan yang diteliti dan dianalisis pada Tugas Akhir Perancangan dan Implementasi Sistem Pengaturan Kecepatan Motor Arus Searah Tanpa Sikat Menggunakan Metode PID-Robust adalah respon kecepatan BLDCM terhadap pembebanan yang berubah-ubah. Pengaturan kecepatan BLDCM dirancang menggunakan Kontroler Proposional, Integral dan Derivatif (PID. Kontroler PID-Robust digunakan untuk membantu BLDC pada kondisi pembebanan untuk mempertahankan setpoint. Nilai parameter Kp, Ki, dan Kd sebesar 529,9, 0,00000373, dan 0,0624 didapat dari perhitungan robust performansi H∞ dengan metode LMI (Linear Matrix Inequality. Setelah dilakukan simulasi, didapatkan bahwa respon plant dengan kontroler PID-Robust dapat mengikuti model referensi yang diinginkan dengan nilai rise time 7,7 untuk beban minimal, 3,75 untuk beban nominal, dan 5,9 untuk beban maksimal serta kuat/robust terhadap gangguan/disturbance.

  16. Profil épidémiologique, diagnostique, thérapeutique et évolutif du ...

    African Journals Online (AJOL)

    K. Tengue

    Épidémiologie diagnostic;. Traitement; ... soit 6,4 % et le traitement hormonal dans 93,1 % des cas. Le taux de décès .... avaient permis la recherche de localisation secondaire et la classi- .... de plateau technique adéquat dans nos structures.

  17. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  18. Experimental study on cascaded attitude angle control of a multi-rotor unmanned aerial vehicle with the simple internal model control method

    International Nuclear Information System (INIS)

    Song, Jun Beom; Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo

    2016-01-01

    This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI

  19. Experimental study on cascaded attitude angle control of a multi-rotor unmanned aerial vehicle with the simple internal model control method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun Beom [Dept. of Aviation Maintenance, Dongwon Institute of Science and Technology, Yangsan (Korea, Republic of); Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-15

    This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI.

  20. Comparison of gradient methods for gain tuning of a PD controller applied on a quadrotor system

    Science.gov (United States)

    Kim, Jinho; Wilkerson, Stephen A.; Gadsden, S. Andrew

    2016-05-01

    Many mechanical and electrical systems have utilized the proportional-integral-derivative (PID) control strategy. The concept of PID control is a classical approach but it is easy to implement and yields a very good tracking performance. Unmanned aerial vehicles (UAVs) are currently experiencing a significant growth in popularity. Due to the advantages of PID controllers, UAVs are implementing PID controllers for improved stability and performance. An important consideration for the system is the selection of PID gain values in order to achieve a safe flight and successful mission. There are a number of different algorithms that can be used for real-time tuning of gains. This paper presents two algorithms for gain tuning, and are based on the method of steepest descent and Newton's minimization of an objective function. This paper compares the results of applying these two gain tuning algorithms in conjunction with a PD controller on a quadrotor system.

  1. Control of a deareador level of a thermoelectric power station using modern control techniques; Control de nivel de un deareador de una central termoelectrica utilizando tecnicas de control moderno

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Estrada, Jose Israel

    1997-01-01

    The present work shows the implementation of the scheme of predictive control IMC (Internal Model Control) in order to control the level of the deareador of a combined cycle thermoelectric power station of (C.C.T.S.). The implementation has the purpose of looking for alternative strategies of control to the classic ones (PID`s) that more efficiently control the variables of interest, in addition to getting into the new control techniques of control. Following the philosophy of predictive control IMC the form to applying this technique is shown, as well as the implementation of this type of controllers. A comparison of predictive control IMC is made with the scheme of conventional control (three control elements PID`s ) used at present to control the level of the deareador in the Combined Cycle Thermoelectric Power stations of Dos Bocas, Veracruz, Mexico and of Gomez Palacio, Durango, Mexico. [Espanol] El presente trabajo muestra la implementacion del esquema de control predictivo IMC (Control con Modelo Interno) con el objeto de controlar el nivel del deareador de una Central Termoelectrica de Ciclo Combinado (C.T.C.C.). La implementacion tiene la finalidad de buscar estrategias de control alternas a las clasicas (PID`s) que controlen mas eficientemente la variable de interes, ademas de incursionar en las nuevas tecnicas de control. Siguiendo la filosofia del control predictivo IMC se muestra la forma de aplicar esta tecnica, asi como la implementacion de este tipo de controladores. Se hace una comparacion del control predictivo IMC con el esquema de control convencional (control de tres elementos PID`s) utilizando actualmente para controlar el nivel del deareador en las centrales termoelectricas de ciclo combinado de Dos Bocas, Veracruz y de Gomez Palacio, Durango en Mexico.

  2. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  3. Study on Design of Control Module and Fuzzy Control System

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Sohn, Chang Ho; Kim, Jung Seon; Kim, Min Kyu

    2005-01-01

    Performance of control unit is improved by introduction of fuzzy control theory and compensation for input of control unit as FLC(Fuzzy Logic Controller). Here, FLC drives thermal control system by linguistic rule-base. Hence, In case of using compensative PID control unit, it doesn't need to revise or compensate for PID control unit. Consequently, this study shows proof that control system which implements H/W module and then uses fuzzy algorism in this system is stable and has reliable performance

  4. DISEÑO E IMPLEMENTACIÓN DE UNA PLATAFORMA EXPERIMENTAL DE DOS GRADOS DE LIBERTAD CONTROLADA POR DOS TÉCNICAS: PID Y LÓGICA DIFUSA

    Directory of Open Access Journals (Sweden)

    Leonardo Solaque Guzmán

    2014-01-01

    Full Text Available El presente artículo tiene por objeto mostrar una estructura de dos grados de libertad, concebida y diseñada para aproximarse a la experimentación de leyes de control de sistemas tipo helicópteros de cuatro hélices (Quad-Rotor – Unmanned Aerial Vehicle. Se realizó el modelado y control para dicha plataforma. Dos tipos de control se abarcaron: uno basado en técnicas lineales tipo PID, que hace uso de la linealización por series de Taylor; y el otro basado en técnicas de control difuso. Se deja una plataforma abierta y, mediante la incursión en software-hardware in loop, se habilita para experimentar otras teorías de control.

  5. fpga controller design and simulation of a portable dough mixing

    African Journals Online (AJOL)

    modelled and simulated with Matlab/Simulink. Synthesizable VHDL ... Keywords: FPGA, VHDL, PID controller, Pulse Width Modulation, Full H-Bridge DC motor driver. 1. ... and (b) to simulate the control process in a virtual environment, using.

  6. PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry

    International Nuclear Information System (INIS)

    Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade

    2009-01-01

    The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)

  7. Profil épidémiologique, diagnostique, thérapeutique et évolutif du ...

    African Journals Online (AJOL)

    Objectifs: Étudier les aspects épidémiologiques, cliniques, thérapeutiques et évolutifs du cancer de la prostate dans le service d'urologie du CHU-Sylvanus Olympio du Togo. Patients et méthodes: Il s'agissait d'une étude prospective de mars 2011 à mars 2014 sur les patients suivis pour cancer de la prostate au Togo.

  8. Derivatizations for improved detection of alcohols by gas chromatography and photoionization detection (GC-PID)

    International Nuclear Information System (INIS)

    Krull, I.S.; Swartz, M.; Driscoll, J.N.

    1984-01-01

    Pentafluorophenyldimethylsilyl chloride (flophemesyl chloride, Fl) is a well known derivatization reagent for improved electron capture detection (ECD) in gas chromatography (GC)(GC-ECD), but it has never been utilized for improved detectability and sensitivity in GC-photoionization detection (GC-PID). A wide variety of flophemesyl alcohol derivatives have been used in order to show a new approach for realizing greatly reduced minimum detection limits (MDL) of virtually all alcohol derivatives in GC-PID analysis. This particular derivatization approach is inexpensive and easy to apply, leading to quantitative or near 100% conversion of the starting alcohols to the expected flophemesyl ethers (silyl ethers). Detection limits can be lowered by 2-3 orders of magnitude for such derivatives when compared with the starting alcohols, along with calibration plots that are linear over 5-7 orders of magnitude. Specific GC conditions have been developed for many flophemesyl derivatives, in all cases using packed columns. Both ECD and PID relative response factors (RRFs) and normalized RRFs have been determined, and such ratios can now be used for improved analytic identification from complex sample matrices, where appropriate. 28 references, 2 figures, 5 tables

  9. Laser therapy in women genital Chlamydia trachomatis infection complicated with PID and infertility

    Science.gov (United States)

    Brinzan, Daniela; Paiusan, Lucian; Smeu, Claudia-Ramona

    2018-04-01

    Genital Chlamydia Trachomatis infection is one of the most common sexually transmitted infections with more than 50 million new cases occurred globally every year. Underdiagnosed and untreated, it can generate long term severe complications including PID, infertility, ectopic pregnancy and chronic pelvic pain. Among 20 patients diagnosed with PID and infertility in our medical office during one year, we selected a study group of 10 patients with genital Chlamydia Trachomatis infection. The diagnostic methods used were anamnesis, clinical examination, Pap smear, bacteriological and serological tests, ultra sound examination. The group of patients selected was monitored for one year. The treatment took into account general measures for both partners and specific measures (antibiotic treatment and focused laser therapy). The initial group was split in two, group A treated only with antibiotics and group B treated with both antibiotics and laser therapy. All the 5 patients of group B presented an improvement of the clinical manifestations and 3 of them ended up with pregnancy. On the other hand, in group B, only one patient manifested total disappearance of pains and the infertility persisted for all. It is noteworthy that the association of laser therapy in the treatment of Chlamydia Trachomatis infection has brought significant improvement in the inflammatory processes of internal genitalia (PID) and in the fertility of the couple.

  10. Single-Phase 3L PR Controlled qZS Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos

    2016-01-01

    This paper presents a single-phase three-level NPC qZS inverter connected to a distorted grid using PID and PR regulators. A case study system along with the control strategy are described. Tuning approaches for PID and PR regulators are addressed and validated by means of simulation results...

  11. 风机转动速度调节的PID优化算法研究%Research on PID Optimization Algorithm for Rotating Speed Regulation of Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    李家伟

    2015-01-01

    With control optimizing of the rotational speed of the wind turbine, improve the output power and the power trans-mission efficiency of the wind turbine, the interference of magnetic loss coupling by the wind turbine rotor blade in the con-trol, it is difficult to achieve effective speed regulation, The algorithm has the defects of nonlinear distortion. A wind turbine of PID based on optimal control of rotating speed adjustment optimization, analysis of rotating speed adjusting parameter model of wind turbine, the wind turbine rotor blade speed adjustment control optimization objective function, the design of three layers PID neural network, the PID variable structure control, wind turbine speed shaft connected with the rotor axis the gear box, the aerodynamic excitation brake operation, speed regulation, effectively restrain the interference of wind tur-bine rotor blade control strong coupling magnetic loss, improve the speed of rotation to adjust the output control perfor-mance of wind turbine. The simulation results show that, the method can effectively realize the wind turbine speed control, it can improve the wind turbine efficiency and output gain.%通过对风机转动速度的优化控制调节,提高风机的输出功率和电能传输效率,风机转子叶片控制中受到强耦合的磁损耗的干扰,难以实现有效的转速调节,提出一种基于PID优化控制的风机转动速度调节优化算法,分析风机转动速度调节控制参数模型,构建风机转子叶片速度调节的优化控制目标函数,设计三层前向PID神经网络,通过PID变结构控制,风机的低速轴将转子轴心与齿轮箱连接,激发空气动力闸的运行,进行转速调节,有效地抑制了风机转子叶片控制中强耦合磁损耗的干扰,提高了风机转动速度调节输出控制性能.仿真结果表明,采用该方法能有效实现风机转速调节控制,提高风机运行效率和输出增益.

  12. Application of genetic algorithm to control design

    International Nuclear Information System (INIS)

    Lee, Yoon Joon; Cho, Kyung Ho

    1995-01-01

    A classical PID controller is designed by applying the GA (Genetic Algorithm) which searches the optimal parameters through three major operators of reproduction, crossover and mutation under the given constraints. The GA could minimize the designer's interference and the whole design process could easily be automated. In contrast with other traditional PID design methods which allows for the system output responses only, the design with the GA can take account of the magnitude or the rate of change of control input together with the output responses, which reflects the more realistic situations. Compared with other PIDs designed by the traditional methods such as Ziegler and analytic, the PID by the GA shows the superior response characteristics to those of others with the least control input energy

  13. Conversion of Diesel Vehicles to Electric Vehicles and Controlled by PID Controller

    OpenAIRE

    Mengi, Onur Özdal

    2017-01-01

    Internal combustion engine vehicles are the most producedand sold vehicles on the market. In recent years, interest in electric vehicleshas begun to increase, especially due to the environmental problems. In thenear future, it is estimated that gasoline and diesel vehicles will becompletely electric vehicles. For this reason, many studies have been conductedon electric vehicles. Particularly the change of the engine parts, the turningof the internal combustion part to the electric motor, and ...

  14. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  15. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  16. The Personality Inventory for DSM-5 Short Form (PID-5-SF): psychometric properties and association with big five traits and pathological beliefs in a Norwegian population

    OpenAIRE

    Thimm, Jens C.; Jordan, Stian; Bach, Bo

    2016-01-01

    Background With the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), an alternative model for personality disorders based on personality dysfunction and pathological personality traits was introduced. The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report inventory designed to assess the personality traits of this model. Recently, a short 100-item version of the PID-5 (PID-5-SF) has been developed. The aim of this study was ...

  17. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    Science.gov (United States)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  18. Numerical investigation of closed-loop control for Hall accelerators

    International Nuclear Information System (INIS)

    Barral, S.; Miedzik, J.

    2011-01-01

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  19. The Personality Inventory for DSM-5 Short Form (PID-5-SF): psychometric properties and association with big five traits and pathological beliefs in a Norwegian population.

    Science.gov (United States)

    Thimm, Jens C; Jordan, Stian; Bach, Bo

    2016-12-07

    With the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), an alternative model for personality disorders based on personality dysfunction and pathological personality traits was introduced. The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report inventory designed to assess the personality traits of this model. Recently, a short 100-item version of the PID-5 (PID-5-SF) has been developed. The aim of this study was to investigate the score reliability and structure of the Norwegian PID-5-SF. Further, criterion validity with the five factor model of personality (FFM) and pathological personality beliefs was examined. A derivation sample of university students (N = 503) completed the PID-5, the Big Five Inventory (BFI), and the Personality Beliefs Questionnaire - Short Form (PBQ-SF), whereas a replication sample of 127 students completed the PID-5-SF along with the aforementioned measures. The short PID-5 showed overall good score reliability and structural validity. The associations with FFM traits and pathological personality beliefs were conceptually coherent and similar for the two forms of the PID-5. The results suggest that the Norwegian PID-5 short form is a reliable and efficient measure of the trait criterion of the alternative model for personality disorders in DSM-5.

  20. Data Driven Synthesis of Three Term Digital Controllers

    Science.gov (United States)

    Keel, Lee H.; Mitra, Sandipan; Bhattacharyya, Shankar P.

    This paper presents a method for digital PID and first order controller synthesis based on frequency domain data alone. The techniques given here first determine all stabilizing controllers from measurement data. In both PID and first order controller cases, the only information required are frequency domain data (Nyquist-Bode data) and the number of open-loop RHP poles. Specifically no identification of the plant model is required. Examples are given for illustration.