Fliess, Michel; Join, Cédric
2008-01-01
International audience; Intelligent PID controllers, or i-PID controllers, are PID controllers where the unknown parts of the plant, which might be highly nonlinear and/or time-varying, are taken into account without any modeling procedure. Our main tool is an online numerical differentiator, which is based on easily implementable fast estimation and identification techniques. Several numerical experiments demonstrate the efficiency of our method when compared to more classic PID regulators.
Alfaro, Víctor M
2007-10-01
In this paper, an index for measuring fragility of proportional integral derivative (PID) controllers is proposed. This index relates the losses of robustness of the control loop when controller parameters change, to the nominal robustness of the control loop. Furthermore, it defines when a PID controller is fragile, nonfragile or resilient.
Directory of Open Access Journals (Sweden)
Horaţiu Ştefan Grif
2011-06-01
Full Text Available The paper describes the implementation and the tuning of a digital PID controller used in a daylight control application. Due to the fact that the process is unknown, an experimental method, Ziegler-Nichols, for the tuning of the PID controller was used. The obtained PID parameters do not offer a good behavior of the ALCS. To improve the performances of the ALCS, supplementary tuning of the PID parameters, via step response analysis, was made. The step response acquiring and analysis may have an expensive time cost. To avoid the time cost the present paper offers an algorithm which guide the designer to chose, in a slight manner, not only a set but a set family of the PID parameters for which the ALCS has a good behavior. Also, the algorithm presents the way how the ALCS user can set his desired ALCS speed reaction to the daylight variations.
PID Controller with Operational Amplifier
Directory of Open Access Journals (Sweden)
Cristian Paul Chioncel
2009-01-01
Full Text Available The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.
Energy Technology Data Exchange (ETDEWEB)
Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C
2012-01-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.
Tuning of Fuzzy PID Controllers
DEFF Research Database (Denmark)
Jantzen, Jan
1998-01-01
Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single......-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented....
Research Trends for PID Controllers
Directory of Open Access Journals (Sweden)
Antonio Visioli
2012-01-01
Full Text Available This paper analyses the most significant issues that have been recently been addressed by researchers in the field of Proportional-Integral-Derivative (PID controllers. In particular, the most recent techniques proposed for tuning and designing PID-based control structures are briefly reviewed, together with methods for assessing their performance. Finally, fractional-order and event-based PID controllers are presented among the most significant developments in the field.
Relationship between fuzzy controllers and PID controllers
Institute of Scientific and Technical Information of China (English)
李洪兴
1999-01-01
The internal relations between fuzzy controllers and PID controllers are revealed. First, it is pointed out that a fuzzy controller with one input and one output is just a piecewise P controller. Then it is proved that a fuzzy controller with two inputs and one output is just a piecewise PD (or I) controller with interaction between P and D (or PI). At last, the conclusion that a fuzzy controller with three inputs and one output is just a piecewise PID controller with interaction among P, I and D is given. Moreover, a kind of difference scheme of fuzzy controllers is designed.
PID control with robust disturbance feedback control
DEFF Research Database (Denmark)
Kawai, Fukiko; Vinther, Kasper; Andersen, Palle
2015-01-01
Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....
New tuning method for PID controller.
Shen, Jing-Chung
2002-10-01
In this paper, a tuning method for proportional-integral-derivative (PID) controller and the performance assessment formulas for this method are proposed. This tuning method is based on a genetic algorithm based PID controller design method. For deriving the tuning formula, the genetic algorithm based design method is applied to design PID controllers for a variety of processes. The relationship between the controller parameters and the parameters that characterize the process dynamics are determined and the tuning formula is then derived. Using simulation studies, the rules for assessing the performance of a PID controller tuned by the proposed method are also given. This makes it possible to incorporate the capability to determine if the PID controller is well tuned or not into an autotuner. An autotuner based on this new tuning method and the corresponding performance assessment rules is also established. Simulations and real-time experimental results are given to demonstrate the effectiveness and usefulness of these formulas.
Application of Adaptive Fuzzy PID Leveling Controller
Directory of Open Access Journals (Sweden)
Ke Zhang
2013-05-01
Full Text Available Aiming at the levelling precision, speed and stability of suspended access platform, this paper put forward a new adaptive fuzzy PID control levelling algorithm by fuzzy theory. The method is aided design by using the SIMULINK toolbox of MATLAB, and setting the membership function and the fuzzy-PID control rule. The levelling algorithm can real-time adjust the three parameters of PID according to the fuzzy rules due to the current state. It is experimented, which is verified the algorithm have better stability and dynamic performance.
The Parrot UAV Controlled by PID Controllers
Directory of Open Access Journals (Sweden)
Koszewnik Andrzej
2014-08-01
Full Text Available The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.
Directory of Open Access Journals (Sweden)
D. RAMA REDDY
2012-07-01
Full Text Available This paper describes the stability regions of PID (Proportional +Integral+ Derivative and a new PID with series leading correction (SLC for Networked control system with time delay. The new PID controller has a tuning parameter ‘β’. The relation between β, KP, KI and KD is derived. The effect of plant parameters on stabilityregion of PID controllers and SLC-PID controllers in first-order and second-order systems with time delay are also studied. Finally, an open-loop zero was inserted into the plant-unstable second order system with time delay so that the stability regions of PID and SLC-PID controllers get effectively enlarged. The total system isimplemented using MATLAB/Simulink.
Enhancement of Heat Exchanger Control Using Improved PID Controller
Directory of Open Access Journals (Sweden)
Gopalakrishna G.
2009-08-01
Full Text Available The Proportional, Integral and Derivative (PID controllers are widely used in industrial applications. Their popularity comes from their robust performance and also from their functional simplicity. Temperature control of double tube heat exchanger system is presented and ant colony algorithm for optimizing PID parameters of temperature controller is presented in this paper on the basis of conventional PID controller. Temperature controller based on ant colony optimization for double tube heat exchanger is designed. Simulation results show that, for the case of heat exchanger system, ACO-PID is good model and generalize well. The closed loop unit step response obtained with the proposed PID compares favorably with the one achieved using a conventional PID controller with dynamic closed-loop simulation. More important, the proposed approach takes a fraction of the time spent by the standard technique, without the need of perturbing the closed-loop system.
Variable-order fuzzy fractional PID controller.
Liu, Lu; Pan, Feng; Xue, Dingyu
2015-03-01
In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy.
Implementation of Fuzzy-PID in Smart Car Control
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.
A mathematical explanation via "intelligent" PID controllers of the strange ubiquity of PIDs
Novel, Brigitte D'Andrea; Join, Cédric; Mounier, Hugues; Steux, Bruno
2010-01-01
The ubiquity of PID controllers in the industry has remained mysterious until now. We provide here a mathematical explanation of this strange phenomenon by comparing their sampling with the the one of "intelligent" PID controllers, which were recently introduced. Some computer simulations nevertheless confirm the superiority of the new intelligent feedback design.
Bikash Dey; Lusika Roy
2014-01-01
This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR).CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for mo...
Analysis & Control of Inverted Pendulum System Using PID Controller
Directory of Open Access Journals (Sweden)
Vivek Kumar pathak
2017-05-01
Full Text Available This Analysis designs a two-loop proportional–integral–derivative (PID controller for an inverted cart– pendulum system via pole placement technique, where the (dominant closed-loop poles to be placed at the desired locations are obtained from an Linear quadratic regulator (LQR design. It is seen that in addition to yielding better responses (because of additional integral action than this LQR (equivalent to two-loop PD controller design, the proposed PID controller is robust enough. The performance and of the PID compensation are verified through simulations as well as experiments.
Fuzzy-Immune PID Control for AMB Systems
Institute of Scientific and Technical Information of China (English)
SU Yixin; LI Xuan; ZHOU Zude; CHEN Youping; ZHANG Danhong
2006-01-01
In order to improve the dynamic performance of active magnetic bearing systems with highly nonlinear and naturally unstable dynamics, a new nonlinear fuzzy-immune proportional-integral-derivative (PID) controller is proposed by combining the immune feedback law with linear PID control. This controller consists of a PID controller and a basic immune proportional controller in cascaded connection, the nonlinear function of the immune proportional controller is realized by using fuzzy reasoning. Simulation results demonstrate that the active magnetic bearing system with the proposed controller has better dynamic performance and disturbance rejection ability than using the linear PID controller.
Fuzzy-PID controlled lift feedback fin stabilizer
Institute of Scientific and Technical Information of China (English)
LIANG Yan-hua; JIN Hong-zhang; LIANG Li-hua
2008-01-01
Conventional PID controllers are widely used in fin stabilizer control systems,but they have time-variations,nonlinearity,and uncertainty influencing their control effects.A lift feedback fuzzy-PID control method was developed to better deal with these problems,and this lift feedback fin stabilizer system was simulated under different sea condition.Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
Neural PID Control Strategy for Networked Process Control
Directory of Open Access Journals (Sweden)
Jianhua Zhang
2013-01-01
Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.
Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system
Li, Yezi; Xiao, Cheng; Sun, Jinhao
2013-03-01
PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.
Soft Real-Time PID Control on a VME Computer
Karayan, Vahag; Sander, Stanley; Cageao, Richard
2007-01-01
microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.
Multivariable robust PID control for a PEMFC system
Energy Technology Data Exchange (ETDEWEB)
Wang, Fu-Cheng; Ko, Chin-Chun [Department of Mechanical Engineering, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617 (China)
2010-10-15
This paper proposes robust proportional-integral-derivative (PID) control for a proton exchange membrane fuel cell (PEMFC) system. We model a PEMFC as a multivariable system, and apply identification techniques to obtain the system's transfer function matrices, where system variations and disturbances are regarded as uncertainties. Because robust control can cope with system uncertainties and disturbances, it has been successfully applied to improve the stability, performance, and efficiency of PEMFC systems in previous studies. However, the resulting robust controllers might be too complicated for hardware implementation. On the other hand, PID control has been widely applicable to engineering practices because of its simple structure, but it lacks stability analysis for systems with uncertainties. Therefore, by combining the merits of robust control and PID control, we design robust PID controllers for the PEMFC system. Based on evaluation of stability, performance, and efficiencies, the proposed robust PID controllers are shown to be effective. (author)
Energy Technology Data Exchange (ETDEWEB)
Jacob, D. [Institut Universitaire de Technologie, 86 - Poitiers (France)
2004-09-15
The proportional integral derived function (PID) control is certainly not the most efficient but it is the most widely control used in regulation systems. The implementation of a PID regulator does not offer all adjustment possibilities of modern methods and it is in general impossible to make open-loop tests to identify the regulated system. This paper presents two concrete applications of PID control systems: one for a temperature regulation and the other for the servo-control of a mechanical system driven by a brush-less motor. The adjustment is performed using the classical momentum and frequency methods: 1 - PID control; 2 - efficiencies obtained in close loop configuration; 3 - principle of the experimental adjustment method of PID systems; 4 - experimental identification in close-loop configuration; 5 - calculation principle of a PID corrector; 6 - PID control for a class 0 system; 7 - calculation of a PID corrector for a class 1 system; 8 - PID position regulation of a brush-less motor; 9 - remarks about the numerical calculation of the control; 10 - summary of the models presented. (J.S.)
Directory of Open Access Journals (Sweden)
Bikash Dey
2014-01-01
Full Text Available This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR.CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for model design and simulation
Analytical one parameter method for PID motion controller settings
Dijk, van J.; Aarts, R.G.K.M.
2012-01-01
In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over fre
Turbine speed control system based on a fuzzy-PID
Institute of Scientific and Technical Information of China (English)
SUN Jian-hua; WANG Wei; YU Hai-yan
2008-01-01
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.
Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
Improving the pneumatic control valve performance using a PID controller
Heidari, Mohammad; Homaei, Hadi
2014-01-01
Pneumatic control valves are still the most used in process industries due to their low cost and simplicity. This paper presents a design procedure of a PID controller for a pneumatic control valve. For comparison, P and PI controllers are also utilized for the control valve. The bond graph method is used to model the control valve, in order to compare the response characteristics of the valve. Simulation results are found for three controllers of the valve. The integral time absolute error c...
PID control for chaotic synchronization using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw
2009-01-30
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
Variable Structure PID Control to Prevent Integrator Windup
Hall, C. E.; Hodel, A. S.; Hung, J. Y.
1999-01-01
PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.
Wind turbine pitch control using ICPSO-PID algorithm
DEFF Research Database (Denmark)
Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong
2013-01-01
of improved cooperative particle swarm optimization (ICPSO) and PID, subsequently, it was used to tune the pitch controller parameters; thus the difficulty in PID tuning was removed when a wind speed was above the rated speed. It was indicated that the proposed optimization algorithm can tune the pitch...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG......., a pitch controller was designed based on power and wind speed and by considering the inertia and delay characteristics of a pitch-control system to achieve a constant power output when a wind speed was beyond the rated one. A novel ICPSO-PID control algorithm was proposed based on a combination...
Computation of robustly stabilizing PID controllers for interval systems.
Matušů, Radek; Prokop, Roman
2016-01-01
The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.
New Asymmetric Fuzzy PID Control for Pneumatic Position Control System
Institute of Scientific and Technical Information of China (English)
薛阳; 彭光正; 范萌; 伍清河
2004-01-01
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.
Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller
Directory of Open Access Journals (Sweden)
Muzaffer Metin
2014-01-01
Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.
O'Dwyer, Aidan
1999-01-01
A summary of tuning rules for the PID control of single input, single output (SISO) processes with time delay, modeled in stable first order lag plus time delay (FOLPD) form, is provided in this part of the paper.
A Proposal of Adaptive PID Controller Based on Reinforcement Learning
Institute of Scientific and Technical Information of China (English)
WANG Xue-song; CHENG Yu-hu; SUN Wei
2007-01-01
Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency,a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.
Design New Intelligent PID like Fuzzy Backstepping Controller
Directory of Open Access Journals (Sweden)
Arzhang Khajeh
2014-02-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI-like controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Recurrent neural networks-based multivariable system PID predictive control
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi
2007-01-01
A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks,due to the difficulty of tuning the parameters of conventional PID controller.In the control process of nonlinear multivariable system,a decoupling controller was constructed,which took advantage of multi-nonlinear PID controllers in parallel.With the idea of predictive control,two multivariable predictive control strategies were established.One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method.The other involved the adoption of multistep predictive cost energy to train the weights of the decoupling controller.Simulation studies have shown the efficiency of these strategies.
Integrated Auto-Tuning PID Control of Continuous Casting Process
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
PID controllers were used for the hydraulic servo system of sliding gate and the tundish weight control system in continuous caster. These two loops were synthesized in mould level controller based on model reduction and internal model control strategy. Satisfactory control performance of this synthetic mould level controller was demonstrated by simulations and on-line experiments.
IMC based robust PID controller tuning for disturbance rejection
Institute of Scientific and Technical Information of China (English)
Mohammad Shamsuzzoha
2016-01-01
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gainKc0. It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak (overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
Nonlinear system PID-type multi-step predictive control
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN
2004-01-01
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
A General Method for Designing Fractional Order PID Controller
Directory of Open Access Journals (Sweden)
Marzieh Safaei
2013-01-01
Full Text Available The idea of using fractional order calculus in control became apparent when this kind of calculus was accepted as a powerful tool in many applications. This resulted in a new generation of PID controller called fractional order PID Controller, named as Controller. controller is more flexible and provides a better response with larger stability region as compared with standard PID controller. This paper presents a simple and reliable method for finding the family of controllers. The required calculations are done in frequency domain based on frequency response of the system and the stability region is specified in the parameters space. This method can be used for time-delay systems and, more generally, for any system with no transfer function.
Genetic Algorithm based PID controller for Frequency Regulation Ancillary services
Directory of Open Access Journals (Sweden)
Sandeep Bhongade
2010-12-01
Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.
ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM
Directory of Open Access Journals (Sweden)
A.PURNA CHANDRA RAO
2010-11-01
Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.
PID controller tuning using the magnitude optimum criterion
Papadopoulos, Konstantinos
2014-01-01
An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model
Design of a PID Controller for a PCR Micro Reactor
Dinca, M. P.; Gheorghe, M.; Galvin, P.
2009-01-01
Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…
PID motion control tuning rules in a damping injection framework
Tadele, Tadele Shiferaw; Vries, de Theo; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
Application of Improved Genetic Algorithm in PID Controller Parameters Optimization
Directory of Open Access Journals (Sweden)
Ying Chen
2013-01-01
Full Text Available Ying Chen, Yong-jie Ma, Wen-xia Yun College of Physics and Electronic Engineering, Northwest Normal University, Anning Road no.967 ,Lanzhou,China,0931-7971503 e-mail:chenying1386685@126.com Abstract The setting and optimization of Proportion Integration Differentiation(PID parameters have been always the important study topics in the automatic control field. The current optimization design methods are often difficult to consider the system requirements for quickness ,reliability and robustness .So a method of PID controller parameters optimization based on Improved Genetic Algorithm(IGA is presented .Simulations with Matlab have proved that the control performance index based on IGA is better than that of the GA method and Z-N method, and is a method which has good practical value of the PID parameter setting and optimization .
Simulation and Tuning of PID Controllers using Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
K.R.S. Narayanan
2012-10-01
Full Text Available The Proportional Integral Derivative (PID controller is the most widely used control strategy in the Industry. The popularity of PID controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. The level control systems on Deaerator, Feed Water Heaters, and Condenser Hot well are critical to the proper operation of the units in Nuclear Power plants. For Precise control of level, available tuning technologies based on conventional optimization methods are found to be inadequate as these conventional methods are having limitations. To overcome the limitations, alternate tuning techniques based on Genetic Algorithm are emerging. This paper analyses the manual tuning techniques and compares the same with Genetic Algorithm tuning methods for tuning PID controllers for level control system and testing of the quality of process control in the simulation environment of PFBR Operator Training Simulator(OTS.
On PID Controller Design Using Knowledge Based Fuzzy System
Directory of Open Access Journals (Sweden)
Jana Nowakova
2012-01-01
Full Text Available The designing of PID controllers is a frequently discussed problem. Many of design methods have been developed, classic (analytical tuning methods, optimization methods etc. or not so common fuzzy knowledge based methods which are designed to achieve good setpoint following, corresponding time response etc. In this case, the new way of designing PID controller parameters is created where the above mentioned knowledge system based on relations of Ziegler-Nichols design methods is used, more precisely the combination of the both Ziegler-Nichols methods. The proof of efficiency of a proposed method and a numerical experiment is presented.
Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process
Directory of Open Access Journals (Sweden)
Wael Alharbi
2017-03-01
Full Text Available This project is about the design of PID controllers and the improvement of outputs in multivariable processes. The optimisation of PID controller for the Shell oil process is presented in this paper, using Genetic Algorithms (GAs. Genetic Algorithms (GAs are used to automatically tune PID controllers according to given specifications. They use an objective function, which is specially formulated and measures the performance of controller in terms of time-domain bounds on the responses of closed-loop process.A specific objective function is suggested that allows the designer for a single-input, single-output (SISO process to explicitly specify the process performance specifications associated with the given problem in terms of time-domain bounds, then experimentally evaluate the closed-loop responses. This is investigated using a simple two-term parametric PID controller tuning problem. The results are then analysed and compared with those obtained using a number of popular conventional controller tuning methods. The intention is to demonstrate that the proposed objective function is inherently capable of accurately quantifying complex performance specifications in the time domain. This is something that cannot normally be employed in conventional controller design or tuning methods.Finally, the recommended objective function will be used to examine the control problems of Multi-Input-Multi-Output (MIMO processes, and the results will be presented in order to determine the efficiency of the suggested control system.
Split PID control: two sensors can be better than one
Znaimer, Leith
2014-01-01
The traditional proportional-integral-derivative (PID) algorithm for regulation suffers from a tradeoff: placing the sensor near the sample being regulated ensures that its steady-state temperature matches the desired setpoint. However, the propagation delay (lag) between heater and sample can limit the control bandwidth. Moving the sensor closer to the heater reduces the lag and increases the bandwidth but introduces offsets and drifts into the temperature of the sample. Here, we explore the consequences of using two probes---one near the heater, one near the sample---and assigning the integral term to the sample probe and the other terms to the heater probe. The \\textit{split-PID} algorithm can outperform PID control loops based on one sensor.
Comparison of PID and Fuzzy Controller for Position Control of AR.Drone
Prayitno, A.; Indrawati, V.; Trusulaw, I. I.
2017-04-01
This paper describes the implementation of the PID Controller to control the position of the AR.Drone in the x-y-z. This position control scheme uses three PID controllers to maintain the position of x, y and z using the signal control pitch, roll and vertical rate. PID Controller implemented on AR.Drone 2.0 and then tested in an indoor space. The performance of the controller will be compared with Fuzzy Logic Controller schemes that have been implemented previously. The results show that the PID Controller generate a response with rise time less than 3 seconds at the x and y position with around 25% overshoot. The result for z position give better result without overshoot. The comparison between fuzzy logic and PID Controller indicates that the results of the PID controller is better although there is overshoot.
Modeling and Implementation of PID Control for Autonomous Robots
2007-06-01
Richard Dorf . Modern Control Systems. New York, New York: Addison-Wesley Publishing, 1995. Cabezas, Rodrigo. Design of A Bore Sight Camera For The...IMPLEMENTATION OF PID CONTROL FOR AUTONOMOUS ROBOTS by Todd A. Williamson June 2007 Thesis Advisor: Richard Harkins Second Reader: Peter...Author: Todd A. Williamson Approved by: Richard Harkins Thesis Advisor Peter Crooker Second Reader James Luscombe
Intelligent particle swarm optimized fuzzy PID controller for AVR system
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)
2007-10-15
In process plants like thermal power plants, biomedical instrumentation the popular use of proportional-integral-derivative (PID) controllers can be noted. Proper tuning of such controllers is obviously a prime priority as any other alternative situation will require a high degree of industrial expertise. So in order to get the best results of PID controllers the optimal tuning of PID gains is required. This paper, thus, deals with the determination of off-line, nominal, optimal PID gains of a PID controller of an automatic voltage regulator (AVR) for nominal system parameters and step reference voltage input. Craziness based particle swarm optimization (CRPSO) and binary coded genetic algorithm (GA) are the two props used to get the optimal PID gains. CRPSO proves to be more robust than GA in performing optimal transient performance even under various nominal operating conditions. Computational time required by CRPSO is lesser than that of GA. Factors that have influenced the enhancement of global searching ability of PSO are the incorporation of systematic and intelligent velocity, position updating procedure and introduction of craziness. This modified from of PSO is termed as CRPSO. For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) is applied to get on-line terminal voltage response. The work of SFL is to extrapolate intelligently and linearly, the nominal optimal gains in order to determine off-nominal optimal gains. The on-line computational burden of SFL is noticeably low. Consequently, on-line optimized transient response of incremental change in terminal voltage is obtained. (author)
Comparative Analysis of PSO Algorithms for PID Controller Tuning
Institute of Scientific and Technical Information of China (English)
ŠTIMAC Goranka; BRAUT Sanjin; ŽIGULIĆRoberto
2014-01-01
The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the horizontal and vertical rotor axes.
Comparative analysis of PSO algorithms for PID controller tuning
Štimac, Goranka; Braut, Sanjin; Žigulić, Roberto
2014-09-01
The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the horizontal and vertical rotor axes.
PID Controller Stabilization for First-order Integral Processes with Time Delay
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper,the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the single-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
Robust Stability and Performance Comparison of PID and PPI Control
Institute of Scientific and Technical Information of China (English)
任正云; 张红; 邵惠鹤
2004-01-01
Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.
PID control of second-order system with hysteresis
Jayawardhana, B.; Logemann, H.; Ryan, E.P.
2007-01-01
The efficacy of proportional, derivative and integral (PID) control for set point regulation and disturbance rejection is investigated in a context of mechanical systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the r
PID control of second-order systems with hysteresis
Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene P.
2008-01-01
The efficacy of proportional, integral and derivative (PID) control for set point regulation and disturbance rejection is investigated in a context of second-order systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the
Active structural control with stable fuzzy PID techniques
Yu, Wen
2016-01-01
This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...
Directory of Open Access Journals (Sweden)
Sivananaithaperumal Sudalaiandi
2014-06-01
Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.
A toolbox for robust PID controller tuning using convex optimization
Sadeghpour, Mehdi; de Oliveira, Vinicius; Karimi, Alireza
2012-01-01
A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric whi...
An improved PID switching control strategy for type 1 diabetes.
Marchetti, Gianni; Barolo, Massimiliano; Jovanovic, Lois; Zisser, Howard; Seborg, Dale E
2008-03-01
In order for an "artificial pancreas" to become a reality for ambulatory use, a practical closed-loop control strategy must be developed and validated. In this paper, an improved PID control strategy for blood glucose control is proposed and critically evaluated in silico using a physiologic model of Hovorka et al. [1]. The key features of the proposed control strategy are: 1) a switching strategy for initiating PID control after a meal and insulin bolus; 2) a novel time-varying setpoint trajectory; 3) noise and derivative filters to reduce sensitivity to sensor noise; and 4) a practical controller tuning strategy. Simulation results demonstrate that proposed control strategy compares favorably to alternatives for realistic conditions that include meal challenges, incorrect carbohydrate meal estimates, changes in insulin sensitivity, and measurement noise.
Neural Network Based PID Gain Tuning of Chemical Plant Controller
Abe, Yoshihiro; Konishi, Masami; Imai, Jun; Hasegawa, Ryusaku; Watanabe, Masamori; Kamijo, Hiroaki
In these years, plant control systems are highly automated and applied to many industries. The control performances change with the passage of time, because of the deterioration of plant facilities. This is why human experts tune the control system to improve the total plant performances. In this study, PID control system for the oil refining chemical plant process is treated. In oil refining, there are thousands of the control loops in the plant to keep the product quality at the desired value and to secure the safety of the plant operation. According to the ambiguity of the interference between control loops, it is difficult to estimate the plant dynamical model accurately. Using neuro emulator and recurrent neural networks model (RNN model) for emulation and tuning parameters, PID gain tuning system of chemical plant controller is constructed. Through numerical experiments using actual plant data, effect of the proposed method was ascertained.
Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight
Directory of Open Access Journals (Sweden)
Rongrong Song
2014-06-01
Full Text Available A Maglev system was modeled by the exact feedback linearization to achieve two same linear subsystems. The proportional-integral-differential controllers (PID based on particle swarm optimization (PSO algorithm with four different inertia weights were then used to regulate both linear subsystems. These different inertia weights were Fixed Inertia Weight (FIW, Linear Descend Inertia Weight (LIW, Linear Differential Descend Inertia Weight (LDW, and mixed inertia weight (FIW–LIW-LDW. On the other hand, the parameters of the PSO-PID controllers via mixed inertia weight (FIW–LIW-LDW were optimized, the parameter values in the electromagnet 1 and electromagnet 2 were both 0.4. Simulation results demonstrate that the control performance and robustness of PSO-PID based on mixed inertia weight (FIW–LIW-LDW was superior to that of three PSO-PID controllers based on single inertia weights. For electromagnet 1, the overshoot of PSO-PID controller with mixed inertia weight reduced 3.36% than that of PSO-PID controller with FIW, 5.81% than that of PSO-PID controller with LIW, and 6.34% than that of PSO-PID controller with LDW; for electromagnet 2, the overshoot of PSO-PID controller with mixed inertia weight reduced 1.07% than that of PSO-PID controller with FIW, 12.56% than that of PSO-PID controller with LIW, 7.97% than that of PSO-PID controller with LDW; the adjusting time of PSO-PID controller with mixed inertia weight reduced 0.395s than that of PSO-PID controller with FIW, 34.1s than that of PSO-PID controller with LIW, and 33.494s than that of PSO-PID controller with LDW
Multi-loop decentralized PID control based on covariance control criteria: an LMI approach.
Huang, Xin; Huang, Biao
2004-01-01
PID control is well known and widely applied in industry and many design algorithms are readily available in the literature. However, systematic design of multi-loop or decentralized PID control for multivariable processes to meet certain objectives simultaneously is still a challenging task. Designing multi-loop PID controllers such that the process variables satisfy the generalized covariance constraints is studied in this paper. A convergent computational algorithm is proposed to calculate the multi-loop PID controller for a process with stable disturbances. This algorithm is then extended to a process with random-walk disturbances. The feasibility of the proposed algorithm is verified by applying it to several simulation examples.
GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM
Directory of Open Access Journals (Sweden)
Bhawna Tandon
2011-08-01
Full Text Available A Composition control system is discussed in this paper in which the PID controller is tuned using Genetic Algorithm & Ziegler-Nichols Tuning Criteria. Tuning methods for PID controllers are very importantfor the process industries. Traditional methods such as Ziegler-Nichols method often do not provide adequate tuning. Genetic Algorithm (GA as an intelligent approach has also been widely used to tune the parameters of PID. Genetic algorithms are used to create an objective function that can evaluate the optimum PID gains based on the controlled systems overall error.
Speed Control of Bldc Motor Drive By Using Pid Controllers
Directory of Open Access Journals (Sweden)
Y.Narendra Kumar,
2014-04-01
Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.
Singularly Perturbation Method Applied To Multivariable PID Controller Design
Directory of Open Access Journals (Sweden)
Mashitah Che Razali
2015-01-01
Full Text Available Proportional integral derivative (PID controllers are commonly used in process industries due to their simple structure and high reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging matter especially for multivariable system and to obtain the best control tuning for different time scales system. This motivates the use of singularly perturbation method into the multivariable PID (MPID controller designs. In this work, wastewater treatment plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu and Jian Niu algorithms was applied into MPID control design. It was found that the singularly perturbed system obtained by Naidu method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses, low steady state error, and less process interaction when using singularly perturbed MPID controller.
Development of Solar Tracking System Using Imc-Pid Controller
Directory of Open Access Journals (Sweden)
Bamigboye O. Oladayo
2016-06-01
Full Text Available In the past, solar cells are hooked with fixed elevating angles, and it does not track the sun. Therefore the efficiency of the power generation is low. A solar panel receives the most sunlight when it is perpendicular to the sun’s rays, but the sunlight direction changes regularly with changing seasons and weather. There is therefore the need to track the solar panel to increase its efficiency. The stability and improved speed of response can only be achieved with appropriate controller to take care of external disturbances and design uncertainty associated with a conventional controller. The IMC controller would be used to allow good tracking ability and good load disturbance rejection Unconventional controller like fuzzy logic can be used to tune the PID controller andthe result compared with using a conventional controller like ZN. The internal model control based proportional integral derivative design procedure can be implemented in industrial processes using existing proportional integral derivative control equipment. Modeling of a dual axis solar tracker. An IMC-PID controller was developed for a dual axis solar tracker. The result of this work showed that the IMC-PID controller provided an efficient and commendable improvement in the relative stability, disturbance attenuation, set point tracking and an improved speed of response for the system
Directory of Open Access Journals (Sweden)
REZAZADEH, A.
2010-05-01
Full Text Available Nonlinear characteristics of wind turbines and electric generators necessitate complicated and nonlinear control of grid connected Wind Energy Conversion Systems (WECS. This paper proposes a modified self-tuning PID control strategy, using reinforcement learning for WECS control. The controller employs Actor-Critic learning in order to tune PID parameters adaptively. These Actor-Critic learning is a special kind of reinforcement learning that uses a single wavelet neural network to approximate the policy function of the Actor and the value function of the Critic simultaneously. These controllers are used to control a typical WECS in noiseless and noisy condition and results are compared with an adaptive Radial Basis Function (RBF PID control based on reinforcement learning and conventional PID control. Practical emulated results prove the capability and the robustness of the suggested controller versus the other PID controllers to control of the WECS. The ability of presented controller is tested by experimental setup.
Series pid pitch controller of large wind turbines generator
Directory of Open Access Journals (Sweden)
Micić Aleksandar D.
2015-01-01
Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016
Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor
Directory of Open Access Journals (Sweden)
A. Jayachitra
2014-01-01
Full Text Available Genetic algorithm (GA based PID (proportional integral derivative controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR process using a weighted combination of objective functions, namely, integral square error (ISE, integral absolute error (IAE, and integrated time absolute error (ITAE. Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating range of processes with dynamic nonlinearity. In our proposed work, globally optimized PID parameters tend to operate the CSTR process in its entire operating range to overcome the limitations of the linear PID controller. The simulation study reveals that the GA based PID controller tuned with fixed PID parameters provides satisfactory performance in terms of set point tracking and disturbance rejection.
Design of PID Controller Simulator based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Fahri VATANSEVER
2013-08-01
Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances.
Tuning of PID controllers for boiler-turbine units.
Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao
2004-10-01
A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.
Model-reference robust tuning of PID controllers
Alfaro, Victor M
2016-01-01
This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...
Tuning PID Controller Using Multiobjective Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Ibtissem Chiha
2012-01-01
Full Text Available This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp, Ki, and Kd by minimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method and a metaheuristic approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant colony optimization has a better control system performance compared with the classic approach and the genetic algorithms.
Design of Adaptive Fuzzy PID Altitude Control System for Unmanned Aerial Vehicle
Institute of Scientific and Technical Information of China (English)
SHI Gang; YANG Shu-xing; JING Ya-xing; XU Yong
2008-01-01
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle
Hanifah, R. A.; Toha, S. F.; Ahmad, S.
2013-12-01
Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.
Vision-Based Robot Following Using PID Control
Directory of Open Access Journals (Sweden)
Chandra Sekhar Pati
2017-06-01
Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.
Two-level tuning of fuzzy PID controllers.
Mann, G I; Hu, B G; Gosine, R G
2001-01-01
Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.
Fuzzy adaptive PID control for six rotor eppo UAV
Directory of Open Access Journals (Sweden)
Yongwei LI
2017-02-01
Full Text Available Six rotor eppo drones's load change itself in the job process will reduce the aircraft flight control performance and make the resistance to environmental disturbance being poor. In order to improve the six rotor eppo unmanned aerial vehicle (UAV control performance, the UAV in the process of spraying pesticide is analyzed and the model is constructed, then the eppo UAV time-varying dynamics mathematical model is deduced, and a fuzzy adaptive PID control algorithm is proposed. Fuzzy adaptive PID algorithm has good adaptability and the parameter setting is simple, which improves the system dynamic response and steady state performance, realizing the stability of the six rotor eppo UAV flight. With measured parameters of each sensor input in to the fuzzy adaptive PID algorithm, the corresponding control quality is obtained, and the stable operation of aircraft is realized. Through using Matlab to simulate the flight system and combining the practical experiments, it shows that the dynamic performance and stability of the system is improved effetively.
Institute of Scientific and Technical Information of China (English)
JIN Qibing; LIU Qie; WANG Qi; TIAN Yuqi; WANG Yuanfei
2013-01-01
The IMC (Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity (Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID (Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
PID controller tuning for integrating processes.
Ali, Ahmad; Majhi, Somanath
2010-01-01
Minimizing the integral squared error (ISE) criterion to get the optimal controller parameters results in a PD controller for integrating processes. The PD controller gives good servo response but fails to reject the load disturbances. In this paper, it is shown that satisfactory closed loop performances for a class of integrating processes are obtained if the ISE criterion is minimized with the constraint that the slope of the Nyquist curve has a specified value at the gain crossover frequency. Guidelines are provided for selecting the gain crossover frequency and the slope of the Nyquist curve. The proposed method is compared with some of the existing methods to control integrating plant transfer functions and in the examples taken it always gave better results for the load disturbance rejection whilst maintaining satisfactory setpoint response. For ease of use, analytical expressions correlating the controller parameters to plant model parameters are also given.
The development of Gallstone solvent temperature adaptive PID control system
Institute of Scientific and Technical Information of China (English)
MA; BING; QIAO; BO; YAN
2012-01-01
The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.
Design of Fuzzy PID controller to control DC motor with zero overshoot
Directory of Open Access Journals (Sweden)
Meenakshi Chourasiya
2014-10-01
Full Text Available Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID controller. We aimed to make controller power efficient, more compact, and zero overshoot. MATLAB is used to design PID controller to calculate and plot the time response of the control system and Simulink to generate a set of coefficients.
A complex control system based on the fuzzy PID control and state predictor feedback control
Institute of Scientific and Technical Information of China (English)
Zhengxi Li; Jie Liu; Dehui Sun; Rentao Zhao
2004-01-01
A multi-mode adaptive controller was proposed. The controller features in the combination of Bang-bang and Fuzzy PID controls with state predictor. When large error exists, the controller operates in Bang-bang mode, otherwise it works as a fuzzy PID controller. For only few parameters to be adjusted, the real time controlled system achieveed good stability and fast response. Furthermore, the introduction of state observer was also discussed to extend the capability of the proposed controller to the plant with time-delay factors. The classical PID controller and the multi-mode controller were applied to the same second-order system successively. By comparison of the simulation results, the effectiveness of the controller were shown. At last, on electric-wire production line, this approach was practiced to control electric-wire diameter with an additive random disturbance signal. The test result further proved the effectiveness of the multi-mode controller.
A method for closed loop automatic tuning of PID controllers
Directory of Open Access Journals (Sweden)
Tor S. Schei
1992-07-01
Full Text Available A simple method for the automatic tuning of PID controllers in closed loop is proposed. A limit cycle is generated through a nonlinear feedback path from the process output to the controller reference signal. The frequency of this oscillation is above the crossover frequency and below the critical frequency of the loop transfer function. The amplitude and frequency of the oscillation are estimated and the control parameters are adjusted iteratively such that the closed loop transfer function from the controller reference to the process output attains a specified amplitude at the oscillation frequency.
Directory of Open Access Journals (Sweden)
V. Balaji
2016-12-01
Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.
Design of PID controller with incomplete derivation based on ant system algorithm
Institute of Scientific and Technical Information of China (English)
Guanzheng TAN; Qingdong ZENG; Wenbin LI
2004-01-01
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm (ASA).For a given control system with this kind of PID controller,a group of optimal PID controller parameters K*p,T*i, and T*d can be obtained by taking the overshoot,settling time,and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm.K*p,T*i, and T*d can be used in real-time control.This kind of controller is called the ASA-PID controller with incomplete derivation.To verify the performance of the ASA-PID controller,three different typical transfer functions were tested,and three existing typical tuning methods of PID controller parameters,including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA),were adopted for comparison.The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers,and comparable performance compared with the SA-PID controller.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
A Practical Application of IMC-PID Controller in Unmanned Vehicle
Directory of Open Access Journals (Sweden)
Qin Gang
2013-06-01
Full Text Available In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID for speed. Based on the build object theoretical model, online simulation controller show that, for the design objects, based on the internal model PID controller whether the system step response or disturbance tracking control effect can reach the classic PID control requirements, also reduces the complexity and randomness of the design parameters.
Stable visual PID control of a planar parallel robot
Garrido Moctezuma, Ruben; Soria López, Alberto; Trujano Cabrera, Miguel
2008-11-01
In this paper, we study an image-based PID control of a redundant planar parallel robot using a fixed camera configuration. The control objective is to move the robot end effector to the desired image reference position. The control law has a PD term plus an integral term with a nonlinear function of the position error. The proportional and integral actions use image loop information whereas the derivative action adds task space damping using joint level measurements. The Lyapunov method and the LaSalle invariance principle allow assessing asymptotic closed loop stability. Experiments show the feasibility of the proposed approach.
Directory of Open Access Journals (Sweden)
Antonio Yarza
2011-09-01
Full Text Available An unsolved ancient problem in position control of robot manipulators is to find a stability analysis that proves global asymptotic stability of the classical PID control in closed loop with robot manipulators. The practical evidence suggests that in fact the classical PID in industrial robots is a global regulator. The main goal of the present paper is theoretically to show why in the practice such a fact is achieved. We show that considering the natural saturations of every control stage in practical robots, the classical PID becomes a type of saturated nonlinear PID controller. In this work such a nonlinear PID controller with bounded torques for robot manipulators is proposed. This controller, unlike other saturated nonlinear PID controllers previously proposed, uses a single saturation for the three terms of the controller. Global asymptotical stability is proved via Lyapunov stability theory. Experimental results are presented in order to observe the performance of the proposed controller.
Hybrid intelligent PID control design for PEMFC anode system
Institute of Scientific and Technical Information of China (English)
Rui-min WANG; Ying-ying ZHANG; Guang-yi CAO
2008-01-01
Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must he maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.
PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System
Institute of Scientific and Technical Information of China (English)
Karam M. Eibayomy; Jiao Zongxia; Zhang Huaqing
2008-01-01
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters areoptimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor
Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng
Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.
Directory of Open Access Journals (Sweden)
Li Jing
2016-01-01
Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.
Directory of Open Access Journals (Sweden)
Endra Joelianto
2009-11-01
Full Text Available The well known PID controller has inherent limitations in fulfilling simultaneously the conflicting control design objectives. Parameters of the tuned PID controller should trade off the requirement of tracking set-point performances, disturbance rejection and stability robustness. Combination of hybrid reference control (HRC with PID controller results in the transient response performances can be independently achieved without deteriorating the disturbance rejection properties and the stability robustness requirement. This paper proposes a fuzzy based HRC where the membership functions of the fuzzy logic system are obtained by using a substractive clustering technique. The proposed method guarantees the transient response performances satisfaction while preserving the stability robustness of the closed loop system controlled by the PID controller with effective and systematic procedures in designing the fuzzy hybrid reference control system.
CAS algorithm-based optimum design of PID controller in AVR system
Energy Technology Data Exchange (ETDEWEB)
Zhu Hui [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); Key Laboratory of Network and Information Attack and Defence Technology of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing 100876 (China)], E-mail: zhuhui05608@hotmail.com; Li Lixiang; Zhao Ying; Guo Yu; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); Key Laboratory of Network and Information Attack and Defence Technology of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing 100876 (China)
2009-10-30
This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.
Structure Analysis and Function Evaluation of a Kind of Fuzzy PID Controllers
Institute of Scientific and Technical Information of China (English)
DUXinyu; ZHANGNaiyao; YUNa
2004-01-01
In this paper, a kind of fuzzy PID (Proportional integral and derivate) controllers is discussed, which has 3 input variables (error, difference of error, sum of error) and one output variable; triangular fully-overlapped symmetric membership function for input variables; singleton equally-spaced membership function for the output variable; linear control rules; Sum-Product inference method; and Center of area (COA) defuzzification algorithm. The paper consists of three main parts. In the first part, the structure properties of fuzzy PID controllers are studied. The explicit expression of this kind of fuzzy PID controllers is derived. It is proved that the analytical structure of fuzzy PID controllers is the sum of a global three-dimensional multi-level relay and a local nonlinear controller. When the number of fuzzy sets tends to infinity, the local nonlinear controller will disappear, and the degree of nonlinearity of the fuzzy PID controller becomes zero. In the second part, the function properties of fuzzy PID controllers are studied. It is revealed that the fuzzy PID controller is a variable gain nonlinear PID controller; so linear PID controllers can be regarded as a special example of fuzzy PID controllers. Moreover, they are equivalent to the sum of three fuzzy controllers with one-to-one mapping; so they do not suffer from some weaknesses such as composed-action, input coupling, etc. Based on these theoretical results, a systematic design approach of fuzzy PID control systems is proposed and demonstrated by 2 simulation examples in the third part of this paper. It is shown that the proposed fuzzy PID controller not only has good structure and function characteristics, but also can be very simply and quickly designed; therefore, it is very suitable for a wide range of applications.
Fuzzy PID control algorithm based on PSO and application in BLDC motor
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics
Zheng, Huaqing; Jiang, Minlan
2016-01-01
PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.
Position Control of a Serial Manipulator Using Fuzzy-PID Controllers
Directory of Open Access Journals (Sweden)
Yong-Lin Kuo
2015-02-01
Full Text Available This paper presents the position control of a six-axis serial manipulator by using a fuzzy-PID controller. The manipulator has six joints, and each joint is driven by a motor with an encoder for sensing the joint angle. To complete a position movement of the end-effector of the manipulator, the position coordinate first needs to be converted to a sets of joint angles by using the inverse kinematics of the manipulator, and each joint rotation is executed by a feedback control of a motor. To demonstrate the performance the fuzzy-PID controller, a PID controller and two fuzzy controllers are also applied. The results show that the fuzzy-PID controller provides a better performance with a smaller steady-state error.
Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L
1999-01-01
In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Digital implementation of fractional order PID controller and its application
Institute of Scientific and Technical Information of China (English)
Wang Zhenbin; Wang Zhenlei; Cao Guangyi; Zhu Xinjian
2005-01-01
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grunwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or zdomain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
Improved automatic tuning of PID controller for stable processes.
Kumar Padhy, Prabin; Majhi, Somanath
2009-10-01
This paper presents an improved automatic tuning method for stable processes using a modified relay in the presence of static load disturbances and measurement noise. The modified relay consists of a standard relay in series with a PI controller of unity proportional gain. The integral time constant of the PI controller of the modified relay is chosen so as to ensure a minimum loop phase margin of 30( composite function). A limit cycle is then obtained using the modified relay. Hereafter, the PID controller is designed using the limit cycle output data. The derivative time constant is obtained by maintaining the above mentioned loop phase margin. Minimizing the distance of Nyquist curve of the loop transfer function from the imaginary axis of the complex plane gives the proportional gain. The integral time constant of the PID controller is set equal to the integral time constant of the PI controller of the modified relay. The effectiveness of the proposed technique is verified by simulation results.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
Energy Technology Data Exchange (ETDEWEB)
Saraji, Ali Motalebi [Young Researchers and Elite Club, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of); Ghanbari, Mahmood [Department of Electrical Engineering, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of)
2014-12-10
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions
Directory of Open Access Journals (Sweden)
Jimoh O. Pedro
2013-01-01
Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.
Rudder-roll stabilization using fgs-pid controller for sigma-e warship
Santoso, M. Y.; Munadhif, I.; Wahidin, A.; Ruddianto; Fathulloh; Soelistijono, R. T.
2017-06-01
The aim of rudder-roll stabilization (RSS) is controlling ship heading and reducing roll motion simultaneously using one actuator, rudder. In this paper, RSS using FGS-PID for SIGMA-e warship was performed, both in normal and disturbed sea conditions. The fuzzy system for determining PID controller are constructed from SIGMA-e linear mathematical model. The wave disturbances are generated based on the WMO. The results show that FGS-PID has superior performance compared to conventional PID controller in heading control and roll damping. It means that the proposed control method can encounter the environmental changes.
Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique
Directory of Open Access Journals (Sweden)
Pooja Sharma,
2014-05-01
Full Text Available An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient for Step Response Characteristics.
The design for the fuzzy PID control of the intelligent following vehicle with gas floating
Institute of Scientific and Technical Information of China (English)
He Yi; Song Xiaodong; Chen Ming
2012-01-01
The intelligent following vehicle with gas floating has the characteristics of complicated structure and large quality. In this paper ,the author first establish the mathematical mode of the motion system land and then design a controller using the fuzzy PID control method which could realize auto-tuning PID parameters. By the MATLAB simulation analysis, the results show that fuzzy self-tuning PID control can enhance the response speed of system and has a better adaptability.
Directory of Open Access Journals (Sweden)
Mohammad Marefati
2016-06-01
Full Text Available In this article, an optimized PID controller for a fuel cell is introduced. It should be noted that we did not compute the PID controller’s coefficients based on trial-and-error method; instead, imperialist competitive algorithms have been considered. At first, the problem will be formulated as an optimization problem and solved by the mentioned algorithm, and optimized results will be obtained for PID coefficients. Then one of the important kinds of fuel cells, called proton exchange membrane fuel cell, is introduced. In order to control the voltage of this fuel cell during the changes in the charges, an optimal controller is introduced, based on the imperialist competitive algorithm. In order to apply this algorithm, the problem is written as an optimization problem which includes objectives and constraints. To achieve the most desirable controller, this algorithm is used for problem solving. Simulations confirm the better performance of proposed PID controller.
Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)
2007-11-15
This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)
Intelligent PID guidance control for AUV path tracking
Institute of Scientific and Technical Information of China (English)
李晔; 姜言清; 王磊峰; 曹建; 张国成
2015-01-01
Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.
OPTIMAL-TUNING OF PID CONTROLLER GAINS USING GENETIC ALGORITHMS
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2005-01-01
Full Text Available This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the optimum controller parameters by minimizing the sum of the integral of the squared error and the squared controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to form the intervals for the controller parameters in which the population to be formed. The results obtained from the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. Comparatively better results are obtained in the genetic algorithm case.
Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Wang Yeqin
2013-06-01
Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that，the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy, and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.
Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan
2013-01-01
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.
Gain Scheduling of PID Controller Based on Fuzzy Systems
Directory of Open Access Journals (Sweden)
Singh Sandeep
2016-01-01
Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.
Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller
Directory of Open Access Journals (Sweden)
Hossein ASHTIANI
2012-01-01
Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers
Application of Fuzzy-PID Control System in Full-Mechanized Coal Face
Institute of Scientific and Technical Information of China (English)
LU Kui; TANG Pei-rong; YANG Wei-min
2005-01-01
The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine.The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running environment and great load change in the full-mechanized coal face. The simulating investigation indicates that the designing method of fuzzy controller is simple and feasible.
Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Pedersen, Gerulf K.m.
2006-01-01
The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...
Study of fuzzy PID controller for velocity circuit of optical-electronic theodolite
Li, GengXin; Yang, XiaoJun; He, SaiXian
2017-02-01
Two-axis stabilized turntable is an important part of optical-electronic theodolite, it carries various of measuring instruments. In order to improve the response speed of the optical-electronic theodolite when tracking high speed target. In the same time, improve the stability and precision when tracking low speed target. The traditional servo controller is double close-loop structure. On the basis of traditional structure, we use the fuzzy control theory to design the servo control speed loop adjuster as a fuzzy PID controller, and the position loop is designed as a traditional first order adjuster. We introduce the theory and characteristics of PID control and fuzzy control, and discussed the structure of the speed loop fussy controller and the tuning method of the PID parameters. The fuzzy PID controller was studied with simulation on the MATLAB/Simulink platform, the performance indexes and the anti-jamming abilities of the fussy PID controller and the traditional PID controller were compared. The experiment results show that the fussy PID controller has the ability of parameter self-tuning, and its tacking ability is much better than the traditional PID controller.
Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin
2011-04-01
In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers.
Design Method for the Magnetic Bearing Control System with Fuzzy-PID Approach
Institute of Scientific and Technical Information of China (English)
XU Chun-guang; L(U) Dong-ming; HAO Juan
2008-01-01
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also.Based on the fuzzy control technology,combining fuzzy algorithm and PID control method,identifying the transition process mode of the online system to get the PID parameters'self-adjusting,the magnetic bearing system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands.The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system's open loop instability and strong nonlinearity,and the approach could improve the system's rapidity,adaptability,stability and dynamic characteristics.Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzyPID control methods,the results show that the fuzzy-PID controller is better,and the five-freedom magnetic bearing's rotary precision experiments are conducted by the fuzzy-PID controller,it satisfies the control rotary precision demands and realizes the bearing's steady floating and rotating.
Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Naeim Farouk
2012-03-01
Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. This study presents a self-tuning fuzzy PID control system for speed control system of marine diesel engine. The system under consideration is a fourth-order plant with highly dynamic and uncertain environments. The current speed controllers for marine/traction diesel engines based on PID Controller cannot fully handle the uncertainties associated with such dynamic environments. A fuzzy logic control algorithm is used to estimate the PID coefficients in order to handle such uncertainties to produce a better control performance. Simulation tests were established using Simulink of MATLAB. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this study.
PID控制器性能评价%Performance Assessment of a PID Controller
Institute of Scientific and Technical Information of China (English)
左信; 孙金明
2005-01-01
Performance assessment of a proportional-integral-derivative (PID) controller is condueted using the PIDachievable minimum variance as a benchmark. When the process model is unknown, we can estimate the PID-achievable minimum variance and the corresponding parameters by routine closed-loop operation data. Simulation results show that the process output variance is reduced by retuning controller parameters.
Zhang, Jianming
2016-11-25
An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers.
Optimized PID control of depth of hypnosis in anesthesia.
Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio
2017-06-01
This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.
Mo, Qingkai; Zhang, Tao; Yan, Yining
2016-10-01
There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).
The Research of PID Control in a Large Scale Helium Refrigerator
Pan, W.; Wu, J. H.; Li, L. F.; Liu, H. M.; Li, Q.
2015-12-01
In the development of a helium refrigerator, the control of load temperature stability is an important requirement. We usually use multistage control strategies to achieve the precise control of it. Each level has its strict control logic. PID controllers are the core control module in the process. Therefore, a research of its principle and parameters’ setting occupies an important position in the development work. This paper detailed describes the PID control principle used in a large scale helium refrigerator of 10kW@20K, as well as several improvements on PID parameters’ setting, by using simulations and experiments in combination. The temperature is eventually controlled more precise.
Implementation of motor speed control using PID control in programmable logic controller
Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.
2012-11-01
This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.
Research on the controller of an arc welding process based on a PID neural network
Institute of Scientific and Technical Information of China (English)
Kuanfang HE; Shisheng HUANG
2008-01-01
A controller based on a PID neural network(PIDNN)is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process.The new method syncretizes the PID control strategy and neural network to control the welding process intelligently,so it has the merit of PID control rules and the trait of better information disposal ability of the neural network.The results of simulation show that the controller has the properties of quick response,low overshoot quick convergence and good stable accuracy,which meet the requirements for control of the welding process.
PID and predictive control of electrical drives and power converters using MATLAB/Simulink
Wang, Liuping; Yoo, Dae; Gan, Lu; Ng, Ki
2015-01-01
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains secti
A new PID controller design for automatic generation control of hydro power systems
Energy Technology Data Exchange (ETDEWEB)
Khodabakhshian, A.; Hooshmand, R. [Electrical Engineering Department, University of Isfahan (Iran)
2010-06-15
This paper presents a new robust PID controller for automatic generation control (AGC) of hydro turbine power systems. The method is mainly based on a maximum peak resonance specification that is graphically supported by the Nichols chart. The open-loop frequency response curve is tangent to a specified ellipse and this makes the method to be efficient for controlling the overshoot, the stability and the dynamics of the system. Comparative results of this new load frequency controller with a conventional PI one and also with another PID controller design tested on a multimachine power system show the improvement in system damping remarkably. The region of acceptable performance of the new PID controller covers a wide range of operating and system conditions. (author)
PID feedback for mixed H2/H∞ tracking control of robotic manipulators
Institute of Scientific and Technical Information of China (English)
黄春庆; 施颂椒
2004-01-01
The design objective of a mixed H2/H∞ control is to find the H2 optimal control law under aprescribed disturbance attenuation level. This paper addresses a optimal PID control law on the basis of the newsolution to mixed H2/H∞optimal control problem that provide much more flexible design compared to the existing works. Then a closed-form PID controller to mixed H2/H∞ robotic tracking problem is simply constructed and hence the design procedure is presented.Finally, numerical simulations illustrate the effectiveness of the optimal PID feedback design proposed in this paper via a two-link robotic manipulator.
Directory of Open Access Journals (Sweden)
Benxian Xiao
2014-06-01
Full Text Available Proposed the PID controller parameters tuning method based-on New Luus-Jaakola (NLJ algorithm and satisfaction idea. According to the different requirements of each performance index, designed the satisfaction function with fuzzy constraint attributes, and then determined the comprehensive satisfaction function for PID tuning by NLJ algorithm. Provided the steps of PID controller parameters tuning based on the NLJ algorithm and satisfaction, and applied this tuning method to the cascade control system of superheated steam temperature for Power Station Boiler. Finally the simulation and experiment results have shown the proposed method has good dynamic and static control performances for this complicated superheated steam temperature control system.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
Energy Technology Data Exchange (ETDEWEB)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko [Aerospace and Aeronautics Electronics Research Group, Universitas Gadjah Mada, Yogyakarta (Indonesia); Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia); Dharmawan, Andi, E-mail: andi-dharmawan@ugm.ac.id [Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia)
2016-02-01
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.
Directory of Open Access Journals (Sweden)
S. J. Bassi
2011-10-01
Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
Design of fuzzy PID controller for high temperature pebble bed reactor
Energy Technology Data Exchange (ETDEWEB)
Badgujar, Kushal D.; Satpute, Satchidanand R.; Revankara, Shripad T.; Lee, John C.; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)
2012-10-15
Control system is most important characteristic to be considered to control spontaneous fission reaction in the design of the nuclear reactor. Recently fuzzy based control systems have been designed and applied as control system for nuclear plants. This article emphasize on controlling the power of the high temperature pebble bed reactor (HTPBR) with the design of Fuzzy proportional integral derivative (PID) controller. A simplified reactor model with point kinetics equation and reactor heat balance equation is used. The reactivity feedback arising from power coefficient of reactivity and Xenon poisoning is also considered. The reactor is operated at various power levels by using fuzzy PID controller. The fuzzy logic eliminates the necessity of the tuning the gains of PID controller each time by extending the finite sets of the PID controller gains.
Fuzzy PID Control Method for Internet-based Tele-operation Manipulators System
Directory of Open Access Journals (Sweden)
Wei Gao
2013-11-01
Full Text Available Trajectory tracking control problem for internet-based tele-operation system is researched in this paper. The control structure of master and slave tele-operation manipulators adapts bilateral servo control architecture with force deviation feedback. The simulation model of three degrees of freedom (3-DOF manipulator is presented. In order to ensure the synchronization of positions of the master and slave manipulators, a fuzzy PID control method is proposed. This control algorithm is to adjust the three parameters of PID controller online by fuzzy control method. The contrast simulation experiments of PID and fuzzy PID control methods show that the proposed control method can effectively improve the force and position tracking performance and reduce time delay.
Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure
Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan
2017-01-01
This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.
An improved auto-tuning scheme for PID controllers.
Dey, Chanchal; Mudi, Rajani K
2009-10-01
An improved auto-tuning scheme is proposed for Ziegler-Nichols (ZN) tuned PID controllers (ZNPIDs), which usually provide excessively large overshoots, not tolerable in most of the situations, for high-order and nonlinear processes. To overcome this limitation ZNPIDs are upgraded by some easily interpretable heuristic rules through an online gain modifying factor defined on the instantaneous process states. This study is an extension of our earlier work [Mudi RK., Dey C. Lee TT. An improved auto-tuning scheme for PI controllers. ISA Trans 2008; 47: 45-52] to ZNPIDs, thereby making the scheme suitable for a wide range of processes and more generalized too. The proposed augmented ZNPID (AZNPID) is tested on various high-order linear and nonlinear dead-time processes with improved performance over ZNPID, refined ZNPID (RZNPID), and other schemes reported in the literature. Stability issues are addressed for linear processes. Robust performance of AZNPID is observed while changing its tunable parameters as well as the process dead-time. The proposed scheme is also implemented on a real time servo-based position control system.
An effective frequency domain approach to tuning non-PID controllers for high performance.
Wang, Qing-Guo; Ru, He; Huang, Xiao-Gang
2002-01-01
In this paper, a new tuning method is proposed for the design of non-PID controllers for complex processes to achieve high performance. Compared with the existing PID tuning methods, the proposed non-PID controller design method can yield better performance for a wide range of complex processes. A suitable objective transfer function for the closed-loop system is chosen according to process characteristics. The corresponding ideal controller is derived. Model reduction is applied to fit the ideal controller into a much simpler and realizable form. Stability analysis is given and simulation examples are provided to demonstrate the effectiveness of the proposed method.
Globally robust nonlinear PID controllers for robot manipulators with an uncertain Jacobian matrix
Institute of Scientific and Technical Information of China (English)
Chunqing HUANG; Songjiao SHI
2004-01-01
Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID(RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic stability is guaranteed and only position and joint velocity measurements are required. And stability problem arising from integral action and integrator windup, are consequendy resolved. Furthermore, RN-PID controllers can be of effective alternative for anti-integrator-wind-up,the control performance would not be very bad in the presence of rough parameter tuning.
Didactic System for the Experimental Study of Digital PID Control Structures
Directory of Open Access Journals (Sweden)
Stelian-Emilian OLTEAN
2016-12-01
Full Text Available The proportional integral derivative (PID controller has a known structure used in feedback control of industrial processes. One of the most common applications is the control of the DC motor. The paper presents a didactic system designed for educational purposes used for studying various conventional PID structures and the influence of the PID components in the control process of the DC motor’s speed. The system contains a low cost acquisition board based on PIC 16F628A microcontroller. The experimental results are shown graphically using a PC application made in Matlab environment.
Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID
Directory of Open Access Journals (Sweden)
Syed Najib Syed Salim
2014-01-01
Full Text Available The enhancement of nonlinear PID (N-PID controller for a pneumatic positioning system is proposed to improve the performance of this controller. This is executed by utilizing the characteristic of rate variation of the nonlinear gain that is readily available in N-PID controller. The proposed equation, namely, self-regulation nonlinear function (SNF, is used to reprocess the error signal with the purpose of generating the value of the rate variation, continuously. With the addition of this function, a new self-regulation nonlinear PID (SN-PID controller is proposed. The proposed controller is then implemented to a variably loaded pneumatic actuator. Simulation and experimental tests are conducted with different inputs, namely, step, multistep, and random waveforms, to evaluate the performance of the proposed technique. The results obtained have been proven as a novel initiative at examining and identifying the characteristic based on a new proposal controller resulting from N-PID controller. The transient response is improved by a factor of 2.2 times greater than previous N-PID technique. Moreover, the performance of pneumatic positioning system is remarkably good under various loads.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.
Active sway control of a gantry crane using hybrid input shaping and PID control schemes
Mohd Tumari, M. Z.; Shabudin, L.; Zawawi, M. A.; Shah, L. H. Ahmad
2013-12-01
This project presents investigations into the development of hybrid input-shaping and PID control schemes for active sway control of a gantry crane system. The application of positive input shaping involves a technique that can reduce the sway by creating a common signal that cancels its own vibration and used as a feed-forward control which is for controlling the sway angle of the pendulum, while the proportional integral derivative (PID) controller is used as a feedback control which is for controlling the crane position. The PID controller was tuned using Ziegler-Nichols method to get the best performance of the system. The hybrid input-shaping and PID control schemes guarantee a fast input tracking capability, precise payload positioning and very minimal sway motion. The modeling of gantry crane is used to simulate the system using MATLAB/SIMULINK software. The results of the response with the controllers are presented in time domains and frequency domains. The performances of control schemes are examined in terms of level of input tracking capability, sway angle reduction and time response specification.
Integrated tuning of PID-derivative load frequency controller for two ...
African Journals Online (AJOL)
DR OKE
International Journal of Engineering, Science and Technology. Vol. 7, No. 3, 2010, pp. 42-51 ..... T Hydro turbine speed governor main servo time constant, s. PS. T .... Optimal-tuning nonlinear PID control of hydraulic systems. Control Engg.
Research of Self-Tuning PID for PMSM Vector Control based on Improved KMTOA
National Research Council Canada - National Science Library
Lingzhi Yi; Chengdong Zhang; Genping Wang
2017-01-01
.... In order to realize the control of the PMSM accurately, a novel adaptive chaotic kinetic molecular theory optimization algorithm was implemented for seeking the best parameters of PID controller...
Design of PID controller with incomplete derivation based on differential evolution algorithm
Institute of Scientific and Technical Information of China (English)
Wu Lianghong; Wang Yaonan; Zhou Shaowu; Tan Wen
2008-01-01
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
Design a Novel SISO Off-line Tuning of Modified PID Fuzzy Sliding Mode Controller
Directory of Open Access Journals (Sweden)
Ali Shahcheraghi
2014-01-01
Full Text Available The Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (FSMC is the most widely used control strategy in the Industry (control of robotic arm. The popularity of PID FSMC controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID FSMC controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. This paper analyses the modified PID FSMC controllers based on minimum rule base for flexible robot manipulator system and test the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II
DEFF Research Database (Denmark)
Pedersen, Gerulf K. M.; Yang, Zhenyu
2006-01-01
This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters kp, ki, kd by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
The speed control of DC motor under the load condition using PI and PID controllers
Corapsiz, Muhammed Reşit; Kahveci, Hakan
2017-04-01
In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.
Design and implementation of a new fuzzy PID controller for networked control systems.
Fadaei, A; Salahshoor, K
2008-10-01
This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.
A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Chakraborty, Mithun; Konar, Amit
2008-01-01
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fractional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is optimized using two popular bio-inspired stochastic search algorithms, namely Particle Swarm Optimization and Differential Evolution. With the help of a suitable example, the superiority of the designed fractional-order PID controller to an integer-order PID controller is affirmed and a comparative study of the efficacy of the two above algorithms in solving the optimization problem is also presented.
Design of sewage treatment system by applying fuzzy adaptive PID controller
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System
2013-01-01
Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulati...
Auto-tuning of PID controller parameters with supervised receding horizon optimization.
Xu, Min; Li, Shaoyuan; Qi, Chenkun; Cai, Wenjian
2005-10-01
In this paper, a novel two-layer online auto-tuning algorithm is presented for a nonlinear time-varying system. The lower layer consists of a conventional proportional-integral-derivative (PID) controller and a plant process, while the upper layer is composed of identification and tuning modules. The purpose of the upper layer is to find a set of optimal PID parameters for the lower layer via an online receding horizon optimization approach, which result in a time-varying PID controller. Through mathematical analysis, the proposed system performance is equivalent to that of a standard generalized predictive control. Simulation and experiment demonstrate that the new method has a better control system performance compared with conventional PID controllers.
Frequency-domain Model Matching PID Controller Design for Aero-engine
Liu, Nan; Huang, Jinquan; Lu, Feng
2014-12-01
The nonlinear model of aero-engine was linearized at multiple operation points by using frequency response method. The validation results indicate high accuracy of static and dynamic characteristics of the linear models. The improved PID tuning method of frequency-domain model matching was proposed with the system stability condition considered. The proposed method was applied to the design of PID controller of the high pressure rotor speed control in the flight envelope, and the control effects were evaluated by the nonlinear model. Simulation results show that the system had quick dynamic response with zero overshoot and zero steadystate error. Furthermore, a PID-fuzzy switching control scheme for aero-engine was designed, and the fuzzy switching system stability was proved. Simulations were studied to validate the applicability of the multiple PIDs fuzzy switching controller for aero-engine with wide range dynamics.
The Self-Adaptive Fuzzy PID Controller in Actuator Simulated Loading System
Directory of Open Access Journals (Sweden)
Chuanhui Zhang
2013-05-01
Full Text Available This paper analyzes the structure principle of the actuator simulated loading system with variable stiffness, and establishes the simplified model. What’s more, it also does a research on the application of the self-adaptive tuning of fuzzy PID(Proportion Integration Differentiation in actuator simulated loading system with variable stiffness. Because the loading system is connected with the steering system by a spring rod, there must be strong coupling. Besides, there are also the parametric variations accompanying with the variations of the stiffness. Based on compensation from the feed-forward control on the disturbance brought by the motion of steering engine, the system performance can be improved by using fuzzy adaptive adjusting PID control to make up the changes of system parameter caused by the changes of the stiffness. By combining the fuzzy control with traditional PID control, fuzzy adaptive PID control is able to choose the parameters more properly.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms
National Research Council Canada - National Science Library
Sanjay Kr. Singh; Nitish Katal; S.G. Modani
2014-01-01
This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning...
Adaptive PID Controller Using RLS for SISO Stable and Unstable Systems
Directory of Open Access Journals (Sweden)
Rania A. Fahmy
2014-01-01
Full Text Available The proportional-integral-derivative (PID is still the most common controller and stabilizer used in industry due to its simplicity and ease of implementation. In most of the real applications, the controlled system has parameters which slowly vary or are uncertain. Thus, PID gains must be adapted to cope with such changes. In this paper, adaptive PID (APID controller is proposed using the recursive least square (RLS algorithm. RLS algorithm is used to update the PID gains in real time (as system operates to force the actual system to behave like a desired reference model. Computer simulations are given to demonstrate the effectiveness of the proposed APID controller on SISO stable and unstable systems considering the presence of changes in the systems parameters.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence.
The Redundant Arm Self-motion Control Based on Self-tuning Fuzzy PID Controller
Institute of Scientific and Technical Information of China (English)
Liu Yu(刘宇); Sun Lining; Du Zhijiang
2004-01-01
A fuzzy control algorithm based on self-tuning PID proportional factor is presented. To a certain degree, it overcomes robot motion control's nonlinearity and uncertainty caused by joints coupled and friction, and decreases overshoot of end manipulator's tracking desired curves. The controller's structure is very simple but effective. With this control method, a 7-DOF redundant arm's self-motion developed by the authors is investigated. Research results show that the said controller restrains track overshoot and possesses preferable merits.
Directory of Open Access Journals (Sweden)
Chengqiang Yin
2014-01-01
Full Text Available A two-degree-of-freedom control structure is proposed for a class of unstable processes with time delay based on modified Smith predictor control; the superior performance of disturbance rejection and good robust stability are gained for the system. The set-point tracking controller is designed using the direct synthesis method; the IMC-PID controller for disturbance rejection is designed based on the internal mode control design principle. The controller for set-point response and the controller for disturbance rejection can be adjusted and optimized independently. Meanwhile, the two controllers are designed in the form of PID, which is convenient for engineering application. Finally, simulation examples demonstrate the validity of the proposed control scheme.
Dominant pole placement with fractional order PID controllers: D-decomposition approach.
Mandić, Petar D; Šekara, Tomislav B; Lazarević, Mihailo P; Bošković, Marko
2017-03-01
Dominant pole placement is a useful technique designed to deal with the problem of controlling a high order or time-delay systems with low order controller such as the PID controller. This paper tries to solve this problem by using D-decomposition method. Straightforward analytic procedure makes this method extremely powerful and easy to apply. This technique is applicable to a wide range of transfer functions: with or without time-delay, rational and non-rational ones, and those describing distributed parameter systems. In order to control as many different processes as possible, a fractional order PID controller is introduced, as a generalization of classical PID controller. As a consequence, it provides additional parameters for better adjusting system performances. The design method presented in this paper tunes the parameters of PID and fractional PID controller in order to obtain good load disturbance response with a constraint on the maximum sensitivity and sensitivity to noise measurement. Good set point response is also one of the design goals of this technique. Numerous examples taken from the process industry are given, and D-decomposition approach is compared with other PID optimization methods to show its effectiveness.
Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong
2009-01-01
Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.
Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors
Directory of Open Access Journals (Sweden)
Essam Natsheh
2010-09-01
Full Text Available Fuzzy logic and proportional-integral-derivative (PID controllers are compared for use in direct current (DC motors positioning system. A simulation study of the PID position controller for the armature-controlled with fixed field and field controlled with fixed armature current DC motors is performed. Fuzzy rules and the inferencing mechanism of the fuzzy logic controller (FLC are evaluated by using conventional rule-lookup tables that encode the control knowledge in a rules form. The performance assessment of the studied position controllers is based on transient response and error integral criteria. The results obtained from the FLC are not only superior in the rise time, speed fluctuations, and percent overshoot but also much better in the controller output signal structure, which is much remarkable in terms of the hardware implementation.
Institute of Scientific and Technical Information of China (English)
谭冠政; 李安平
2003-01-01
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
Directory of Open Access Journals (Sweden)
Naeim Farouk
2012-11-01
Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. The main focus of this study is to apply and comparative between two specific soft-computing techniques. Fuzzy logic controller and genetic algorithm to design and tuning of PID controller for applied on speed control system of marine diesel engine to get an output with better dynamic and static performance. Simulation results show that the response of system when using genetic algorithm is better and faster than when using fuzzy tuning PID controller.
Two modified discrete PID-based sliding mode controllers for piezoelectric actuators
Cao, Y.; Chen, X. B.
2014-01-01
Hysteresis is a nonlinear effect that can result in the degraded performance of piezoelectric actuators (PEAs). To counteract the effect, several control methods have been developed and reported in the literature. One promising method for compensation is the use of a proportional-integral-derivative (PID)-based sliding mode control (SMC), in which the PEA hysteresis is treated as an unknown disturbance to the PEA input. If the hysteresis can be modelled or partially modelled, the integration of the hysteresis models into the control schemes may lead to further improved performance. On this philosophy, this paper presents the development of two modified discrete PID-based sliding mode controllers (PID-SMCs) for the PEAs, namely an inversion-based PID-SMC and a disturbance-observer (DOB)-based PID-SMC, in which the PEA hysteresis is predicted or partially predicted through the use of existing models for the PEA hysteresis. Experiments were performed to verify the effectiveness of the proposed control schemes. The results were compared to those of the nominal PID-SMC. By employing the inversion hysteresis and the DOB, the PEA performance was greatly improved.
Performance-based parameter tuning method of model-driven PID control systems.
Zhao, Y M; Xie, W F; Tu, X W
2012-05-01
In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method.
Comparison of PID Controller Tuning Methods with Genetic Algorithm for FOPTD System
Directory of Open Access Journals (Sweden)
K. Mohamed Hussain
2014-02-01
Full Text Available Measurement of Level, Temperature, Pressure and Flow parameters are very vital in all process industries. A combination of a few transducers with a controller, that forms a closed loop system leads to a stable and effective process. This article deals with control of in the process tank and comparative analysis of various PID control techniques and Genetic Algorithm (GA technique. The model for such a Real-time process is identified as First Order Plus Dead Time (FOPTD process and validated. The need for improved performance of the process has led to the development of model based controllers. Well-designed conventional Proportional, Integral and Derivative (PID controllers are the most widely used controller in the chemical process industries because of their simplicity, robustness and successful practical applications. Many tuning methods have been proposed for PID controllers. Many tuning methods have been proposed for obtaining better PID controller parameter settings. The comparison of various tuning methods for First Order Plus Dead Time (FOPTD process are analysed using simulation software. Our purpose in this study is comparison of these tuning methods for single input single output (SISO systems using computer simulation.Also efficiency of various PID controller are investigated for different performance metrics such as Integral Square Error (ISE, Integral Absolute Error (IAE, Integral Time absolute Error (ITAE, and Mean square Error (MSE is presented and simulation is carried out. Work in this paper explores basic concepts, mathematics, and design aspect of PID controller. Comparison between the PID controller and Genetic Algorithm (GA will have been carried out to determine the best controller for the temperature system.
Comparison between PI and PID controllers used in UPFC control for power flow
Energy Technology Data Exchange (ETDEWEB)
Aghdam, Hossein Nasir [Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar (Iran, Islamic Republic of); email: h_nasir@iau-ahar.ac.ir; Kaheh, Meghdad [Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Majlesi (Iran, Islamic Republic of); email: kaheh.meghdad@gmail.com; Najafi, Babak [Department of Electrical Engineering, Germi Branch, Islamic Azad University, Germi (Iran, Islamic Republic of); email: ba.najafi@gmail.com4; Farhadi, Payam; Karimi, Mohammad [Department of Electrical Engineering, Parsabad Moghan Branch, Islamic Azad University, Young Researchers Club, Parsabad Moghan (Iran, Islamic Republic of); email: pfarhadi@iaupmogan.ac.ir; Karimi, Mohammad, email: mohammadkarimi62@gmail.com
2011-07-01
This paper compares features of PI and PID Controllers, the two most frequently used unified power flow controllers (UPFC) in transmission lines. These are Flexible AC Transmission Systems devices (FACTS) which are used in general to control the power flow and damp oscillations of power systems. These features enhance the capacity of existing transmission systems to carry energy, obviating the need to build new transmission lines while at the same time respecting safety, environmental, and economic constraints. The growing demand for energy has put pressure on the industry to develop appropriate methods for augmenting the efficacity and reliability of systems while operating within their various limitations. In conclusion, it was demonstrated that the PI controller response is better for power system stability but that in reactive power control the PI and PID controllers have similar performance. The efficiency of the UPFCs was also demonstrated using MATLAB/SIMULINK software.
Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control
2016-01-01
In this note we identify a class of underactuated mechanical systems whose desired constant equilibrium position can be globally stabilised with the ubiquitous PID controller. The class is characterised via some easily verifiable conditions on the systems inertia matrix and potential energy function, which are satisfied by many benchmark examples. The design proceeds in two main steps, first, the definition of two new passive outputs whose weighted sum defines the signal around which the PID ...
Design High Efficiency-Minimum Rule Base PID Like Fuzzy Computed Torque Controller
Directory of Open Access Journals (Sweden)
Alireza Khalilian
2014-06-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Computed Torque Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI controller to have the minimum rule base. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Design High-Efficiency Intelligent PID like Fuzzy Backstepping Controller for Three Dimension Motor
Directory of Open Access Journals (Sweden)
Mahsa Piltan
2014-08-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller for three dimensions spherical motor is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PI-like controller and a PD-like fuzzy controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each dimension, this controller is work based on spherical motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear three dimension spherical motor’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Quarter Car Active Suspension System Control Using PID Controller tuned by PSO
Wissam H. Al-Mutar
2015-01-01
The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...
MATTER-ELEMENT MODELING OF PARALLEL STRUCTURE AND APPLICATION ABOUT EXTENSION PID CONTROL SYSTEM
Institute of Scientific and Technical Information of China (English)
Rongde LU; Zonghai CHEN
2006-01-01
This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy and extension PID controllers, the proposed extension PID predictable controller shows higher control gains when system states are away from equilibrium, and retains a lower profile of control signals at the same time. Consequently, better control performance is achieved. Through the proposed tuning formula, the weighting factors of an extension-logic predictable controller can be systematically selected according to the control plant. An experimental example through industrial field data and site engineers' experience demonstrates the superior performance of the proposed controller over the fuzzy controller.
Directory of Open Access Journals (Sweden)
Gang Qin
2015-01-01
Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.
PID Control in the Third Millennium Lessons Learned and New Approaches
Visioli, Antonio
2012-01-01
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-derivative (PID) controllers. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: · new approaches for controller tuning; · control structures and configurations for more efficient control; · practical issues in PID implementation; and · non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resumé of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series o...
A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back
Directory of Open Access Journals (Sweden)
Emre Sariyildiz
2015-08-01
Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.
A novel optimal PID plus second order derivative controller for AVR system
Directory of Open Access Journals (Sweden)
Mouayad A. Sahib
2015-06-01
Full Text Available This paper proposes a novel controller for automatic voltage regulator (AVR system. The controller is a four term control type consisting of proportional, integral, derivative, and second order derivative terms (PIDD2. The four parameters of the proposed controller are optimized using particle swarm optimization (PSO algorithm. The performance of the proposed PIDD2 is compared with various PID controllers tuned by modern heuristic optimization algorithms. In addition, a comparison with the fractional order PID (FOPID controller tuned by Chaotic Ant Swarm (CAS algorithm is also performed. Furthermore, a frequency response, zero-pole map, and robustness analysis of the AVR system with PIDD2 is performed. Practical implementation issues of the proposed controller are also addressed. Simulation results showed a superior response performance of the PIDD2 controller in comparison to PID and FOPID controllers. Moreover, the proposed PIDD2 can highly improve the system robustness with respect to model uncertainties.
CONTROL OF CONCENTRATION IN CSTR USING DMC AND CONVENTIONAL PID BASED ON RELAY FEEDBACK METHOD
Directory of Open Access Journals (Sweden)
S. SRINIVASULU RAJU
2013-04-01
Full Text Available This paper presents the design of a Dynamic Matrix Controller (DMC is analyzed for concentration control of Continuous Stirred Tank Reactors (CSTRs which have strong nonlinearities. Various control approaches have been applied on CSTR to control its parameters. All the industrial process applications require solutions of a specific chemical strength of the chemicals or fluids considered for analysis. Such specific concentrations are achieved by mixing a full strength solution with water in the desired proportions. For this, we use twocontrollers DMC and PID and analyzed. The basic PID controllers have difficulty in dealing with complex nonlinear processes. Simulation studies give satisfactory results. In this paper the control the concentration of one chemical with the help of other has been analyzed. Model design and simulation are done in MATLAB/SIMULINK, using programming. The concentration control is found better controlled with the addition of DMC instead of PID controller solely.
Design PID controllers for desired time-domain or frequency-domain response.
Zhang, Weidong; Xi, Yugeng; Yang, Genke; Xu, Xiaoming
2002-10-01
Practical requirements on the design of control systems, especially process control systems, are usually specified in terms of time-domain response, such as overshoot and rise time, or frequency-domain response, such as resonance peak and stability margin. Although numerous methods have been developed for the design of the proportional-integral-derivative (PID) controller, little work has been done in relation to the quantitative time-domain and frequency-domain responses. In this paper, we study the following problem: Given a nominal stable process with time delay, we design a suboptimal PID controller to achieve the required time-domain response or frequency-domain response for the nominal system or the uncertain system. An H(infinity) PID controller is developed based on optimal control theory and the parameters are derived analytically. Its properties are investigated and compared with that of two developed suboptimal controllers: an H2 PID controller and a Maclaurin PID controller. It is shown that all three controllers can provide the quantitative time-domain and frequency-domain responses.
Directory of Open Access Journals (Sweden)
M. Antony Freeda Rani
2015-08-01
Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.
Institute of Scientific and Technical Information of China (English)
Tan Guanzheng(谭冠政); Xiao Hongfeng; Wang Yuechao
2004-01-01
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference mechanism and another is a conventional PID controller. In the fuzzy inference mechanism, three adjustable factors xp, xi, and xd are introduced. Their function is to further modify and optimize the result of the fuzzy inference to make the controller have the optimal control effect on a given object. The optimal values of these factors are determined based on the ITAE criterion and the flexible polyhedron search algorithm of Nelder and Mead. This PID controller has been used to control a D.C. motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that the design of this controller is very effective and can be widely used to control different kinds of objects and processes.
Application of PID controller to 2D differential geometric guidance problem
Institute of Scientific and Technical Information of China (English)
Chaoyong LI; Wuxing JING
2007-01-01
This paper presents the application of the proportional-integral-derivative (PID) controller to the flight control system (FCS) for two-dimensional (2D) differential geometric (DG) guidance and control problem. In particular,the performance of the designed FCS is investigated. To this end, the commanded angle-of-attack is firstly developed in the time domain using the classical DG formulations. Then, the classical PID controller is introduced to develop a FCS so as to form the 2D DG guidance and control system, and the PID controller parameters are determined by the Ziegler-Nichols method as well as the Routh-Hurwitz stability algorithm to guarantee the convergence of the system error. The results demonstrate that the designed controller yields a fast responding system, and the resulting DG guidance and control system is viable and effective in a realistic missile defense engagement.
Optimal fuzzy PID controller with adjustable factors based on flexible polyhedron search algorithm
Institute of Scientific and Technical Information of China (English)
谭冠政; 肖宏峰; 王越超
2002-01-01
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors xp, xi, and xd are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.
Savran, Aydogan; Kahraman, Gokalp
2014-03-01
We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.
Adaptive fuzzy PID temperature control system based on single-chip computer for the autoclave
Zhang, F.; Wang, J.; Fu, S. L.; He, Z. T.; Li, X. P.
2008-12-01
The autoclave is one of main preparation equipments of crystal preparation by hydrothermal method. The preparation temperature will seriously influence crystals quality and crystals size at high temperature, how to measure and control precisely the autoclave temperature can be of real significance. The characteristic of hysteresis, nonlinearity and difficulty to acquire the precise mathematical model existing in the temperature control of the autoclave was researched. The general PID controller adopted usually in the autoclave temperature control system is hard to improve temperature control performance. Based on the advantages of fuzzy controller that does not depend on the precise mathematical model and the stabilization of PID controller, single-chip computer integrated fuzzy PID control algorithm is adopted, and the temperature system is designed, the foundational working principle was discussed. The control system includes SCM (AT89C52), temperature sensor, A/D converter circuit and corresponding circuit and interface, can make the autoclave temperature measure and control accurately. The system hardware includes main circuit, thyristor drive circuit, audible and visual alarm circuit, watchdog circuit, clock circuit, keyboard and display circuit so on, which can achieve gathering, analyzing, comparing and controlling the autoclave temperature parameter. The program of control system includes the treatment and collection of temperature data, the dynamic display program, the fuzzy PID control system, the audible and visual alarm program, et al, and the system's main software, which includes initialization, key-press processing, input processing, display, and the fuzzy PID control program was analyzed. The results showed that the fuzzy PID control system makes the adjustment time of temperature decreased and the precision of temperature control improved, the quality and the crystals size of the preparation crystals can achieve the expect experiment results.
Directory of Open Access Journals (Sweden)
Seyed Abbas Taher
2014-03-01
Full Text Available In this paper, fractional order PID (FOPID controller was proposed for load frequency control (LFC in an interconnected power system. This controller had five parameters to be tuned; thus, it provided two more degrees of freedom in comparison with the conventional PID. For proper tuning of the controller parameters, imperialist competitive algorithm (ICA was used. ICA is a new evolutionary algorithm with proved efficiency. In this study, simulation investigations were carried out on a three-area power system with different generating units. These results showed that FOPID controller was robust to the parameter changes in the power system. Also, the simulation results certified much better performance of FOPID controller for LFC in comparison with conventional PID controllers.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Directory of Open Access Journals (Sweden)
Guanghui Li
2012-04-01
Full Text Available This paper presents a hybrid control strategy, combining Radial Basis Function (RBF network with conventional proportional, integral, and derivative (PID controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Nonlinear adaptive PID control for greenhouse environment based on RBF network.
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers.
Position control of nonlinear hydraulic system using an improved PSO based PID controller
Ye, Yi; Yin, Chen-Bo; Gong, Yue; Zhou, Jun-jing
2017-01-01
This paper addresses the position control of valve-controlled cylinder system employed in hydraulic excavator. Nonlinearities such as dead zone, saturation, discharge coefficient and friction existed in the system are highlighted during the mathematical modeling. On this basis, simulation model is established and then validated against experiments. Aim for achieving excellent position control performances, an improved particle swarm optimization (PSO) algorithm is presented to search for the optimal proportional-integral-derivative (PID) controller gains for the nonlinear hydraulic system. The proposed algorithm is a hybrid based on the standard PSO algorithm but with the addition of selection and crossover operators from genetic algorithm in order to enhance the searching efficiency. Furthermore, a nonlinear decreasing scheme for the inertia weight of the improved PSO algorithm is adopted to balance global exploration and local exploration abilities of particles. Then a co-simulation platform combining the simulation model with the improved PSO tuning based PID controller is developed. Comparisons of the improved PSO, standard PSO and Phase Margin (PM) tuning methods are carried out with three position references as step signal, ramp signal and sinusoidal wave using the co-simulation platform. The results demonstrated that the improved PSO algorithm can perform well in PID control for positioning of nonlinear hydraulic system.
Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Deepak Gautam
2013-11-01
Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra’s algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.
Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID
Chen, Zhigang; Qu, Jiangang
2017-09-01
In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.
Design of PID controllers in double feedback loops for SISO systems with set-point filters.
Vijayan, V; Panda, Rames C
2012-07-01
A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (λ) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes.
Voice Coil Motor Position Control Based on Feed-forward Fuzzy PID
Institute of Scientific and Technical Information of China (English)
尹峰松
2016-01-01
Conventional PID algorithm is unable to track the response with high frequency,and has obvious overshoot in some voice coil motor practical applications.So,combined with the fuzzy PID control theory,we can obtain the precise control by the method.Meanwhile,through the feed-forward control,the performance of quick response and dynamic tracking can be improved.Thus,this control method not only maintains the excellent performance of the controller,but also improves the stability of the system.
Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System
Directory of Open Access Journals (Sweden)
Bin Chen
2013-02-01
Full Text Available Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulation is executed on the basis of the mathematical model of aircraft deicing fluids rapid heating system, which is built in this paper, according to a number of data collected by experiments which are operated on the experimental platform of deicing fluids rapid heating system. The simulation results show that the single neuron PID control strategy perform effectively on the temperature turbulence problem of aircraft deicing fluids rapid heating system. Experiments are conducted to vertify the single neuron PID control strategy, the results of which show that the single neuron PID control strategy can achieve the request in practical application of the aircraft deicing fluids rapid heating system.
Robust PID Steering Control in Parameter Space for Highly Automated Driving
Directory of Open Access Journals (Sweden)
Mümin Tolga Emirler
2014-01-01
Full Text Available This paper is on the design of a parameter space based robust PID steering controller. This controller is used for automated steering in automated path following of a midsized sedan. Linear and nonlinear models of this midsized sedan are presented in the paper. Experimental results are used to validate the longitudinal and lateral dynamic models of this vehicle. This paper is on automated steering control and concentrates on the lateral direction of motion. The linear model is used to design a PID steering controller in parameter space that satisfies D-stability. The PID steering controller that is designed is used in a simulation study to illustrate the effectiveness of the proposed method. Simulation results for a circular trajectory and for a curved trajectory are presented and discussed in detail. This study is part of a larger research effort aimed at implementing highly automated driving in a midsized sedan.
Institute of Scientific and Technical Information of China (English)
LI Yin-ya; SHENG An-dong; WANG Yuan-gang
2007-01-01
A novel design method for determining the proportional-integral-derivative(PID) controller gains of an anti-aircraft artillery servo system with multiple performance specifications based on a particle swarm optimization (PSO) algorithm is proposed. First, a performance criterion evolution function combined with the system maximum displacement settling time, rise time, overshoot, steady state error, constant velocity tracking error and sine wave tracking error is defined. Second, the optimization problem of PID controller parameters and the searching procedure of PSO algorithm are constructed. Finally, the optimal or near optimal PID controller parameters are fast and easily obtained by solving the above optimization problem on the given controller parameter space following the PSO searching procedure. The simulation results show the effectiveness of the proposed controllers.
Improving disturbance rejection of PID controllers by means of the magnitude optimum method.
Vrancić, Damir; Strmcnik, Stanko; Kocijan, Jus; de Moura Oliveira, P B
2010-01-01
The magnitude optimum (MO) method provides a relatively fast and non-oscillatory closed-loop tracking response for a large class of process models frequently encountered in the process and chemical industries. However, the deficiency of the method is poor disturbance rejection performance of some processes. In this paper, disturbance rejection performance of the PID controller is improved by applying the "disturbance rejection magnitude optimum" (DRMO) optimisation method, while the tracking performance has been improved by a set-point weighting and set-point filtering PID controller structure. The DRMO tuning method requires numerical optimisation for the calculation of PID controller parameters. The method was applied to two different 2-degrees-of-freedom PID controllers and has been tested on several different representatives of process models and one laboratory set-up. A comparison with some other tuning methods has shown that the proposed tuning method, with a set-point filtering PID controller, is quite efficient in improving disturbance rejection performance, while retaining tracking performance comparable with the original MO method.
Relay feedback tuning of robust PID controllers with iso-damping property.
Chen, YangQuan; Moore, Kevin L
2005-02-01
A new tuning method for proportional-integral-derivative (PID) controller design is proposed for a class of unknown, stable, and minimum phase plants. We are able to design a PID controller to ensure that the phase Bode plot is flat, i.e., the phase derivative w.r.t. the frequency is zero, at a given frequency called the "tangent frequency" so that the closed-loop system is robust to gain variations and the step responses exhibit an iso-damping property. At the "tangent frequency," the Nyquist curve tangentially touches the sensitivity circle. Several relay feedback tests are used to identify the plant gain and phase at the tangent frequency in an iterative way. The identified plant gain and phase at the desired tangent frequency are used to estimate the derivatives of amplitude and phase of the plant with respect to frequency at the same frequency point by Bode's integral relationship. Then, these derivatives are used to design a PID controller for slope adjustment of the Nyquist plot to achieve the robustness of the system to gain variations. No plant model is assumed during the PID controller design. Only several relay tests are needed. Simulation examples illustrate the effectiveness and the simplicity of the proposed method for robust PID controller design with an iso-damping property.
Directory of Open Access Journals (Sweden)
Meysam Gheisarnezhad
2015-01-01
Full Text Available Fractional-order PID (FOPID controller is a generalization of standard PID controller using fractional calculus. Compared with the Standard PID controller, two adjustable variables “differential order” and “integral order” are added to the PID controller.Three tank system is a nonlinear multivariable process that is a good prototype of chemical industrial processes. Cuckoo Optimization Algorithm (COA, that was recently introduced has shown its good performance in optimization problems. In this study, Improved Cuckoo Optimization Algorithm (ICOA has been presented. The aim of the paper is to compare different controllers tuned with a Improved Cuckoo Optimization Algorithm (ICOA for Three Tank System. In order to compare the performance of the optimized FOPID controller with other controllers, Genetic Algorithm(GA, Particle swarm optimization (PSO, Cuckoo Optimization Algorithm (COA and Imperialist Competitive Algorithm (ICA.
Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot
Directory of Open Access Journals (Sweden)
Bakırcıoğlu Veli
2016-01-01
Full Text Available In this paper, we apply The Bees Algorithm to find optimal PID controller gains to control angular positions of robot leg joints with the minimum position error. In order to present more realistic simulation, system modelled in MATLAB/Simulink environment which is close to experimental set up. Solid model of system, which has two degrees of freedom, drawn by using a CAD software. Required physical specifications of robot leg for MATLAB/Simulink modelling is obtained from this CAD model. Controller of the system is designed in MATLAB/Simulink interface. Simulation results derived to show effectiveness of The Bees Algorithm to find optimal PID controller gains.
A frequency domain design of PID controller for an AVR system
Institute of Scientific and Technical Information of China (English)
Md Nishat ANWAR; Somnath PAN
2014-01-01
We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regula-tion (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.
Design and simulation about a self-Tuning fuzzy-PID controller
Institute of Scientific and Technical Information of China (English)
ZHANG Yi; FU Wen-yong; LI Yan-hua; DENG Hao-wen; LIU Hong-chang
2009-01-01
Fuzzy logic has attracted the attention of structural control engineers during the last few years, because fuzzy logic can handle nonlinearities, uncertainties, and heuristic knowledge effectively and easily. In this paper, a self-Tuning fuzzy-PID control method which used the technology of the fuzzy control and PID control unified is presented. These techniques can visualize the results and processes for structure stress. These techniques will also provide convenience for engineers and users, and have high practical values. The MATLAB simulation result shows that the system precision and the efficiency are very high and the static error is small, and robustness was also validated.
Directory of Open Access Journals (Sweden)
Puchalski Bartosz
2015-12-01
Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.
Optimization of PID Parameter In Control System Tuning With Multi-Objective Genetic Algorithm.
Directory of Open Access Journals (Sweden)
Md Amanullah
2014-05-01
Full Text Available Way of playing advancement is the out-standing design of the study of PID control and frequently research work has been guided for this aspiration. The Proportional plus Integral plus Derivative (PID, controllers are most sweepingly used in control theory as well as industrial plants owing to their ease of execution and sturdiness way of playing. The aspiration of this deed representation capable and apace tuning approach using Genetic Algorithm (GA to obtain the optimized criterion of the PID controller so as to acquire the essential appearance designation of the technique below meditation. The make perfect achievement about multiple plants have in relation to the established tuning approach, to consider the ability of intended approach. Mostly, the whole system’s performance powerfully depends on the controller’s proficiency and thus the tuning technique plays a key part in the system’s behavior.
Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems
Directory of Open Access Journals (Sweden)
Jau-Woei Perng
2014-01-01
Full Text Available A strategy was proposed to determine the optimal operating point for the proportional-integral-derivative (PID controller of a wind turbine, and identify the stability regions in the parameter space. The proposed approach combined particle swarm optimization (PSO and radial basis function neural network (RBFNN algorithms. These intelligent algorithms are artificial learning mechanisms that can determine the optimal operating points, and were used to generate the function representing the most favorable operating parameters from each parameter of for the stability region of the PID controller. A graphical method was used to determine the 2D or 3D vision boundaries of the PID-type controller space in closed-loop wind turbine systems. The proposed techniques were demonstrated using simulations of a drive train model without time delay and a pitch control model with time delay. Finally, the 3D stability boundaries were determined the proposed graphical approach with and without time delay systems.
The Sine Wave Tuning method: Robust PID controller design in the frequency domain
Directory of Open Access Journals (Sweden)
Š. Bucz
2015-12-01
Full Text Available The paper presents a novel robust PID controller design method for nominal performance specified in terms of maximum overshoot and settling time. The PID controller design provides guaranteed gain margin GM. The parameter of the tuning rules is a suitably chosen point of the plant frequency response obtained by a sine-wave signal with excitation frequency ωn. Then, the designed controller moves this point into the phase crossover with the required gain margin GM. The couple (ωn;GM is specified with respect to closed-loop performance requirements in terms of ηmax (maximum overshoot and ts (settling time according to developed parabolic dependences. The new approach has been verified on a vast batch of benchmark examples; subsequently, the developed algorithm has been extended to robust PID controller design for plants with unstable zero and unstructured uncertainties.
Directory of Open Access Journals (Sweden)
C.Agees Kumar
2010-07-01
Full Text Available PID controller is widely used for main steam temperature control of boiler unit in thermal power plant. To avoid the drawback of current PID design methods, this paper presents a new design method for multi-objective PID controller to synthetically consider system requirement in reliability and robustness. Adaptive weighted PSO (AWPSO technique is applied to the parameter optimization design. The optimization problem considered is highly nonlinear, complex, with multiple objectives and constraints. The simulation results on an actual main steam temperature control system indicate that, the multi-objective PID controller designed by presented method, can improve the dynamic performance of main steam temperature control system, with good robustness ability.
Wastegate Actuator Modeling and Tuning of a PID Controller for Boost Pressure Control
Thomasson, Andreas
2009-01-01
In some turbochargers, boost pressure is reduced by opening the wastegate valve. In a modern turbo charged car, the most common way for opening the wastegate is with a pneumatic actuator and an air control solenoid, controlled by the ECU. In the control systems studied the ECU utilizes a static feedforward and a PID controller, for the purpose of making the boost pressure follow its reference value. With no systematic method for tuning the controller, this can be time consuming, and a set of ...
Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation
Directory of Open Access Journals (Sweden)
Jin-Hong Jeon
2011-09-01
Full Text Available Recently, interest in microgrids, which are composed of distributed generation (DG, distributed storage (DS, and loads, has been growing as a potentially effective clean energy system to mitigate against climate change. The microgrid is operated in the grid-connected mode and the islanded mode according to the conditions of the upstream power grid. The role of the energy storage system (ESS is especially important to maintain constant the frequency and voltage of an islanded microgrid. For this reason, various approaches for ESS control have been put forth. In this paper, a fuzzy PID controller is proposed to improve the frequency control performance of the ESS. This fuzzy PID controller consists of a fuzzy logic controller and a conventional PI controller, connected in series. The fuzzy logic controller has two input signals, and then the output signal of the fuzzy logic controller is the input signal of the conventional PI controller. For comparison of control performance, gains of each PI controller and fuzzy PID controller are tuned by the particle swam optimization (PSO algorithm. In the simulation study, the control performance of the fuzzy PID was also tested under various operating conditions using the PSCAD/EMTDC simulation platform.
PERFORMANCE OF PID CONTROLLER OF NONLINEAR SYSTEM USING SWARM INTELLIGENCE TECHNIQUES
Directory of Open Access Journals (Sweden)
Neeraj Jain
2016-07-01
Full Text Available In this paper swarm intelligence based PID controller tuning is proposed for a nonlinear ball and hoop system. Particle swarm optimization (PSO, Artificial bee colony (ABC, Bacterial foraging optimization (BFO is some example of swarm intelligence techniques which are focused for PID controller tuning. These algorithms are also tested on perturbed ball and hoop model. Integral square error (ISE based performance index is used for finding the best possible value of controller parameters. Matlab software is used for designing the ball and hoop model. It is found that these swarm intelligence techniques have easy implementation & lesser settling & rise time compare to conventional methods.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Control PID de un secador mediante autómatas programables conectados por ethernet
Carrillo Valencia, Víctor
2012-01-01
Este proyecto final de carrera se centra en el control PID de temperatura de un secador convencional mediante autómatas programables conectados por Ethernet. Se busca con ello la configuración de un red de comunicaciones entre dos PLC’s industriales (Programmable Logic Controller en sus siglas en inglés) y el control de temperatura mediante un controlador PID. Los controladores lógicos programables o PLC’s son dispositivos electrónicos muy usados en automatización industrial...
Control PID de un secador mediante autómatas programables conectados por ethernet
Carrillo Valencia, Víctor
2012-01-01
Este proyecto final de carrera se centra en el control PID de temperatura de un secador convencional mediante autómatas programables conectados por Ethernet. Se busca con ello la configuración de un red de comunicaciones entre dos PLC’s industriales (Programmable Logic Controller en sus siglas en inglés) y el control de temperatura mediante un controlador PID. Los controladores lógicos programables o PLC’s son dispositivos electrónicos muy usados en automatización industrial...
Application of single neuron adaptive PID controller during the process of timber drying
Institute of Scientific and Technical Information of China (English)
ZHANG Dong-yan; LIU Ya-qiu; CAO Jun
2003-01-01
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
Design New PID like Fuzzy CTC Controller: Applied to Spherical Motor
Directory of Open Access Journals (Sweden)
Mohammad shamsodini
2014-05-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller with application to spherical motor is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and acceptable trajectory follow disturbance to control of spherical motor. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Institute of Scientific and Technical Information of China (English)
Chen,Guochu; Zhang,Lin; Hao,Ninmei; Liu,Xianguang; Wang,Junhong
2003-01-01
Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.
Energy Technology Data Exchange (ETDEWEB)
Jahedi, G. [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Ardehali, M.M., E-mail: ardehali@aut.ac.i [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of)
2011-01-15
The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.
PID controller auto-tuning based on process step response and damping optimum criterion.
Pavković, Danijel; Polak, Siniša; Zorc, Davor
2014-01-01
This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations.
Quarter Car Active Suspension System Control Using PID Controller tuned by PSO
Directory of Open Access Journals (Sweden)
Wissam H. Al-Mutar
2015-07-01
Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller
Study of Multimedia Streams Dynamic Rate Control Based on Fuzzy Adaptive PID
Institute of Scientific and Technical Information of China (English)
SUN Yan-fei; ZHANG Shun-yi; SHI Jin; WANG Jiang-tao
2005-01-01
A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID.
Closed-loop step response for tuning PID-fractional-order-filter controllers.
Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M
2016-09-01
Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled.
Ali, Ahmad; Majhi, Somanath
2009-01-01
In this work, the normalized Internal Model Control (IMC) filter time constant is designed to achieve a specified value of the maximum sensitivity for stable first and second order plus time delay process models, respectively. Since a particular value of the maximum sensitivity results in an almost constant percentage overshoot to controller setpoint change, an empirical relationship between the normalized IMC filter time constant and percentage overshoot is presented. The main advantage of the proposed method is that only a user-defined overshoot is required to design a PI/PID controller. Simulation examples are given to demonstrate the value of the proposed method.
Directory of Open Access Journals (Sweden)
Yasir Khudhair Abbas
2012-01-01
Full Text Available In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs method for the optimal Proportional-Integral-Derivative (PID controller tuning parameters. The (GA-based PID control design approach is a methodology to tune a (PID controller in an optimal control sense with respect to specified objective function. By using the (GA-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with the (GA-based PID control is illustrated to show the validity of the proposed control method for practical applications, such as scanning microscopy.
Directory of Open Access Journals (Sweden)
Ahmad M. El-Nagar
2014-06-01
Full Text Available In this study, we propose an embedded real-time interval type-2 fuzzy proportional – integral – derivative (IT2F-PID controller which is a parallel combination of the interval type-2 fuzzy proportional – integral (IT2F-PI controller and the interval type-2 fuzzy proportional – derivative (IT2F-PD controller. The proposed IT2F-PID controller is able to handle the effect of the system uncertainties due to the structure of the interval type-2 fuzzy logic controller. The proposed IT2F-PID controller is implemented practically using a low cost PIC microcontroller for controlling the uncertain nonlinear inverted pendulum to minimize the effect of the system uncertainties due to the uncertainty in the mass of the pendulum, the measurement error in the rotation angle of the pendulum and the structural uncertainty. The test is carried out using the hardware-in-the-loop (HIL simulation. The experimental results show that the performance of the IT2F-PID controller improves significantly the performance over a wide range of system uncertainties.
Design of Optimal PID Controller with ɛ-Routh Stability for Different Processes
Directory of Open Access Journals (Sweden)
XianHong Li
2013-01-01
Full Text Available This paper presents a design method of the optimal proportional-integral-derivative (PID controller with ɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE performance index which contains control error and at least first-order error derivative, or even may contain nth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices and ɛ-Routh stability are presented for different processes. Control weight matrix and ɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed. ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.
A set of decentralized PID controllers for an – link robot manipulator
Indian Academy of Sciences (India)
G Leena; G Ray
2012-06-01
A class of stabilizing decentralized proportional integral derivative (PID) controllers for an -link robot manipulator system is proposed. The range of decentralized PID controller parameters for an -link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design technique is based on the gain-phase margin tester and Kharitonov’s theorem that synthesizes a set of PID controllers for the linear model while nonlinear interaction terms involve in system dynamics are treated as zero. The stability analysis of the composite system with the designed set of decentralized PID controllers is investigated by incorporating bounding parameters of interconnection terms in LMI formulation. From the range of controller gains obtained by the proposed method, a genetic algorithm is adopted to get an optimal controller gains so that the tracking error is minimum. Simulation results are shown to demonstrate the applicability of the proposed control scheme for solution of ﬁxed as well as time-varying trajectory tracking control problems.
Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.
2016-04-01
PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.
Control de velocidad de un motor de CD con un controlador PID Wavenet
Directory of Open Access Journals (Sweden)
Abraham Christian Pedroza Araujo
2014-01-01
Full Text Available El controlador más utilizado actualmente en la industria es el controlador PID. Sin embargo, el algoritmo PID lineal tiene bajo desempeño cuando el proceso a controlar presenta dinámicas complejas como zonas muertas y características no lineales. El funcionamiento del controlador PID en general, se basa en la actuación en forma proporcional, integral y derivativa sobre la señal de error e(t, definida como e(t = yref(t - y(t, con la finalidad de efectuar la señal de control u(t que manipula la salida del proceso en forma deseada como se muestra la Figura 1. Figura 1. Esquema de un control clásico. Figura 1. Esquema de un control clásico. Las constantes kp ki kd son las ganancias del PID. Existen distintas técnicas analíticas y experimentales con el fin de sintonizar esas ganancias. Una alternativa a este problema de sintonización es el controlador PID wavenet, donde por medio de una wavenet y un filtro IIR se estima la salida del sistema a controlar, lo cual se utiliza para re-sintonizar las ganancias de un PID discreto, todo esto en línea. Esta es la alternativa que se emplea en el presente trabajo de investigación y enfocada a la simulación y control de un motor de cd obteniendo resultados.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Directory of Open Access Journals (Sweden)
Rodrigo Hernández-Alvarado
2016-09-01
Full Text Available For decades, PID (Proportional + Integral + Derivative-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles where parameters (weight, buoyancy, added mass, among others change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-09-05
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-01-01
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018
PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems
Directory of Open Access Journals (Sweden)
Arturo Y. Jaen-Cuellar
2013-09-01
Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.
Saha, Suman; Das, Shantanu; Gupta, Amitava
2012-01-01
A novel conformal mapping based Fractional Order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI{\\lambda}D{\\mu}) controller have been approximated in this paper vis-\\`a-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PI{\\lambda}D{\\mu} controller pushes the open loop zeros of the equivalent PID cont...
Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure
Directory of Open Access Journals (Sweden)
Ashraf Ahmed Fahmy
2014-03-01
Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation. Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.
Study of PID Controllers to Load Frequency Control Systems with Various Turbine Models
Directory of Open Access Journals (Sweden)
Abdul Shariq
2015-08-01
Full Text Available This paper studies the load frequency control problem for various systems under various controller design methods. Frequency should remain nearly constant for satisfactory operation of a power system because frequency deviations can directly impact on a power system operation, system stability, reliability and efficiency. A Load Frequency Control (LFC scheme basically incorporates an appropriate control system for an interconnected power system, which is having the capability to bring the frequencies of system to original set point values or very nearer to set point values effectively after any load change. This can be achieved by the use of conventional and modern controllers. In this proposed paper PID controller has been applied for LFC power systems. The parameters of the PID controller are tuned by different methods names as Ziegler-Nichols (Z-N Method, and IMC method for better results. We use various tuning formulae in Z-N method and certain model approximation methods and the responses of LFC with model approximation are studied. It is seen that the results obtained are as good as the conventional controller.
Directory of Open Access Journals (Sweden)
Xiaoli Luan
2016-01-01
Full Text Available The aim of this paper is to determine the stabilizing PID parametric region for multivariable systems. Firstly, a general equivalent transfer function parameterization method is proposed to construct the multiloop equivalent process for multivariable systems. Then, based on the equivalent single loops, a model-based method is presented to derive the stabilizing PID parametric region by using the generalized Hermite-Biehler theorem. By sweeping over the entire ranges of feasible proportional gains and determining the stabilizing regions in the space of integral and derivative gains, the complete set of stabilizing PID controllers can be determined. The robustness of the design procedure against the approximation in getting the SISO plants is analyzed. Finally, simulation of a practical model is carried out to illustrate the effectiveness of the proposed technique.
PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems
Directory of Open Access Journals (Sweden)
Arturo Y. Jaen-Cuellar
2013-09-01
Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well‐ known beneficial features. In general, the whole system’s performance strongly depends on the controller’s efficiency and hence the tuning process plays a key role in the system’s behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain‐ Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain‐Phase Margin method with the Genetic Algorithms in which the micro‐population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain‐Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.
Research of Self-Tuning PID for PMSM Vector Control based on Improved KMTOA
Directory of Open Access Journals (Sweden)
Lingzhi Yi
2017-03-01
Full Text Available The Permanent Magnet Synchronous Motor has been applying widely due to it’s high efficiency, high reliability, relatively low cost and low moment of inertia. However, the PMSM drives are easily affected by the uncertain factors such as the variation of motor parameters and load disturbance. In order to realize the control of the PMSM accurately, a novel adaptive chaotic kinetic molecular theory optimization algorithm was implemented for seeking the best parameters of PID controller. In the PMSM vector control system, the speed loop will be adjusted by a CKMTOA PID controller. In modified kinetic molecular theory optimization algorithm, the adaptive inertia weight factors are used to accelerate the convergence speed, and chaotic searching is conducted within the neighbor set of the solutions to avoid the local minima. The model of PMSM and its` space vector control system are set up in the software of MATLAB/Simulink. The effectiveness of the self-tuning CKMTOA PID controller is verified by comparing with the conventional PID and particle swarm optimization algorithm. The extensive simulations and analysis also show the effectiveness of the proposed approach
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Brito, Thiago Souza Pereira de; Afonso, Antonio Claudio Marques, E-mail: wagner@unicap.br, E-mail: cabol@ufpe.br, E-mail: afonsofisica@gmail.com, E-mail: thiago.brito86@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Cruz Filho, Antonio Jose da; Marques, Jose Antonio, E-mail: antonio.jscf@gmail.com, E-mail: jamarkss@uol.com.br [Universidade Catolica de Pernambuco (CCT/PUC-PE), Recife, PE (Brazil). Centro de Ciencias e Tecnologia; Teixeira, Marcello Goulart, E-mail: marcellogt@dcc.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Matematica. Dept. de Matematica
2013-07-01
Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)
MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER
Directory of Open Access Journals (Sweden)
Artur Wodołażski
2016-09-01
Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.
Yadav, Jyoti; Rani, Asha; Singh, Vijander
2016-12-01
This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.
Tuning PID controllers for higher-order oscillatory systems with improved performance.
Malwatkar, G M; Sonawane, S H; Waghmare, L M
2009-07-01
In this paper, model based design of PID controllers is proposed for higher-order oscillatory systems. The proposed method has no limitations regarding systems order, time delays and oscillatory behavior. The reduced model is achieved based on third-order modeling and selection of coefficients through the use of frequency responses. The tuning of the PID parameters are obtained from a reduced third-order model; the procedure seems to be simple and effective, and improved performance of the overall system can be achieved. Three simulation examples and one real-time experiment are included to demonstrate the effectiveness and applicability of the proposed method to systems with oscillatory behavior.
Tian, Lianfang
2004-06-01
In this paper, an intelligent proportional-integral-derivative (PID) control method is introduced to the robotic testing system for the biomechanical study of human musculoskeletal joints. For the testing system, the robot is a highly nonlinear and heavily coupled complicated system, and the human spinal specimen also demonstrates nonlinear property when undergoing testing. Although the conventional PID control approach is extensively used in most industrial control systems, it will break down for nonlinear systems, particularly for complicated systems that have no precise mathematical models. To overcome those difficulties, an intelligent fuzzy PID controller is proposed replacing the widely used conventional PID controllers. The fuzzy PID algorithm is outlined using the fuzzy set theory. The design techniques are developed based on the linguistic phase plane approach. The heuristic rules of syntheses are summarized into a rule-based expert system. Experiments are carried out and the results demonstrate the good performance of the robotic testing system using the proposed control method.
Nominal and robust stability regions of optimization-based PID controllers.
Ou, Linlin; Zhang, Weidong; Gu, Danying
2006-07-01
In recent decades, several optimization-based methods have been developed for the proportional-integral-derivative (PID) controller design, and the common feature of these methods is that the controller has only one adjustable parameter. To keep the closed-loop systems stable is an essential requirement for the optimization-based PID controllers. In almost all these methods, however, no exact stability region for the single adjustable parameter was sketched. In this paper, using the proposed analytical procedure based on the dual-locus diagram technique, explicit stability regions of the optimization-based PID controllers are derived for stable, integrating, and unstable processes with time delay in the nominal and perturbed cases, respectively. It is revealed that the proposed analytical procedure is effective for the determination of the nominal and robust stability regions and it offers simplicity and ease of mathematical calculations over other available stability analysis methods. The results in this paper provide some insight into the tuning of the optimization-based PID controllers.
Dynamic modelling and PID loop control of an oil-injected screw compressor package
Poli, G. W.; Milligan, W. J.; McKenna, P.
2017-08-01
A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.
Directory of Open Access Journals (Sweden)
Sanjay Kr. Singh
2014-05-01
Full Text Available This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine not being connected to the grid; hence is usually used in refineries as steam turbine, where a hydraulic governor is used for the speed control. The PID controller for the system has been designed and implemented using MATLAB and SIMULINK and the results of the design methods have been compared, analysed and conclusions indicates that the significant improvement of results have been obtained by the Multi-Objective GA based optimization of PID as much faster response is obtained as compared to the ordinary GA and Ziegler Nichols method.
Fuzzy Self-Tuning PID Control of Hydrogen-Driven Pneumatic Artificial Muscle Actuator
Institute of Scientific and Technical Information of China (English)
Thanana Nuchkrua; Thananchai Leephakpreeda
2013-01-01
In this paper,a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented.With a conventional PID control,non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself,causing deyiation of desired tasks.The fuzzy self-tuning PID controller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator.The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions.The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations.A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations.The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired performance.
Design a PID Controller for Suspension System by Back Propagation Neural Network
Directory of Open Access Journals (Sweden)
M. Heidari
2013-01-01
Full Text Available This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than . Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of this network, it is possible to estimate the gain parameters of PID controller at any condition. The inputs of network are automotive velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this area.
New 2DOF PI and PID Controllers Tuning Method for Integrating Plants
Directory of Open Access Journals (Sweden)
Miluše VÍTEČKOVÁ
2009-07-01
Full Text Available The paper deals with a new 2DOF PI and PID controllers tuning method for integrating plants. The described approach is derived from the multiple dominant pole method and it enables the achievement of an aperiodic servo and regulatory step responses.
Directory of Open Access Journals (Sweden)
Márcio Mendonça
2015-10-01
Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.
基于模糊 PID 自动转向控制系统的研究%Automatic Steering Control System Research on Fuzzy PID
Institute of Scientific and Technical Information of China (English)
张长龙; 李文春; 马蓉; 任玲; 石翔
2016-01-01
在拖拉机自动转向控制系统中，为了提高自动转向性能，满足工作需求，设计了参数自整定的模糊 PID控制。同时，对模糊控制规则进行了设计，实现对PID3个输出比例因子进行实时修改，提高了系统的控制性能。对模糊PID 在MATLAB中进行了建模仿真，通过仿真结果可以看出：该控制方法有很好的稳态精度和自适应能力，明显改善了系统的动态特性，有利于拖拉机自动驾驶精度的提高。通过台架实验，验证了该控制方法的可行性。%Tractor automatic steering control system , to improve the automatic steering performance ,meet the job require-ments, design the parameter self-tuning fuzzy PID control .Design and implementation of fuzzy control rules and modify the PID three output scaling factor in real time ,improve the control performance of the system .And the fuzzy PID has car-ried on the modeling and simulation in MATLAB, the simulation results can be seen that this control method has good steady precision and adaptive ability , obviously improve the dynamic characteristic of the system , beneficial to the im-provement of the tractor automated driving accuracy .
Multiobjective optimization design of a fractional order PID controller for a gun control system.
Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong
2013-01-01
Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Designing of new structure PID controller of boost converter for solar photovoltaic stability
Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi
2017-03-01
Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.
Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms
Directory of Open Access Journals (Sweden)
Sanjay Kr. Singh
2014-02-01
Full Text Available This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning. For the optimization of the PID controllers Genetic Algorithm, Multi-objective Genetic Algorithm and Simulated Annealing have been used. PID controller tuning with soft-computing algorithms comprises of obtaining the best possible outcome for the three PID parameters for improving the steady state characteristics and performance indices like overshoot percentage, rise time and settling time. For the calculation and simulation of the results the Brushless DC Motor model, Maxon EC 45 flat ф 45 mm with Hall Sensors Motor has been used. The results obtained the optimization using Genetic Algorithms, Multi-objective Genetic Algorithm and Simulated Annealing is compared with the ones derived from the Ziegler-Nichols method and the MATLAB SISO Tool. And it is observed that comparatively better results are obtained by optimization using Simulated Annealing offering better steady state response.
Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique
Maiti, Deepyaman; Konar, Amit
2008-01-01
Particle Swarm Optimization technique offers optimal or suboptimal solution to multidimensional rough objective functions. In this paper, this optimization technique is used for designing fractional order PID controllers that give better performance than their integer order counterparts. Controller synthesis is based on required peak overshoot and rise time specifications. The characteristic equation is minimized to obtain an optimum set of controller parameters. Results show that this design method can effectively tune the parameters of the fractional order controller.
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
A Fuzzy Predictive PID Control Scheme for the Excitation System of Synchronous Generator
Directory of Open Access Journals (Sweden)
Zheng Yang
2016-01-01
Full Text Available With the rapid development of the process control theories in the electrical engineering, new control strategies which lead to better performances are urgently demanded for the excitation control of synchronous generators. For the sake of improving the convergence rate of the terminal voltage and covering the weakness in the adaptability of operational conditions of conventional controls in disturbances, a fuzzy predictive PID excitation control method is proposed in this paper. This control scheme can be divided into three steps in every sample interval: PID parameter adaptation, rolling state prediction and real-time control movement integration. Numerical simulations have been conducted under different operational conditions with the proposed method as well as the conventional ones, respectively. Experimental comparisons indicate the superiority in voltage regulation performance of the proposed method.
Ohnishi, Yoshihiro; Ikemoto, Takahiro; Yamamoto, Toru
This paper proposes an adaptive PID controller which is driven by current control performance. The calculations of the PID parameters are based on the generalized minimum variance control(GMVC) algorithm. The current control performance is obtained in an online manner over a user-specified time-window with some overlap. The retuning of PID parameters are only carried out when controller performance deteriorates below a user-specified threshold. Experimental evaluations on the voltage control of the DC-DC converter demonstrates the practicality and utility of this idea.
Design Intelligent PID like Fuzzy Sliding Mode Controller for Spherical Motor
Directory of Open Access Journals (Sweden)
Farzin Matin
2014-04-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (SMC with application to spherical motor is presented in this research. The popularity of PID Fuzzy Sliding Mode Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Sliding Mode Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing especially in nonlinear and uncertain systems. Proportional Integral Derivative methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions, we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and good trajectory follow disturbance to control of spherical motor. However Sliding Mode Controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation which caused to challenge in uncertain system. This research is used to reduce or eliminate the Sliding Mode Controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Research on the Robustness of an Adaptive PID Control of a Kind of Supersonic Missile
Directory of Open Access Journals (Sweden)
Gangling Jiao
2013-01-01
Full Text Available In this study, the dynamic characteristic of missile system is viewed as a two-loop system, such as inner loop and outer loop and we design an adaptive PID control strategy for the pitch channel linear model of supersonic missile. The robustness of a double PID controller is analyzed by changing the aerodynamic coefficients. The control law is testified to be stable even the aerodynamic coefficients are changed between 0.7 and 1.7 times of its standard value and the control effect is compared with the sliding mode control strategy. Also the advantage and defect of both control strategy are summarized at the end of this study.
Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.
Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing
2007-11-01
A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.
Multi-objective optimization based on Genetic Algorithm for PID controller tuning
Institute of Scientific and Technical Information of China (English)
WANG Guo-liang; YAN Wei-wu; SHAO Hui-he
2009-01-01
To get the satisfying performance of a PID controller, this paper presents a novel Pareto - based multi-objective genetic algorithm ( MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods.
Directory of Open Access Journals (Sweden)
Asan Gani
2010-09-01
Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB
Das, Saptarshi; Maharatna, Koushik
2016-01-01
In this paper, an efficient control strategy for physiological interaction based anaesthetic drug infusion model is explored using the fractional order (FO) proportional integral derivative (PID) controllers. The dynamic model is composed of several human organs by considering the brain response to the anaesthetic drug as output and the drug infusion rate as the control input. Particle Swarm Optimisation (PSO) is employed to obtain the optimal set of parameters for PID/FOPID controller structures. With the proposed FOPID control scheme much less amount of drug-infusion system can be designed to attain a specific anaesthetic target and also shows high robustness for +/-50% parametric uncertainty in the patient's brain model.
Levenberg – Marquardt’s Algorithm used for PID Controller Parameters Optimization
Ahmed S. Abd El-Hamid; Ahmed H. Eissa; Aly M. Radwan
2015-01-01
The determination of parameters of controllers is an important problem in automatic control systems. In this paper, the Levenberg Marquardt (LM) Algorithm is used to effectively solve this problem with reasonable computational effort. The Levenberg Marquardt (LM) Algorithm for optimization of three term (PID) controller parameters with dynamic model of pH neutralization process is presented. The main goal is to show the merits of Levenberg Marquardt algorithm optimizat...
A Proportional Integral Derivative (PID Feedback Control without a Subsidiary Speed Loop
Directory of Open Access Journals (Sweden)
M. Aboelhassan
2008-01-01
Full Text Available The aim of this investigation is to design and describe the essential features of a brushless direct-current (BLDC motor. The static and dynamical state of the BLDC-Motor is designed and calculated.Within this frame-work, it has been shown that while working with the P-controller in conjunction with the subsidiary speed loop and PD-controller (with non-zero error in a steady state without a subsidiary speed loop, there is PID-controller without a subsidiary speed loop which has zero error in a steady state. The last part of this paper is dedicated to a simulation of the circle rounds of P and PID controllers with and without a subsidiary speed loop in MATLAB–SIMULINK to decide which of these controllers is suitable, available and reliable with a BLDC-Motor and their application in cutting tool machines in general.
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter.
Directory of Open Access Journals (Sweden)
Haitao Zhang
2011-12-01
Full Text Available In the networked control system with random time delay in forward and feedback channels, a kind of controller based on Smith compensator and signal neuron incomplete differential forward PID is presented. First, using root locus method and simulink simulation software, the influences of network’s time delay on the system stability and dynamic performance are analyzed. Then, combined with incomplete differential forward PID control algorithm, Smith compensation model is established. Compared with existing Smith compensator, the proposed control model is easy to be implemented, and can also get better control performance in the case of miss-matching compensator model. Finally, the simulation research on a DC motor is done, and the simulation results show the effectiveness of the proposed method.
GA-BASED PID NEURAL NETVVORK CONTROL FOR MAGNETIC BEARING SYSTEMS
Institute of Scientific and Technical Information of China (English)
LI Guodong; ZHANG Qingchun; LIANG Yingchun
2007-01-01
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algorithm)-based PID neural network controller is designed and trained to emulate the operation of a complete system (magnetic beating, controller, and power amplifiers).The feasibility of using a neural network to control nonlinear magnetic beating systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.
Institute of Scientific and Technical Information of China (English)
谭冠政; 曾庆冬; 李文斌
2004-01-01
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
Evaluation of PD/PID controller for insulin control on blood glucose regulation in a Type-I diabetes
Mahmud, Farhanahani; Isse, Nadir Hussien; Daud, Nur Atikah Mohd; Morsin, Marlia
2017-01-01
This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB-Simulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer.
An optimal PID controller via LQR for standard second order plus time delay systems.
Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S
2016-01-01
An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed.
Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID
Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.
2016-07-01
The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.
A new autotuning algorithm for PID controllers using dead-beat format.
Bandyopadhyay, R; Patranabis, D
2001-01-01
A novel algorithm for PID controllers based on dead-beat control and fuzzy inference mechanism is presented in this paper. The proposition is an extension of the work by the authors where the PI form of the algorithm was presented. The inclusion of the derivative term makes the method suitable for application in all types of processes including the ones having high rate disturbances. The proposed algorithm seems to be a complete and generalized PID autotuner as can be seen by the simulated and experimental results. In all the cases the method shows substantial improvement over the controller tuned with Ziegler Nichol's formula and the PI controller proposed in R. Bandyopadhyay, D. Patranabis, A fuzzy logic based PI autotuner, ISA Transactions 37 (1998) 227-235.
Tuning PID and FOPID Controllers using the Integral Time Absolute Error Criterion
Maiti, Deepyaman; Chakraborty, Mithun; Konar, Amit; Janarthanan, Ramadoss
2008-01-01
Particle swarm optimization (PSO) is extensively used for real parameter optimization in diverse fields of study. This paper describes an application of PSO to the problem of designing a fractional-order proportional-integral-derivative (FOPID) controller whose parameters comprise proportionality constant, integral constant, derivative constant, integral order (lambda) and derivative order (delta). The presence of five optimizable parameters makes the task of designing a FOPID controller more challenging than conventional PID controller design. Our design method focuses on minimizing the Integral Time Absolute Error (ITAE) criterion. The digital realization of the deigned system utilizes the Tustin operator-based continued fraction expansion scheme. We carry out a simulation that illustrates the effectiveness of the proposed approach especially for realizing fractional-order plants. This paper also attempts to study the behavior of fractional PID controller vis-a-vis that of its integer order counterpart and ...
A Novel Approach in Designing PID Controller for Semi-active Quarter Car Model
Directory of Open Access Journals (Sweden)
Mehta Vedant
2016-01-01
Full Text Available This paper implements Teaching-Learning based optimization (TLBO to obtain optimized value of spring stiffness for better ride comfort. Further, this optimized value is then used in a semi-active quarter car setup to remove any discrepancies due to non-optimized spring. This paper also introduces a novel approach to control the Semi-active suspension parameter (damping coefficient for a better performance. For controlling semi-active parameters, PID controller has been used. PID controller output is fed to the quarter car setup as a damping coefficient. Thus changing the damping coefficient dynamically as the disturbance occurs, and thus improving the ride comfort. The sprung mass acceleration and rattle space of semi-active quarter car has been compared with sprung mass acceleration and rattle space of passive quarter car model to show the difference in results and thereby, results and conclusions are drawn.
HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS
Directory of Open Access Journals (Sweden)
M.K. Tan
2011-07-01
Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.
Optimal PID control of a brushless DC motor using PSO and BF techniques
Directory of Open Access Journals (Sweden)
H.E.A. Ibrahim
2014-06-01
Full Text Available This paper presents a Particle Swarm Optimization (PSO technique and bacterial foraging (BF technique for determining the optimal parameters of (PID controller for speed control of a brushless DC motor (BLDC where the (BLDC motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.
NN robust based-PID Control of A Two-Link Flexible Robot Manipulator
Directory of Open Access Journals (Sweden)
Moh. Khairudin
2012-01-01
Full Text Available This paper presents control of a two-link flexible robot manipulator. A planar two-link flexible manipulator that moves in the horizontal plane is considered. A dynamic model of the system is developed using an assumed mode methods. The NN robust based-PID controller is used to reduce a nonlinearities problem that can be efficiently solved. The system responses namely hub angular position, deflection and end-point acceleration responses at both links are obtained and analysed.
Application of a New Membership Function in Nonlinear Fuzzy PID Controllers with Variable Gains
Directory of Open Access Journals (Sweden)
Xuda Zhang
2014-01-01
Full Text Available This paper proposes a nonlinear fuzzy PID control algorithm, whose membership function (MF is adjustable, is universal, and has a wide adjustable range. Appling this function to fuzzy control theory will increase system’s tunability. The continuity of this function is proved. This method was employed in the simulation and HIL experiments. Effectiveness and feasibility of this function are demonstrated in the results.
A Fuzzy PID Approach for the Vibration Control of the FSPM
Directory of Open Access Journals (Sweden)
Zhu-Feng Shao
2013-01-01
Full Text Available This paper focuses on the vibration control issue of a Flexibly Supported Parallel Manipulator (FSPM, which consists of a flexible support and a rigid parallel manipulator. The distinct characteristic of an FSPM is the dynamic coupling between the rigid and flexible parts, which challenges the vibration control implemented by the rigid parallel manipulator. The research object is a 40m scale model of the Feed Support System (FSS for the Five-hundred-meter Aperture Spherical radio Telescope (FAST project, which is composed of a cable-driven parallel manipulator, an A-B rotator and a rigid Stewart manipulator, assembled in series. The cable-driven parallel manipulator is sensitive to disturbances and could lead to system vibration with a large terminal error. The rigid Stewart manipulator is designed to carry out the vibration control. Considering the time-variability, nonlinearity and dynamic coupling of an FSPM, a fuzzy proportional–integral–derivative (PID controller is introduced. The fuzzy inference rules established on the terminal error and the error change are used to adjust the PID parameters to achieve better performance. Physical experiments are carried out and the results indicate that the fuzzy PID method can effectively promote the terminal precision and maintain system stability. The control methodology proposed in this paper is quite promising for the vibration control of an FSPM.
Genetic Optimization Algorithm of PID Decoupling Control for VAV Air-Conditioning System
Institute of Scientific and Technical Information of China (English)
WANG Jiangjiang; AN Dawei; ZHANG Chunfa; JING Youyin
2009-01-01
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multi-variable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified l0 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance
Institute of Scientific and Technical Information of China (English)
陈彦民; 何勇灵; 周岷峰
2015-01-01
A decentralized PID neural network (PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton−Euler formalism. For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field. Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
A GA-based PID active queue management control design for TCP/IP networks
Kuo, H.-H.; Chen, C.-K.; Yan, J.-J.; Liao, T.-L.
2008-02-01
In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes.
The power stability of a fiber amplifier based on a multifunction card and PID control program
Zhang, Linjie; Yang, Wenguang; Zhang, Hao; Zhao, JianMing; Jia, Suotang
2016-06-01
The power stability of a fiber amplifier was significantly improved by means of simultaneously controlling the current of a fiber amplifier and the diffraction efficiency of an acousto-optical modulator. The real-time fluctuation of laser power was recorded by a multifunction card and processed by a proportional-integral-derivative (PID) control program. The feedback loop voltage was introduced to the fiber laser amplifier and acoustic-optic modulator through the analog output of the multifunction card. The control method based on a multifunction card and PID program has good scalability, flexibility and reliability for the complex system on the condition in which the frequency and power of the laser need to be precisely stabilized.
Institute of Scientific and Technical Information of China (English)
季学武; 王健; 赵又群; 刘亚辉; 臧利国; 李波
2015-01-01
In order to diminish the impacts of external disturbance such as parking speed fluctuation and model un-certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre-view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po-sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.
Tuning of PID controllers for integrating systems using direct synthesis method.
Anil, Ch; Padma Sree, R
2015-07-01
A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability.
Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System
Directory of Open Access Journals (Sweden)
Shan Zuo
2014-01-01
Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.
On PID Controller Design by Combining Pole Placement Technique with Symmetrical Optimum Criterion
Directory of Open Access Journals (Sweden)
Viorel Nicolau
2013-01-01
Full Text Available In this paper, aspects of analytical design of PID controllers are studied, by combining pole placement technique with symmetrical optimum criterion. The proposed method is based on low-order plant model with pure integrator, and it can be used for both fast and slow processes. Starting from the desired closed-loop transfer function, which contains a second-order oscillating system and a lead-lag compensator, it is shown that the zero value depends on the real-pole value of closed-loop transfer function. In addition, there is only one pole value, which satisfies the assumptions of symmetrical optimum criterion imposed to open-loop transfer function. In these conditions, by combining the pole placement technique with symmetrical optimum criterion, the analytical expressions of the controller parameters can be simplified. For simulations, PID autopilot design for heading control problem of a conventional ship is considered.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller.
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina
2016-08-01
The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly ( P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.
Directory of Open Access Journals (Sweden)
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes.
Maghade, D K; Patre, B M
2012-07-01
In this paper, a decentralized PI/PID controller design method based on gain and phase margin specifications for two-input-two-output (TITO) interactive processes is proposed. The decouplers are designed for systems to minimize the interaction between the loops, and the first order plus dead time (FOPDT) model is achieved for each decoupled subsystem based on the frequency response fitting. An independent PI/PID controller is designed for each reduced order decoupled subsystem to obtain the desired gain and phase margins, and the performance is verified on the original interactive system to show the effectiveness of the proposed design method for the general class of TITO systems. Simulation examples are incorporated to validate the usefulness of the presented algorithm. An experimentation is performed on the Level-Temperature reactor process to show the practical applicability of the proposed method for the interactive system.
A PSO-PID quaternion model based trajectory control of a hexarotor UAV
Artale, Valeria; Milazzo, Cristina L. R.; Orlando, Calogero; Ricciardello, Angela
2015-12-01
A quaternion based trajectory controller for a prototype of an Unmanned Aerial Vehicle (UAV) is discussed in this paper. The dynamics of the UAV, a hexarotor in details, is described in terms of quaternion instead of the usual Euler angle parameterization. As UAV flight management concerns, the method here implemented consists of two main steps: trajectory and attitude control via Proportional-Integrative-Derivative (PID) and Proportional-Derivative (PD) technique respectively and the application of Particle Swarm Optimization (PSO) method in order to tune the PID and PD parameters. The optimization is the consequence of the minimization of a objective function related to the error with the respect to a proper trajectory. Numerical simulations support and validate the proposed method.
Design of Multiregional Supervisory Fuzzy PID Control of pH Reactors
Directory of Open Access Journals (Sweden)
Shebel AlSabbah
2015-01-01
Full Text Available This work concerns designing multiregional supervisory fuzzy PID (Proportional-Integral-Derivative control for pH reactors. The proposed work focuses, mainly, on two themes. The first one is to propose a multiregional supervisory fuzzy-based cascade control structure. It would enable modifying dynamics and enhance system’s stability. The fuzzy system (master loop has been chosen as a tuner for PID controller (slave loop. It takes into consideration parameters uncertainties and reference tracking. The second theme concerns designing a hybrid neural network-based pH estimator. The proposed estimator would overcome the industrial drawbacks, that is, cost and size, found with conventional methods for pH measurement. The final end-user-interface (EUI front panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based estimator have been presented using the compatibility found between LabView and MatLab. They lead to conclude that the proposed algorithms are appropriate to systems nonlinearities encountered with pH reactors.
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, LAS/PPGEPS Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br
2009-02-28
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Jin, Q B; Liu, Q; Huang, B
2016-03-01
This paper considers the problem of determining all the robust PID (proportional-integral-derivative) controllers in terms of the gain and phase margins (GPM) for open-loop unstable first order plus time delay (UFOPTD) processes. It is the first time that the feasible ranges of the GPM specifications provided by a PID controller are given for UFOPTD processes. A gain and phase margin tester is used to modify the original model, and the ranges of the margin specifications are derived such that the modified model can be stabilized by a stabilizing PID controller based on Hermite-Biehlers Theorem. Furthermore, we obtain all the controllers satisfying a given margin specification. Simulation studies show how to use the results to design a robust PID controller.
Goher, K M; Fadlallah, S O
2017-01-01
This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink(®) environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme.
Directory of Open Access Journals (Sweden)
Khulood A. Dagher
2013-12-01
Full Text Available A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Controller
Institute of Scientific and Technical Information of China (English)
CHENQing-Geng; WANGNing; HUANGShao-Feng
2005-01-01
Enlightened by distribution of creatures in natural ecology environment, the distribution population-based genetic algorithm (DPGA) is presented in this paper. The searching capability of the algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and the simulation results show that satisfactory performances are obtained.
Regression model for tuning the PID controller with fractional order time delay system
S.P. Agnihotri; Laxman Madhavrao Waghmare
2014-01-01
In this paper a regression model based for tuning proportional integral derivative (PID) controller with fractional order time delay system is proposed. The novelty of this paper is that tuning parameters of the fractional order time delay system are optimally predicted using the regression model. In the proposed method, the output parameters of the fractional order system are used to derive the regression function. Here, the regression model depends on the weights of the exponential function...
Optimal fuzzy PID control tuned with genetic algorithms
Santos, Carlos Miguel Almeida
2013-01-01
Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers tha...
Method’s and Test Stand for Electronic PID Controller
Directory of Open Access Journals (Sweden)
Cristian Paul Chioncel
2009-01-01
Full Text Available The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.
Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop.
Tepljakov, Aleksei; Gonzalez, Emmanuel A; Petlenkov, Eduard; Belikov, Juri; Monje, Concepción A; Petráš, Ivo
2016-01-01
The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach.
Directory of Open Access Journals (Sweden)
Ru Wang
2017-01-01
Full Text Available In order to improve the performance of the hydraulic support electro-hydraulic control system test platform, a self-tuning proportion integration differentiation (PID controller is proposed to imitate the actual pressure of the hydraulic support. To avoid the premature convergence and to improve the convergence velocity for tuning PID parameters, the PID controller is optimized with a hybrid optimization algorithm integrated with the particle swarm algorithm (PSO and genetic algorithm (GA. A selection probability and an adaptive cross probability are introduced into the PSO to enhance the diversity of particles. The proportional overflow valve is installed to control the pressure of the pillar cylinder. The data of the control voltage of the proportional relief valve amplifier and pillar pressure are collected to acquire the system transfer function. Several simulations with different methods are performed on the hydraulic cylinder pressure system. The results demonstrate that the hybrid algorithm for a PID controller has comparatively better global search ability and faster convergence velocity on the pressure control of the hydraulic cylinder. Finally, an experiment is conducted to verify the validity of the proposed method.
PID Testing Method Suitable for Process Control of Solar Cells Mass Production
Directory of Open Access Journals (Sweden)
Xianfang Gou
2015-01-01
Full Text Available Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID, in normal photovoltaic (PV installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, and V-Q test are conducted on solar cells or wafers with SiNx of different refractive index. All comparisons between test results of Rsh, V-Q, and minimodule tests have shown equal results. It is shown that Rsh test can be used as quality inspection of solar cells and V-Q test of coated wafer can be used as process control of solar cells.
Iqbal, Kamran; Roy, Anindo
2004-12-01
In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Padé approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite-Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.
PID Controller Settings Based on a Transient Response Experiment
Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.
2008-01-01
An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…
Control of Perceptual Image Quality Based on PID for Streaming Video
Institute of Scientific and Technical Information of China (English)
SONG Jian-xin
2003-01-01
Constant levels of perceptual quality of streaming video is what ideall users expect. In most cases, however, they receive time-varying levels of quality of video. In this paper, the author proposes a new control method of perceptual quality in variable bit rate video encoding for streaming video. The image quality calculation based on the perception of human visual systems is presented. Quantization properties of DCT coefficients are analyzed to control effectively. Quantization scale factors are ascertained based on the visual mask effect. A Proportional Integral Difference ( PID ) controller is used to control the image quality. Experimental results show that this method improves the perceptual quality uniformity of encoded video.
Active vibration control of piezoelectric bonded smart structures using PID algorithm
Institute of Scientific and Technical Information of China (English)
Zhang Shunqi; Ru¨diger Schmidt; Qin Xiansheng
2015-01-01
Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison. The implemented control strategies are validated by a piezoelectric layered smart plate under var-ious excitations.
Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System
Directory of Open Access Journals (Sweden)
Qiang Gao
2013-01-01
Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings
Directory of Open Access Journals (Sweden)
Parinya Anantachaisilp
2017-01-01
Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.
ACS algorithm-based adaptive fuzzy PID controller and its application to CIP-Ⅰ intelligent leg
Institute of Scientific and Technical Information of China (English)
TAN Guan-zheng; DOU Hong-quan
2007-01-01
Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.
Directory of Open Access Journals (Sweden)
Mohammed Shoeb Mohiuddin
2014-09-01
Full Text Available It is often difficult to develop an accurate mathematical model of DC motor due to unknown load variation, unknown and unavoidable parameter variations or nonlinearities due to saturation temperature variations and system disturbances. Fuzzy logic application can handle such nonlinearities so that the controller design is fundamentally robust which is not possible in conventional controllers. The knowledge base of a fuzzy logic controller (FLC encapsulates expert knowledge and consists of the Data base (membership functions and Rule-Base of the controller. Optimization of both these knowledge base components is critical to the performance of the controller and has traditionally been achieved through a process of trial and error. Such an approach is convenient for FLCs having low numbers of input variables however for greater numbers of inputs, more formal methods of knowledge base optimization are required. In this work, we study the challenging task of controlling the speed of DC motor. The feasibility of such controller design is evaluated by simulation in the MATLAB/Simulink environment. In this study Conventional Proportional Integral Derivative controller, Fuzzy logic controller using a chopper circuit and Fuzzy tuned PID controller are analyzed and compared. Simulation software like MATLAB with Simulink has been used for modeling and simulation purpose. The performance comparison of conventional controller with Fuzzy logic controller using chopper circuit and Fuzzy tuned PID controller has been done in terms of several performance measures Such as Settling time, Rise time and Overshoot.
Pelvic Inflammatory Disease (PID) Statistics
... Search Form Controls Cancel Submit Search the CDC Pelvic Inflammatory Disease (PID) Note: Javascript is disabled or is not ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Pelvic Inflammatory Disease (PID) Statistics Recommend on Facebook Tweet Share Compartir ...
Directory of Open Access Journals (Sweden)
Juli Sardi
2014-09-01
Full Text Available In the present study, bioimpedance signals of human body was utilized to control speed of a wheelchair movement. A bioimpedance is electrically passive part contained the body tissues. The research is one of alternative solutions for patients with paralysis of the upper and lower limb. Firstly, design of system of the research consisted of bioimpedance measuring instruments and a mechanical design of the wheelchair. Bioimpedance measurement was performed by injecting a sinusoidal current source of 0.5 mArms with a frequency of 50 kHz to muscle tissue (shoulder to obtain the output voltage in the range of 0-5 Vdc. With impulse and manual thresholding methods, the voltage signal was classified into several controls command to adjust the speed and direction of the wheelchair control based on PID Controller. The experimental result of the research was realization of bioimpedance signal that used as a reference to control the direction and speed of the wheelchair with a success rate of 86.7 %. A wheelchair velocity was classified into three types of motion, namely slow, medium and fast. Slow speed has a rated speed of 30 Cm/s, medium speed value speed of 40 Cm/s and fast speed value of 50 Cm/s. The wheelchair can also turn to the left and the right in accordance with the wishes of wheelchair user beside to moving forward.
Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.
Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He
2010-01-01
For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method.
Saha, Sourav; Mojumder, Satyajit; Saha, Sumon
2016-07-01
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (kp), integral gain (ki), and derivative gain (kd) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.
Directory of Open Access Journals (Sweden)
M. N. Ab Malek
2009-01-01
Full Text Available For long time the optimization of controller parameters uses the well-known classical method such as the Ziegler-Nichols and the Cohen-Coon tuning techniques. Despite its effectiveness, these off-line tuning techniques can be time consuming especially for a case of complex nonlinear system. This paper attempts to show a great deal on how Metamodeling techniques can be utilized to tune the PID controller parameters quickly. Note that the plant use in this study is the cruise control system with 2 different models, which are the linear model and the nonlinear model. The difference between both models is that the disturbances were taken into consideration for the nonlinear model, but in the linear model the disturbances were assumed as zero. The Radial Basis Function Neural Network Metamodel is able to prove that it can minimize the time in tuning process as it is able to give a good approximation to the optimum controller parameters in both models of this system.
PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants
Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va
2017-09-01
The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.
UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID
Directory of Open Access Journals (Sweden)
Ali Moltajaei Farid
2013-01-01
Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV. First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.
PID控制器参数调整的滚动优化算法%Receding Horizon Optimization Approach to PID Controller Parameters Auto-tuning
Institute of Scientific and Technical Information of China (English)
许敏; 李少远; 蔡文剑
2005-01-01
A novel supervised receding horizon optimal scheme is presented for discrete time systemsin the process control. In the employing level, PID controller is used, while the receding horizonapproach is applied to the optimized level. The considered problem is to optimize the employing levelPID controller parameters through minimizing a generalized predictive control criterion. Comparedwith a fixed parameters PID controller, the proposed algorithm provides well performance over arange of operating condition.
Grid Connected WECS with A Five Level DCMLI using PID Controller
Directory of Open Access Journals (Sweden)
G.Balaji
2014-07-01
Full Text Available This paper deals with the analysis, modeling and control system for permanent magnet synchronous generator (PMSG based wind turbine connected to the grid. A wind energy conversion using DC-DC Buck- Boost Converter for permanent magnet synchronous generator (PMSG based variable speed wind energy conversion system (WECS has been proposed which is integrated with grid using five-level diode clamped multilevel (DCMLI inverter. In this work the instantaneous values of input side current and voltage of DC-DC buck-boost converter are utilized for implementing the PID controller. The proposed work is verified by the simulation in Powersim.
Tuning of IMC based PID controllers for integrating systems with time delay.
Kumar, D B Santosh; Padma Sree, R
2016-07-01
Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers.
GA-based PID control of the plate width in hot-plate mills
Kim, Byungman; Lee, Dae Y.; Cho, Hyungsuck
1999-11-01
In hot plate mills the slabs from incoming reheat furnace are reduced to the desired width and thickness, being rolled out with considerable accuracy. The process of changing the plate width is controlled by a pair of edge rolls, which is called edger. The objectives of this edging process are to meet tight width tolerances of plates and to reduce the yield loss caused by trimming when irregular width is formed at the plate edge. There are several factors that result in complexity and uncertainty in width control. These include inaccurate edger set-up model, degradation of various mill equipment, variation of operation conditions, environments and variation of the dimension of incoming cast slabs. In this paper, a genetic algorithm-based PID control is proposed to ensure the control of the desired width at the exit of the mill. The approach adopted here is essentially optimization of the PID controller gains in order to minimize the error between the desired and actual slab width. Since the design parameters associated with genetic algorithm affect convergence performance, the effects of these parameters are investigated in detail. In addition, the control performance is also evaluated for various process parameters such as initial width of the incoming slab and temperature of the slab. Based on the result obtained from a series of simulations, the proposed control method is found to yield satisfactory performance for various process conditions.
Thermostatic system of sensor in NIR spectrometer based on PID control
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
Ojeda Sarmiento, Juan Manuel; Fuertes Armengol, José Mª; Griful Ponsati, Eulàlia
2014-01-01
This research aims to contribute to the analysis of control performance assessment in extractive metallurgy. Productivity-based indices are proposed in addition to current measuring techniques. Such criteria are employed to compare conventional PID and fuzzy-based controllers in copper smelting. This process is mathematically modeled in order to be simulated. The comparison confirms a better performance of the fuzzy controller in dealing with the molten bath temperature within an Isasmelt fur...
A fuzzy PID-controlled SMA actuator for a two-DOF joint
Directory of Open Access Journals (Sweden)
Shi Zhenyun
2014-04-01
Full Text Available Shape memory alloy (SMA actuator is a potential advanced component for servo-systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
An optimal fuzzy PID control approach for docking maneuver of two spacecraft: Orientational motion
Directory of Open Access Journals (Sweden)
A. Kosari
2017-02-01
Full Text Available This paper describes a scheme for a Fuzzy-Proportional Integral Derivative (FPID controller based on genetic algorithm (GA, in a docking maneuver of two spacecraft. The docking maneuver consists of two parts: translation and orientation. Euler’s gyroscopic equation is applied to obtain governing equations of orientational phase. Here, a designed fuzzy-PID controller for stabilization purpose of orientational phase of a docking maneuver is presented based on the Single Input Fuzzy Inference Motor (SIFIMs dynamically connected Preferrer Fuzzy Inference Motor (PFIM. This fuzzy-PID controller takes the error signal of Euler’s angles and the error of angular velocities of the chaser as its input items, and the driving force as its output. The parameters of the controller are ascertained by using a genetic algorithm. Conflicting objective functions (which their 3D pareto frontiers are obtained by Multi-objective Genetic Algorithm (MOGA are distance errors from the set point, angle errors from the set point, and control efforts. Optimization constraint is maximal of the momentum produced by momentum wheels. The result of optimum point demonstrates that the designed controller makes an efficient performance in the orientational phase of the chaser spacecraft. Compared to similar works, some of system parameters like settling time are improved and overshoot (as a critical parameter in docking maneuver is decreased.
Computation of stabilizing PI and PID controllers for processes with time delay.
Tan, Nusret
2005-04-01
In this paper, a new method for the computation of all stabilizing PI controllers for processes with time delay is given. The proposed method is based on plotting the stability boundary locus in the (kp, ki) plane and then computing the stabilizing values of the parameters of a PI controller for a given time delay system. The technique presented does not need to use Pade approximation and does not require sweeping over the parameters and also does not use linear programming to solve a set of inequalities. Thus it offers several important advantages over existing results obtained in this direction. Beyond stabilization, the method is used to compute stabilizing PI controllers which achieve user specified gain and phase margins. The proposed method is also used to design PID controllers for control systems with time delay. The limiting values of a PID controller which stabilize a given system with time delay are obtained in the (kp, ki) plane, (kp, kd) plane, and (ki, kd) plane. Examples are given to show the benefits of the method presented.
A numerical model including PID control of a multizone crystal growth furnace
Panzarella, Charles H.; Kassemi, Mohammad
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
基于 FPGA 的 PID 光束稳定控制系统研制%Development of PID Control System for Beam Stability Based on FPGA
Institute of Scientific and Technical Information of China (English)
芮小军; 张永立; 张招红; 郑丽芳
2015-01-01
为了抑制外来振动对上海光源红外光束稳定性的影响，提高实验站的供光品质，研制了一种以数字PID控制器为核心的反馈控制系统。同时分析了数字PID控制算法，并应用FPGA技术，采用自顶向下的方法进行Verilog语言和原理图相结合的方式编程，设计了增量式数字PID控制器。测试结果表明：该反馈控制系统能有效地抑制红外光束的光斑位置抖动，最大工作带宽250 Hz。%A kind of feedback control system, with the digital PID controller as its core, is developed to stabilize the infrared beam position of SSRF disturbed by the external environment.Meanwhile, Verilog and schematic diagram are adopted to finish the top-down design of the increasing controller with FPGA based on PID control algorithm.The results show that the stability of the infrared beam position is dramatically improved by adopting the feedback control system, and the maximum effective operating band is 250 Hz.
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle
Khozhaev, I. V.; Gayvoronskiy, S. A.
2016-04-01
Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.
Directory of Open Access Journals (Sweden)
S.Swathi,
2014-01-01
Full Text Available This paper deals with the electronic load controller for self exited induction generator using PID plus fuzzy logic controller. The self-excited induction generators (SEIGs are considered to be well suited for generating electricity by means of conventional energy sources and for supplying electrical energy in remote and rural areas. Induction generators have many advantages such as cost, reduced maintenance, rugged, and simple construction, brushless rotor (squirrel cage. A three phase induction generator can be operated on a delta connection for supplying single phase loads. The main disadvantage of SEIG has is that it poor voltage regulation, and its value depends on the prime mover speed, capacitance, load current and power factor of the load. The electronic load controller (ELC can be used for maintaining constant voltage and frequency of SEIG with variable consumer load driven by constant prime mover. This paper presents the simulation design and implementation of ELC using fuzzy logic method for an SEIG feeding single-phase load. The ELC consist of a rectifier, IGBT as a chopper switch, PI controller, voltage sensor, and resistive dump load in which power consumption was varied through the duty cycle of the chopper. However an ELC consist of electronics system, in general, has complex nonlinear model with parameter variation problem, and the control need to be very fast. The fuzzy logic based controller gives nonlinear control with fast response and virtually no overshoot. The simulation of ELC for self exited induction generator is carried out on MATLAB/SIMULINK. By this proposed ELC using FLC for SEIG we can maintain the constant voltage and frequency of SEIG with variable consumer load.
Comparative Analysis of Pso-Pid and Hu-Pid
Directory of Open Access Journals (Sweden)
Chanda Thakur
2017-02-01
Full Text Available PID control is an important ingredient of a distributed control system. The controllers are also embedded in many special purpose control systems. PID control is often combined with logic, sequential functions, selectors, and simple function blocks to build the complicated automation systems used for energy production, transportation, and manufacturing. Many sophisticated control strategies, such as model predictive control, are also organized hierarchically. PID control is used at the lowest level; the multivariable controller gives the set points to the controllers at the lower level. The PID controller can thus be said to be the “bread and butter‟ of power system engineering. It is an important component in every control engineer‟s tool box. PID controllers have survived many changes in technology, from mechanics and pneumatics to microprocessors via electronic tubes, transistors, integrated circuits. The microprocessor has had a dramatic influence on the PID controller
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time
Directory of Open Access Journals (Sweden)
Paula A. Ortiz-Valencia
2013-11-01
Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.
The PID Control Mode Study Based on the Inteligent Control%基于智能控制的PID控制方式的研究
Institute of Scientific and Technical Information of China (English)
刘莉宏
2012-01-01
With PID control as the core,combining and application intelligent control technology,this essay has made a sdudy of PID control ways based on the intelligent control.It analyses the characteristics of the PID control and intelligent control advantage,and introduces expert PID control,fuzzy PID control,neural network PID control the structure,principle,function,characteristics and application,and puts forward a new intelligent PID control.%以PID控制为核心,结合并应用智能控制技术,对基于智能控制的PID控制方式进行了研究。分析了PID控制的特点和智能控制的优势,介绍了专家PID控制、模糊PID控制、神经网络PID控制的结构、原理、功能、特点及应用,提出了一种新型智能PID控制思想。
Directory of Open Access Journals (Sweden)
Alrijadjis .
2014-12-01
Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.
New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes
Directory of Open Access Journals (Sweden)
Duby Castellanos-Cárdenas
2015-01-01
Full Text Available In this paper new tuning rules for Proportional Integral Derivative (PID are presented, which are based on Internal Model Control (IMC. This set of equations minimizes the performance index, in this case, the Integral Absolute Error (IAE. Furthermore, a correlation is proposed in order to calculate the tuning parameter of the method, where a holding oscillation response is obtained regarding changes in the set point. This value represents a stability limit for the IMC method. The overall development is then applied to an Inverse Response System of second order and with dead time.
The Design of Inverted Pendulum System Based on Virtual Prototype Technology and PID Control
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>A design scheme of a single Inverted Pendulum Virtual Prototype based on the combination of software and hardware is introduced.It uses hardware platform of C8051F020 single chip and the software of Matlab,Visual Basic and Kingview.It can simulate the force and movement of Inverted Pendulum expediently and intuitively.The combination of software and hardware makes the system closer to the reality.The concrete scheme is introduced in the paper and the result of PID control which verifies the correctness of the scheme.
A novel multi-drive electric vehicle system control based on multi-input multi-output PID controller
Directory of Open Access Journals (Sweden)
Gasbaoui Brahim
2012-01-01
Full Text Available In-wheel-motor drive electric vehicle (EV is an innovative configuration of the modern EV, in which each wheel is driven individually by an electric motor. The classical traction motor control called the Independent Machine Control Structure (IMCS using a PID speed controller presents major inconveniences in modern EV safety, when the proposed control can not ensure stability of the EV with differing road topology and variations of speed. A new approach is proposed for a control of a two-in-wheel-motor drive EV, called the Maximum Control Structure MCS. This is based on a multivariable PID (MIMO-PID strategy, which is employed to estimate the linear speed error of each of the two back driving wheels, when the error of each wheel is taken into account in the other speed control computations. Simulation results show that the new control system presents increased safety for the EVs compared with the IMCS strategy and can maintain the error slip rate within the optimal range, ensuring the stability of the vehicle either in a straight or a curved line.
Three Phase Motor Centrifugal Machines Speed Control Using Pid Fuzzy Method
Directory of Open Access Journals (Sweden)
Trio Yus Peristiaferi
2015-03-01
Full Text Available Induction motor speed settings are still done manually by changing the position of the shaft or the size of the puli engine centrifugal. This method resulted in an arrangement with the speed of the motor will be difficult to control as expected. Inappropriate speed settings can also lead to less sugar production results. It is therefore necessary to maintain the control method of motor speed when load is added while experiencing the process of starting, spinning and breaking. The controller that is used is the PID Fuzzy. In a using simulation and implementation of using controller PID Fuzzy having the averages error when processing starting, spinning and breaking a dising about 0.51 % and about 1.06 %. So this final project hoped can help increase the efficiency of the centrifugal on sugar factory machine.
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
Design Of A Novel Online Experiment Setup For PID Controller Applications
Directory of Open Access Journals (Sweden)
Sezgin Kaçar
2017-02-01
Full Text Available In this study, an internet based remote access experiment setup was developed for induction direct current motor speed control with PID controller which can be used as a support material in engineering education. The experiment setup is wireless and communicates with the remote server using transfer control protocol/internet protocol through a wireless ADSL modem. Users can perform the experiments as real time accessing the web pages in the remote server by using any computer which has internet connection. By means of interactively-designed web pages, users can monitor the speed change executing alterations of the PID controller parameter and motor reference speed. Also users can save the measured values on their own computers. In addition to this, with the support of a webcam, the running of the experimental set can be monitored on the web page. Additionally, for the experimental set, preparing the peripheral units card, the interaction was expanded between the user and the experimental set. Relatively to this, the user can monitor the ambient temperature of the experimental set’s current place on the web page and can make his/her own message write on LCD of the experimental set and can enlighten it if he/she wants.
PID Controllers Design Applied to Positioning of Ball on the Stewart Platform
Directory of Open Access Journals (Sweden)
Koszewnik Andrzej
2014-12-01
Full Text Available The paper presents the design and practical implementation of PID controllers for a Stewart platform. The platform uses a resistance touch panel as a sensor and servo motors as actuators. The complete control system stabilizing the ball on the platform is realized with the Arduino microcontroller and the Matlab/Simulink software. Two processes required to acquire measurement signals from the touch panel in two perpendicular directions X and Y, are discussed. The first process includes the calibration of the touch panel, and the second process - the filtering of measurement signals with the low pass Butterworth filter. The obtained signals are used to design the algorithm of the ball stabilization by decoupling the global system into two local subsystems. The algorithm is implemented in a soft real time system. The parameters of both PID controllers (PIDx and PIDy are tuned by the trial-error method and implemented in the microcontroller. Finally, the complete control system is tested at the laboratory stand.
Fitzpatrick, Clare K; Baldwin, Mark A; Clary, Chadd W; Maletsky, Lorin P; Rullkoetter, Paul J
2014-01-01
Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Implementation of ON/OFF and PID controller using TCP Protocol Based on Virtual Instrumentation
Directory of Open Access Journals (Sweden)
Abhyarthana Bisoyi , Umesh Chandra Pati
2013-03-01
Full Text Available LabVIEW(Laboratory Virtual InstrumentEngineering Workbenchisthe softwarewhichgives virtual existence ofhardware, reduces its costand hencetermed as Virtual Instrumentation.Thispaper deals with the implementation ofON/OFFand PID controller for controlling the temperatureof a heating element inside a wooden box with thehelp of LabVIEW. In this software,TransmissionControl Protocol (TCPis used for developing anonline transmission processbetween client andserver. Client has control overthe set point andServer has control over the temperature. Inhardware section, a DataAcquisition (DAQ cardreads temperature from sensor and delivers toServer. With the help of internet protocol,clientprovides the value ofset point according to whichthe control actions aretaken by the server.Thepaper also includes discussions regarding theadvantages and disadvantages of TCP/IP.
PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling
Directory of Open Access Journals (Sweden)
Yu Zhang
2014-11-01
Full Text Available In three-phase inverters used in uninterruptible power supplies (UPSs, three-limb inductors and three-limb transformers are commonly used in consideration of cost and size. However, magnetic coupling exists between the three phases of the inverter, which can result in complex models. When instantaneous feedback control strategies are introduced to achieve high quality output waveforms, the transient analysis of the closed-loop inverters becomes difficult. In this paper, the phenomenon of magnetic coupling in three-phase inverters due to three-limb inductors and three-limb transformers is analyzed. A decoupled dynamic model is derived based on the instantaneous symmetrical components transformation, which comprises three decoupled equivalent circuits of instantaneous symmetrical components. Analyses based on this model indicate that magnetic coupling may have a significant impact on the performance of three-phase inverters under unbalanced load conditions and transient responses. For three-phase inverters in UPSs with Proportional-Integral-Differential (PID closed-loop control strategies, the interactive influence between instantaneous closed-loop regulation and magnetic coupling is researched. Finally, a method of reliability analysis and PID controller design for inverters with magnetic coupling is derived. Simulation and experiment results validate the model and conclusions.
Long-term stabilization of the optical fiber phase control using dual PID
Institute of Scientific and Technical Information of China (English)
WU; Yue; CHEN; Guozhu; SHEN; Yong; ZOU; Hongxin
2015-01-01
We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual proportional-integral- derivative( PID) adjustment. With this approach,we can suppress the fast disturbance and slow drifting of optical fiber to satisfy the requirements of optical phase long-term locking. In theory,a mathematical model of an optical fiber phase control system is established. The disturbance term induced by environment influence is considered into the PLL model. The monotonous and continuous changing environment disturbance w ill cause a steady-state error in this theory model. The experimental results accords w ell w ith the theory. The steady-state performance,adjusting time,and overshoot can be improved by using the dual PID control. As a result,the long-term,highly stable and low noise fiber phase locking is realized experimentally.
A PID Positioning Controller with a Curve Fitting Model Based on RFID Technology
Directory of Open Access Journals (Sweden)
Young-Long Chen
2013-04-01
Full Text Available The global positioning system (GPS is an important research topic to solve outdoor positioning problems, but GPS is unable to locate objects accurately and precisely indoors. Some available systems apply ultrasound or optical tracking. This paper presents an efficient proportional-integral-derivative (PID controller with curve fitting model for mobile robot localization and position estimation which adopts passive radio frequency identification (RFID tags in a space. This scheme is based on a mobile robot carries an RFID reader module which reads the installed low-cost passive tags under the floor in a grid-like pattern. The PID controllers increase the efficiency of captured RFID tags and the curve fitting model is used to systematically identify the revolutions per minute (RPM of the motor. We control and monitor the position of the robot from a remote location through a mobile phone via Wi-Fi and Bluetooth network. Experiment results present that the number of captured RFID tags of our proposed scheme outperforms that of the previous scheme.
Institute of Scientific and Technical Information of China (English)
Lei Wang; Wencai Du; Hai Wang; Hong Wu
2008-01-01
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
Computation of stabilizing PI and PID controllers by using Kronecker summation method
Energy Technology Data Exchange (ETDEWEB)
Fang, Jian' an; Zheng, Da; Ren, Zhengyun [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)
2009-07-15
In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (k{sub p}, k{sub i}), (k{sub p}, k{sub d}) and (k{sub i}, k{sub d}) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method. (author)
Computation of stabilizing PI and PID controllers by using Kronecker summation method
Energy Technology Data Exchange (ETDEWEB)
Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Zheng Da [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: zhengda@mail.dhu.edu.cn; Ren Zhengyun [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)
2009-07-15
In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (k{sub p}, k{sub i}), (k{sub p}, k{sub d}) and (k{sub i}, k{sub d}) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method.
Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller.
Abdo, Maher Mahmoud; Vali, Ahmad Reza; Toloei, Ali Reza; Arvan, Mohammad Reza
2014-03-01
The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control system is simulated and validated using MATLAB. Then, the performance of proposed controller is evaluated comparing with conventional PI controller in terms of transient response analysis and quantitative study of error analysis. The simulation results obtained in different conditions prove the efficiency of the proposed fuzzy controller which offers a better response than the classical one, and improves further the transient and steady-state performance.
Robust on-line relay automatic tuning of PID control systems
Tan; Lee; Jiang
2000-01-01
In this paper, a robust on-line relay automatic tuning method for PID control systems is developed which expand on the application domain of Astrom's renowned relay autotuning method. In the proposed configuration, a relay is applied to an inner loop of a controller-stabilised process in the usual manner. Using the induced limit cycle oscillations from the closed-loop system, the controller settings may be re-tuned non-iteratively to achieve enhanced performance without disrupting closed-loop control. Two control tuning methodologies are developed -- a direct and an indirect method based on an explicit process model. Simulation examples and a real-time experiment are provided to illustrate the practical appeal and potential advantages of the proposed method over the basic one.
A PID Positioning Controller with a Curve Fitting Model Based on RFID Technology
Directory of Open Access Journals (Sweden)
Young-Long Chen
2013-03-01
Full Text Available The global positioning system (GPS is an important research topic to solve outdoor positioning problems, but GPSis unable to locate objects accurately and precisely indoors. Some available systems apply ultrasound or opticaltracking. This paper presents an efficient proportional-integral-derivative (PID controller with curve fitting model formobile robot localization and position estimation which adopts passive radio frequency identification (RFID tags ina space. This scheme is based on a mobile robot carries an RFID reader module which reads the installed low-costpassive tags under the floor in a grid-like pattern. The PID controllers increase the efficiency of captured RFID tagsand the curve fitting model is used to systematically identify the revolutions per minute (RPM of the motor. Wecontrol and monitor the position of the robot from a remote location through a mobile phone via Wi-Fi and Bluetoothnetwork. Experiment results present that the number of captured RFID tags of our proposed scheme outperformsthat of the previous scheme.
Directory of Open Access Journals (Sweden)
Kharidege Ahmed
2016-01-01
Full Text Available Today’s arm manipulators are more and more demanding in terms of productivity. Conventional controllers are not always able to provide good and accurate results. To complete a position movement of the manipulator’s end-effector, a set of joint angles of manipulator first required to be converted to the position coordinates by using the forward kinematics method, and each joint rotation is executed using a servomotor feedback control. The kinematic model has been validated using MATLAB® robotics toolbox. An end-effector based 6 degree of freedom (6-DOF platform is proposed in this work which uses DC servomotor for actuation of the three revolute joints. PID controller is used as a reference benchmark. And FLC controller with different defuzzification strategies was employed. Results were compared in terms of time response criteria. Simulation results using MATLAB are demonstrated that PID has superior performance in terms of transient parameters. In Steady state response, both PID and FLC manage to converge to the desired output but in terms of overshot FLC is outperformed.
Directory of Open Access Journals (Sweden)
Haitao Zhang
2015-01-01
Full Text Available We first analyze the effect of network-induced delay on the stability of networked control systems (NCSs. Then, aiming at stochastic characteristics of the time delay, we introduce a new Smith predictor to remove the exponential function with the time delay in the closed-loop characteristic equation of the NCS. Furthermore, we combine the fuzzy PID algorithm with the fuzzy immune control algorithm and present a fuzzy immune self-adaptive PID algorithm to compensate the influence of the model deviation of the controlled object. At last, a kind of fuzzy immune self-adaptive PID algorithm based on new Smith predictor is presented to apply to the NCS. The simulation research on a DC motor is given to show the effectiveness of the proposed algorithm.
PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem.
Roy, Anindo; Iqbal, Kamran
2005-07-01
This paper discusses PID stabilization of a first-order-plus-dead-time (FOPDT) process model using the stability framework of the Hermite-Biehler theorem. The FOPDT model approximates many processes in the chemical and petroleum industries. Using a PID controller and first-order Padé approximation for the transport delay, the Hermite-Biehler theorem allows one to analytically study the stability of the closed-loop system. We derive necessary and sufficient conditions for stability and develop an algorithm for selection of stabilizing feedback gains. The results are given in terms of stability bounds that are functions of plant parameters. Sensitivity and disturbance rejection characteristics of the proposed PID controller are studied. The results are compared with established tuning methods such as Ziegler-Nichols, Cohen-Coon, and internal model control.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the
Intuitive robust stability metric for PID control of self-regulating processes.
Arbogast, Jeffrey E; Beauregard, Brett M; Cooper, Douglas J
2008-10-01
Published methods establish how plant-model mismatch in the process gain and dead time impacts closed-loop stability. However, these methods assume no plant-model mismatch in the process time constant. The work presented here proposes the robust stability factor metric, RSF, to examine the effect of plant-model mismatch in the process gain, dead time, and time constant. The RSF is presented in two forms: an equation form and a visual form displayed on robustness plots derived from the Bode and Nyquist stability criteria. This understanding of robust stability is reinforced through visual examples of how closed-loop performance changes with various levels of plant-model mismatch. One example shows how plant-model mismatch in the time constant can impact closed-loop stability as much as plant-model mismatch in the gain and/or dead time. Theoretical discussion shows that the impact is greater for small dead time to time constant ratios. As the closed-loop time constant used in Internal Model Control (IMC) tuning decreases, the impact becomes significant for a larger range of dead time to time constant ratios. To complete the presentation, the RSF is used to compare the robust stability of IMC-PI tuning to other PI, PID, and PID with Filter tuning correlations.
Back stepping-Based-PID-Controller Designed for an Artificial Pancreas model
Directory of Open Access Journals (Sweden)
ShaimaMahmou Mahdi
2011-01-01
Full Text Available Artificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable and glucose level in Bergmans system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology
Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian
In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Mendoza, Marco; Zavala-Río, Arturo; Santibáñez, Víctor; Reyes, Fernando
2015-10-01
In this paper, a globally stabilising PID-type control scheme with a generalised saturating structure for robot manipulators under input constraints is proposed. It gives rise to various families of bounded PID-type controllers whose implementation is released from the exact knowledge of the system parameters and model structure. Compared to previous approaches of the kind, the proposed scheme is not only characterised by its generalised structure but also by its very simple tuning criterion, the simplest hitherto obtained in the considered analytical framework. Experimental results on a 3-degree-of-freedom direct-drive manipulator corroborate the efficiency of the proposed approach.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations.
一种柔性直流输电系统PID-ANFIS优化控制方法%A control method of PID-ANFIS controller for VSC-HVDC
Institute of Scientific and Technical Information of China (English)
杨天; 霍琳琳
2015-01-01
Due to the PI control system for VSC-HVDC has problems of parameters difficult to set, too many control users, and so on, a novel controller composed of PID function and multiple-output ANFIS (PID-ANFIS) is presented, which is made up of neural network, two order fuzzy control and PID control. A treble cooperative PSO (TCPSO) is also presented to optimize PID-ANFIS controller’s neural parameters. TCPSO is forged by harmonizing the grouping cooperation, the dimension-reduced cooperation and memory cooperation, which is able to improve the precision of optimizing neural networks. This paper provides the process of PID-ANFIS parameters training by TCPSO. Then, the TCPSO based PID-ANFIS controller performs the function of direct power control. The simulation results show that the controller presented has significant advantages of faster speed, smaller overshoot and better robustness by comparing to PI and it is a viable choice for VSC-HVDC control system.%针对柔性直流输电系统(Voltage Source Converter based High-Voltage Direct-Current, VSC-HVDC)双闭环控制中PI控制存在参数整定困难及控制器数量过多等问题，提出一种具有PID功能的自适应神经元模糊推理系统(Adaptive Neuro-Fuzzy Inference System with PID function, PID-ANFIS)控制器用于该系统控制。其中，PID-ANFIS控制器兼有神经网络控制、二阶模糊控制及PID功能；同时提出的基于三重合作粒子群算法(Treble Cooperative Particle Swarm Optimization, TCPSO)用于优化该控制器中神经网络参数。TCPSO采用由降维合作、分组合作与记忆合作组成的三重合作策略，极大程度上提升了神经网络参数优化的精度。深入研究了TCPSO优化PID-ANFIS控制器参数的步骤。基于TCPSO优化的PID-ANFIS控制器能够实现VSC-HVDC系统的直接功率控制效果。仿真结果表明该控制器具有控制速度快、超调量小、抗干扰能力强等优点，是VSC-HVDC控制系统的一个可行方案。
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method.
Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up
Directory of Open Access Journals (Sweden)
Ilber Adonayt Ruge Ruge
2011-12-01
Full Text Available This paper shows the reader the methods of tuning PID controllers Kayser-Rajka (KR and Astrom-Haglund (AH, with the aim of evaluatingtheir performance against some conventional methods like Ziegler-Nichols tuning (ZN. It also shows the method for improving the control signal based on the architecture Antireset Wind-Up.
On the Improved Nonlinear Tracking Differentiator based Nonlinear PID Controller Design
Directory of Open Access Journals (Sweden)
Ibraheem Kasim Ibraheem
2016-10-01
Full Text Available This paper presents a new improved nonlinear tracking differentiator (INTD with hyperbolic tangent function in the state-space system. The stability and convergence of the INTD are thoroughly investigated and proved. Through the error analysis, the proposed INTD can extract differentiation of any piecewise smooth nonlinear signal to reach a high accuracy. The improved tracking differentiator (INTD has the required filtering features and can cope with the nonlinearities caused by the noise. Through simulations, the INTD is implemented as a signal’s derivative generator for the closed-loop feedback control system with a nonlinear PID controller for the nonlinear Mass-Spring-Damper system and showed that it could achieve the signal tracking and differentiation faster with a minimum mean square error.
Stability of PID-Controlled Linear Time-Delay Feedback Systems
Martelli, Gianpasquale
2008-01-01
The stability of feedback systems consisting of linear time-delay plants and PID controllers has been investigated for many years by means of several methods, of which the Nyquist criterion, a generalization of the Hermite-Biehler Theorem, and the root location method are well known. The main purpose of these researches is to determine the range of controller parameters that allow stability. Explicit and complete expressions of the boundaries of these regions and computation procedures with a finite number of steps are now available only for first-order plants, provided with one time delay. In this note, the same results, based on Pontryagin's studies, are presented for arbitrary-order plants.
Performance Analysis of a Neuro-PID Controller Applied to a Robot Manipulator
Directory of Open Access Journals (Sweden)
Saeed Pezeshki
2012-11-01
Full Text Available The performance of robot manipulators with nonadaptive controllers might degrade significantly due to the open loop unstable system and the effect of some uncertainties on the robot model or environment. A novel Neural Network PID controller (NNP is proposed in order to improve the system performance and its robustness. The Neural Network (NN technique is applied to compensate for the effect of the uncertainties of the robot model. With the NN compensator introduced, the system errors and the NN weights with large dispersion are guaranteed to be bounded in the Lyapunov sense. The weights of the NN compensator are adaptively tuned. The simulation results show the effectiveness of the model validation approach and its efficiency to guarantee a stable and accurate trajectory tracking process in the presence of uncertainties.
PID control design for chaotic synchronization using a tribes optimization approach
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Andrade Bernert, Diego Luis de [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: dbernert@gmail.com
2009-10-15
Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System
Lee, Chengming; Chen, Rongshun
2015-01-01
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption. PMID:26007725
Directory of Open Access Journals (Sweden)
Maitraye Sen
2014-05-01
Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System
Directory of Open Access Journals (Sweden)
Chengming Lee
2015-05-01
Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
自整定模糊PID控制器的设计与Simulink仿真%Design of the Fuzzy Self-tuning PID Controller and Simulink Simulation
Institute of Scientific and Technical Information of China (English)
龚齐斌; 向贤兵
2012-01-01
In order to solve the problems of the complicated control system, based on the original PID control, by combining PID with fuzzy adaptive control algorithm, a fuzzy selftuning PID controller is designed. Then, a simula tion is carried out with the help of Simulink in MATLAB. The result shows that the fuzzy selftuning PID controller whose control effect is superior to the original PID controller has great adaptive capacity.%针对复杂系统的控制问题,在原有PID控制的基础上,将PID与模糊控制相结合,设计一种自整定模糊PID控制器,利用MATLAB中的Simulink软件进行仿真。仿真研究表明,自整定模糊PID控制器具有较强的自整定能力,控制效果优于原有PID控制器。
Energy Technology Data Exchange (ETDEWEB)
Das, Pramode K; Mathew, Sam; Shaiju, A J; Patnaik, B S V, E-mail: bsvp@iitm.ac.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036 (India)
2016-02-15
The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response. (paper)
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus.
Thomas, William C; Zarr, Robert R
2011-07-01
A mathematical model has been developed and used to simulate the controlled thermal performance of a large guarded hot-plate apparatus. This highly specialized apparatus comprises three interdependent components whose temperatures are closely controlled in order to measure the thermal conductivity of insulation materials. The simulation model was used to investigate control strategies and derive controller gain parameters that are directly transferable to the actual instrument. The simulations take orders-of-magnitude less time to carry out when compared to traditional tuning methods based on operating the actual apparatus. The control system consists primarily of a PC-based PID control algorithm that regulates the output voltage of programmable power amplifiers. Feedback parameters in the form of controller gains are required for the three heating circuits. An objective is to determine an improved set of gains that meet temperature control criteria for testing insulation materials of interest. The analytical model is based on aggregated thermal capacity representations of the primary components and includes the same control algorithm as used in the actual hot-plate apparatus. The model, accounting for both thermal characteristics and temperature control, was validated by comparisons with test data. The tuning methodology used with the simulation model is described and results are presented. The resulting control algorithm and gain parameters have been used in the actual apparatus without modification during several years of testing materials over wide ranges of thermal conductivity, thickness, and insulation resistance values.
Directory of Open Access Journals (Sweden)
Chen Siyu
2017-01-01
Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.
Directory of Open Access Journals (Sweden)
Kesavan.E
2013-04-01
Full Text Available This paper suggests an idea to design an adaptive PID controller for Non-linear liquid tank System and is implemented in PLC. Online estimation of linear parameters (Time constant and Gain brings an exact model of the process to take perfect control action. Based on these estimated values, the controller parameters will be well tuned by internal model control. Internal model control is an unremarkably used technique and provides well tuned controller in order to have a good controlling process. PLC with its ability to have both continues control for PID Control and digital control for fault diagnosis which ascertains faults in the system and provides alerts about the status of the entire process.
Directory of Open Access Journals (Sweden)
Azita Yazdanpanah
2014-04-01
Full Text Available Continuum robot manipulators are optimized to meet best trajectory requirements. Closed loop control is a key technology that is used to optimize the system output process to achieve this goal. In order to conduct research in the area of closed loop control, a control oriented cycle-to-cycle continuum robot model, containing dynamic model information for each individual continuum robot manipulator, is a necessity. In this research, the continuum robot manipulator is modeled according to information between joint variable and torque, which is represented by the nonlinear dynamic equation. After that, a multi-input-multi-output baseline computed torque control scheme is used to simultaneously control the torque load of system to regulate the joint variables to desired levels. One of the most important challenge in control theory is on-line tuning therefore fuzzy supervised optimization is used to tune the modified baseline and computed torque control coefficient. The performance of the modified baseline computed torque controller is compared with that of a baseline proportional, integral, and derivative (PID controller.
US Agency for International Development — PIDS is the web-based system designed to allow data input and consultative sessions by USAID/Liberia's IPs and USAID personnel. It is established and maintained by...
Directory of Open Access Journals (Sweden)
Amine Chouchaine
2011-01-01
Full Text Available This paper proposes a control strategy for complex and nonlinear systems, based on a parallel distributed compensation (PDC controller. A solution is presented to solve a stability problem that arises when dealing with a Takagi-Sugeno discrete system with great numbers of rules. The PDC controller will use a classical controller like a PI, PID, or RST in each rule with a pole placement strategy to avoid causing instability. The fuzzy controller presented combines the multicontrol approach and the performance of the classical controllers to obtain a robust nonlinear control action that can also deal with time-variant systems. The presented method was applied to a small greenhouse to control its inside temperature by variation in ventilation rate inside the process. The results obtained will show the efficiency of the adopted method to control the nonlinear and complex systems.
Research on Airborne Electro-Optical Tracking and Sighting System Based on Fuzzy PID and H∞ Control
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance, and its control system consists of stabilizing and tracking components. Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition, and its robustness should be very good; tracking control is applied to compensate tracking error of angular position. A mathematical model is established by taking the control of yaw loop as example. H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter. A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control. Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good, especially when the model parameters change and the multi-disturbance exists, the system capability has little fall, but this system still can effectively track a target.
Review, Design, Optimization and Stability Analysis of Fractional-Order PID Controller
Directory of Open Access Journals (Sweden)
Ammar SOUKKOU
2016-07-01
Full Text Available This paper will establish the importance and significance of studying the fractional-order control of nonlinear dynamical systems. The foundation and the sources related to this research scope is going to be set. Then, the paper incorporates a brief overview on how this study is performed and present the organization of this study. The present work investigates the effectiveness of the physical-fractional and biological-genetic operators to develop an Optimal Form of Fractional-order PID Controller (O2Fo-PIDC. The newly developed Fo-PIDC with optimal structure and parameters can, also, improve the performances required in the modeling and control of modern manufacturing-industrial process (MIP. The synthesis methodology of the proposed O2Fo-PIDC can be viewed as a multi-level design approach. The hierarchical Multiobjective genetic algorithm (MGA, adopted in this work, can be visualized as a combination of structural and parametric genes of a controller orchestrated in a hierarchical fashion. Then, it is applied to select an optimal structure and knowledge base of the developed fractional controller to satisfy the various design specification contradictories (simplicity, accuracy, stability and robustness.
Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.
Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M
2016-07-01
In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR
Directory of Open Access Journals (Sweden)
A. G. Bakhanovich
2017-01-01
Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.
Sharma, Richa; Gaur, Prerna; Mittal, A P
2015-09-01
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers.
Directory of Open Access Journals (Sweden)
Maria Isabel Berto
2004-09-01
Full Text Available O trabalho consiste na implementação de um controle convencional PID/SISO-feedback para obter um ajuste fino na temperatura de entrada da água de aquecimento em um processo de pasteurização. Para isto utilizou-se uma resistência de 2500 Watts instalada na linha do fluido secundário da seção de aquecimento do pasteurizador e um Pt100 para a medição de sua temperatura. Como o comportamento desta temperatura em função de uma mesma perturbação degrau de potência na resistência é dependente da vazão de trabalho, objetivou-se encontrar um controle único para que a mesma fosse mantida no set-point desejado na faixa de operação de vazão da água do processo (300 a 700L/h. Três sintonias para o controlador adaptativo PID foram testadas: a primeira consistiu na implementação de uma função adaptativa dos parâmetros PID, ajustada através dos valores individuais obtidos para cada vazão de trabalho conforme metodologia da curva de reação do processo; a segunda consistiu em configurar os parâmetros do PID com os valores médios destes calculados individualmente para cada vazão, e a terceira consistiu na sintonia através de uma função adaptativa ajustada pelos parâmetros de sintonia obtidos pela metodologia de Aström & Hägglund. A avaliação do desempenho das sintonias dos controladores adaptativos foi realizada por comparação dos valores dos índices de erro, obtidos por perturbações do sistema em malha fechada na vazão de água. Os resultados obtidos mostraram que dentre as sintonias testadas, a terceira sintonia, popularmente conhecida como "Bang-Bang", apresentou menores oscilações e os menores valores dos índices de erros.The aim of this work is to implement a conventional PID/SISO feedback control to obtain a fine adjustment of the water inlet temperature at a pasteurization process. For that, a resistance of 2500 Watts and a Pt100 to measure the temperature were installed in the water inlet line of the
PID Testing Method Suitable for Process Control of Solar Cells Mass Production
Xianfang Gou; Xiaoyan Li; Su Zhou; Shaoliang Wang; Weitao Fan; Qingsong Huang
2015-01-01
Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID), in normal photovoltaic (PV) installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, ...
Majdabadi-Farahani, V.; Hanif, M.; Gholaminezhad, I.; Jamali, A.; Nariman-Zadeh, N.
2014-10-01
In this paper, model predictive control (MPC) is used for optimal selection of proportional-integral-derivative (PID) controller gains. In conventional tuning methods a history of response error of the system under control in the passed time is measured and used to adjust PID parameters in order to improve the performance of the system in proceeding time. But MPC obviates this characteristic of classic PID. In fact MPC tries to tune the controller by predicting the system's behaviour some time steps ahead. In this way, PID parameters are adjusted before any real error occurs in the system's response. For this purpose, polynomial meta-models based on the evolved group method of data handling neural networks are obtained to simply simulate the time response of the dynamic system. Moreover, a non-dominated sorting genetic algorithm has been used in a multi-objective Pareto optimisation to select the parameters of the MPC which are prediction horizon, control horizon and relation of weight of Δ u and error, to minimise simultaneously two objective functions that are control effort and integral time absolute error of the system response. The results mentioned at the end obviously declare that the proposed method surpasses conventional tuning methods for PID controllers, and Pareto optimal selection of predictive parameters also improves the performance of the introduced method.
Institute of Scientific and Technical Information of China (English)
ZHANG Dong-Li; TANG Ying-Gan; GUAN Xin-Ping
2014-01-01
Fractional order proportional-integral-derivative (FOPID) controller generalizes the standard PID controller. Compared to PID controller, FOPID controller has more pa-rameters and the tuning of parameters is more complex. In this paper, an improved artificial bee colony algorithm, which com-bines cyclic exchange neighborhood with chaos (CNC-ABC), is proposed for the sake of tuning the parameters of FOPID con-troller. The characteristic of the proposed CNC-ABC exists in two folds: one is that it enlarges the search scope of the solution by utilizing cyclic exchange neighborhood techniques, speeds up the convergence of artificial bee colony algorithm (ABC). The other is that it has potential to get out of local optima by exploit-ing the ergodicity of chaos. The proposed CNC-ABC algorithm is used to optimize the parameters of the FOPID controller for an automatic voltage regulator (AVR) system. Numerical sim-ulations show that the CNC-ABC FOPID controller has better performance than other FOPID and PID controllers.
A new control scheme for PID load frequency controller of single-area and multi-area power systems.
Padhan, Dola Gobinda; Majhi, Somanath
2013-03-01
A new control structure with a tuning method to design a PID load frequency controller for power systems is presented. Initially, the controller is designed for single area power system, then it is extended to multi-area case. The controller parameters are obtained by expanding controller transfer function using Laurent series. Relay based identification technique is adopted to estimate power system dynamics. Robustness studies on stability and performance are provided, with respect to uncertainties in the plant parameters. The proposed scheme ensures that overall system remains asymptotically stable for all bounded uncertainties and for system oscillations. Simulation results show the feasibility of the approach and the proposed method improves the load disturbance rejection performance significantly even in the presence of the uncertainties in plant parameters.
Directory of Open Access Journals (Sweden)
Karthikeyan Rajagopal
2017-01-01
Full Text Available We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The stabilities of the controllers and parameter update laws are proved using Lyapunov stability theory. Use of the optimized PID controllers ensures less time of convergence and fast synchronization speed. Finally the proposed novel hyperchaotic system is realized in FPGA.
Dynamic analysis and control PID path of a model type gantry crane
Ospina-Henao, P. A.; López-Suspes, Framsol
2017-06-01
This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.
Directory of Open Access Journals (Sweden)
Bučanović Ljubiša J.
2014-01-01
Full Text Available This paper deals with the design of a new algorithm of PID control based on fractional calculus (FC in production of technical gases, i.e. in a cryogenic air separation process. Production of low pressure liquid air was first introduced by P. L. Kapica and involved expansion in a gas turbine. For application in the synthesis of the control law, for the input temperature and flow of air to the expansion turbine, it is necessary to determine the appropriate differential equations of the cryogenic process of mixing of two gaseous airflows at different temperatures before entrance to the expansion turbine. Thereafter, the model is linearized and decoupled and consequently classical PID and fractional order controllers are taken to assess the quality of the proposed technique. A set of optimal parameters of these controllers are achieved through the genetic algorithm optimization procedure by minimizing a cost function. Our design method focuses on minimizing performance criterion which involves IAE, overshoot, as well as settling time. A time-domain simulation was used to identify the performance of controller with respect to a traditional optimized PID controller. [Projekat Ministarstva nauke Republike Srbije, br. 35006
Directory of Open Access Journals (Sweden)
Subrata CHATTOPADHYAY
2008-01-01
Full Text Available A single PID controller in a process control loop may suffer from high frequency oscillations without offset or low frequency oscillation with offset. An inverse derivative control action can eliminate both of these errors. In the present paper, a low cost operational amplifier based PID controller with inverse derivative control action has been described. Its transfer function has been derived and is found to be identical with the form already derived by other workers. It has been tested with a process plant analogue and implemented in the voltage control system of a DC generator. Its transfer function along with its characteristics in a process plant analogue and the load characteristics of DC generator with and without this controller have been determined experimentally and reported in this paper.
Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.
2017-08-01
The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.
Directory of Open Access Journals (Sweden)
Xingguo Lu
2016-05-01
Full Text Available In this work, we propose a new method for the optimal design and tuning of a Proportional-Integral-Derivative type (PID-type interval type-2 fuzzy logic controller (IT2 FLC for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.
Directory of Open Access Journals (Sweden)
Xingguo Lu
2016-05-01
Full Text Available In this work, we propose a new method for the optimal design and tuning of a Proportional Integral-Derivative type (PID-type interval type-2 fuzzy logic controller (IT2 FLC for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.
Directory of Open Access Journals (Sweden)
V Soni
2016-04-01
Full Text Available The combination of Grey Wolf Optimization and Pattern Search Technique (hGWO-PS has been introduced to optimize the parameters of two Degree of Freedom Proportional-Integral-Derivative Controller (2DOF-PID for controlling the load frequency in Automatic Generation Control (AGC for interconnected power system. The interconnected two area power system of non-reheat thermal power plants consisting of 2DOF-PID controller in each area has been considered for design and analysis. Firstly, the proposed approach has been implemented in the aforementioned standard test system and thereafter, the robustness of the system consisting 2DOF-PID controller optimized by proposed technique has been estimated using the sensitivity analysis for the same. The robustness of the system consisting of 2DOF-PID controller optimized by proposed scheme is examined by varying the parameters of standard test system, loading conditions during operation, size and location of the disturbances. The performance of the 2DOF-PID controller optimized by proposed approach has also been compared with recently published approaches in the literature. The simulation results show that the proposed hGWOPS optimized 2DOF-PID controller shows far better performance than recently published approaches in the literature in terms of dynamic response. The simulation results also show that system performances hardly change when the operating load condition and system parameters are changed by ±50% from their nominal values, i.e. the proposed controllers are quite robust for a wide range of the system parameters and operating load conditions from their nominal values.
Energy Technology Data Exchange (ETDEWEB)
Silva Junior, Pedro A. da; Selinke, Rubens A.; Martins, Denizar Cruz [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Eletrica. Inst. de Eletronica de Potencia
1996-12-31
This paper presents the analysis and implementation of an algorithm for numerical simulation applied to static converter, using PWM modulation and PID (Proportional Integral Derivative) controller. A buck converter prototype is designed and the experimental results are compared to those of the simulation. (author) 5 refs., 7 figs.; e-mail: inep at inep.ufsc.br
Tactical Network Congestion Control Based on Improved Neuron PID%基于改进的神经元 PID 战术网络拥塞控制
Institute of Scientific and Technical Information of China (English)
张丽丽; 王玉惠; 陈哨东; 吴庆宪
2013-01-01
未来信息化的网络中心战中，网络拥塞问题成为制约战争信息有效传输的瓶颈。单神经元PID拥塞控制算法中，系统的稳定性和超调量等性能对于神经元的增益系数K的依赖性很大，结合无需辨识的自适应控制算法，动态地调整增益系数K；另外，为了进一步提高控制器品质，加入调整因子在线调整神经元权值的学习率；最后将改进后的算法应用到战术网络拥塞控制中。仿真结果验证了所提算法的有效性。%In the information network centric warfare,the network congestion problem becomes the bottleneck of warfare information transformation .In single neuron PID congestion control,the neuron gain K is the main factor affecting the system performance of stability and overshoot,which is totally depended on expertise and is highly subjective .In this paper,the neuron gain K is adjusted dynamically combined with identification-free adaptive control algorithm .In addition,in order to improve the quality of the controller,the adjustment factor is introduced to adjust the learning rate of neuron weight .The simulation results in the tactical network verified the effectiveness and feasibility of the improved algorithm .
Mao, Jun; Hou, Jian; Shen, Dong
2013-03-01
This article describes the control system of PID parameter self-tuning fuzzy controller. For cutting the coal of different hardness, adopt fuzzy techniques, automatically adjust the feed speed of operating mechanism, and maintain the control of operating mechanism of heading machine with constant power.
Directory of Open Access Journals (Sweden)
Hualong Xie
2015-04-01
Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.
Automatic PID Parameter Tuning Based on Unfalsified Control%基于去伪控制的 PID 自适应参数调节
Institute of Scientific and Technical Information of China (English)
姚烯; 刘春生; 王晓霞
2014-01-01
Traditional robust control and adaptive control are based on the accurate models .They can only control the systems with small enough or constant uncertainty .An unfalsified control based on the data driving is proposed to overcome the shortcoming,which is one type of model-free adaptive control .The proposed method is data-driven and doesn ’ t rely on system model .The designed controller is simple and is highly adaptable to online application .In this paper,the basic theory of unfalsified control is introduced and applied to real-time PID controller parameter tuning and adaptation .Simulation is also conducted when there is disturbance with the system .The result shows that the algorithm is actually fairly robust to noise and perturbation .The feasibility and effectiveness of this algorithm are also proved by the simulation result .%针对传统的鲁棒控制和自适应控制都是基于精确模型的控制设计思想，仅仅能够实现对含有足够小的或者恒定不确定性的系统进行控制的弱点，提出了一种基于数据的无模型自适应控制方法---去伪控制。该方法只需利用采集的数据，不依赖于系统模型，所设计的控制器形式简单，适合实时在线应用。介绍了该控制方法的基本理论，将其应用到实时PID参数自适应调节上，并在系统有干扰的情况下进行了仿真研究。仿真结果表明，该算法在系统扰动的情况下具有很好的鲁棒性，研究结果表明了该控制方法的可行性和有效性。
Shabani, Hamed; Vahidi, Behrooz; Ebrahimpour, Majid
2013-01-01
A new PID controller for resistant differential control against load disturbance is introduced that can be used for load frequency control (LFC) application. Parameters of the controller have been specified by using imperialist competitive algorithm (ICA). Load disturbance, which is due to continuous and rapid changes of small loads, is always a problem for load frequency control of power systems. This paper introduces a new method to overcome this problem that is based on filtering technique which eliminates the effect of this kind of disturbance. The object is frequency regulation in each area of the power system and decreasing of power transfer between control areas, so the parameters of the proposed controller have been specified in a wide range of load changes by means of ICA to achieve the best dynamic response of frequency. To evaluate the effectiveness of the proposed controller, a three-area power system is simulated in MATLAB/SIMULINK. Each area has different generation units, so utilizes controllers with different parameters. Finally a comparison between the proposed controller and two other prevalent PI controllers, optimized by GA and Neural Networks, has been done which represents advantages of this controller over others. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
半主动悬架PID控制的研究和优化%Research and optimization for semi-active suspension PID control
Institute of Scientific and Technical Information of China (English)
郭全民; 雷蓓蓓
2015-01-01
To solve the problem that selection of the PID controller parameter is experimental and subjective in automotive semi‐active suspension system PID control ,Particle Sw arm Optimization (PSO ) algorithm is proposed for optimizing of PID controller parameter .First ,establish a model of automobile semi‐active suspension system ,and carry PID control on it ,than use parallel global search ability of PSO to setting parameters K p ,K i ,K d of PID control ,in order to improve the performance of the PID control semi‐active suspension .The simulation results show that PID control based on PSO algorithm not only solved the problem of the parameter setting ,and compared with the PID control of suspension and passive suspension ,to make the car ride comfort and handling stability improved .%为解决汽车半主动悬架系统PID控制中，PID控制器参数选择的经验性和主观性，提出采用粒子群算法对PID控制器中的参数进行优化。首先建立汽车半主动悬架系统的模型，并对其进行PID控制，然后利用粒子群算法的并行全局搜索能力对PID控制参数Kp、Ki、Kd进行整定，以此来改善汽车半主动悬架PID控制的性能。仿真结果表明，基于粒子群算法优化的PID控制不仅解决了参数整定的问题，而且相对于PID控制的悬架和被动悬架而言，使汽车的乘坐舒适性和操纵稳定性有所提高。
Directory of Open Access Journals (Sweden)
Dedid Cahya Happyanto
2012-05-01
Full Text Available Driving system of electric car for low speed has a performance of controller that is not easily set up on large span so it does not give a comfort to passengers. The study has been tested in the bumpy road conditions, by providing disturbances in the motor load, it is to describe the condition of the road. To improve the system performance, the speed and torque controller was applied using Field Oriented Control (FOC method. In this method, On-Line Proportional Integral Derivative Fuzzy Logic Controller (PID-FLC is used to give dynamic response to the change of speed and maximum torque on the electric car and this results the smooth movement on every change of car performance both in fast and slow movement when breaking action is taken. Optimization of membership functions in Fuzzy PID controller is required to obtain a new PID parameter values which is done in autotuning in any changes of the input or disturbance. PID parameter tuning in this case using the Ziegler-Nichols method based on frequency response. The mechanism is done by adjusting the PID parameters and the strengthening of the system output. The test results show that the controller Fuzzy Self-Tuning PID appropriate for Electric cars because they have a good response about 0.85% overshoot at to changes in speed and braking of electric cars.
Directory of Open Access Journals (Sweden)
Emil Hernández-Arroyo
2014-07-01
Full Text Available Presenta un estudio comparativo entre el Control Predictivo basado en el Modelo [MPC] y el control PID, en una planta piloto de temperatura. Se encontró que el control MPC presenta mejor comportamiento, con un tiempo de asentamiento de 1000 segundos y una sobre-elongación de 5 °C, y que el PID presenta un tiempo de asentamiento de 2000 segundos y una sobre-elongación de 40 °C. Simultáneamente, se presenta una forma alternativa para controlar y monitorear en tiempo real la variable temperatura; para ello se dispone de un computador de escritorio que utiliza el software MATLAB 7.1 y la herramienta Real-Time Windows Target.
Turning PID Controller Tuning Into a Simple Consideration of Settling Time
DEFF Research Database (Denmark)
Jakobsen, Carl; Jantzen, Jan
2016-01-01
This article introduces an approach to PID tuning based solely on a physically meaningful performance specifica- tion: settling time. The approach leads to extremely simple tuning procedures which avoid potentially excessive excitation of the process. Provided that the closed loop system meets tw...
Directory of Open Access Journals (Sweden)
Amlan Basu
2016-09-01
Full Text Available The paper demonstrates about melioration of integer order and fractional order model of heating furnace. Both models are being placed in closed loop along with the proportional integral derivative (PID controller and fractional order proportional integral derivative (FOPID controller so that the various time domain performance characteristics of the heating furnace can be meliorated. The tuning parameters (Kp, Ki and Kd of the controllers has been found using the Astrom-Hagglund tuning technique and the differ-integrals (λ and μ are found using the Nelder-Mead optimisation technique.
Directory of Open Access Journals (Sweden)
Safaa M. Z. Al-Ubaidi
2012-06-01
Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time. The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Directory of Open Access Journals (Sweden)
Murali Muniraj
2015-01-01
Full Text Available A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Chaos optimization based immune PID controller design%一种基于混沌优化的免疫PID控制器
Institute of Scientific and Technical Information of China (English)
韩贵金
2012-01-01
针对目前智能PID控制器普遍存在的诸如计算量大、收敛速度慢以及控制精度相对较差等问题,提出一种基于混沌优化的免疫PID控制器。与传统的免疫PID控制器相比主要做了两个方面的改进,一个是利用小波神经网络对免疫PID控制器的非线性函数部分进行逼近,另一个是利用混沌优化算法对免疫PID控制器的三个控制参数进行优化。仿真结果表明该控制器的控制性能优于其它类型的智能PID控制器以及常规PID控制器。%Aiming at several problems such as complex computation, convergence slowly and poor controlling precision exited in current intelligent PID controllers, a new immune PID controller is designed. Compared with additional immune PID controller, two improvements are made, one is that a wavelets neural network is adopted to approximate the nonlinear function of immune PID controller; the other is that Chaos is used to optimize three parameters of immune PID controller. The simulation experiments show that the performance of controller is better than conventional PID controllers and current intelligent PID controllers.
Energy Technology Data Exchange (ETDEWEB)
Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1990-12-31
A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms
Institute of Scientific and Technical Information of China (English)
杨彪; 梁贵安; 彭金辉; 郭胜惠; 李玮; 张世敏; 李英伟; 白松
2013-01-01
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
Pelvic Inflammatory Disease (PID)
... Management Education & Events Advocacy For Patients About ACOG Pelvic Inflammatory Disease (PID) Home For Patients Search FAQs Pelvic Inflammatory ... Inflammatory Disease (PID) FAQ077, September 2015 PDF Format Pelvic Inflammatory Disease (PID) Gynecologic Problems What is pelvic inflammatory disease ( ...
Directory of Open Access Journals (Sweden)
DAHIYA, P.
2015-05-01
Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.
一种神经网络分数阶PID控制器的实现%Implementation of an neural network fractional order PID controller
Institute of Scientific and Technical Information of China (English)
毛书军; 盛贤君
2014-01-01
为解决分数阶PID控制器参数难于整定的问题，设计了一种基于神经网络的分数阶PID控制器。通过采用反向传播（ BP）神经网络的参数调节策略，可以实现一种五维参数自学习的PID控制器。将分数阶PID控制器数字化，通过BP算法调节神经网络突触权值，经过调整的神经网络输出作为分数阶PID控制器的参数。经过仿真验证，神经网络分数阶PID控制器比传统PID控制器精度提高6倍且控制更加稳定。%In order to solve the challenging problem of determing the parameters in fractional order PID controller, a fractional PID order controller based on artificial neural network was proposed. A self-learning PID controller with five-dimension parameters was realized by using parameter adjustment strategy of Back Propagation ( BP) neural network. After the fractional order PID controller was digitized and the synaptic weights were adjusted by using BP strategy, the adjusted outputs of the neural network were used as the parameters of the fractional order PID controller. A series of experiments verify that the artificial neural network fractional order PID controller can increase the accuracy by six times than the traditional PID order controller and is more stable.
Energy Technology Data Exchange (ETDEWEB)
Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com
2016-08-01
Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.
基于模糊PID的PMSM矢量控制系统研究%Research of PMSM Vector Control System Based on Fuzzy Self-tuning PID
Institute of Scientific and Technical Information of China (English)
张涛; 张晓江; 陆文龙; 叶玉龙
2012-01-01
在MATLAB7／Simulink环境下，建立了永磁交流伺服电机的矢量控制系统模型，并在速度环建立了基于模糊自整定PID控制的FUZZY—pid模型，对PMSM电机的位置控制和突加负载情况进行了仿真研究，并与基于常规PID的仿真结果进行了对比．对比结果表明．采用模糊自整定PID控制算法，系统位置控制性能明显优于常规PID控制算法。%Established the simulation model for PMSM (permanent magnet synchronous motor) vector control system and the model of FUZZY-pid controller based on FUZZY self-tuning PID control algorithm in the environment of MATLAB 7/Simulink .Simulated the position control and the case of sudden load of PMSM. The simulated results were compared with that of PMSM vector control based on conventional PID, which indicated that the performance of PMSM vector control system by FUZZY self-tuning PID control algo- rithm is obviously better than that by conventional PID control algorithm.
Directory of Open Access Journals (Sweden)
N.Ramesh Raju
2015-10-01
Full Text Available PID controller is mostly used in process plants to control the system performance by properly choosing its parameters. The optimum PID parameters can be obtained in offline using genetic algorithm if the mathematical model of the system is exactly known. In all process plants the process parameters such as properties of materials like thermal conductivity, electrical conductivity, physical dimensions such as diameter, length of the pipes, parameters of valves and pumps will change as time runs. This happens due to corrosion, scaling, aging, repairs during the maintenance, wear and tear. When the system is robust these changes slightly affect the performance of the system. When the system is not robust they make the system performance worst. Due to above reasons the process plant parameters changes as time runs. It is not easy to measure the changes in system parameters while plant is running and could not be evaluated optimum PID parameters through mathematical model. In this paper a new approach using genetic algorithm and neural network is established for optimum self tuning of PID parameters by observing the time response of the system at any time while plant is running.
Karthikeyan Rajagopal; Laarem Guessas; Sundarapandian Vaidyanathan; Anitha Karthikeyan; Ashokkumar Srinivasan
2017-01-01
We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The st...
Directory of Open Access Journals (Sweden)
Yu-xin Zhao
2014-01-01
Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.
Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K
2017-03-18
Internal model control (IMC) with optimal H2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV).
Tomas Eglynas; Audrius Senulis; Marijonas Bogdevičius; Arūnas Andziulis; Mindaugas Jusis
2016-01-01
The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Qu...
永磁伺服电机模糊 PID 自整定 SVPWM 控制研究%Fuzzy PID self-tuning SVPWM control research of PMSM
Institute of Scientific and Technical Information of China (English)
马立新; 范洪成; 黄阳龙
2016-01-01
针对永磁同步电机自身的非线性、强耦合性以及时变性特点，以及传统P ID控制策略不能跟随系统参数的变化而自动做出整定等问题。通过对模糊理论分析，本文提出了一种简单实用的永磁同步电机控制策略，即模糊PID自整定SVPWM控制方式。采取SVPWM 的方式产生三相电流驱动电机，通过模糊逻辑语句建立了模糊控制规则，并实现与 PID 控制参数相结合，实现实时改变电机控制参数功能，并利用 MATLAB工具建立了模糊 PID 自整定SVPWM闭环矢量控制系统仿真模型。仿真结果表明：系统转速实现无超调，响应速度和扰动恢复时间与传统PID控制方式相比缩短了一半。该方法提高了永磁交流伺服系统的控制精度，具有良好的动静态性能，在工程应用上提供了一种简单、易实现的控制方法。%Aiming at the nonlinear ,strong coupling and time-varying characteristics of permanent magnet synchronous motor and the traditional PID control strategy can't follow the change of system parameters and automatically make the corresponding setting .Through the analysis of fuzzy control ,this paper puts forward a simple and practical control strategy of permanent magnet synchronous motor ,namely fuzzy PID self-tuning SVPWM control .Adopt the method of SVPWM produce three phase current drive motor , the fuzzy control rule was established based on fuzzy logic statements ,and combined with PID control parameters ,real-time change motor control parameters of the function ,and using Matlab tools to establish the fuzzy self-tuning PID SVPWM closed-loop vector control system simulation model . The simulation results show that the system speed to realize no overshoot ,response speed and disturbance recovery time shortened by half compared with the traditional PID control method .The method to improve the control precision of the permanent magnet ac servo system ,has a good dynamic and static
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2015-06-01
Full Text Available In this paper, Differential Evolution (DE optimized fuzzy PID controller with derivative Filter (PIDF is proposed for Load Frequency Control (LFC of a deregulated power system with multi-source power generation and interconnected via parallel AC/DC transmission links. To get an accurate insight of the LFC problem, important physical constraints such as time delay and GRC are considered. The performance of proposed controller is evaluated at all possible power transactions that take place in a deregulated power market. The improvement in dynamic performance of the power system with DC link in parallel with AC tie-line is also assessed. Further, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed from the simulation results that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.
Design of Fuzzy-PID Controller of PV Grid-connected Control System%光伏并网系统模糊PID控制器的设计
Institute of Scientific and Technical Information of China (English)
贺运胜
2013-01-01
As illumination is stochastic and uncertain, a set of PID parameters can hardly achieve satisfactory control performance for grid-connected control for photovoltaic system. Based on the mathematical model of three-phase two-stage PV grid inverter, fuzzy-PID control strategy is applied in the grid control of PV system. Digital simulation and physical simulation show that fuzzy-PID control strategy can improve the PV system grid control dynamic process and the PV system can smoothly connect the grid.%由于光照具有随机性和不确定性等特点，光伏并网控制若采用传统PID控制，仅一组固定的参数难以在不同光照下均具有良好的并网控制效果。在三相两级式并网逆变器数学模型的基础上，将模糊PID控制策略引入光伏系统的并网控制中。通过数字仿真和物理仿真表明模糊控制与PID控制相结合的模糊PID控制，改善了光伏系统并网控制的动态过程，能够实现光伏系统的平滑并网。
基于遗传算法的PID控制参数整定研究%Research on PID control parameter tuning based on genetic algorithm
Institute of Scientific and Technical Information of China (English)
邵海龙
2016-01-01
PID控制作为一种经典的控制方法被广泛应用于工业控制中，是实际工业生产过程正常运行的基本保障。随着计算机技术的发展和人工智能技术的出现，PID控制器参数整定不再只是传统整定，而出现了多种新的PID控制器参数整定方法。文章通过深入研究PID控制理论，罗列和分析了传统PID参数整定技术，最终利用遗传算法完成PID多参数智能整定，从而保证PID控制器的无超调、稳定、快速的完美控制。%PID control, as a classical control method, is widely used in industrial control and the basic guarantee for the normal operation of the actual process of industrial production. With the development of computer technology and emergence of artificial intelligence technology, PID controller is no longer the traditional tuning method.Through in-depth study of PID control theory, this paper lists and analyzes the traditional PID parameter tuning technology, using the genetic algorithm to complete the PID multi parameter intelligent tuning ifnally, so as to ensure without overshoot, stable, fast perfect control of the PID controller.
Brushless DC Motor Self-Adaption Fuzzy PID Control System%无刷直流电机自适应模糊PID控制系统
Institute of Scientific and Technical Information of China (English)
王国玲; 李振宇; 范自道
2013-01-01
针对无刷直流电机传统PID控制存在精度低、抗干扰能力差及模糊控制稳态精度不高等问题，研究了一种自适应模糊PID控制方法。论文分析了直流无刷电机的工作原理，建立了直流无刷电机自适应模糊PID控制系统的计算机仿真数学模型，设计了系统速度环的模糊PID控制器，仿真结果表明，与传统PID控制相比，自适应模糊PID控制的BLDCM系统具有更高的稳定性和控制精度、更快的动态响应速度。%For the lower precision,bad anti-interference capability of traditional PID control and lower stable precision of fuzzy control for brushless DC motor,an adaptive fuzzy-PID control was deeply investigated in this paper. Working theory of brushless DC motor was analyzed,the simulated mathematical model of adaptive fuzzy-PID control for brushless DC motor was established,and the fuzzy-PID controller of speed regulator was designed. The results of simulation verified the better stability,the faster dynamic speed of adaptive fuzzy-PID control for brushless DC motor compared to traditional PID control.
Attitude Control of a Satellite Simulator Using Reaction Wheels and a PID Controller
2010-03-01
Rohe, and Welty in the development of AFIT’s second- generation satellite simulator, SimSat II [40]. Instead of building another dumbbell-style spherical...Nathan F. Welty . A Systems Engineering Approach to the Design of a Spacecraft Dynamics and Control Testbed. MS thesis, Air Force Institute of
Directory of Open Access Journals (Sweden)
Teddy Sudewo
2012-09-01
Full Text Available Pada fase penerbangan quadcopter, fase landing (pendaratan merupakan fase paling kritis, dimana resiko terjadi kecelakaan paling besar. Permasalahan tersebut muncul karena adanya beberapa kendala, seperti kendala pada struktur rangka pesawat yang kecil, peningkatan beban pada sayap pesawat serta pengaruh angin sehingga menyebabkan pesawat tidak stabil. Pada penelitian tugas akhir ini, didesain suatu sistem kontrol pada UAV quadcopter menggunakan kontrol PID dengan Model Reference Adaptive Control (MRAC. Sistem pengendalian berbasis MRAC menawarkan beberapa kelebihan untuk mengatasi karakteristik plant non-linear salah satunya quadcopter. MRAC merupakan kontrol adaptif dimana performansi keluaran sistem (proses akan mengikuti performansi keluaran model referensinya. Pada tugas akhir ini, model referensi sudah ditentukan diawal dan spesifikasinya tetap sehingga dapat langsung didisain mekanisme adaptasi dari MRAC. Parameter proses θ (a1,a2,b0,b1 diestimasi menggunakan metode Extended Least Square, parameter proses tersebut akan mentuning parameter kontroler (k0,k1,k2,k3 sehingga menghasilkan sinyal kontrol PID. Hasil pengujian menunjukkan bahwa ketika terjadi perubahan parameter pada plant, kontroler mampu memperbaiki respon agar tetap dapat mengikuti model referensinya dan dalam mengatasi gangguan metode adaptasi MRAC memiliki kemampuan yang baik dilihat dari waktu yang dibutuhkan yang relatif singkat.
Directory of Open Access Journals (Sweden)
Abbas Ali Zamani
2012-07-01
Full Text Available Physical systems always include constraints and limits. Usually, the limits and constraints, in the control systems, are appeared as temperature and pressure limits or pumps capacity. One of the existing limits in the systems with PID controller is associated with the actuator’s saturation limits. With the saturating of the actuator, the controller’s output and plant’s input will be different and the output signal of controller do not lead the system and their states could not update correctly where this issue makes the system response undesirable. In this paper, by adding a fuzzy compensator that it’s parameters are tuned using imperialist competitive algorithm, the actuator saturation is prevented and the important parameters of the system response, such as setting time and overshoot, are improved.
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2014-02-01
Full Text Available A mathematical model of electroslag remelting (ESR process is established based on its technical features and dynamic characteristics. A new multivariable self-tuning proportional-integral-derivative (PID controller tuned optimally by an improved particle swarm optimization (IPSO algorithm is proposed to control the two-input/two-output (TITO ESR process. An adaptive chaotic migration mutation operator is used to tackle the particles trapped in the clustering field in order to enhance the diversity of the particles in the population, prevent premature convergence and improve the search efficiency of PSO algorithm. The simulation results show the feasibility and effectiveness of the proposed control method. The new method can overcome dynamic working conditions and coupling features of the system in a wide range, and it has strong robustness and adaptability.
PID Tuning Using Extremum Seeking
Energy Technology Data Exchange (ETDEWEB)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to open the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9
Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit
2014-10-01
It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality.
Application of fuzzy logic controller with self-tuning PID parameters%PID参数自整定模糊控制器的应用
Institute of Scientific and Technical Information of China (English)
李付举
2011-01-01
In view of electrical heating furnace's non-linear control object characteristics of large inertia, pure time-delay and parameters time-variation and the hard-to-tune characteristic of conventional PID control parameter, a new method for fuzzy control with self-tuning PID parameters was put forward. A fuzzy controller with self-tuning PID parameters was designed and applied in the furnace's temperature control system. The result shows that fuzzy control with self-ttming PID parameters eliminates the system's steady state error, has neither overshoot nor oscillation but great robustness, and is easily handled; therefore it is of some practical value.%针对电加热炉大惯性、纯滞后、参数时变的非线性对象的控制的特点,以及常规PID控制参数不易调节的特点,提出了一种PID参数自整定模糊控制方法,设计了PID参数自整定模糊控制器,并在炉温控制系统中应用.实验结果表明:PID参数自整定模糊控制消除了系统的稳态误差,没有超调和振荡,鲁棒性较强,而且简单易行,具有一定的实用价值.
Directory of Open Access Journals (Sweden)
Arezou Geramipour
2013-04-01
Full Text Available This paper emphasizes on a method for designing digital PID controller based on Field Programmable Gate Array (FPGA device for regulating blood glucose level of type-I diabetic patients. The controller is tuned using Bergman Minimal model as a diabetic patient model in MATLAB and Simulink environment. The PID parameters are tuned using a genetic algorithm (GA. Because the speed of control systems has influence on their performance and stability, Field Programmable Gate Array (FPGA device is considered. A Simulink to FPGA flow is applied to the structure of PID controller with Xilinx blocks in Simulink. The results of blood glucose of two diabetic patient models using different quantization in bits are simulated. The results show that unsuitable number of bits cause hypoglycemia and increasing the peak of blood glucose in diabetic patients. System Generator and Integrated Software Environment (ISE are used for creating Bitstream file that can be downloaded into FPGA device. The results show that implementation of PID controller on FPGA using System Generator is compact and high speed and causes the designer can evaluate and implement different designs simply.
Zamani, Abbas-Ali; Tavakoli, Saeed; Etedali, Sadegh
2017-03-01
Fractional order PID (FOPID) controllers are introduced as a general form of classical PID controllers using fractional calculus. As this controller provides good disturbance rejection and is robust against plant uncertainties it is appropriate for the vibration mitigation in structures. In this paper, an FOPID controller is designed to adjust the contact force of piezoelectric friction dampers for semi-active control of base-isolated structures during far-field and near-field earthquake excitations. A multi-objective cuckoo search algorithm is employed to tune the controller parameters. Considering the resulting Pareto optimal front, the best input for the FOPID controller is selected. For seven pairs of earthquakes and nine performance indices, the performance of the proposed controller is compared with those provided by several well-known control techniques. According to the simulation results, the proposed controller performs better than other controllers in terms of simultaneous reduction of the maximum base displacement and story acceleration for various types of earthquakes. Also, it provides acceptable responses in terms of inter-story drifts, root mean square of base displacements and floor acceleration. In addition, the evaluation of robustness for a stiffness uncertainty of ±10% indicates that the proposed controller gives a robust performance against such modeling errors.
Directory of Open Access Journals (Sweden)
Tossaporn Chamsai
2015-01-01
Full Text Available The sliding mode control (SMC technique with a first-order low-pass filter (LPF is incorporated with a new adaptive PID controller. It is proposed for tracking control of an uncertain nonlinear system. In the proposed control scheme, the adaptation law is able to update the PID controller online during the control process within a short period. The chattering phenomenon of the SMC can be alleviated by incorporation of a first-order LPF, while the robustness of the control system is similar to that of the sliding mode. In the closed-loop control analysis, the convergence condition in the reaching phase and the existence condition of the sliding mode were analyzed. The stability of the closed-loop control is guaranteed in the sense of Lyapunov’s direct method. The simulations and experimental applications of a speed tracking control of a spark ignition (SI engine via electronic throttle valve control architecture are provided to verify the effectiveness and the feasibility of the proposed control scheme.
PCB Drill Detection System Based on Fuzzy PID Control%基于模糊PID控制的PCB微钻检测系统
Institute of Scientific and Technical Information of China (English)
何沛钊; 潘长开
2011-01-01
Detection of PCB micro drill required a precise trajectory control. The research and analysis are mainly made on the drill-pushed by servo motor. On the basis of modeling linear servo motor pushing micro drill, the fuzzy PID algorithm and its mathematical model are analyzed in detail. By comparing traditional PID control with fuzzy PID control, the results show that the fuzzy PID controller can achieve better tracking the location of micro drill, and make it in accordance with the predetermined trajectory of the movement, so the detection accuracy can be improved.%PCB微钻的检测需要对微钻的运动轨迹进行精密的控制,这里在直线电机驱动的模型下进行研究分析.通过建立直线伺服电动机推针机构的系统仿真模型,详细分析了模糊PID算法以及数学模型.分别用传统的PID控制与模糊PID控制,对推针装置的推针过程进行了仿真.结果表明,模糊PID控制器能较好地实现微钻的位置跟踪,使其按照预定的运动轨迹运动,提高了检测的精度.
基于PLC的锅炉液位模糊自适应PID控制%Fuzzy Self-Adaptive PID Control of Boiler Liquid Level Based on PLC
Institute of Scientific and Technical Information of China (English)
郑文; 张运波
2013-01-01
以小型PLC锅炉液位控制为例，介绍了PLC实现锅炉液位模糊自适应PID控制的方法，并总结了PLC实现模糊自适应PID程序设计的关键技术。实验结果表明，无论是动态指标，还是静态指标，都比常规PID控制优越，为应用PLC实现复杂控制算法提供了程序设计方法。%Take the boiler’s liquid level control based on small PLC as an example, the realization method of boiler’s liquid level fuzzy self-adaptive PID control is introduced and the key technology of fuzzy self-adaptive PID program design by PLC is summarized. Through the experimental results, dynamic index and static index are superior to the normal PID. The method of program design is provided to realize the complex control algorithm based-on PLC.
一种改进的模式识别自整定PID控制方法%Improved Self-tuning PID Control Based on Pattern Recognition
Institute of Scientific and Technical Information of China (English)
穆克; 苏成利
2012-01-01
To solve the shortcomings of traditional PID conlroller in dealing with disturbance rejection and robustness. A new self-tuning PID-based algorithm for pattern recognition is proposed. In the algorithm, the parameter tuning rules of the PID controller are innovated, and the specificformula for setting the rules is put forward. In order to achieve the water tank level control algorithm in the application of laboratory, using OPC technology to achieve the MATLAB software and data configuration software MCGS real-time interaction. Experimental results show that the given tuning rules in MATLAB simulation and tank level control applications take the effect of good tuning. The control performance of the proposed self-tuning PID control method is superior to that of traditional PID method.%针对常规PID控制器不能很好地兼顾抗干扰性与鲁棒性的缺点,提出一种新的基于模式识别自整定PID控制算法.该算法对参数整定规则进行了探索和创新,并给出具体的整定规则公式.为了实现算法在实验室水箱液位控制的应用,采用OPC技术实现了MATLAB软件与MCGS组态软件的数据实时交互.实验结果表明,该规则在MALAB仿真和水箱液位控制应用中取得到了很好的整定效果,控制性能优于常规PID控制.
Institute of Scientific and Technical Information of China (English)
张艳; 李少远
2005-01-01
A novel decentralized PID controller design procedure based on backstepping principles is presented to operate multiple-input multiple-output (MIMO)dynamic processes. The first key feature of the design procedure is that a whole MIMO control system is decomposed into multiple control loops, therefore the sub-controllers can be efficiently flexibly designed in parallel prototype.The second key feature is that the decentralized controller has equivalency to those designed by backstepping approach. As a complementary support to the design procedure, the sufficient condition of the whole closed-loop system stability is analyzed via the small gain theorem and it can be proven that the process tracking performance is improved. The simulation results of the Shell benchmark control problem are provided to verify the effectiveness and practicality of the proposed decentralized PID control.
Institute of Scientific and Technical Information of China (English)
张原; 黄文静; 桑路路
2013-01-01
Given that the traditional PID control system can not give consideration to the static performance and dynamic perfor-mance, this paper presents a new practical design of PID control algorithm based on the analysis of both traditional PID control-ler and expert adaptive controller, which can be used in the field of servo rocket system. In addition, this paper studies how to de-sign the type of improved expert adaptive controller suitable for the controlled plant. The simulation of traditional PID control method and improved expert adaptive PID control method are implemented based on MATLAB/Simulink. Meanwhile, the simu-lation results explain that improved expert adaptive controller is an effective method to be used in the servo rocket system.% 针对传统PID(Proportional-Integral-Derivative)控制无法兼顾部分系统的静态性能和动态性能，结合专家PID控制原理，提出了一种改进的专家自适应PID控制器的设计方案，对某火箭炮伺服系统进行仿真跟踪。给出了伺服系统的分析设计过程，利用MATLAB/Simulink完成了改进的专家自适应PID控制器在某伺服系统中的仿真应用，得到了良好的跟踪特性图，说明了该方法的有效性。
Pelvic Inflammatory Disease (PID)
... the ectopic pregnancy is not diagnosed early. Chronic pelvic pain —PID may lead to long-lasting pelvic pain. Who is at risk of PID? PID can ... lead to pelvic inflammatory disease and infertility. Chronic Pelvic Pain: Persistent pain in the pelvic region that has ...
Directory of Open Access Journals (Sweden)
Muharrem Imal
2015-01-01
Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.
Directory of Open Access Journals (Sweden)
Manikandan Ramasamy
2017-07-01
Full Text Available Automation has been growing in recent years for the manufacturing industries to increase productivity. Multiple robotic arms are used to handle materials for lifting in flexible directions. The vertical rotation of a 360 degree single arm is considered in this research on a position servo drive with brushless DC motor. The load torque of an arm varies depending upon the angular displacement due to gravity, so it requires four-quadrant operation of the drive with a robust feedback controller. This paper deals with the design and performance comparison of a conventional PID feedback controller with a fuzzy-based PID controller and suggests the most suitable controller. The design was implemented in real time through the dSPACE DS1104 controller environment to verify the dynamic behaviors of the arm.
基于模糊自适应 PID 的饱和蒸汽发电控制研究%Saturated Steam Power Generation Control Model Based on Fuzzy-PID
Institute of Scientific and Technical Information of China (English)
陈琳; 吴青柏; 张立杰
2013-01-01
The steam turbine in saturated steam power generation project is a typical industrial process control object ,with the features such as time‐varying ,nonlinear and hysteresis .Based on the control requirement of steam turbine generator operation ,this paper put forward a kind of adaptive fuzzy PID control method .Combining the features of the steam turbine generator operation and fuzzy PID controller ,the paper analyzed the data collected from power station ,established a control model ,and carried out the simulation study by MATLAB/Simulink .The simulation results verify the feasibility of this scheme and lay a good foundation for the control scheme’s application in generator operation process .% 饱和蒸汽发电项目中汽轮机是一个典型的工业过程控制对象，具有时变、非线性和滞后等显著特点。基于汽轮机发电机运行过程的控制要求，提出了一种自适应模糊PID控制方法。结合汽轮机发电机运行和模糊PID控制解决非线性、滞后性及时变等问题的特点，基于从发电站现场采集到的数据，建立了控制模型，并利用MATLAB／Simulink对系统进行了仿真，从而验证了该方案的可行性，为发电机控制提出了一种新的方案。
Pelvic Inflammatory Disease (PID) Fact Sheet
... Search Form Controls Cancel Submit Search the CDC Pelvic Inflammatory Disease (PID) Note: Javascript is disabled or is not ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Pelvic Inflammatory Disease (PID) - CDC Fact Sheet Language: English (US) EspaÃ± ...
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
高速电磁阀模糊PID测控系统的设计%Design on Fuzzy-PID Control System of High-speed Solenoid
Institute of Scientific and Technical Information of China (English)
蒲亮亮; 张小栋
2009-01-01
For the problem of poor control precision of high-speed solenoid valves which are widely used in aero-engine control systems,a fuzzy-PID control system based on Soc single-chip is designed in this paper by using fuzzy self-tuning of PID parameters control algorithm.%针对航空发动机控制系统中高速电磁阀存在控制精度差的问题,采用PID参数模糊自整定的控制算法,设计了基于Soc单片机的高速电磁阀模糊PID测控系统.
Directory of Open Access Journals (Sweden)
Pratap Chandra Pradhan
2016-03-01
Full Text Available In this paper, a Firefly Algorithm (FA optimized fuzzy PID controller is proposed for Automatic Generation Control (AGC of multi-area multi-source power system. Initially, a two area six units power system is used and the gains of the fuzzy PID controller are optimized employing FA optimization technique using an ITAE criterion. The superiority of the proposed FA optimized fuzzy PID controller has been demonstrated by comparing the results with some recently published approaches such as optimal control and Differential Evolution (DE optimized PID controller for the identical interconnected power system. Then, physical constraints such as Time Delay (TD, reheat turbine and Generation Rate Constraint (GRC are included in the system model and the superiority of FA is demonstrated by comparing the results over DE, Gravitational Search Algorithm (GSA and Genetic Algorithm (GA optimization techniques for the same interconnected power system. Additionally, a Unified Power Flow Controller (UPFC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Simulation results show that the system performances are improved significantly with the proposed UPFC and SMES units. Sensitivity analysis of the system is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters. Finally, the effectiveness of the proposed controller design is verified by considering different types of load patterns.
液压系统流量PID闭环控制实验研究%Study on Closed Loop Control Experiment of Hydraulic System Flow PID
Institute of Scientific and Technical Information of China (English)
刘永; 杨彬
2016-01-01
为了提高液压系统的流量控制精度，消除稳态误差，设计了流量PID闭环控制系统。通过在Labview软件中编制测控程序，将实测流量值与目标值的差值输入PID控制器，通过PID控制器输出的转速控制电压调整伺服电机转速，从而使实际输出流量达到目标设定值。实验结果表明：实际输出流量值能很好地跟随、响应目标流量值变化；流量闭环控制系统对阶跃、正弦、斜坡压力干扰信号的校正能力较强。%In order to improve the flow control precision of hydraulic system and eliminate the steady-state error, the flow PID closed loop control system was designed. Through the measurement and control program written in Labview software, the difference between flow measurement value and the target value was inputted the PID controller. The speed control voltage of servo motor PID controller was outputted through PID controller. By adjusting the rotational speed of servo motor, the actual output flow can reach the set value. The experimental results show that the actual flow value can follow and respond to the change of target flow. The flow closed loop control system has strong anti interference ability for the step, sine and slope pressure disturbance signal.
Discrete PID Tuning Using Artificial Intelligence Techniques
Directory of Open Access Journals (Sweden)
Petr DOLEŽEL
2009-06-01
Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.
一种神经网络直接自校正PID控制器%A Type of Directly Self-tuning PID Controller Based on Neural Network
Institute of Scientific and Technical Information of China (English)
韩冲
2015-01-01
A new type of directly self-tuning PID controller based on neural network is proposed in this paper. its main characteristic is that it no longer includes independent PID controller and put neural network and the law of PID controller together. Showing the study algorithm of this neural network controller and analyzing the stability of this control system. The simulated results prove that this kind of control system is more adaptive and robust.%该文提出了一种神经网络直接自校正PID控制器。其主要特点是，在控制结构上不再包含独立的PID控制器，而是将神经网络和PID控制规律融为一体。并给出了这种神经网络控制器的学习算法和控制系统的稳定性分析。仿真结果表明，该控制系统具有较强的适应性和鲁棒性。
Institute of Scientific and Technical Information of China (English)
余世明; 吴江江; 张端
2011-01-01
This job focuses on the stroke regulation of a class of high-precision metering pumps. A parametertuning method of robust non-fragile PID (proportional-integral-derivative) controllers is proposed with the assumption that a PID controller has additive gain perturbations. An H-infinite robust PID controller can be obtained by solving a linear matrix inequality. This approach can guarantee that the closed-loop control systems is asymptotically stable and the H-infinite norm of the transfer function from the disturbance to the output of a controlled system is less than a given constant to attenuate disturbances. The simulation case shows that the control performance of the proposed strategy is significantly better than the traditional PID approach in the situation with perturbations of controller parameters.
AC Speed Regulating Systems Based on the Fuzzy Self-tuning PID Control%交流调速系统的模糊自校正PID控制
Institute of Scientific and Technical Information of China (English)
王丁磊; 马辉
2011-01-01
分析了异步电动机的变频调速原理,在利用矢量控制技术实现转矩和磁通解耦的基础上,增加模糊自校正PID算法实现了对速度的精确控制.通过MATLAB与传统PID速度控制算法进行仿真比较,证明了模糊自校正PID的控制性能要优越于传统PID的控制效果.%The principle of asynchronous motor's frequency control has been analyzed in this paper. Achieve precise control of speed by used the fuzzy self-tuning PID algorithm based on the technology of vector control torque and decoupling of magnetic flux. It has been proved that the control effect of the fuzzy self-tuning PID algorithm is superior to the control effect of traditional PID through simulation in MATLAB.
On the fragility of fractional-order PID controllers for FOPDT processes.
Padula, Fabrizio; Visioli, Antonio
2016-01-01
This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning.
Directory of Open Access Journals (Sweden)
Hendre Angga Prasetya
2012-09-01
Full Text Available Seiring dengan adanya perkembangan sistem otomasi dalam dunia otomotif saat ini. dituntut untuk menghasilkan mesin dengan kadar emisi gas buang yang berada diambang batas kewajaran dan hemat bahan bakar sehingga diperlukan suatu sistem terhadap berbagai macam variabel yang mempengaruhi performansi mesin. Untuk menjaga supaya pemakaian bahan bakar pada kondisi optimal dapat diperoleh dengan cara mengatur waktu injeksi bahan bakar. Sistem waktu injeksi bahan bakar ini dipengaruhi oleh kecepatan mesin dan tekanan pada intake manifold. Dengan adanya pengaturan terhadap waktu injeksi bahan bakar akan meningkatkan efektifitas pembakaran yang secara tidak langsung juga mengurangi kadar emisi pada gas buang pada saat kondisi kecepatan stasioner. Pada tugas akhir ini, akan dilakukan penelitian tentang pengaruh waktu pengapian dan waktu injeksi yang diterapkan pada sistem pengaturan injeksi bahan bakar yang diaplikasikan pada mesin Mitsubishi 4G63 untuk mengatur waktu injeksi bahan bakar dan waktu pengapian pada saat mesin dalam kecepatan stasioner. Penelitian ini diujikan pada mesin Mitsubshi 4G63 empat silinder sebagai plant dengan kondisi kecepatan stasioner. Penerapan PID Predictive Air-Ratio Controller memberikan waktu injeksi yang tepat pada saat kecepatan stasioner sehingga dapat menmaksimalkan perbandingan rasio udara sebesar 14,7 :1 standar performansi mesin .
Realization of Intelligent Neuron PID Control with Relay Self-Tuning Arithmetic%用继电自整定实现神经元PID智能控制
Institute of Scientific and Technical Information of China (English)
楚彦君; 马龙; 巨林仓
2001-01-01
In order to meet the requirement of in dustry process control,new methods for tuning PID need to be applied.The neuron self-tuning PID controller combined with relay self-tuning is presented.The i n itial values for neuron self-tuning PID controller are acquired from relay self -tuning arithmetic,then the control mode is switched to adaptive mode.The intel ligent neuron PID control is thus realized.Its stability is analyzed and the sim ulation by using simulink of matlab is done.The satisfied results are achieved.%当前工业过程对控制品质要求越来越高，需要更先进的PID控制器参数整定方法来满足过程控制的要求。该文提出了神经元自适应PID控制器与PID继电自整定相结合构成PID智能控制系统的方法，即利用PID继电自整定算法获取神经元自适应PID控制器权系数的初值，然后将得到的初值送到神经元自适应PID控制器，并且切换到自适应控制模式，从而实现神经元PID智能控制。同时分析了神经元自适应控制系统的稳定性，用Matlab中的Simulink进行了仿真模拟，得到了满意的结果。
Fuzzy Self-tuning PID Variable Spray Control System Based on PLC Control%基于PLC控制的模糊自整定PID变量喷雾控制系统
Institute of Scientific and Technical Information of China (English)
董志明; 宋乐鹏
2014-01-01
变量喷雾控制系统具有非线性、时变性、大滞后等特点，常规PID控制不能满足变量喷雾控制系统在实际作业中理想的控制效果。因此提出了一种基于PLC控制的模糊自整定PID控制方法。PLC控制的模糊自整定PID控制结合了PLC控制灵活、多变和自适应模糊控制等特点，通过对变量喷雾控制系统的数学建模，建立了以电动PI调节阀为核心的模糊自整定PID控制系统。利用Matlab/Simulink 和模糊逻辑工具箱对普通模糊PID控制系统和基于PLC控制的模糊自整定PID控制系统进行Simulink仿真研究。实验结果表明，基于PLC控制的模糊自整定PID控制比常规PID控制在非线性、时变性、减小超调量的方面具有更好的控制品质。%Variable spray control system has nonlinear, time-varying, big lag, etc. Conventional PID control can't satisfy the variable spray control system in the actual operation of the ideal control effect, so as to put forward a fuzzy self-tuning PID control based on PLC control method. PLC control of the fuzzy self-tuning PID control combined with PLC control flexible, changeable and adaptive fuzzy control, etc. through the mathematical modeling of variable spray control system, set up electric PI regulator for the core of the fuzzy self-tuning PID control system. Using Matlab/Simulink and fuzzy logic toolbox to general fuzzy PID control system and fuzzy self-tuning PID control based on PLC control system with Simulink simulation. The experimental results showed that fuzzy self-tuning PID control based on PLC control had the better quality than the conventional PID control in the nonlinear, time-varying and the reduce of the overshoot amount.
The programming and implementation of PID control algorithms in Siemens PLC%PID控制算法在西门子PLC中编程及实现
Institute of Scientific and Technical Information of China (English)
何军红; 尹旭佳; 史常胜
2012-01-01
分析了PID控制位置式和增量式基本算法,其应用在工业控制领域相当广泛.采用西门子可编程控制器S7-300 PLC作为控制器,通过梯形图方式编写了PID的通用控制算法,用FB功能块进行了封装.通过选择合适的PID控制参数,可以满足实际工程的不同需求.该控制算法已经在实际的处理项目、地铁通风空调等多个工程项目中成功应用.%This paper analyzes the positional and the incremental algorithm based on the PID control, which is widely used in the industrial automation field. With the Siemens S7 -300 PLC as a controller, the PID common control algorithm is realized in the way of ladder and packaged it in a function block. By selecting the appropriate PID parameters, it can be used in kinds of practical engineering programs. The control algorithm has been successfully applied in the actual processing project and subway ventilation air conditioning project.