WorldWideScience

Sample records for picosecond time scales

  1. Spur in pico-second time scales

    Energy Technology Data Exchange (ETDEWEB)

    Gopinathan, C.; Girija, G. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)

    1983-01-01

    The spur diffusion model of aqueous radiation chemistry, proposed in 1953, had run into difficulties with the development of pico-second pulse radiolysis in the late 1960s and early seventies. Using the same values for spur parameters, it was impossible to get good agreement with e/sup -/sub(aq) and OH decay in pico and nano second time scales as well as the steady state molecular product yield measurements. This inconsistency was removed by us by assuming that for a given number of dissociations, a number of radii values for the spur are possible, these radii values being related in a gaussian manner. This new approach proved highly successful in getting agreement between the predictions of the spur diffusion model and the pulse radiolysis results as well as the steady state molecular product yield measurements. Our computations have been extended to cover the entire range of spurs from a single dissociation spur to a thirty dissociation spur. Here again agreement with experimental results is good. This approach also gives interesting insights about the spur formation processes in pico and possibly femto second time scales. We have calculated rate constants for the reactions involving the 'precursor' of the hydrated electron with a number of ions.

  2. A theoretical study of the stress relaxation in HMX on the picosecond time scale

    Science.gov (United States)

    Long, Yao; Chen, Jun

    2015-12-01

    The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.

  3. Dynamics in protein powders on the nanosecond-picosecond time scale are dominated by localized motions.

    Science.gov (United States)

    Nickels, Jonathan D; García Sakai, Victoria; Sokolov, Alexei P

    2013-10-03

    We present analysis of nanosecond-picosecond dynamics of Green Fluorescence Protein (GFP) using neutron scattering data obtained on three spectrometers. GFP has a β-barrel structure that differs significantly from the structure of other globular proteins and is thought to result in a more rigid local environment. Despite this difference, our analysis reveals that the dynamics of GFP are similar to dynamics of other globular proteins such as lysozyme and myoglobin. We suggest that the same general concept of protein dynamics may be applicable to all these proteins. The dynamics of dry protein are dominated by methyl group rotations, while hydration facilitates localized diffusion-like motions in the protein. The latter has an extremely broad relaxation spectrum. The nanosecond-picosecond dynamics of both dry and hydrated GFP are localized to distances of ∼1-3.5 Å, in contrast to the longer range diffusion of hydration water.

  4. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  5. Proton-coupled electron transfer in tyrosine and a β-hairpin maquette: reaction dynamics on the picosecond time scale.

    Science.gov (United States)

    Pagba, Cynthia V; Chi, San-Hui; Perry, Joseph; Barry, Bridgette A

    2015-02-12

    In proteins, proton-coupled electron transfer (PCET) can involve the transient oxidation and reduction of the aromatic amino acid tyrosine. Due to the short life time of tyrosyl radical intermediates, transient absorption spectroscopy provides an important tool in deciphering electron-transfer mechanisms. In this report, the photoionization of solution tyrosine and tyrosinate was investigated using transient, picosecond absorption spectroscopy. The results were compared to data acquired from a tyrosine-containing β-hairpin peptide. This maquette, peptide A, is an 18-mer that exhibits π-π interaction between tyrosine (Y5) and histidine (H14). Y5 and H14 carry out an orthogonal PCET reaction when Y5 is oxidized in the mid-pH range. Photolysis of all samples (280 nm, instrument response: 360 fs) generated a solvated electron signal within 3 ps. A signal from the S1 state and a 410 nm signal from the neutral tyrosyl radical were also formed in 3 ps. Fits to S1 and tyrosyl radical decay profiles revealed biphasic kinetics with time constants of 10-50 and 400-1300 ps. The PCET reaction at pH 9 was associated with a significant decrease in the rate of tyrosyl radical and S1 decay compared to electron transfer (ET) alone (pH 11). This pH dependence was observed both in solution and peptide samples. The pH 9 reaction may occur with a sequential electron-transfer, proton-transfer (ETPT) mechanism. Alternatively, the pH 9 reaction may occur by coupled proton and electron transfer (CPET). CPET would be associated with a reorganization energy larger than that of the pH 11 reaction. Significantly, the decay kinetics of S1 and the tyrosyl radical were accelerated in peptide A compared to solution samples at both pH values. These data suggest either an increase in electronic coupling or a specific, sequence-dependent interaction, which facilitates ET and PCET in the β hairpin.

  6. Timing Characteristics of Large Area Picosecond Photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  7. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    Energy Technology Data Exchange (ETDEWEB)

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  8. The Self-Injected Laser for Picosecond Time-Resolved Spectroscopy

    OpenAIRE

    Armani, F.; Martini, F; Mataloni, P.

    1983-01-01

    The principles of operation and the characteristics of the self-injected picosecond laser are presented. We show that in spite of its simple design our device is able to generate very high power pulses in the picosecond domain. This warrants the use of this laser for time resolved spectroscopy in the picosecond domain.

  9. Picosecond time-resolved imaging using SPAD cameras

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Warburton, Ryan; Chan, Susan; Henderson, Robert; Faccio, Daniele

    2016-10-01

    The recent development of 2D arrays of single-photon avalanche diodes (SPAD) has driven the development of applications based on the ability to capture light in motion. Such arrays are composed typically of 32x32 SPAD detectors, each having the ability to detect single photons and measure their time of arrival with a resolution of about 100 ps. Thanks to the single-photon sensitivity and the high temporal resolution of these detectors, it is now possible to image light as it is travelling on a centimetre scale. This opens the door for the direct observation and study of dynamics evolving over picoseconds and nanoseconds timescales such as laser propagation in air, laser-induced plasma and laser propagation in optical fibres. Another interesting application enabled by the ability to image light in motion is the detection of objects hidden from view, based on the recording of scattered waves originating from objects hidden by an obstacle. Similarly to LIDAR systems, the temporal information acquired at every pixel of a SPAD array, combined with the spatial information it provides, allows to pinpoint the position of an object located outside the line-of-sight of the detector. A non-line-of-sight tracking can be a valuable asset in many scenarios, including for search and rescue mission and safer autonomous driving.

  10. Wavelength scaling of silicon laser ablation in picosecond regime

    Science.gov (United States)

    Sikora, A.; Grojo, D.; Sentis, M.

    2017-07-01

    Single pulse laser ablation of silicon has been investigated at 343, 515, and 1030 nm using a laser pulse duration of 50 ps. In this large spectral range, ablation thresholds of silicon vary from 0.01 to 0.83 J/cm2, confirming a strong dependence on the wavelength. By solving the free-carrier density rate equation at threshold conditions, we show that band-to-band linear absorption dominates energy deposition at 343 and 515 nm, whereas at 1030 nm, the energy leading to ablation is primarily absorbed by the generated free-carriers. This allows us to determine the relevant criteria to derive a simple model predicting the wavelength dependence of the ablation threshold in this regime. We obtain an excellent agreement between experimental measurements and calculations by simply considering an averaged energy density required in the absorption depth for surface ablation and accounting for the laser-induced variations of the important thermophysical parameters. On the basis of this analysis, we discuss the optimal wavelength and fluence conditions for maximum removal rate, ablation efficiency, and accuracy. Despite the difference in mechanisms at the different wavelengths, we find that the maximal efficiency remains at around 7 times the ablation threshold fluence for all investigated wavelengths. This work provides guidelines for high-quality and efficient micromachining of silicon in the scarcely explored picosecond regime, while new picosecond sources offer numerous advantages for real throughput industrial applications.

  11. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    Science.gov (United States)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  12. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    Science.gov (United States)

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  13. Sub-picosecond Resolution Time-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Ph D, Vladimir Bratov; Ph D, Vladimir Katzman; MS EE, Jeb Binkley

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  14. Picosecond time resolved conductance measurements of redox molecular junctions

    Science.gov (United States)

    Arielly, Rani; Nachman, Nirit; Zelinskyy, Yaroslav; May, Volkhard; Selzer, Yoram

    2017-03-01

    Due to bandwidth limitations of state of the art electronics, the transient transport properties of molecular junctions are experimentally a terra incognita, which can only be explored if novel picosecond current-probing techniques are developed. Here we demonstrate one such approach: the laser pulse-pair sequence scheme. The method is used to monitor in picosecond resolution the oxidation state of a redox molecule, 6-ferrocenyl-1-hexanethiol, within a junction and to quantify its redox rate constant, which is found to be (80 ps)-1.

  15. Electronics for a Picosecond Time-of-flight Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Andrew Gerhart [University of Texas, Arlington; Rijssenbeek, Michael [Stony Brook

    2014-11-03

    TITLE: Electronics for a Picosecond Time-of-flight Measurement ABSTRACT: Time-of-flight (TOF) detectors have historically been used as part of the particle identification capability of multi-purpose particle physics detectors. An accurate time measurement, combined with a momentum measurement based on the curvature of the track in a magnetic field, is often sufficient to determine the particle's mass, and thus its identity. Such detectors typically have measured the particle flight time extremely precisely, with an uncertainty of one hundred trillionths of a second (also referred to as 100 picoseconds). To put this in perspective it would be like counting all the people on the Earth and getting it right within 1 person! Another use of TOFs is to measure the vertex of the event, which is the location along the beam line where the incoming particles (typically protons) collide. This vertex positon is a well measured quantity for events where the protons collide “head on” as the outgoing particles produced when you blast the proton apart can be used to trace back to a vertex point from which they originated. More frequently the protons just strike a glancing blow and remain intact—in this case they are nearly parallel to the beam and you cannot tell their vertex without this ability to precisely measure the time of flight of the protons. Occasionally both happen in the same event, that is, a central system and two protons are produced. But are they from the same collision, or just a boring background where more than one collision in the same bunch crossing conspire to fake the signal of interest? That’s where the timing of the protons comes into play. The main idea is to measure the time it takes for the two protons to reach TOF detectors positioned equidistant from the center of the main detector. If the vertex is displaced to one side than that detector will measure a shorter time while the other side detector will measure a correspondingly longer time

  16. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier.

    Science.gov (United States)

    Koyama, Mio; Hirose, Tetsuya; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2011-01-17

    Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier is analyzed. An output power of 25 W was obtained for 53 W of pumping, with a peak power of 37 kW. Frequency doubling of the vortex output was demonstrated using a nonlinear PPSLT crystal. A second-harmonic output power of up to 1.5 W was measured at a fundamental power of 11.2 W.

  17. Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution

    DEFF Research Database (Denmark)

    Assmann, Marc; Veit, Franziska; Tempel, Jean-Sebastian;

    2010-01-01

    We present a detailed discussion of a recently demonstrated experimental technique capable of measuring the orrelation function of a pulsed light source with picosecond time resolution. The measurement involves a streak camera in single photon counting mode, which is modified such that a signal...... at a fixed repetition rate, and well defined energy, can be monitored after each pulsed laser excitation. The technique provides further insight into the quantum optical properties of pulsed light emission from semiconductor nanostructures, and the dynamics inside a pulse, on the subnanosecond time scale....

  18. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  19. Delivering 10 Gb/s optical data with picosecond timing uncertainty over 75 km distance

    CERN Document Server

    Sotiropoulos, N; Nuijts, R; de Waardt, H; Koelemeij, J C J

    2014-01-01

    We report a method to determine propagation delays of optical 10 Gb/s data traveling through a 75 km long amplified fiber link with an uncertainty of 4 ps. The one-way propagation delay is determined by two-way exchange and cross correlation of short (< 1 ms) bursts of 10 Gb/s data, with a single-shot time resolution better than 2.5 ps. We thus achieve a novel optical communications link suited for both long-haul high-capacity data transfer and time transfer with picosecond-range uncertainty. This opens up the perspective of synchronized optical telecommunication networks allowing picosecond-range time distribution and millimeter-range positioning.

  20. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser.

    Science.gov (United States)

    Chen, Wei; Song, Youjian; Jung, Kwangyun; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2016-01-25

    We characterize the timing jitter of a picosecond all-polarization-maintaining (all-PM) Yb-fiber laser using the optical cross-correlation method. For the 10 MHz all-normal dispersion mode-locked laser with ~0.5 nm spectral bandwidth, the measured high-frequency jitter is as low as 5.9 fs (RMS) when integrated from 10 kHz to the Nyquist frequency of 5 MHz. A complete numerical model with ASE noise is built to simulate the timing jitter characteristics in consideration of intracavity pulse evolution. The mutual comparison among simulation result, analytical model and experiment data indicate that the few femtosecond timing jitter from the picosecond fiber laser is attributed to the complete elimination of Gordon-Haus jitter by narrow bandpass filtering by a fiber Bragg grating (FBG). The low level of timing jitter from this compact and maintenance-free PM picosecond fiber laser source at a low MHz repetition rate is promising to advance a number of femtosecond-precision timing and synchronization applications.

  1. A low timing jitter picosecond microchip laser pumped by pulsed LD

    Science.gov (United States)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  2. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  3. Development of a picosecond time-of-flight system in the ATLAS experiment

    CERN Document Server

    Grabas, Hervé

    In this thesis, we present a study of the sensitivity to Beyond Standard Model physics brought by the design and installation of picosecond time-of-flight detectors in the forward region of the ATLAS experiment at the LHC. The first part of the thesis present a study of the sensitivity to the quartic gauge anomalous coupling between the photon and the W boson, using exclusive WW pair production in ATLAS. The event selection is built considering the semi-leptonic decay of WW pair and the presence of the AFP detector in ATLAS. The second part gives a description of large area picosecond photo-detectors design and time reconstruction algorithms with a special care given to signal sampling and processing for precision timing.The third part presents the design of SamPic: a custom picosecond readout integrated circuit. At the end, its first results are reported, and in particular a world-class 5ps timing precision in measuring the delay between two fast pulses.

  4. Semiconductors Investigated by Time Resolved Raman Absorption and Photoluminescence Spectroscopy Using Femtosecond and Picosecond Laser Techniques.

    Science.gov (United States)

    1983-05-05

    This report summarizes the research progress achieved in the period 1979-1982 in the research effort supported by AFOSR 80-0079. Two main areas of research are: picosecond and subpicosecond laser development and application and time-resolved studies of semiconductors. In the subpicosecond laser development program we investigated a variety of cavities of different physical parameters. A stable and reliable oscillator, which produces 200 fsec pulses, has been developed using

  5. Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Slaughter, Daniel S; Troy, Tyler; Ziemkiewicz, Michael P; Ahmed, Musahid; Gul, Sheraz; Rude, Bruce; Zhang, Jin Z; Tremsin, Anton S; Glans, Per-Anders; Liu, Yi-Sheng; Wu, Cheng Hao; Guo, Jinghua; Salmeron, Miquel; Bluhm, Hendrik; Gessner, Oliver

    2014-01-01

    Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques.

  6. Photonic integrated circuit as a picosecond pulse timing discriminator.

    Science.gov (United States)

    Lowery, Arthur James; Zhuang, Leimeng

    2016-04-18

    We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions.

  7. A picosecond resolution Time Digitizer for laser ranging

    Science.gov (United States)

    Turko, B.

    1978-01-01

    The Time Digitizer capable of covering a range of 0.34 sec in 9.76 psec increments is described. The time interval between a pair of start-stop pulses is digitized coarsely in 20 nsec periods by a very accurate 50 MHz reference clock. The residual fractions of a clock period at the start and the stop end of the measured interval are stretched in two interpolators and digitized in 9.76 psec increments. An equivalent digitizing frequency of 102.4 GHz is thus achieved. The digitizer is built in a minicrate and communicates via a standard crate controller. It is intended for use in the laser ranging between ground stations and the Laser Geodetic Satellite (LAGEOS). It is shown that the distribution in any two adjacent 9.76 psec channels of a small number of identical test time intervals is essentially binomial. The performance of the digitizer and test results are given.

  8. Mode size and time duration fluctuations in a picosecond Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-05-15

    A new technique is successfully used to analyze in real time the pulse-to-pulse fluctuations of mode size and time duration in a picosecond Nd:YAG laser. In particular we show that the pulse length (30 psec) of our active--passive mode-locked Nd:YAG laser is stable to within 10% when the cavity is perfectly tuned and the saturable absorber is fresh. This technique is experimentally shown to be effective and reliable for real-time analysis of the stability of ultrashort laser pulses under a broad range of experimental conditions.

  9. Singlet Exciton Migration in a Conjugated Polymer by Picosecond Time-Resolved Photoluminescence

    Institute of Scientific and Technical Information of China (English)

    马国宏; 钱士雄; 雷洪; 汪河洲; 王荣秋; 李永舫

    2001-01-01

    The transient photoluminescence (PL) of DO-PPV (poly-(2,5-dioctyloxy-1,4-phenylene vinylene)) solution in chloroform was investigated by picosecond time-resolved PL spectroscopy. An ultrafast rise of PL and the following single exponential decay with a time constant of about 400ps were assigned to the formation of the intrachain exciton and its decay process, respectively. The redshift of the PL emission spectrum with time was caused by the subsequent exciton migration among the different conjugated segments in the DO-PPV polymer.

  10. Picosecond Spin Seebeck Effect

    Science.gov (United States)

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2017-02-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .

  11. Picosecond spin Seebeck effect

    OpenAIRE

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2016-01-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is...

  12. Improvements in time resolution and signal-to-noise ratio in a compact pico-second pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroyuki [Advanced Research Institute for Science and Engineering, Waseda University, 17 Kikuicho, Shinjuku-ku, Tokyo 162-0044 (Japan)], E-mail: physik-albert@suou.waseda.jp; Kawaguchi, Masaaki; Sakaue, Kazuyuki; Komiya, Keita; Nomoto, Tomoaki; Kamiya, Yoshio; Hama, Yoshimasa; Washio, Masakazu [Advanced Research Institute for Science and Engineering, Waseda University, 17 Kikuicho, Shinjuku-ku, Tokyo 162-0044 (Japan); Ushida, Kiminori [The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kashiwagi, Shigeru [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kuroda, Ryunosuke [National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568 (Japan)

    2007-12-15

    A compact pico-second pulse radiolysis system has been developing at Waseda University for studying primary processes in radiation chemistry. The system is composed of a photo-injector system and a pico-second all-solid-state laser system. An infrared (IR) and an ultraviolet (UV) laser pulses are obtained from mode-locked Nd:YLF laser system and used for generation of the white light continuum as a probe light and the irradiation to the Cu cathode of a photo-cathode RF-gun, respectively. To improve signal-to-noise (S/N) ratio and time resolution of this pulse radiolysis system, we optimized both probe light and pump electron beam. As a result, our pico-second pulse radiolysis system has been enough to study the primary processes of radiation chemistry. The experimental results and the improvements of our system are described in this paper.

  13. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector.

    Science.gov (United States)

    Smith, Richard J; Light, Roger A; Sharples, Steve D; Johnston, Nicholas S; Pitter, Mark C; Somekh, Mike G

    2010-02-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  14. Ablation of metals using ultrashort laser pulses in a pump-probe experiment dynamics of laser induced particle emission from metal surfaces on the femto and picosecond time scale

    CERN Document Server

    Schmidt, V

    2001-01-01

    The main part of this work deals with the dynamics of the laser ablation process of metals (Al, Ag, Fe and Ni) initiated by approx. 50 fs laser pulses. The phenomena have been investigated by interferometric time resolved pump and probe measurements. This work reports one of the first yield measurements of emitted singly charged ions and neutrals from a metal surface induced by laser light. The experiments have been performed using a two-pulse autocorrelation setup in which the differential yield of emitted metal ions is measured as a function of the temporal separation between a pair of excitation pulses with a reflectron-type time-of-flight (TOF) spectrometer. The intensity of each pulse is kept below the ablation threshold, thus only the combined interaction of both pulses causes particle emission. It must be pointed out, that the time information obtained in this way concerns only the initial excitation responsible for ablation, but does not yield information about the dynamics of the way this excitation ...

  15. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  16. Note: Optical trigger device with sub-picosecond timing jitter and stability

    Science.gov (United States)

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  17. Excited state dynamics of 9,9'-bianthryl in room temperature ionic liquids as revealed by picosecond time-resolved fluorescence study

    Indian Academy of Sciences (India)

    Dinesh Chandra Khara; Aniruddha Paul; Kotni Santhosh; Anunay Samanta

    2009-05-01

    Picosecond time-resolved fluorescence measurements have been carried out on 9,9'-bianthryl in three imidazolium ionic liquids to probe the excited state dynamics. In the early time-scale, the fluorescence spectra of bianthryl have been found to consist of emission from both locally excited (LE) and charge transfer (CT) states. The LE → CT relaxation time, as estimated from the decay of the fluorescence intensity of the LE emission, is found to vary between 230 and 390 ps, while the average solvent relaxation time, as estimated from the analysis of time-dependent fluorescence Stokes shift, is found to vary between 620 ps and 1840 ps, depending on the viscosity of the ionic liquids. The results confirm that while in conventional less viscous solvents the CT formation kinetics of bianthryl occurs simultaneously with the solvation dynamics, in ionic liquids the two processes mostly occur in different time scales.

  18. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    Science.gov (United States)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  19. Monolithic single-photon detectors and time-to-digital converters for picoseconds time-of-flight ranging

    Science.gov (United States)

    Markovic, Bojan; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2011-03-01

    We present a novel "smart-pixel" able to measure and record in-pixel the time delay (photon timing) between a START (e.g. given by laser excitation, cell stimulus, or LIDAR flash) and a STOP (e.g. arrival of the first returning photon from the fluorescence decay signal or back reflection from an object). Such smart-pixel relies of a SPAD detector and a Timeto- Digital Converter monolithically designed and manufactured in the same chip. Many pixels can be laid out in a rows by columns architecture, to give birth to expandable 2D imaging arrays for picoseconds-level single-photon timing applications. Distance measurements, by means of direct TOF detection (used in LIDAR systems) provided by each pixel, can open the way to the fabrication of single-chip 3D ranging arrays for scene reconstruction and intelligent object recognition. We report on the design and characterization of prototype circuits, fabricated in a 0.35 μm standard CMOS technology containing complete conversion channels, "smart-pixel" and ancillary electronics with 20 μm active area diameter SPAD detector and related quenching circuitry. With a 100 MHz reference clock, the TDC provides timeresolution of 10 ps, dynamic range of 160 ns and very high conversion linearity.

  20. Position Measurements with Micro-Channel Plates and Transmission lines using Pico-second Timing and Waveform Analysis

    CERN Document Server

    Adamsa, Bernhard; Bogdan, Mircea; Byrum, Karen; Genat, Jean-Francois C; Grabas, Herve; Frisch, Henry J; Kim, Heejong; Heintz, Mary K; Natoli, Tyler; Northrop, Richard; Oberla, Eric; Meehan, Samuel; May, Edward N; Stanek, Robert; Tang, Fukun; Varner, Gary; Yurtsev, Eugene

    2009-01-01

    The anodes of Micro-Channel Plate devices are coupled to fast transmission lines in order to reduce the number of electronics readout channels, and can provide two-dimension position measurements using two-ends delay timing. Tests with a laser and digital waveform analysis show that resolutions of a few hundreds of microns along the transmission line can be reached taking advantage of a few pico-second timing estimation. This technique is planned to be used in Micro-channel Plate devices integrating the transmission lines as anodes.

  1. Irreversibility time scale.

    Science.gov (United States)

    Gallavotti, G

    2006-06-01

    Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).

  2. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Science.gov (United States)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  3. Picosecond measurements using photoacoustic detection

    Science.gov (United States)

    Heritier, J.-M.; Siegman, A. E.

    1983-01-01

    A report is presented of experimental results on picosecond time-resolved photoacoustic measurements of excited-state lifetimes, cross sections, and polarization properties for organic dye molecules in solution, using a new technique in which the total photoacoustic impulse produced by two ultrashort optical pulses with variable time delay between them is detected. The picosecond photoacoustic detection technique reported here appears to be a promising new way to observe weak excited-state cross sections and to perform picosecond lifetime measurements in a large variety of weakly absorbing and/or nonfluorescing atomic and molecular systems.

  4. Optothermal response of plasmonic nanofocusing lens under picosecond laser irradiation

    Science.gov (United States)

    Du, Z.; Chen, C.; Traverso, L.; Xu, X.; Pan, L.; Chao, I.-H.; Lavine, A. S.

    2014-03-01

    This work studied the optothermal response of plasmonic nanofocusing structures under picosecond pulsed laser irradiation. The surface plasmon polariton is simulated to calculate the optical energy dissipation as the Joule heating source and the thermal transport process is studied using a two temperature model (TTM). At the picosecond time scale that we are interested in, the Fourier heat equation is used to study the electron thermal transport and the hyperbolic heat equation is used to study the lattice thermal transport. For comparison, the single temperature model (STM) is also studied. The difference between TTM and STM indicates that TTM provides more accurate estimates in the picosecond time scale and the STM results are only reliable when the local electron and lattice temperature difference is negligible.

  5. Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes.

    Science.gov (United States)

    Kress, Matthias; Meier, Thomas; Steiner, Rudolf; Dolp, Frank; Erdmann, Rainer; Ortmann, Uwe; Rück, Angelika

    2003-01-01

    This work describes the time-resolved fluorescence characteristics of two different photosensitizers in single cells, in detail mTHPC and 5-ALA induced PPIX, which are currently clinically used in photodynamic therapy. The fluorescence lifetime of the drugs was determined in the cells from time-gated spectra as well as single photon counting, using a picosecond pulsed diode laser for fluorescence excitation. The diode laser, which emits pulses at 398 nm with 70 ps full width at half maximum duration, was coupled to a confocal laser scanning microscope. For time-resolved spectroscopy a setup consisting of a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images. The fluorescence lifetime of mTHPC decreased from 7.5 to 5.5 ns during incubation from 1 to 6 h. This decrease was probably attributed to enhanced formation of aggregates during incubation. Fluorescence lifetime imaging showed that longer lifetimes were correlated with accumulation in the cytoplasm in the neighborhood of the cell nucleus, whereas shorter lifetimes were found in the outer cytoplasm. For cells that were incubated with 5-ALA, a fluorescence lifetime of 7.4 ns was found for PPIX; a shorter lifetime at 3.6 ns was probably attributed to photoproducts and aggregates of PPIX. In contrast from fluorescence intensity images alone, different fluorescence species could not be distinguished. However, in the lifetime image a structured fluorescence distribution in the cytoplasm was correlated with the longer lifetime and probably coincides with mitochondria. In conclusion, picosecond diode lasers coupled to a laser scanning microscope equipped with appropriate detection units allows time-resolved spectroscopy and lifetime imaging

  6. Jensen's Functionals on Time Scales

    Directory of Open Access Journals (Sweden)

    Matloob Anwar

    2012-01-01

    Full Text Available We consider Jensen’s functionals on time scales and discuss its properties and applications. Further, we define weighted generalized and power means on time scales. By applying the properties of Jensen’s functionals on these means, we obtain several refinements and converses of Hölder’s inequality on time scales.

  7. Time scales in LISA

    CERN Document Server

    Pireaux, S

    2007-01-01

    The LISA mission is a space interferometer aiming at the detection of gravitational waves in the [$10^{-4}$,$10^{-1}$] Hz frequency band. In order to reach the gravitational wave detection level, a Time Delay Interferometry (TDI) method must be applied to get rid of (most of) the laser frequency noise and optical bench noise. This TDI analysis is carried out in terms of the coordinate time corresponding to the Barycentric Coordinate Reference System (BCRS), TCB, whereas the data at each of the three LISA stations is recorded in terms of each station proper time. We provide here the required proper time versus BCRS time transformation. We show that the difference in rate of station proper time versus TCB is of the order of $5 10^{-8}$. The difference between station proper times and TCB exhibits an oscillatory trend with a maximum amplitude of about $10^{-3}$ s.

  8. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  9. Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Delagnes, E., E-mail: eric.delagnes@cea.fr [CEA/IRFU/SEDI, Saclay (France); Breton, D. [Laboratoire de L’accélérateur Linéaire from CNRS/IN2P3, Centre scientifique d’Orsay, Bâtiment 200, 91898, Orsay, Cedex (France); Grabas, H. [CEA/IRFU/SEDI, Saclay (France); Maalmi, J.; Rusquart, P. [Laboratoire de L’accélérateur Linéaire from CNRS/IN2P3, Centre scientifique d’Orsay, Bâtiment 200, 91898, Orsay, Cedex (France)

    2015-07-01

    SAMPIC is a Time and Waveform to Digital Converter (TWDC) multichannel chip. It integrates 16 channels each including DLL-based TDC providing a raw time associated with an ultra-fast analog memory sampling the signal used for precise timing measurements as well as other parameters of the pulse. Every channel also integrates a discriminator that can trigger it independently or participate to a more complex trigger. After triggering, the analog samples are digitized by on-chip ADCs and are sent serially to the acquisition. The paper describes the architecture of SAMPIC and reports the main performance measured on the first prototype chip with a focus on timing resolution in the range of 15 ps RMS using raw data improved to less than 5 ps RMS after a simple calibration.

  10. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  11. Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulses

    Science.gov (United States)

    Koenig, Karsten; Wollina, Uwe; Riemann, Iris; Peukert, Christiane; Halbhuber, Karl-Juergen; Konrad, Helga; Fischer, Peter; Fuenfstueck, Veronika; Fischer, Tobias W.; Elsner, Peter

    2002-06-01

    We describe the novel high resolution imaging tool DermaInspect 100 for non-invasive diagnosis of dermatological disorders based on multiphoton autofluorescence imaging (MAI)and second harmonic generation. Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vitro and in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Second harmonic generation was observed in the stratum corneum and in the dermis. The system with a wavelength-tunable compact 80 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezoelectric objective positioner, fast photon detector and time-resolved single photon counting unit was used to perform optical sectioning and 3D autofluorescence lifetime imaging (t-mapping). In addition, a modified femtosecond laser scanning microscope was involved in autofluorescence measurements. Tissues of patients with psoriasis, nevi, dermatitis, basalioma and melanoma have been investigated. Individual cells and skin structures could be clearly visualized. Intracellular components and connective tissue structures could be further characterized by tuning the excitation wavelength in the range of 750 nm to 850 nm and by calculation of mean fluorescence lifetimes per pixel and of particular regions of interest. The novel non-invasive imaging system provides 4D (x,y,z,t) optical biopsies with subcellular resolution and offers the possibility to introduce a further optical diagnostic method in dermatology.

  12. Progress towards a 256 channel multi-anode microchannel plate photomultiplier system with picosecond timing.

    Science.gov (United States)

    Lapington, J S; Ashton, T J R; Ross, D; Conneely, T

    2012-12-11

    Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout. Initially this will be populated with a 256 channel electronics system comprising four sets of modular 64 channel preamplifier/discriminator, and time-to-digital converter units, arranged in a compact three dimensional configuration. We describe the detector and electronics design and operation, and present performance measurements from the 256 channel development system. We discuss enhancements to the system including higher channel count and the use of application specific on-board signal processing capabilities.

  13. A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Muir, C. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Department of Physics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2016-11-15

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  14. A pulse-front-tilt-compensated streaked optical spectrometer with high throughput and picosecond time resolution

    Science.gov (United States)

    Katz, J.; Boni, R.; Rivlis, R.; Muir, C.; Froula, D. H.

    2016-11-01

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  15. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam br

  16. Picosecond spectroscopy of dihydro biliverdin

    Science.gov (United States)

    Ditto, Manfred; Brunner, Harald; Lippitsch, Max E.

    1991-10-01

    Picosecond time-resolved fluorescence and absorption spectroscopy was performed on dihydro biliverdin, a model for the chromophore in the plant pigment phytochrome, a chromoprotein governing plant growth. Close agreement between the model compound and the native chromophore proves the importance of the saturated pyrrol ring for the decay kinetics and renders chromophore protonation in phytochrome unlikely.

  17. Local structures in ionic liquids probed and characterized by microscopic thermal diffusion monitored with picosecond time-resolved Raman spectroscopy.

    Science.gov (United States)

    Yoshida, Kyousuke; Iwata, Koichi; Nishiyama, Yoshio; Kimura, Yoshifumi; Hamaguchi, Hiro-o

    2012-03-14

    Vibrational cooling rate of the first excited singlet (S(1)) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C(2)mimTf(2)N, C(4)mimTf(2)N, C(4)mimPF(6), C(5)mimTf(2)N, C(6)mimTf(2)N, C(8)mimTf(2)N, and bmpyTf(2)N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S(1) trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps(-1) in the seven ionic liquids and 0.08 to 0.14 ps(-1) in molecular liquids) despite large differences in thermal diffusivity (5.4-7.5 × 10(-8) m(2) s(-1) in ionic liquids and 8.0-10 × 10(-8) m(2) s(-1) in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using "local" thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light

  18. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Cunningham, John E., E-mail: j.e.cunningham@leeds.ac.uk [School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Sydoruk, Oleksiy [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  19. Picosecond electron injection dynamics in dye-sensitized oxides in the presence of electrolyte

    NARCIS (Netherlands)

    Pijpers, J.J.H.; Ulbricht, R.; Derossi, S.; Reek, J.N.H.; Bonn, M.

    2011-01-01

    We employ time-resolved terahertz (THz) spectroscopy (TRTS) to directly monitor the picosecond dynamics of electron transfer in dye-sensitized oxides in the presence of an electrolyte phase. Understanding the time scale on which electrons are injected from the dye into the oxide phase in the presenc

  20. Picosecond calorimetry

    DEFF Research Database (Denmark)

    Georgiou, Panayiotis; Vincent, Jonathan; Andersson, Magnus

    2006-01-01

    Liquid phase time-resolved x-ray diffraction with 100 ps resolution has recently emerged as a powerful technique for probing the structural dynamics of transient photochemical species in solution. It is intrinsic to the method, however, that a structural signal is observed not only from the photo...

  1. Integral equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2016-01-01

    This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.

  2. A Time scales Noether's theorem

    OpenAIRE

    Anerot, Baptiste; Cresson, Jacky; Pierret, Frédéric

    2016-01-01

    We prove a time scales version of the Noether's theorem relating group of symmetries and conservation laws. Our result extends the continuous version of the Noether's theorem as well as the discrete one and corrects a previous statement of Bartosiewicz and Torres in \\cite{BT}.

  3. Ultrafast supercontinuum fiber-laser based pump-probe scanning MOKE microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    CERN Document Server

    Henn, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-01-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect (MOKE) microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast `white light' supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of t...

  4. Picosecond resolution soft x-ray laser plasma interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  5. Integrable Equations on Time Scales

    OpenAIRE

    Gurses, Metin; Guseinov, Gusein Sh.; Silindir, Burcu

    2005-01-01

    Integrable systems are usually given in terms of functions of continuous variables (on ${\\mathbb R}$), functions of discrete variables (on ${\\mathbb Z}$) and recently in terms of functions of $q$-variables (on ${\\mathbb K}_{q}$). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over $q...

  6. Perspective: On the relevance of slower-than-femtosecond time scales in chemical structural-dynamics studies

    Directory of Open Access Journals (Sweden)

    Philip Coppens

    2015-03-01

    Full Text Available A number of examples illustrate structural-dynamics studies of picosecond and slower photo-induced processes. They include molecular rearrangements and excitations. The information that can be obtained from such studies is discussed. The results are complementary to the information obtained from femtosecond studies. The point is made that all pertinent time scales should be covered to obtain comprehensive insight in dynamic processes of chemical and biological importance.

  7. Split-probe hybrid femtosecond/picosecond rotational CARS for time-domain measurement of S-branch Raman linewidths within a single laser shot.

    Science.gov (United States)

    Patterson, Brian D; Gao, Yi; Seeger, Thomas; Kliewer, Christopher J

    2013-11-15

    We introduce a multiplex technique for the single-laser-shot determination of S-branch Raman linewidths with high accuracy and precision by implementing hybrid femtosecond (fs)/picosecond (ps) rotational coherent anti-Stokes Raman spectroscopy (CARS) with multiple spatially and temporally separated probe beams derived from a single laser pulse. The probe beams scatter from the rotational coherence driven by the fs pump and Stokes pulses at four different probe pulse delay times spanning 360 ps, thereby mapping collisional coherence dephasing in time for the populated rotational levels. The probe beams scatter at different folded BOXCARS angles, yielding spatially separated CARS signals which are collected simultaneously on the charge coupled device camera. The technique yields a single-shot standard deviation (1σ) of less than 3.5% in the determination of Raman linewidths and the average linewidth values obtained for N(2) are within 1% of those previously reported. The presented technique opens the possibility for correcting CARS spectra for time-varying collisional environments in operando.

  8. Photoionization-induced π↔ H site switching dynamics in phenol(+)-Rg (Rg = Ar, Kr) dimers probed by picosecond time-resolved infrared spectroscopy.

    Science.gov (United States)

    Miyazaki, Mitsuhiko; Sakata, Yuri; Schütz, Markus; Dopfer, Otto; Fujii, Masaaki

    2016-09-21

    The ionization-induced π↔ H site switching reaction in phenol(+)-Rg (PhOH(+)-Rg) dimers with Rg = Ar and Kr is traced in real time by picosecond time-resolved infrared (ps-TRIR) spectroscopy. The ps-TRIR spectra show the prompt appearance of the non-vanishing free OH stretching band upon resonant photoionization of the π-bound neutral clusters, and the delayed appearance of the hydrogen-bonded (H-bonded) OH stretching band. This result directly proves that the Rg ligand switches from the π-bound site on the aromatic ring to the H-bonded site at the OH group by ionization. The subsequent H →π back reaction converges the dimer to a π↔ H equilibrium. This result is in sharp contrast to the single-step π→ H forward reaction in the PhOH(+)-Ar2 trimer with 100% yield. The reaction mechanism and yield strongly depend on intracluster vibrational energy redistribution. A classical rate equation analysis for the time evolutions of the band intensities of the two vibrations results in similar estimates for the time constants of the π→ H forward reaction of τ+ = 122 and 73 ps and the H →π back reaction of τ- = 155 and 188 ps for PhOH(+)-Ar and PhOH(+)-Kr, respectively. The one order of magnitude slower time constant in comparison to the PhOH(+)-Ar2 trimer (τ+ = 7 ps) is attributed to the decrease in density of states due to the absence of the second Ar in the dimer. The similar time constants for both PhOH(+)-Rg dimers are well rationalized by a classical interpretation based on the comparable potential energy surfaces, reaction pathways, and density of states arising from their similar intermolecular vibrational frequencies.

  9. Metal-like heat conduction in laser-excited InSb probed by picosecond time-resolved x-ray diffraction

    Science.gov (United States)

    Sondhauss, P.; Synnergren, O.; Hansen, T. N.; Canton, S. E.; Enquist, H.; Srivastava, A.; Larsson, J.

    2008-09-01

    A semiconductor (InSb) showed transient metal-like heat conduction after excitation of a dense electron-hole plasma via short and intense light pulses. A related ultrafast strain relaxation was detected using picosecond time-resolved x-ray diffraction. The deduced heat conduction was, by a factor of 30, larger than the lattice contribution. The anomalously high heat conduction can be explained once the contribution from the degenerate photocarrier plasma is taken into account. The magnitude of the effect could provide the means for guiding heat in semiconductor nanostructures. In the course of this work, a quantitative model for the carrier dynamics in laser-irradiated semiconductors has been developed, which does not rely on any adjustable parameters or ad hoc assumptions. The model includes various light absorption processes (interband, free carrier, two photon, and dynamical Burstein-Moss shifts), ambipolar diffusion, energy transport (heat and chemical potential), electrothermal effects, Auger recombination, collisional excitation, and scattering (elastic and inelastic). The model accounts for arbitrary degrees of degeneracy.

  10. Time scale of stationary decoherence

    Science.gov (United States)

    Polonyi, Janos

    2017-07-01

    The decoherence of a test particle interacting with an ideal gas is studied by the help of the effective Lagrangian, derived in the leading order of the perturbation expansion and in order O (∂t2) . The stationary decoherence time is found to be comparable to or longer than the diffusion time. The decoherence time reaches its minimal value for classical, completely decohered environment, suggesting that physical decoherence is slowed down as compared with diffusion by the quantum coherence of the environment.

  11. THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions.

    Science.gov (United States)

    Woods, K N

    2014-03-01

    Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG)3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG)3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.

  12. Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses

    Science.gov (United States)

    Alley, C. O.; Rayner, J. D.; Steggerda, C. A.; Mullendore, J. V.; Small, L.; Wagner, S.

    1983-01-01

    A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock.

  13. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.

    Science.gov (United States)

    Gallivanoni, A; Rech, I; Resnati, D; Ghioni, M; Cova, S

    2006-06-12

    A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

  14. Front-end chip for Silicon Photomultiplier detectors with pico-second Time-of-Flight resolution

    Science.gov (United States)

    Stankova, V.; Briggl, K.; Chen, H.; Gil, A.; Harion, T.; Munwes, Y.; Shen, W.; Schultz-Coulon, H.-C.

    2016-07-01

    A mixed-mode readout Application Specific Integrated Circuit (STIC3) has been developed for high precision timing measurements with Silicon Photomultipliers (SiPM) for medical imaging and particle physics applications. The STiC3 is a 64-channel chip, with fully differential analog front-end for cross-talk and electronic noise immunity. The time and charge information from the SiPM signals are encrypted into two time stamps generated by integrated Time to Digital Converter (TDC) modules with 50 ps time binning. The TDC data is stored in an internal memory and transferred to a PC via a 160 MBit/s serial link using an 8/10 bit encoding. The chip provides an input bias tuning in a range of 0-900 mV to compensate the breakdown voltage variation of individual SiPMs. The TDC jitter together with the digital part is around 37 ps. A Coincidence Time Resolution (CTR) of 213.6 ps FWHM has been obtained with 3.1 × 3.1 × 15m2 LYSO:Ce scintillator crystals and Hamamatsu SiPM matrices (S12643-050CN(X)). Characterization measurements with the chip and its integration into the external plate of the EndoTOFPET-US prototype are presented.

  15. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    Science.gov (United States)

    Dorchies, F.; Fedorov, N.; Lecherbourg, L.

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ˜1 mn and ˜100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  16. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Wolf, Matthias M. N.; Gross, Ruth

    2008-01-01

      The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive...... absorption cross sections. The simulated infrared difference spectra are dominated by an increase of the absorption cross section upon high-spin state formation in accordance with the experimental infrared spectra....... infrared difference bands between 1000 and 1065 cm-1 that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin 5T2 state. Vibrational relaxation is observed and characterized by the time constants 9...

  17. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    . The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration......The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline....

  18. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  19. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr; Fedorov, N.; Lecherbourg, L. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405 (France)

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  20. Test of Ultra Fast Silicon Detectors for picosecond time measurements with a new multipurpose read-out board

    Science.gov (United States)

    Minafra, N.; Al Ghoul, H.; Arcidiacono, R.; Cartiglia, N.; Forthomme, L.; Mulargia, R.; Obertino, M.; Royon, C.

    2017-09-01

    Ultra Fast Silicon Detectors (UFSD) are sensors optimized for timing measurements employing a thin multiplication layer to increase the output signal. A multipurpose read-out board hosting a low-cost, low-power fast amplifier was designed at the University of Kansas and tested at the European Organization for Nuclear Research (CERN) using a 180 GeV pion beam. The amplifier has been designed to read out a wide range of detectors and it was optimized in this test for the UFSD output signal. In this paper we report the results of the experimental tests using 50 μm thick UFSD with a sensitive area of 1 . 4mm2. A timing precision below 30 ps was achieved.

  1. Laser induced breakdown spectroscopy with picosecond pulse train

    Science.gov (United States)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  2. Observation of Ultrafast Bond-length Expansion at the Initial Stage of Laser Ablation by Picosecond Time-resolved EXAFS

    Science.gov (United States)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    We have demonstrated a time-resolved extended X-ray absorption fine structure (EXAFS) technique by using a femtosecond laser produced plasma soft X-ray source. By applying this technique to the measurement of the initial stage of the laser ablation in Si foil, we were able to observe a slight shortening of the EXAFS oscillation period. This result suggests that the Si-Si atomic bond length expands as a result of the solid-liquid phase transition in Si. The realization of this technique is the first step toward understanding atomic structural dynamics during a chemical reaction.

  3. KEKB Beam Collision Stability at the Picosecond Timing and Micron Position Resolution as observed with the Belle Detector

    CERN Document Server

    Kichimi, H; Uehara, S; Nakao, M; Akai, K; Ieiri, T; Tobiyama, M; Jones, M D; Peters, M W; Varner, G S; Browder, T E

    2010-01-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV $e^+$ on 8 GeV $e^-$ asymmetric energy collider. We investigate the collision timing {\\tip} and its $z$-coordinate along the beam axis {\\zip} as a function of the position of the colliding bunch in a beam train. The various {\\tip} and {\\zip} behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We report these results in detail and discuss the prospects for the SuperKEKB collider.

  4. KEKB beam collision stability at the picosecond timing and micron position resolution as observed with the Belle detector

    Science.gov (United States)

    Kichimi, H.; Trabelsi, K.; Uehara, S.; Nakao, M.; Akai, K.; Ieiri, T.; Tobiyama, M.; Jones, M. D.; Peters, M. W.; Varner, G. S.; Browder, T. E.

    2010-03-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV e+ on 8 GeV e- asymmetric energy collider. We investigate the collision timing tIP and its z-coordinate along the beam axis zIP as a function of the position of the colliding bunch in a beam train. The various tIP and zIP behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We report these results in detail and discuss the prospects for the SuperKEKB collider.

  5. Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO

    Science.gov (United States)

    Abou-Zied, Osama K.; McDonald, J. Douglas

    1998-07-01

    The bimolecular reaction of O(3P) with ethylene and the unimolecular photodissociation of acetaldehyde and formaldehyde have been studied using a picosecond pump/probe technique. The bimolecular reaction was initiated in a van der Waals dimer precursor, C2H4ṡNO2, and the evolution of the vinoxy radical product monitored by laser-induced fluorescence. The NO2 constituent of the complex was photodissociated at 266 nm. The triplet oxygen atom then attacks a carbon atom of C2H4 to form a triplet diradical (CH2CH2O) which subsequently dissociates to vinoxy (CH2CHO) and H. The rise time of vinoxy radical production was measured to be 217 (+75-25) ps. RRKM theory was applied and a late high exit barrier was invoked in order to fit the measured rise time. The structure and binding energy of the van der Waals complex have been modeled using Lennard-Jones type potentials and the results were compared with other systems. The unimolecular side of the potential energy surfaces of this reaction has been investigated by photodissociating acetaldehyde at the same pump energy of 266 nm. The resulting photoproducts, acetyl radical (CH3CO) and formyl radical (HCO), have been monitored by resonance enhanced multiphoton ionization (REMPI) combined with a time-of-flight mass spectrometer. The similarity in the measured evolution times of both radicals indicates the same photodissociation pathway of the parent molecule. The photodissociation rate of acetaldehyde is estimated from RRKM theory to be very fast (3×1012s-1). The T1←S1 intersystem crossing (ISC) rate is found to be the rate determining step to photodissociation and increases with energy. The REMPI mechanism for the production of CH3CO+ is proposed to be the same as that of HCO+(2+1). The HCO product from the photodissociation of formaldehyde at 266 nm reveals a faster T1←S1 ISC rate than in acetaldehyde.

  6. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution.

    Science.gov (United States)

    Schaberle, Fábio A; Rego Filho, Francisco de Assis M G; Reis, Luís A; Arnaut, Luis G

    2016-02-01

    Time-resolved photoacoustic calorimetry (PAC) gives access to lifetimes and energy fractions of reaction intermediates by deconvolution of the photoacoustic wave of a sample (E-wave) with that of the instrumental response (T-wave). The ability to discriminate between short lifetimes increases with transducer frequencies employed to detect the PAC waves. We investigate the lifetime resolution limits of PAC as a function of the transducer frequencies using the instrumental response obtained with the photoacoustic reference 2-hydroxybenzophenone in toluene or acetonitrile. The instrumental response was obtained for a set of transducers with central frequencies ranging from 0.5 MHz up to 225 MHz. The simulated dependence of the lifetime resolution with the transducer frequencies was anchored on experimental data obtained for the singlet state of naphthalene with a 2.25 MHz transducer. The shortest lifetime resolved with the 2.25 MHz transducer was 19 ns and our modelling of the transducer responses indicates that sub-nanosecond lifetimes of photoacoustic transients can be resolved with transducers of central frequencies above 100 MHz.

  7. Time scale in quasifission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Paul, P.; Nestler, J. [and others

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  8. Stochastic dynamic equations on general time scales

    Directory of Open Access Journals (Sweden)

    Martin Bohner

    2013-02-01

    Full Text Available In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense.

  9. Some integral inequalities on time scales

    Institute of Scientific and Technical Information of China (English)

    Adnan Tuna; Servet Kutukcu

    2008-01-01

    In this article, we study the reverse Holder type inequality and Holder in-equality in two dimensional case on time scales. We also obtain many integral inequalities by using H(o)lder inequalities on time scales which give Hardy's inequalities as spacial cases.

  10. Kalman plus weights: a time scale algorithm

    Science.gov (United States)

    Greenhall, C. A.

    2001-01-01

    KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.

  11. Experimental investigation of picosecond dynamics following interactions between laser accelerated protons and water

    Science.gov (United States)

    Senje, L.; Coughlan, M.; Jung, D.; Taylor, M.; Nersisyan, G.; Riley, D.; Lewis, C. L. S.; Lundh, O.; Wahlström, C.-G.; Zepf, M.; Dromey, B.

    2017-03-01

    We report direct experimental measurements with picosecond time resolution of how high energy protons interact with water at extreme dose levels (kGy), delivered in a single pulse with the duration of less than 80 ps. The unique synchronisation possibilities of laser accelerated protons with an optical probe pulse were utilized to investigate the energy deposition of fast protons in water on a time scale down to only a few picoseconds. This was measured using absorbance changes in the water, induced by a population of solvated electrons created in the tracks of the high energy protons. Our results indicate that for sufficiently high doses delivered in short pulses, intertrack effects will affect the yield of solvated electrons. The experimental scheme allows for investigation of the ultrafast mechanisms occurring in proton water radiolysis, an area of physics especially important due to its relevance in biology and for proton therapy.

  12. Time Scale in Least Square Method

    Directory of Open Access Journals (Sweden)

    Özgür Yeniay

    2014-01-01

    Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.

  13. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.

    Science.gov (United States)

    Weidlich, O; Ujj, L; Jäger, F; Atkinson, G H

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These

  14. Adolescent Time Attitude Scale: Adaptation into Turkish

    Science.gov (United States)

    Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin

    2017-01-01

    This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…

  15. Hardy type inequalities on time scales

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2016-01-01

    The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...

  16. The Second Noether Theorem on Time Scales

    OpenAIRE

    Malinowska, Agnieszka B.; Natália Martins

    2013-01-01

    We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the $h$ -calculus and the second Noether theorem for the $q$ -calculus.

  17. Picosecond laser filamentation in air

    Science.gov (United States)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  18. Analysis of persistent organic pollutants at sub-femtogram levels using a high-power picosecond laser for multiphoton ionization in conjunction with gas chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Matsui, Taiki; Fukazawa, Kodai; Fujimoto, Masatoshi; Imasaka, Totaro

    2012-01-01

    A low-energy, high-repetition-rate picosecond laser (40 µJ, 20 kHz, 258 nm) was used for multiphoton ionization (MPI) in gas chromatography/time-of-flight mass spectrometry to quantitatively determine dioxins (DXNs) and polycyclic aromatic hydrocarbons (PAHs). The sensitivity of the technique was compared with that obtained using a high-energy, low-repetition-rate femtosecond laser (86 µJ, 1 kHz, 261 nm). The limits of detection (LODs) for the picosecond laser were several femtograms for chlorinated DXNs with low numbers of chloro substituents, and were several times lower than values obtained using a femtosecond laser, although the LODs were increased, reaching values that were nearly identical to those for the femtosecond laser for octachlorodibenzo-p-dioxin (octaCDD) and octachlorodibenzofuran (octaCDF). The LODs were also measured for 16 PAHs specified by the United States Environmental Protection Agency; the values for half of these compounds were at sub-femtogram levels. The procedure was used to analyze a surface-water sample collected from a river.

  19. Time invariant scaling in discrete fragmentation models

    CERN Document Server

    Giraud, B G; Giraud, B G; Peschanski, R

    1994-01-01

    Linear rate equations are used to describe the cascading decay of an initial heavy cluster into fragments. We consider moments of arbitrary orders of the mass multiplicity spectrum and derive scaling properties pertaining to their time evolution. We suggest that the mass weighted multiplicity is a suitable observable for the discovery of scaling. Numerical tests validate such properties, even for moderate values of the initial mass (nuclei, percolation clusters, jets of particles etc.). Finite size effects can be simply parametrized.

  20. Analysis of efficient ion acceleration with multi-picosecond LFEX laser

    Science.gov (United States)

    Iwata, Natsumi; Yogo, Akifumi; Mima, Kunioki; Tosaki, Shota; Koga, Keisuke; Nagatomo, Hideo; Kishimoto, Yasuaki; Nishimura, Hiroaki; Azechi, Horishi

    2016-10-01

    We demonstrate an efficient proton acceleration reaching 30 MeV by using high contrast, kilojoule, picosecond laser LFEX at the peak intensity of 2.3 ×1018 W/cm2. Owing to the large spot size of 70 μm FWHM, the target foil expands one-dimensionally during the multi-picosecond pulse duration time, which yields the electron heating beyond the ponderomotive scaling observed in the experiment. We present by a 1D PIC simulation that the electron temperature evolves in time while the electrons recirculate between the front and rear surfaces of the expanding plasma. A theoretical calculation for the ion maximum energy that takes the temperature evolution into account agrees with the experimental result quantitatively. Being supported by the experiment and simulation, our theoretical model for the non-isothermal plasma expansion dynamics will provide an important basis for understanding the multi-picosecond high intensity laser-plasma interactions and for various applications such as energetic ion beam generation for medical applications and fast ignition-based laser fusion.

  1. Multivariable dynamic calculus on time scales

    CERN Document Server

    Bohner, Martin

    2016-01-01

    This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

  2. Structure of Student Time Management Scale (STMS)

    Science.gov (United States)

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  3. Some Nonlinear Dynamic Inequalities on Time Scales

    Indian Academy of Sciences (India)

    Wei Nian Li; Weihong Sheng

    2007-11-01

    The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl. 251 (2000) 736--751).

  4. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  5. The second Noether theorem on time scale

    OpenAIRE

    Malinowska, Agnieszka B.; Martins, Natália

    2014-01-01

    We extend the second Noether theorem to variational problems on time scales. Our result provides as corollaries the classical second Noether theorem, the second Noether theorem for the $h$-calculus and the second Noether theorem for the $q$-calculus.

  6. Some Nonlinear Integral Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Li Wei Nian

    2007-01-01

    Full Text Available The purpose of this paper is to investigate some nonlinear integral inequalities on time scales. Our results unify and extend some continuous inequalities and their corresponding discrete analogues. The theoretical results are illustrated by a simple example at the end of this paper.

  7. An investigation into the photochemistry of, and the electrochemically induced CO-loss from, [(CO)(5)MC(OMe)Me](M = Cr or W) using low-temperature matrix isolation, picosecond infrared spectroscopy, cyclic voltammetry, and time-dependent density functional theory

    NARCIS (Netherlands)

    McMahon, S.; Amirjalayer, S.; Buma, W.J.; Halpin, Y.; Long, C.; Rooney, A.D.; Woutersen, S.; Pryce, M.T.

    2015-01-01

    The photophysics and photochemistry of [(CO)(5)MC(OMe)Me] (M = Cr or W) were investigated using pico-second time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide

  8. Scale Invariance in Rain Time Series

    Science.gov (United States)

    Deluca, A.; Corral, A.

    2009-09-01

    In the last few years there have been pieces of evidence that rain events can be considered analogous to other nonequilibrium relaxation processes in Nature such as earthquakes, solar flares and avalanches. In this work we compare the probability densities of rain event size, duration, and recurrence times (i.e., drought periods) between one Mediterranean site and different sites worldwide. We test the existence of scale invariance in these distributions and the possibility of a universal scaling exponent, despite the different climatic characteristics of the different places.

  9. High power picosecond vortex laser based on a large-mode-area fiber amplifier.

    Science.gov (United States)

    Tanaka, Yuichi; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2009-08-03

    We present the production of picosecond vortex pulses from a stressed large-mode-area fiber amplifier for the first time. 8.5 W picosecond output with a peak power of approximately 12.5 kW was obtained at a pump power of 29 W. 2009 Optical Society of America.

  10. Picosecond laser filamentation in air

    CERN Document Server

    Schmitt-Sody, Andreas; Bergé, L; Skupin, S; Polynkin, Pavel

    2016-01-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.

  11. Significance of time scale differences in psychophysics.

    Science.gov (United States)

    Klonowski, W

    2009-02-01

    We present modeling of both rational processes (thoughts) and emotional processes (feelings) on a two-dimensional lattice and on extremely simplified two-dimensional phase space of the brain. Our purpose is to analyze influence of differences in time-scales of various types of processes. In particular, we show that no 'central executive structure' between consciousness and unconsciousness, the existence of which was suggested by psychologists, is not needed.

  12. Scaling of light and dark time intervals.

    Science.gov (United States)

    Marinova, J

    1978-01-01

    Scaling of light and dark time intervals of 0.1 to 1.1 s is performed by the mehtod of magnitude estimation with respect to a given standard. The standards differ in duration and type (light and dark). The light intervals are subjectively estimated as longer than the dark ones. The relation between the mean interval estimations and their magnitude is linear for both light and dark intervals.

  13. Special Issue on Time Scale Algorithms

    Science.gov (United States)

    2008-01-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) • 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned

  14. Liquidity crises on different time scales

    Science.gov (United States)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  15. Large Area Pico-second Photodetectors (LAPPD) in Liquid Argon

    Science.gov (United States)

    Dharmapalan, Ranjan; Lappd Collaboration

    2015-04-01

    The Large Area Pico-second Photodetector (LAPPD) project has recently produced the first working devices with a small form factor and pico-second timing resolution. A number of current and proposed neutrino and dark matter experiments use liquid argon as a detector medium. A flat photodetector with excellent timing resolution will help with background suppression and improve the overall sensitivity of the experiment. We present the research done and some preliminary results to customize the LAPPD devices to work in a cryogenic environment. Argonne National Laboratory (LDRD) and DOE.

  16. Multidimensional scaling of musical time estimations.

    Science.gov (United States)

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.

  17. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  18. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin.

    Science.gov (United States)

    Lindorff-Larsen, Kresten; Maragakis, Paul; Piana, Stefano; Shaw, David E

    2016-08-25

    Human ubiquitin has been extensively characterized using a variety of experimental and computational methods and has become an important model for studying protein dynamics. Nevertheless, it has proven difficult to characterize the microsecond time scale dynamics of this protein with atomistic resolution. Here we use an unbiased computer simulation to describe the structural dynamics of ubiquitin on the picosecond to millisecond time scale. In the simulation, ubiquitin interconverts between a small number of distinct states on the microsecond to millisecond time scale. We find that the conformations visited by free ubiquitin in solution are very similar to those found various crystal structures of ubiquitin in complex with other proteins, a finding in line with previous experimental studies. We also observe weak but statistically significant correlated motions throughout the protein, including long-range concerted movement across the entire β sheet, consistent with recent experimental observations. We expect that the detailed atomistic description of ubiquitin dynamics provided by this unbiased simulation may be useful in interpreting current and future experiments on this protein.

  19. Time-Scale Invariant Audio Data Embedding

    Directory of Open Access Journals (Sweden)

    Mansour Mohamed F

    2003-01-01

    Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.

  20. Picosecond laser filamentation in air

    Science.gov (United States)

    2016-09-02

    LeibnizUniversityHannover,Welfengarten 1, D-30167Hannover, Germany 3 CEA-DAM,DIF, F-91297Arpajon, France 4 Univ.Bordeaux—CNRS—CEA,Centre Lasers ...optics.arizona.edu Keywords: laser filamentation, picosecond laser pulses, nonlinear propagation, optical ionization Abstract The propagation of intense

  1. Study of spallation by sub-picosecond laser driven shocks in metals

    Directory of Open Access Journals (Sweden)

    Combis P.

    2011-01-01

    Full Text Available Spallation induced by a laser driven shock has been studied for two decades on time scales of nanosecond order. The evolution of laser technologies now provides access to sources whose pulse duration is under the picosecond, corresponding to characteristic times of numerous microscopic phenomena. In this ultra-short irradiation regime, spallation experiments have been performed with time-resolved measurements of the free surface. In this solicitation type, damage occurs at small scale, leading to micrometric spalls. The VISAR measurements have been complemented with post-test observations and microtomography and compared with numerical simulations to check the models consistency of the laser-matter interaction, shock wave propagation and the dynamic damage criteria ability to reproduce spallation at this ultra-short time scale, inducing strong tensile stress states at very high strain rates.

  2. Picosecond High Pressure Gas Switch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  3. Discounting in Games across Time Scales

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2010-06-01

    Full Text Available We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes, then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.

  4. Discounting in Games across Time Scales

    CERN Document Server

    Chatterjee, Krishnendu; 10.4204/EPTCS.25.6

    2010-01-01

    We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.

  5. Extension of gyrokinetics to transport time scales

    CERN Document Server

    Parra, Felix I

    2013-01-01

    Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence o...

  6. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    Science.gov (United States)

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  7. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  8. EDITORIAL: Special issue on time scale algorithms

    Science.gov (United States)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  9. Time Horizon and Social Scale in Communication

    Science.gov (United States)

    Krantz, D. H.

    2010-12-01

    In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large

  10. Scaling Fire Regimes in Space and Time.

    Science.gov (United States)

    Falk, D. A.

    2004-12-01

    Spatial and temporal variability are important properties of the forest fire regimes of coniferous forests of southwestern North America. We use a variety of analytical techniques to examine scaling in a surface fire regime in the Jemez Mountains of northern New Mexico, USA, based on an original data set collected from Monument Canyon Research Natural Area (MCN). Spatio-temporal scale dependence in the fire regime can be analyzed quantitatively using statistical descriptors of the fire regime, such as fire frequency and mean fire interval. We describe a theory of the event-area (EA) relationship, an extension of the species-area relationship for events distributed in space and time; the interval-area (IA) relationship, is a related form for fire intervals. We use the EA and IA to demonstrate scale dependence in the MCN fire regime. The slope and intercept of these functions are influenced by fire size, frequency, and spatial distribution, and thus are potentially useful metrics of spatio-temporal synchrony of events in the paleofire record. Second, we outline a theory of fire interval probability, working from first principles in fire ecology and statistics. Fires are conditional events resulting from the interaction of multiple contingent factors that must be satisfied for an event to occur. Outcomes of this kind represent a multiplicative process for which a lognormal model is the limiting distribution. We examine the application of this framework to two probability models, the Weibull and lognormal distributions, which can be used to characterize the distribution of fire intervals over time. Lastly, we present a general model for the collector's curve, with application to the theory and effects of sample size in fire history. Sources of uncertainty in fire history can be partitioned into an error typology; analytical methods used in fire history (particularly the formation of composite fire records) are designed to minimize certain types of error in inference

  11. Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm.

    Science.gov (United States)

    Skrobol, Christoph; Ahmad, Izhar; Klingebiel, Sandro; Wandt, Christoph; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2012-02-13

    On the quest towards reaching petawatt-scale peak power light pulses with few-cycle duration, optical parametric chirped pulse amplification (OPCPA) pumped on a time scale of a few picoseconds represents a very promising route. Here we present an experimental demonstration of few-ps OPCPA in DKDP, in order to experimentally verify the feasibility of the scheme. Broadband amplification was observed in the wavelength range of 830-1310 nm. The amplified spectrum supports two optical cycle pulses, at a central wavelength of ~920 nm, with a pulse duration of 6.1 fs (FWHM). The comparison of the experimental results with our numerical calculations of the OPCPA process showed good agreement. These findings confirm the reliability of our theoretical modelling, in particular with respect to the design for further amplification stages, scaling the output peak powers to the petawatt scale.

  12. 35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser

    Science.gov (United States)

    Chen, Hongwei; Chen, Shengping; Wang, Jianhua; Chen, Zilun; Hou, Jing

    2011-11-01

    We demonstrate 35 W high power all fiber supercontinuum generation by pumping photonic crystal fiber (PCF) with a 57.7 W picosecond fiber MOPA. The picosecond fiber MOPA pumped supercontinuum source exhibits an optical-to-optical conversion efficiency of up to 61.7%, covering a spectral range from 600 nm to beyond 1700 nm. The compact and practical configuration of this supercontinuum source has potential to achieve higher power scale together with perfect continuum spectrum.

  13. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  14. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering.

    Science.gov (United States)

    Fujiwara, Satoru; Chatake, Toshiyuki; Matsuo, Tatsuhito; Kono, Fumiaki; Tominaga, Taiki; Shibata, Kaoru; Sato-Tomita, Ayana; Shibayama, Naoya

    2017-08-31

    Hemoglobin, the vital O2 carrier in red blood cells, has long served as a classic example of an allosteric protein. Although high-resolution X-ray structural models are currently available for both the deoxy tense (T) and fully liganded relaxed (R) states of hemoglobin, much less is known about their dynamics, especially on the picosecond to subnanosecond time scales. Here, we investigate the picosecond dynamics of the deoxy and CO forms of human hemoglobin using quasielastic neutron scattering under near physiological conditions in order to extract the dynamics changes upon ligation. From the analysis of the global motions, we found that whereas the apparent diffusion coefficients of the deoxy form can be described by assuming translational and rotational diffusion of a rigid body, those of the CO form need to involve an additional contribution of internal large-scale motions. We also found that the local dynamics in the deoxy and CO forms are very similar in amplitude but are slightly lower in frequency in the former than in the latter. Our results reveal the presence of rapid large-scale motions in hemoglobin and further demonstrate that this internal mobility is governed allosterically by the ligation state of the heme group.

  15. The use of picosecond lasers beyond tattoos.

    Science.gov (United States)

    Forbat, E; Al-Niaimi, F

    2016-10-01

    Picosecond lasers are a novel laser with the ability to create a pulse of less than one nanosecond. They have been available in the clinical context since 2012. Dermatologists are now using picosecond lasers regularly for the treatment of blue and green pigment tattoo removal. This article reviews the use of picosecond lasers beyond tattoo removal. The overall consensus for the use of picosecond lasers beyond tattoo treatment is positive. With examples of this in the treatment of nevus of Ota, minocycline-induced pigmentation, acne scarring, and rhytides.

  16. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  17. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R

    2015-01-01

    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluor

  18. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R

    2015-01-01

    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many

  19. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution

    Directory of Open Access Journals (Sweden)

    M. Kozina

    2014-05-01

    Full Text Available We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,TiO3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

  20. Picosecond lasers: the next generation of short-pulsed lasers.

    Science.gov (United States)

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B

    2014-12-01

    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  1. Detection of crossover time scales in multifractal detrended fluctuation analysis

    Science.gov (United States)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  2. Noether theorem for Birkhoffian systems on time scales

    Science.gov (United States)

    Song, Chuan-Jing; Zhang, Yi

    2015-10-01

    Birkhoff equations on time scales and Noether theorem for Birkhoffian system on time scales are studied. First, some necessary knowledge of calculus on time scales are reviewed. Second, Birkhoff equations on time scales are obtained. Third, the conditions for invariance of Pfaff action and conserved quantities are presented under the special infinitesimal transformations and general infinitesimal transformations, respectively. Fourth, some special cases are given. And finally, an example is given to illustrate the method and results.

  3. Picosecond Photon Echoes Detected by Optical Mixing

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1978-01-01

    Picosecond photon echoes are shown to be easily detected by optical mixing. The synchronized picosecond excitation and probe pulses are generated by amplifying pulses from two dye lasers, synchronously pumped by a mode-locked argon-ion laser. The technique is used to study optical dephasing in the o

  4. A Quaternary Geomagnetic Instability Time Scale

    Science.gov (United States)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  5. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  6. Surfaces and thin films studied by picosecond ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse ( pump pulse''). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  7. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-02-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm‑2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  8. Local Observability of Systems on Time Scales

    Directory of Open Access Journals (Sweden)

    Zbigniew Bartosiewicz

    2013-01-01

    unified way using the language of real analytic geometry, ideals of germs of analytic functions, and their real radicals. It is shown that some properties related to observability are preserved under various discretizations of continuous-time systems.

  9. Back seeding of picosecond supercontinuum generation in photonic crystal fibres

    DEFF Research Database (Denmark)

    Moselund, Peter M.; Frosz, Michael Henoch; Thomsen, Carsten

    2008-01-01

    with picosecond pumping in photonic crystal fibers with two closely spaced zero dispersion wavelengths. We couple parts of the output spectrum of the supercontinuum source back to the input in order to produce a gain of over 15 dB at some wavelengths. We use a variable time delay to optimize the overlap between...... the pump and the back seeded pulses and investigate how the delay and spectrum of the back seeded pulse affects the resulting supercontinuum spectrum....

  10. A New Possibility for Production of Sub-picosecond X-ray Pulses using a Time Dependent Radio Frequency Orbit Deflection

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    It is shown that two radio frequency deflecting cavities with slightly different frequencies can be used to produce time-dependent orbit deflection to a few special electron bunches while keeping the majority of the electron bunches unaffected. These special bunches produce an x-ray pulse in which transverse position or angle, or both, are correlated with time. The x-ray pulses are then shortened, either with an asymmetrically cut crystal that acts as a pulse compressor, or with an angular aperture such as a narrow slit positioned downstream. The implementation of this technique creates a highly flexible environment for synchrotrons in which users of most beamlines will be able to easily select between the x-rays originated by the standard electron bunches and the short x-ray pulses originated by the special electron bunches carrying a time-dependent transverse correlation.

  11. High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal.

    Science.gov (United States)

    Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M

    2012-11-19

    We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.

  12. Low Timing Jitter and Tunable Dual- Wavelength Picosecond Pulse Genera from a Fabry-Pérot Laser Diode with External Injection

    Institute of Scientific and Technical Information of China (English)

    YANG Yi-Biao; WANG Yun-Cai; ZHANG Ming-Jiang; LIANG Wei

    2007-01-01

    A novel scheme to generate tunable dual-wavelength optical pulses with low timing jitter at arbitrary repetition rates is proposed and demonstrated experimentally. The pulses are generated from a gain-switched Fabry-Perot laser diode with two external cw beams for injection seeding simultaneously. The cw light is generated by two independent distributed feedback laser diodes, and their wavelengths can be tuned independently by two temperature controllers. The dual-wavelength pulses with the pulse width of 57 ps, the timing jitter of 340 fs, are obtained. The sidemode-suppression ratio of the output pulses is better than 23 dB over a 10-nm wavelength tuning range.

  13. Long-time data storage: relevant time scales

    NARCIS (Netherlands)

    Elwenspoek, Miko C.

    2011-01-01

    Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habit

  14. Scale-dependent intrinsic entropies of complex time series.

    Science.gov (United States)

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.

  15. OSCILLATION FOR NONAUTONOMOUS NEUTRAL DYNAMIC DELAY EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z+ of positive integers and for differential equations when the time scale is the set R of real numbers.

  16. Studies of high power density, pico-second rise-time light-activated semiconductor switch. Final report, 1 September 1987-31 December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P.L.

    1988-12-31

    The carrier dynamics of the diode which is related to its electrical power switching behaviors is investigated in this program. A model is developed where the carrier transport and Maxwell equations are incorporated and self-consistent electrical-field profiles, current density and carrier are obtained in the PIN diode. Both low- and high-level optical excitations as well as low and high applied bias situations can be described by this model. The transient behavior of the diode switch at different optical energy levels is now well understood, while conventional theory for photodiodes at low-level excitation and at low bias cannot be applied to cases for high-level excitation and high bias. As a circuit element, the rise time of the switch under these circumstances depends on the time the internal field is cancelled out by mobile carriers generated. The predicted input-energy dependence and the transmission line impedance dependence of the rise time compare well with experimental results. The model also suggests the experimental configuration for obtaining power in the GW range. Finally, a preliminary investigation is made on the effects of avalanche multiplication on the performance of the diode switch.

  17. Nuclear disassembly time scales using space time correlations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others

    1996-09-01

    The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.

  18. New and Advanced Picosecond Lasers for Tattoo Removal.

    Science.gov (United States)

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  19. Picosecond dynamics of a shock-driven displacive phase transformation in Zr

    Science.gov (United States)

    Swinburne, T. D.; Glavicic, M. G.; Rahman, K. M.; Jones, N. G.; Coakley, J.; Eakins, D. E.; White, T. G.; Tong, V.; Milathianaki, D.; Williams, G. J.; Rugg, D.; Sutton, A. P.; Dye, D.

    2016-04-01

    High-pressure solid-state transformations at high strain rates are usually observed after the fact, either during static holding or after unloading, or inferred from interferometry measurements of the sample surface. The emergence of femtosecond x-ray diffraction techniques provides insight into the dynamics of short-time-scale events such as shocks. We report laser pump-probe experiments of the response of Zr to laser-driven shocks over the first few nanoseconds of the shock event, enabling the α →ω transition and orientation relationship to be observed in real time with picosecond resolution. A clear orientation relationship of (101 ¯0 ) α|| (101 ¯1 ) ω is found, in conflict with ω →α annealing experiments in zirconium and the two α →ω pathways proposed for titanium.

  20. Long-Time Data Storage: Relevant Time Scales

    Directory of Open Access Journals (Sweden)

    Miko C. Elwenspoek

    2011-02-01

    Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.

  1. Demonstration of single-shot picosecond time-resolved MeV electron imaging using a compact permanent magnet quadrupole based lens

    CERN Document Server

    Cesar, D; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K

    2016-01-01

    We present the results of an experiment where a short focal length (~ 1.3 cm) permanent magnet electron lens is used to image micron-size features of a metal sample in a single shot, using an ultra- high brightness ps-long 4 MeV electron beam from a radiofrequency photoinjector. Magnifcation ratios in excess of 30x were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way to- wards single shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.

  2. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  3. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-12-16

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.

  4. Excited state dynamics and activation parameters of remarkably slow photoinduced CO loss from (η⁶-benzene)Cr(CO)₃ in n-heptane solution: a DFT and picosecond-time-resolved infrared study.

    Science.gov (United States)

    Clark, Ian P; George, Michael W; Greetham, Gregory M; Harvey, Emma C; Long, Conor; Manton, Jennifer C; Pryce, Mary T

    2010-11-01

    The electronic structure of (η⁶-benzene)Cr(CO)₃ has been calculated using density functional theory and a molecular orbital interaction diagram constructed based on the Cr(CO)₃ and benzene fragments. The highest occupied molecular orbitals are mainly metal based. The nature of the lowest energy excited states were determined by time-dependent density functional theory, and the lowest energy excited state was found to have significant metal to carbonyl charge transfer character. The photochemistry of (η⁶-benzene)Cr(CO)₃ was investigated by time-resolved infrared spectroscopy with picosecond time resolution. The low energy excited state was detected following irradiation at 400 nm, and this exhibited ν(CO) bands at lower energy than the equivalent ν(CO) bands of (η⁶-benzene)Cr(CO)₃, consistent with metal to carbonyl charge transfer character, and is formed with excess vibrational energy, relaxing to the v = 0 vibrational state within 3 ps. The resulting "cold" excited state decays to form the CO-loss species (η⁶-benzene)Cr(CO)₂ in approximately 70% yield and to reform (η⁶-benzene)Cr(CO)₃ within 150 ps. The rates of relaxation from the vibrationally hot state to the cold excited state and its subsequent reaction to yield (η⁶-benzene)Cr(CO)₂ were measured over a range of temperatures from 274 to 320 K, and the activation parameters for both processes were obtained from Eyring plots. The vibrational relaxation exhibits a negative activation enthalpy ΔH(‡) (-10 (±4) kJ mol⁻¹) and a negative activation entropy ΔS(‡) (-50 (±16) J mol⁻¹ K⁻¹). A significant barrier (ΔH(‡) = +12 (±4) kJ mol⁻¹) was obtained for the formation of (η⁶-benzene)Cr(CO)₂ with a ΔS(‡) value close to zero. These data are used to propose a model for the CO-loss process to yield (η⁶-benzene)Cr(CO)₂ and to explain why low temperature irradiation of (η⁶-benzene)Cr(CO)₃ with light of wavelengths greater than 400 nm produced

  5. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    Science.gov (United States)

    Vasil'ev, S; Bruce, D

    1998-08-04

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in

  6. Quantum dynamics of H2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling

    Science.gov (United States)

    Mondelo-Martell, Manel; Huarte-Larrañaga, Fermín; Manthe, Uwe

    2017-08-01

    Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured materials. In order to study these effects on the transport of a single molecule through a nanotube, we present a quantum dynamics study on the diffusion of H2 in a narrow (8,0) carbon nanotube in the low pressure limit. Transmission coefficients for the elementary step of the transport process are calculated using the flux correlation function approach and diffusion rates are obtained using the single hopping model. The different time scales associated with the motion in the confined coordinates and the motion along the nanotube's axis are utilized to develop an efficient and numerically exact approach, in which a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The results obtained within the adiabatic approximation agree almost perfectly with the numerically exact ones. The approaches allow us to accurately study the system's dynamics on the picosecond time scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced tunneling is found to be the dominant transport mechanism at low energies. Comparison with results obtained using transition state theory shows that tunneling significantly increases the diffusion rate at T < 120 K.

  7. Bounds of Certain Dynamic Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Deepak B. Pachpatte

    2014-10-01

    Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

  8. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo;

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  9. Quantum decoherence time scales for ionic superposition states in ion channels

    Science.gov (United States)

    Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F.

    2015-03-01

    There are many controversial and challenging discussions about quantum effects in microscopic structures in neurons of the brain and their role in cognitive processing. In this paper, we focus on a small, nanoscale part of ion channels which is called the "selectivity filter" and plays a key role in the operation of an ion channel. Our results for superposition states of potassium ions indicate that decoherence times are of the order of picoseconds. This decoherence time is not long enough for cognitive processing in the brain, however, it may be adequate for quantum superposition states of ions in the filter to leave their quantum traces on the selectivity filter and action potentials.

  10. Picosecond lasers for tattoo removal: a systematic review.

    Science.gov (United States)

    Reiter, Ofer; Atzmony, Lihi; Akerman, Lehavit; Levi, Assi; Kershenovich, Ruben; Lapidoth, Moshe; Mimouni, Daniel

    2016-09-01

    Given that the pigment particles in tattoos have a relaxation time of lasers would be expected to be more effective than nanosecond lasers in tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90-100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69-100 % of tattoos showed over 70 % clearance of pigment after 1-10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects.

  11. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2017-07-28

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  12. Modification of anodised aluminium surfaces using a picosecond fibre laser for printing applications.

    Science.gov (United States)

    Ansari, I A; Watkins, K G; Sharp, M C; Hutchinson, R A; Potts, R M; Clowes, J

    2012-06-01

    The use of an ultrafast fibre laser at a wavelength of 1064 nm has allowed the surface modification of anodised aluminium plates coated with a 2 micron thick anodised layer for potential industrial applications. The micro- and nano-scale structuring of the anodised aluminium using picosecond pulses of approximately 25 ps duration at 200 kHz repetition rate was investigated. The interaction of the laser with the substrate created a hydrophilic surface, giving a contact angle of less than 10 degrees. On examination under a Scanning Electron Microscope (SEM), a morphology created due to laser induced spallation was observed. It has been found that these laser processed hydrophilic surfaces revert to a hydrophobic state with time. This has potential for application in the printing industry and offers reusability and sustainability of the process materials. This has been confirmed in initial trials.

  13. Forecasting Electrical Load Using a Multi-time-scale Approach

    OpenAIRE

    RINGWOOD John; Murray, F.T.

    1999-01-01

    This paper describes the application of a multi-time-scale technique to the modelling and forecasting of short-term electrical load. The multi-time-scale technique is based on adjusting the underlying short sampling period forecast time series with specific target points and possible aggregated demand. This allows not only improvement of the short sampling period forecast, but also focuses on weighting the accuracy of the forecast at certain critical points e.g. the ov...

  14. Competition reactions of H2O•+ radical in concentrated Cl- aqueous solutions: picosecond pulse radiolysis study.

    Science.gov (United States)

    El Omar, Abdel Karim; Schmidhammer, Uli; Rousseau, Bernard; LaVerne, Jay; Mostafavi, Mehran

    2012-11-29

    Picosecond pulse-probe radiolysis measurements of highly concentrated Cl(-) aqueous solutions are used to probe the oxidation mechanism of the Cl(-). The transient absorption spectra are measured from 340 to 710 nm in the picosecond range for the ultrafast electron pulse radiolysis of halide solutions at different concentrations up to 8 M. The amount of Cl(2)(•-) formation within the electron pulse increases notably with increasing Cl(-) concentration. Kinetic measurements reveal that the direct ionization of Cl(-) cannot solely explain the significant amount of fast Cl(2)(•-) formation within the electron pulse. The results suggest that Cl(-) reacts with the precursor of the OH(•) radical, i.e., H(2)O(•+) radical, to form Cl(•) atom within the electron pulse and the Cl(•) atom reacts subsequently with Cl(-) to form Cl(2)(•-) on very short time scales. The proton transfer reaction between H(2)O(•+) and the water molecule competes with the electron transfer reaction between Cl(-) and H(2)O(•+). Molecular dynamics simulations show that number of water molecules in close proximity decreases with increasing concentration of the salt (NaCl), confirming that for highly concentrated solutions the proton transfer reaction between H(2)O(•+) and a water molecule becomes less efficient. Diffusion-kinetic simulations of spur reactions including the direct ionization of Cl(-) and hole scavenging by Cl(-) show that up to 30% of the H(2)O(•+) produced by the irradiation could be scavenged for solutions containing 5.5 M Cl(-). This process decreases the yield of OH(•) radical in solution on the picosecond time scale. The experimental results for the same concentration of Cl(-) at a given absorbed dose show that the radiation energy absorbed by counterions is transferred to Cl(-) or water molecules and the effect of the countercation such as Li(+), K(+), Na(+), and Mg(2+) on the oxidation yield of Cl(-) is negligible.

  15. Liquidity spillover in international stock markets through distinct time scales.

    Science.gov (United States)

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.

  16. Extreme reaction times determine fluctuation scaling in human color vision

    Science.gov (United States)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  17. Dielectric breakdown induced by picosecond laser pulses

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  18. Scaling of the Time Dependent SGEMP Boundary Layer.

    Science.gov (United States)

    constant in time or rises like any given power of time a single solution suffices for all fluxes. For a more realistic time history with a finite FWHM, the equations reduce to a single parameter family, the parameter being the ratio of the pulse FWHM to the characteristic plasma period. For the time behavior, the unit of time is taken as the FWHM. Both the scaled Boltzmann Equation and Newton’s Equations are

  19. AFSC/ABL: Ugashik sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...

  20. The limit order book on different time scales

    CERN Document Server

    Eisler, Zoltan; Lillo, Fabrizio

    2007-01-01

    Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.

  1. The limit order book on different time scales

    Science.gov (United States)

    Eisler, Zoltán; Kertész, János; Lillo, Fabrizio

    2007-06-01

    Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.

  2. BOUNDARY VALUE PROBLEM TO DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.

  3. AFSC/ABL: Naknek sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....

  4. Signatures of discrete scale invariance in Dst time series

    Science.gov (United States)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Anastasiadis, Anastasios; Athanasopoulou, Labrini; Eftaxias, Konstantinos

    2011-07-01

    Self-similar systems are characterized by continuous scale invariance and, in response, the existence of power laws. However, a significant number of systems exhibits discrete scale invariance (DSI) which in turn leads to log-periodic corrections to scaling that decorate the pure power law. Here, we present the results of a search of log-periodic corrections to scaling in the squares of Dst index increments which are taken as proxies of the energy dissipation rate in the magnetosphere. We show that Dst time series exhibit DSI and discuss the consequence of this feature, as well as the possible implications of Dst DSI on space weather forecasting efforts.

  5. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    Science.gov (United States)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  6. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  7. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  8. Exponentials and Laplace transforms on nonuniform time scales

    Science.gov (United States)

    Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.

    2016-10-01

    We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.

  9. Controllability of multiplex, multi-time-scale networks

    Science.gov (United States)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified

  10. Picosecond lasers with the dynamical operation control

    Science.gov (United States)

    Mikheev, N. G.; Morozov, V. B.; Olenin, A. N.; Yakovlev, D. V.

    2016-04-01

    Numerical model for simulation of generation process in advanced pulse-periodic high-peak-power picosecond diode-pumped Nd:YAG and Nd:YLF lasers has been developed. The model adequately describes picosecond pulse formation governed by active and passive mode-locking, negative feedback and adjustable loss level in the oscillator cavity. Optical jitter of output pulses attributed to laser generation development from spontaneous noise level was evaluated using statistical analysis of calculation results. In the presented laser scheme, minimal jitter value on the level ~40 ps was estimated.

  11. Inferring Patterns in Network Traffic: Time Scales and Variations

    Science.gov (United States)

    2014-10-21

    2014 Carnegie Mellon University Inferring Patterns in Network Traffic : Time Scales and Variation Soumyo Moitra smoitra@sei.cmu.edu...number. 1. REPORT DATE 21 OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inferring Patterns in Network Traffic : Time...method and metrics for Situational Awareness • SA  Monitoring trends and changes in traffic • Analysis over timeTime series data analysis • Metrics

  12. Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series

    Directory of Open Access Journals (Sweden)

    S. Roques

    2005-09-01

    Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.

  13. A GaAssolarAlAs superlattice autocorrelator for picosecond THz radiation pulses

    Science.gov (United States)

    Winnerl, S.; Pesahl, S.; Schomburg, E.; Grenzer, J.; Renk, K. F.; Pellemans, H. P. M.; van der Meer, A. F. G.; Pavel'ev, D. G.; Koschurinov, Yu.; Ignatov, A. A.; Melzer, B.; Ustinov, V.; Ivanov, S.; Kop'ev, P. S.

    1999-01-01

    We report on a GaAs/AlAs, wide-miniband, superlattice autocorrelator for picosecond THz radiation pulses (operated at room temperature); the autocorrelator is based on the THz radiation-induced reduction of current through the superlattice. THz radiation (frequency 7.2 THz) from the FELIX (free-electron laser for infrared experiments) was coupled into the superlattice with an antenna system. We measured the current reduction for two time-delayed pulses and found that the signal decreased when the time delay was smaller than the pulse duration. With this superlattice autocorrelator we were able to resolve laser pulses that had a duration of a few picoseconds.

  14. Time scale bias in erosion rates of glaciated landscapes.

    Science.gov (United States)

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe

    2016-10-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

  15. Time scales and species coexistence in chaotic flows

    CERN Document Server

    Galla, Tobias

    2016-01-01

    Empirical observations in marine ecosystems have suggested a balance of biological and advection time scales as a possible explanation of species coexistence. To characterise this scenario, we measure the time to fixation in neutrally evolving populations in chaotic flows. Contrary to intuition the variation of time scales does not interpolate straightforwardly between the no-flow and well-mixed limits; instead we find that fixation is the slowest at intermediate Damk\\"ohler numbers, indicating long-lasting coexistence of species. Our analysis shows that this slowdown is due to spatial organisation on an increasingly modularised network. We also find that diffusion can either slow down or speed up fixation, depending on the relative time scales of flow and evolution.

  16. Grasping Deep Time with Scaled Space in Personal Environs

    DEFF Research Database (Denmark)

    Jacobsen, B. H.

    2014-01-01

    the history of geology and evolution. The present project differs from these examples in that the scaling of time is fixed, and the scale is defined so that 1 mm represents the life expectancy of a young person, i.e. 100 years. At this scale, written history fits on a credit card, 1 m measures the time...... of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...

  17. Auroral Substorm Time Scales: Seasonal and IMF Variations

    Science.gov (United States)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  18. Tunneling time scale of under-the-barrier forerunners

    CERN Document Server

    García-Calderón, G; Garcia-Calderon, Gaston; Villavicencio, Jorge

    2002-01-01

    Time-dependent analytical solutions to Schr\\"{o}dinger's equation with quantum shutter initial conditions are used to investigate the issue of the tunneling time of forerunners in rectangular potential barriers. By using a time-frequency analysis, we find the existence of a regime characterized by the opacity of the barrier, where the maximum peak of a forerunner in time domain corresponds to a genuine tunneling process. The corresponding time scale represents the tunneling time of the forerunner through the classically forbidden region.

  19. Thermodynamics constrains allometric scaling of optimal development time in insects.

    Directory of Open Access Journals (Sweden)

    Michael E Dillon

    Full Text Available Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1 the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2 numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of

  20. Common scaling patterns in intertrade times of U. S. stocks.

    Science.gov (United States)

    Ivanov, Plamen Ch; Yuen, Ainslie; Podobnik, Boris; Lee, Youngki

    2004-05-01

    We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing eight sectors of the U.S. economy over a period of 4 yrs. For all companies we find that: (i) the probability density function of intertrade times may be fit by a Weibull distribution, (ii) when appropriately rescaled the probability densities of all companies collapse onto a single curve implying a universal functional form, (iii) the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price returns for the corresponding company, and (iv) the magnitude series of intertrade time increments is characterized by long-range power-law correlations suggesting the presence of nonlinear features in the trading dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the dynamics of transaction times may play a role in the process of price formation.

  1. ON GLOBAL ROBUST STABILITY FOR COMPETITIVE NEURAL NETWORKS WITH TIME DELAYS AND DIFFERENT TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, using the theory of topological degree and Liapunov functional methods, the authors study the competitive neural networks with time delays and different time scales and present some criteria of global robust stability for this neural network model.

  2. Efficient second harmonic generation of picosecond laser pulses.

    Science.gov (United States)

    Rabson, T. A.; Ruiz, H. J.; Shah, P. L.; Tittel, F. K.

    1972-01-01

    Efficient conversion to the second harmonic (SH) using KD2PO4 and CsH2AsO4 crystals inside a folded cavity of a high-power-dye mode-locked neodymium-glass laser is reported. For the first time, frequency-doubled picosecond light pulses have been obtained in CsH2AsO4 with peak powers of the order of 1 GW/sq cm at 0.531 micron for an effective pump power density of 4 GW/sq cm.

  3. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    Science.gov (United States)

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  4. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...

  5. BRIEF COMMUNICATIONS: Picosecond spectroscopy of pyrrol pigments

    Science.gov (United States)

    Lippitsch, M. E.; Leitner, A.; Riegler, M.; Aussenegg, F. R.

    1982-05-01

    Picosecond fluorescence and absorption spectroscopy methods were used to study pyrromethenone, pyrromethene, and biliverdin. These methods made it possible to determine some details of the kinetics of various relaxation mechanisms. The results obtained provided a better understanding of the biological action of pyrrol pigments.

  6. Pilot Production of Large Area Microchannel Plates and Picosecond Photodetectors

    Science.gov (United States)

    Minot, M.; Adams, B.; Abiles, M.; Bond, J.; Craven, C.; Cremer, T.; Foley, M.; Lyashenko, A.; Popecki, M.; Stochaj, M.; Worstell, W.; Elam, J.; Mane, A.; Siegmund, O.; Ertley, C.

    2016-09-01

    Pilot production performance is reported for large area atomic layer deposition (ALD) coated microchannel plates (ALD-GCA-MCPs) and for Large Area Picosecond Photodetectors (LAPPD™) which incorporate them. "Hollowcore" glass capillary array (GCA) substrates are coated with ALD resistive and emissive layers to form the ALDGCA- MCPs, an approach that facilitates independent selection of glass substrates that are mechanically stronger and that have lower levels of radioactive alkali elements compared to conventional MCP lead glass, reducing background noise[1,2,3,4]. ALD-GCA-MCPs have competitive gain ( 104 each or 107 for a chevron pair ), enhanced lifetime and gain stability (7 C cm-2 of charge extraction), reduced background levels (0.028 events cm-2 sec-1) and low gamma-ray detection efficiency. They can be fabricated in large area (20cm X 20 cm) planar and curved formats suitable for use in high radiation environment applications, including astronomy, space instrumentation, and remote night time sensing. The LAPPD™ photodetector incorporates these ALD-GCA-MCPs in an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode, amplified with a stacked chevron pair of ALD-GCA-MCPs. Signals are collected on RF strip-line anodes integrated into to the bottom plates which exit the detector via pin-free hermetic seals under the side walls [5]. Tests show that LAPPDTMs have electron gains greater than 107, submillimeter spatial resolution for large (multiphoton) pulses and several mm for single photons, time resolution less than 50 picoseconds for single photons, predicted resolution less than 5 picoseconds for large pulses, high stability versus charge extraction[6], and good uniformity for applications including astrophysics, neutron detection, high energy physics Cherenkov light detection, and quantum-optical photon-correlation experiments.

  7. Time-dependent scaling patterns in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  8. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  9. Mixing Time Scales in a Supernova-Driven Interstellar Medium

    CERN Document Server

    D'Avillez, M A; Avillez, Miguel A. de; Low, Mordecai-Mark Mac

    2002-01-01

    We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time ...

  10. Modelling of UV radiation variations at different time scales

    Directory of Open Access Journals (Sweden)

    J. L. Borkowski

    2008-03-01

    Full Text Available Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.

  11. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  12. Time scales of crystal mixing in magma mushes

    Science.gov (United States)

    Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain

    2016-02-01

    Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.

  13. Time scales for molecule formation by ion-molecule reactions

    Science.gov (United States)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  14. Short—Time Scaling of Variable Ordering of OBDDs

    Institute of Scientific and Technical Information of China (English)

    龙望宁; 闵应骅; 等

    1997-01-01

    A short-time scaling criterion of variable ordering of OBDDs is proposed.By this criterion it is easy and fast to determine which one is better when several variable orders are given,especially when they differ 10% or more in resulted BDD size from each other.An adaptive variable order selection method,based on the short-time scaling criterion,is also presented.The experimental results show that this method is efficient and it makes the heuristic variable ordering methods more practical.

  15. Multiple time scales of fluvial processes—theory and applications

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-l...

  16. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  17. Nonlinear triple-point problems on time scales

    Directory of Open Access Journals (Sweden)

    Douglas R. Anderson

    2004-04-01

    Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0

  18. Dynamics symmetries of Hamiltonian system on time scales

    Science.gov (United States)

    Peng, Keke; Luo, Yiping

    2014-04-01

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  19. The use of lasers for studying ultrahigh speed phenomena (picoseconds): equipement of a picosecond spectroscopy laboratory using synchronized mode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goujon, P.; Pochon, E.; Clerc, M. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Section des Recherches et de l' Interaction du Rayonnement avec la Matiere)

    1975-07-01

    The spectroscopy laboratory is equipped with a dye laser and a neodymium glass laser. Detection in one case is made by means of a streak picosecond camera capable of a 5 ps time interval. A second detection method uses a CS/sub 2/ Kerr cell switch based on the Duguay principle. The first qualitative results concerning the fluorescence of DODCI and chlorophyll in vivo as well as the bleaching and recovering of the absorption of the electron solvated in liquid ammonia, have shown that this equipment could effectively enable the observation of physical-chemical processes as brief as 5 ps. (FR)

  20. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2016-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  1. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Kyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2014-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  2. Midfrontal theta tracks action monitoring over multiple interactive time scales.

    Science.gov (United States)

    Cohen, Michael X

    2016-11-01

    Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings.

  3. Irradiation of the amorphous carbon films by picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcinauskas, L., E-mail: liutauras.marcinauskas@ktu.lt [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Grigonis, A. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania); Račiukaitis, G.; Gedvilas, M. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius (Lithuania); Vinciūnaitė, V. [Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2015-10-30

    The effect of a picosecond laser irradiation on structure modification of diamond-like carbon (DLC) and graphite-like carbon (GLC) films was analyzed in this work. The DLC films were irradiated by Nd:YVO{sub 4} laser operating at the 532 nm wavelength with the picosecond (10 ps) pulse duration at the fluence in the range of (0.08–0.76) J/cm{sup 2}. The GLC films were irradiated only at the fluence of 0.76 J/cm{sup 2}. The different pulse number (1, 10, and 100) was used for irradiation the films. The micro-Raman spectroscopy measurements indicated that the laser irradiation led to rearrangement of the sp{sup 3} C–C bonds to the sp{sup 2} C=C bonds in the DLC films. The formation of silicon carbide (SiC) was found in the irradiated spot after 10 and 100 pulses. Modifications in the structure of the DLC film took place even in the areas with low intensity of the Gaussian beam wings (heat affected areas). The increase in the oxygen concentration up to ten times was detected in the heat affected areas after 100 pulses. Opposite to that, the laser irradiation decreased the oxygen concentration and smoothened the surface microrelief of the GLC films. The bonding type remained unchanged in the GLC films even after irradiation with 100 pulses per spot. - Highlights: • The picosecond laser irradiation led to the rearrangement of sp{sup 3} C-C to the sp{sup 2} C = C bonds in the diamond-like carbon film. • The ps-laser irradiation of the DLC films stipulates appearance of the aromatic carbon structures. • The bonding type of the graphite-like carbon films remained unchanged even after ps laser irradiation with 100 pulses.

  4. Separation of Time Scales in a Quantum Newton's Cradle

    Science.gov (United States)

    van den Berg, R.; Wouters, B.; Eliëns, S.; De Nardis, J.; Konik, R. M.; Caux, J.-S.

    2016-06-01

    We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.

  5. Satellite attitude prediction by multiple time scales method

    Science.gov (United States)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  6. Linear Scaling Real Time TDDFT in the CONQUEST Code

    CERN Document Server

    O'Rourke, Conn

    2014-01-01

    The real time formulation of Time Dependent Density Functional Theory (RT-TDDFT) is implemented in the linear scaling density functional theory code CONQEST. Proceeding through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals, it is possible to reduced the computational workload. Imposing a cut-off on the density matrix the effort can be made to scale linearly with the size of the system under study. Propagation of the reduced density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. We discuss our implementation and present several benchmark tests illustrating the validity of the method, and the factors affecting its accuracy. Finally we illustrate the effect of density matrix truncation on the optical response, and illustrate that computational load scales linearly with the system size.

  7. MULTISCALE HOMOGENIZATION OF NONLINEAR HYPERBOLIC EQUATIONS WITH SEVERAL TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Jean Louis Woukeng; David Dongo

    2011-01-01

    We study the multiscale homogenization of a nonlinear hyperbolic equation in a periodic setting. We obtain an accurate homogenization result. We also show that as the nonlinear term depends on the microscopic time variable, the global homogenized problem thus obtained is a system consisting of two hyperbolic equations. It is also shown that in spite of the presence of several time scales, the global homogenized problem is not a reiterated one.

  8. Improved jet noise modeling using a new acoustic time scale

    NARCIS (Netherlands)

    Azarpeyvand, M.; Self, R.H.; Golliard, J.

    2006-01-01

    To calculate the noise emanating from a turbulent flow (such as a jet flow) using Lighthill's analogy, knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales and convecti

  9. Quadratic Lyapunov Function and Exponential Dichotomy on Time Scales

    Institute of Scientific and Technical Information of China (English)

    ZHANG JI; LIU ZHEN-XIN

    2011-01-01

    In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△ = A(t)x on time scales.Moreover, for the nonlinear perturbed equation x△ = A(t)x + f(t,x) we give the instability of the zero solution when f is sufficiently small.

  10. Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling

    CERN Document Server

    Birmingham, Daniel; Birmingham, Danny; Sen, Siddhartha

    2000-01-01

    We study the formation of BTZ black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  11. Speech Compensation for Time-Scale-Modified Auditory Feedback

    Science.gov (United States)

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  12. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    technologies – batteries, flow batteries, compressed air energy storage, electrolysis combined with fuel cells, and electric vehicles – are moreover categorised with respect to the time scales at which they are suited to support wind power integration. While all of these technologies are assessed suitable...

  13. Gott time machines, BTZ black hole formation, and choptuik scaling

    Science.gov (United States)

    Birmingham; Sen

    2000-02-07

    We study the formation of Banados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  14. Exponential stability of dynamic equations on time scales

    Directory of Open Access Journals (Sweden)

    Raffoul Youssef N

    2005-01-01

    Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.

  15. Interaction between measurement time and observed Hugoniot cusp due to chemical reactions

    Science.gov (United States)

    McGrane, S. D.; Brown, K. E.; Bolme, C. A.; Moore, D. S.

    2017-01-01

    Chemistry occurring on picosecond timescales can be observed through ultrafast laser shock drive experiments that measure Hugoniot data and transient absorption. The shock stress needed to induce chemical reactions on picosecond time scales is significantly larger than the stress needed to induce reactions on nanosecond time scales typical of gas gun and explosively driven plate impact experiments. This discrepancy is consistent with the explanation that increased shock stress leads to increased temperature, which drives thermally activated processes at a faster rate. While the data are qualitatively consistent with the interpretation of thermally dominated reactions, they are not a critical test of this interpretation. In this paper, we review data from several shocked liquids that illustrate a Hugoniot cusp due to volume changing reactions that occurs at higher shock stress states in picosecond experiments than in nanosecond to microsecond experiments. We also correlate the observed Hugoniot cusp states with transient absorption changes that occur due to the buildup of reaction products.

  16. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  17. An investigation into the photochemistry of, and the electrochemically induced CO-loss from, [(CO)5MC(OMe)Me](M = Cr or W) using low-temperature matrix isolation, picosecond infrared spectroscopy, cyclic voltammetry, and time-dependent density functional theory.

    Science.gov (United States)

    McMahon, Suzanne; Amirjalayer, Saeed; Buma, Wybren J; Halpin, Yvonne; Long, Conor; Rooney, A Denise; Woutersen, Sander; Pryce, Mary T

    2015-09-21

    The photophysics and photochemistry of [(CO)5MC(OMe)Me] (M = Cr or W) were investigated using picosecond time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide unambiguous evidence for the photochemical formation of a long-lived, 18-electron metallaketene species capable of acting as a synthetically useful intermediate. For the Cr complex, an intermediate metallacyclopropanone singlet excited state was detected on the reaction path to the metallaketene species. This metallacyclopropanone excited state species has a lifetime of less than 100 ps and a characteristic bridging carbonyl band at 1770 cm(-1). The tungsten ketene species was also detected but in contrast to the chromium system, this forms directly from a low-lying triplet excited state. The electrochemical release of CO showed a greater efficiency for the chromium complex when compared to the tungsten.

  18. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  19. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  20. Time Scales and Tidal Effects in Minor Mergers

    Institute of Scientific and Technical Information of China (English)

    Yu Lu; Jian-Yan Wei

    2003-01-01

    We use controlled N-body simulation to investigate the dynamical processes (dynamical friction, tidal truncation, etc.) involved in the merging of small satellites into bigger halos. We confirm the validity of some analytic formulae proposed earlier based on simple arguments. For rigid satellites represented by softened point masses, the merging time scale depends on both the orbital shape and concentration of the satellite. The dependence on orbital ellipticity is roughly a power law, as suggested by Lacey & Cole, and the dependence on satellite concentration is similar to that proposed by White. When merging satellites are represented by non-rigid objects, Tidal effects must be considered. We found that material beyond the tidal radius are stripped off. The decrease in the satellite mass might mean an increase in the merging time scale, but in fact, the merging time is decreased,because the stripped-off material carries away a proportionately larger amount of of orbital energy and angular momentum.

  1. Cognitive componets of speech at different time scales

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    2007-01-01

    Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities......, assumed to model the basic representation of the human auditory system. The basic features are aggregated in time to obtain features at longer time scales. Simple energy based filtering is used to achieve a sparse representation. Our hypothesis is now basically ecological: We hypothesize that features...... that are essentially independent in a reasonable ensemble can be efficiently coded using a sparse independent component representation. The representations are indeed shown to be very similar between supervised learning (invoking cognitive activity) and unsupervised learning (statistical regularities), hence lending...

  2. Multiple time scale based reduction scheme for nonlinear chemical dynamics

    Science.gov (United States)

    Das, D.; Ray, D. S.

    2013-07-01

    A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.

  3. Nonlinear scale space with spatially varying stopping time.

    Science.gov (United States)

    Gilboa, Guy

    2008-12-01

    A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.

  4. Superradiant dye solution laser with two-photon picosecond optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.

    1981-01-01

    A superradiant (superfluorescent) dye solution laser with two-photon picosecond pumping was constructed for the first time. A preliminary study was made of the principal characteristics of the output radiation of this laser which performed up-conversion of the frequency of the pump radiation. The physical mechanisms governing the operation of lasers of this type were analyzed.

  5. Terrestrial carbon-nitrogen interactions across time-scales

    Science.gov (United States)

    Zaehle, Sönke; Sickel, Kerstin

    2017-04-01

    Through its role in forming amino acids, nitrogen (N) plays a fundamental role in terrestrial biogeochemistry, affecting for instance the photosynthetic rate of a leaf, and the amount of leaf area of a plant; with further consequences for quasi instantaneous terrestrial biophysical properties and fluxes. Because of the high energy requirements of transforming atmospheric N2 to biologically available form, N is generally thought to be limiting terrestrial productivity. Experimental evidence and modelling studies suggest that in temperate and boreal ecosystems, this N-"limitation" affects plant production at scales from days to decades, and potentially beyond. Whether these interactions play a role at longer timescales, such as during the transition from the last glacial maximum to the holocene, is currently unclear. To address this question, we present results from a 22000 years long simulation with dynamic global vegetation model including a comprehensive treatment of the terrestrial carbon and nitrogen balance and their interactions (using the OCN-DGVM) driven by monthly, transient climate forcing obtained from the CESM climate model (TRACE). OCN couples carbon and nitrogen processes at the time-scale of hours, but simulates a comprehensive nitrogen balance as well as vegetation dynamics with time-scales of centuries and beyond. We investigate in particular, whether (and at with time scale) carbon-nitrogen interactions cause important lags in the response of the terrestrial biosphere to changed climate, and which processes (such as altered N inputs from fixation or altered losses through leaching and denitrification) contribute to these lags.

  6. Energy and time determine scaling in biological and computer designs.

    Science.gov (United States)

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

  7. An Extensible Timing Infrastructure for Adaptive Large-scale Applications

    CERN Document Server

    Stark, Dylan; Goodale, Tom; Radke, Thomas; Schnetter, Erik

    2007-01-01

    Real-time access to accurate and reliable timing information is necessary to profile scientific applications, and crucial as simulations become increasingly complex, adaptive, and large-scale. The Cactus Framework provides flexible and extensible capabilities for timing information through a well designed infrastructure and timing API. Applications built with Cactus automatically gain access to built-in timers, such as gettimeofday and getrusage, system-specific hardware clocks, and high-level interfaces such as PAPI. We describe the Cactus timer interface, its motivation, and its implementation. We then demonstrate how this timing information can be used by an example scientific application to profile itself, and to dynamically adapt itself to a changing environment at run time.

  8. Anomalous multiphoton photoelectric effect in ultrashort time scales.

    Science.gov (United States)

    Kupersztych, J; Raynaud, M

    2005-09-30

    In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.

  9. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time-series...

  10. The Available Time Scale: Measuring Foster Parents' Available Time to Foster

    Science.gov (United States)

    Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.

    2009-01-01

    This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…

  11. QUALITATIVE BEHAVIORS OF LINEAR TIME-INVARIANT DYNAMIC EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.

  12. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. Molecular Dynamics and Picosecond Vibrational Spectra.

    Science.gov (United States)

    1980-07-01

    and Identify by block number) molecular dynamics picosecond infra-red spectra crmputer simulation vibrational spectra array processor linear rcsponse...that for molecular dynamics theoretical computation is now long enough, to significantly overlap. This overlap of theory and experiment can, at least...to discover these microscopic atomic trajectories, i.e. the molecular dynamics of solution processes, we must be able to both theoretically compute

  14. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  15. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. Two-photon assisted clock comparison to picosecond precision

    CERN Document Server

    Zhang, Shi-Wei; Yao, Yin-Ping; Wan, Ren-Gang; Zhang, Tong-Yi

    2015-01-01

    We have experimentally demonstrated a clock comparison scheme utilizing time-correlated photon pairs generated from the spontaneous parametric down conversion process of a laser pumped beta-barium borate crystal. The coincidence of two-photon events are analyzed by the cross correlation of the two time stamp sequences. Combining the coarse and fine part of the time differences at different resolutions, a 64 ps precision for clock synchronization has been realized. We also investigate the effects of hardware devices used in the system on the precision of clock comparison. The results indicate that the detector's time jitter and the background noise will degrade the system performance. With this method, comparison and synchronization of two remote clocks could be implemented with a precision at the level of a few tens of picoseconds.

  17. Realization of a time-scale with an optical clock

    CERN Document Server

    Grebing, C; Dörscher, S; Häfner, S; Gerginov, V; Weyers, S; Lipphardt, B; Riehle, F; Sterr, U; Lisdat, C

    2015-01-01

    Optical clocks are not only powerful tools for prime fundamental research, but are also deemed for the re-definition of the SI base unit second as they surpass the performance of caesium atomic clocks in both accuracy and stability by more than an order of magnitude. However, an important obstacle in this transition has so far been the limited reliability of the optical clocks that made a continuous realization of a time-scale impractical. In this paper, we demonstrate how this dilemma can be resolved and that a time-scale based on an optical clock can be established that is superior to one based on even the best caesium fountain clocks. The paper also gives further proof of the international consistency of strontium lattice clocks on the $10^{-16}$ accuracy level, which is another prerequisite for a change in the definition of the second.

  18. Long-term variation time scales in OJ 287

    Institute of Scientific and Technical Information of China (English)

    Jun-Hui Fan; Yi Liu; Bo-Chun Qian; Jun Tao; Zhi-Qiang Shen; Jiang-Shui Zhang; Yong Huang; Jin Wang

    2010-01-01

    The light curve data from 1894 to 2008 are compiled for the BL Lacertae object OJ 287 from the available literature. Periodicity analysis methods (the Discrete Correlation Function-DCE the Jurkevich method, the power spectral (Fourier) analysis, and the CLEANest method) are performed to search for possible periodicites in the light curve of OJ 287. Significance levels are given for the possible periods. The analysis results confirm the existence of the 12.2 ± 0.6 yr time scale and show a hint of a~53 yr time scale. The 12.2 ± 0.6 yr period is used as the orbital period to investigate the supermassive binary black hole system parameters.

  19. Seismic Interevent Time: A Spatial Scaling and Multifractality

    CERN Document Server

    Molchan, G

    2005-01-01

    The optimal scaling problem for the time t(LxL) between two successive events in a seismogenic cell of size L is considered. The quantity t(LxL) is defined for a random cell of a grid covering a seismic region G. We solve that problem in terms of a multifractal characteristic of epicenters in G known as the tau-function or generalized fractal dimensions; the solution depends on the type of cell randomization. Our theoretical deductions are corroborated by California seismicity with magnitude M>2. In other words, the population of waiting time distributions for L = 10-100 km provides positive information on the multifractal nature of seismicity, which impedes the population to be converted into a unified law by scaling. This study is a follow-up of our analysis of power/unified laws for seismicity (see PAGEOPH 162 (2005), 1135 and GJI 162 (2005), 899).

  20. Oligocene calibration of the magnetic polarity time scale

    Science.gov (United States)

    Prothero, Donald R.; Denham, Charles R.; Farmer, Harlow G.

    1982-12-01

    Magnetostratigraphic studies of the Oligocene White River Group in Wyoming, Colorado, Nebraska, and the Dakotas yield a radiometrically dated polarity stratigraphy that provides mid-Tertiary calibration points for the magnetic polarity time scale. Anomaly 12 13 reversal is bracketed by dates of 32.4 and 34.6 m.y., in best agreement with the time scale of LaBrecque and colleagues. The magnetostratigraphy also helps calibrate the Oligocene North American land mammal “ages” and allows correlation with the European marine microfossil zonation. This correlation suggests that the age of the Eocene-Oligocene boundary is 37.0 m.y., contrary to younger dates obtained from glauconites and microtektites. *Present address: Department of Geology, Knox College, Galesburg, Illinois 61401

  1. HMC algorithm with multiple time scale integration and mass preconditioning

    CERN Document Server

    Urbach, C; Shindler, A; Wenger, U

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at beta=5.6 and at pion masses ranging from 380 MeV to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the ``Berlin Wall'' figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  2. HMC algorithm with multiple time scale integration and mass preconditioning

    Science.gov (United States)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  3. Entropy Production of Nanosystems with Time Scale Separation

    Science.gov (United States)

    Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-ichi; Tang, Lei-Han

    2016-08-01

    Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.

  4. Algorithm of simulation time synchronization over large-scale nodes

    Institute of Scientific and Technical Information of China (English)

    ZHAO QinPing; ZHOU Zhong; Lü Fang

    2008-01-01

    In distributed simulation, there is no uniform physical clock. And delay cannot be estimated because of jitter. So simulation time synchronization is essential for the event consistency among nodes. This paper investigates time synchronization algorithms over large-scale distributed nodes, analyzes LBTS (lower bound time stamp) computation model described in IEEE HLA standard, and then presents a grouped LBTS model. In fact, there is a default premise for existing algorithms that control packets must be delivered via reliable transportation. Although, a theorem of time synchronization message's reliability is proposed, which proves that only those control messages that constrain time advance need reliability. It breaks out the default premise for reliability. Then multicast is introduced into the transmission of control messages, and algorithm MCTS (multi-node coordination time synchronization) is proposed based on multicast. MCTS not only promotes the time advance efficiency, but also reduces the occupied network bandwidth. Experiment results demonstrate that the algorithm is better than others in both time advance speed and occupied network bandwidth. Its time advance speed is about 50 times per second when there are 1000 nodes, approximately equal to that of similar systems when there are 100 nodes.

  5. The picosecond laser for tattoo removal.

    Science.gov (United States)

    Hsu, Vincent M; Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Nouri, Keyvan

    2016-11-01

    The prevalence of tattoos continues to grow as modern society's stigma towards this form of body art shifts towards greater acceptance. Approximately one third of Americans aged 18-25 and 40 % of Americans aged 26-40 are tattooed. As tattoos continue to rise in popularity, so has the demand for an effective method of tattoo removal such as lasers. The various colors of tattoo inks render them ideal targets for specific lasers using the principle of selective photothermolysis. Traditional laser modalities employed for tattoo removal operate on pulse durations in the nanosecond domain. However, this pulse duration range is still too long to effectively break ink into small enough particles. Picosecond (10(-12)) lasers have emerged at the forefront of laser tattoo removal due to their shorter pulse lengths, leading to quicker heating of the target chromophores, and consequently, more effective tattoo clearance. Recent studies have cited more effective treatment outcomes using picosecond lasers. Future comparative studies between picosecond lasers of various settings are necessary to determine optimal laser parameters for tattoo clearance.

  6. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w

  7. Isoperimetric problems on time scales with nabla derivatives

    OpenAIRE

    Almeida, Ricardo; Torres, Delfim F. M.

    2008-01-01

    We prove a necessary optimality condition for isoperimetric problems under nabla-differentiable curves. As a consequence, the recent results of [M.R. Caputo, A unified view of ostensibly disparate isoperimetric variational problems, Appl. Math. Lett. (2008), doi:10.1016/j.aml.2008.04.004], that put together seemingly dissimilar optimal control problems in economics and physics, are extended to a generic time scale. We end with an illustrative example of application of our main result to a dyn...

  8. 皮秒级时间分辨超快高能脉冲激光光谱%Picosecond time-resolved spectroscopy of ultrafast & high energy pulsed laser

    Institute of Scientific and Technical Information of China (English)

    王小鹏; 薛战理; 曹锋

    2012-01-01

    介绍了一种利用光电摄谱法和条纹管相结合测量ps级时间分辨超快高能脉冲激光光谱的方法.论述了条纹相机工作原理和平面衍射光栅的分光原理,分析指出利用介绍的装置,可以实现波长300 nm~1 600 nm、脉宽>2 ps超快高能脉冲激光的光谱测量.采用1 054 nm超快高能脉冲激光器,实验得到了条纹像,对条纹像进行数据处理后得到测量光谱曲线,通过能量标定后,得到了超快高能脉冲激光器实际光谱曲线,验证了ps级时间分辨超快高能脉冲激光光谱方法.讨论了系统中耦合透镜组对光谱测量和光纤色散角对条纹图像的影响,论述了ps级时间分辨超快高能脉冲激光光谱的作用.随着务纹管制造技术的飞速发展,该方法可用于fs级激光光谱的测量.%The method for measuring the spectrum of ultrafast & high energy pulsed laser in picosecond pulse width was presented with combination of photoelectrical spectrography and streak camera. The operating principle of streak camera and spectrophometric principle of plane diffraction grating were described respectively. Through thorough"analysis, we pointed out that the spectral measurement of ultrafast & high energy pulsed laser with wavelength in 300nm~1600nm and pulse width above 2 ps could be achieved by using our described facility. The streak image was obtained by utilizing ultrafast & high energy pulsed laser in 1054nm wavelength, and the measured spectral curve was derived by processing the data of streak camera, then the actual spectral curve was also given by calibrating the related energy parameters, the method for measuring the spectrum of ultrafast & high energy pulsed laser in picosecond pulse width was proved. The influence of coupling lens on measuring spectrum and grating fiber's dispersion angle on streak image were analyzed finally, furthermore the role of spectrum for ultrafast & high energy pulsed laser with picosecond pulse width was

  9. Time scale interactions and the coevolution of humans and water

    Science.gov (United States)

    Sivapalan, Murugesu; Blöschl, Günter

    2015-09-01

    We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.

  10. A stable Cenozoic geologic time scale is indispensable

    Institute of Scientific and Technical Information of China (English)

    Amos Salvador

    2006-01-01

    @@ A stable, standard geologic time scale is indispensable for the clear and precise communication among geologists; it is a basic tool of geologic work. Considerable progress has been made to achieve such a stable time scale. However, during the last few years several proposals have been made to modify the Cenozoic section of the geologic time scale that threaten to destabilize it.Seven articles published in Episodes since 2000 that could contribute to this destabilization are discussed.They provide excellent examples of the profusion of different terminologies, hierarchies, and stratigraphic relationships that have been proposed: to eliminate the Tertiary and the Quaternary or to raise their rank to suberathems; to extend the Neogene to the present; to make the Quaternary a formal subsystem of the Neogene, or consider it an informal stratigraphic unit; to eliminate the Holocene, and to decouple the base of the Pleistocene from the base of the Quaternary. If adopted,these proposals would cause nothing but great confusion and controversy. They disregard the clear preferences of geologists the world over as reflected by the terminology they have been using for many decades. Common sense would dictate the continued use of this terminology in its current, widely accepted form.

  11. Evidence for two time scales in long SNS junctions.

    Science.gov (United States)

    Chiodi, F; Aprili, M; Reulet, B

    2009-10-23

    We use microwave excitation to elucidate the dynamics of long superconductor-normal metal-superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz-40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage versus dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively.

  12. Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales

    Science.gov (United States)

    2015-09-30

    cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging...new dermal attachment for short-term tagging studies of baleen whales. Methods in Ecology and Evolution 6:289-297. Baumgartner, M.F., N.S.J

  13. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  14. Two-time-scale population evolution on a singular landscape

    Science.gov (United States)

    Xu, Song; Jiao, Shuyun; Jiang, Pengyao; Ao, Ping

    2014-01-01

    Under the effect of strong genetic drift, it is highly probable to observe gene fixation or gene loss in a population, shown by singular peaks on a potential landscape. The genetic drift-induced noise gives rise to two-time-scale diffusion dynamics on the bipeaked landscape. We find that the logarithmically divergent (singular) peaks do not necessarily imply infinite escape times or biological fixations by iterating the Wright-Fisher model and approximating the average escape time. Our analytical results under weak mutation and weak selection extend Kramers's escape time formula to models with B (Beta) function-like equilibrium distributions and overcome constraints in previous methods. The constructed landscape provides a coherent description for the bistable system, supports the quantitative analysis of bipeaked dynamics, and generates mathematical insights for understanding the boundary behaviors of the diffusion model.

  15. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  16. Timing and Spectroscopy Requirements for a Plastic Scintillating Fiber Bundle Time-of-Flight Neutron Spectrometer

    Science.gov (United States)

    2013-12-01

    flexibility, efficiency, timing, and position resolution in developing novel Compton camera detectors capable of detecting special nuclear material. 1.3...oscilloscope needs to be fast enough to resolve coincident pulse events on the picoseconds to nanosecond time scale. The final objective is to experimentally...Mirsaleh-Kohan, W. D. Nasrin, and R. N. Compton , “Electron ionization time-of-flight mass spectroscopy: Historical review and current applications

  17. Scaling in non-stationary time series. (I)

    Science.gov (United States)

    Ignaccolo, M.; Allegrini, P.; Grigolini, P.; Hamilton, P.; West, B. J.

    2004-05-01

    Most data processing techniques, applied to biomedical and sociological time series, are only valid for random fluctuations that are stationary in time. Unfortunately, these data are often non-stationary and the use of techniques of analysis resting on the stationary assumption can produce a wrong information on the scaling, and so on the complexity of the process under study. Herein, we test and compare two techniques for removing the non-stationary influences from computer generated time series, consisting of the superposition of a slow signal and a random fluctuation. The former is based on the method of wavelet decomposition, and the latter is a proposal of this paper, denoted by us as step detrending technique. We focus our attention on two cases, when the slow signal is a periodic function mimicking the influence of seasons, and when it is an aperiodic signal mimicking the influence of a population change (increase or decrease). For the purpose of computational simplicity the random fluctuation is taken to be uncorrelated. However, the detrending techniques here illustrated work also in the case when the random component is correlated. This expectation is fully confirmed by the sociological applications made in the companion paper. We also illustrate a new procedure to assess the existence of a genuine scaling, based on the adoption of diffusion entropy, multiscaling analysis and the direct assessment of scaling. Using artificial sequences, we show that the joint use of all these techniques yield the detection of the real scaling, and that this is independent of the technique used to detrend the original signal.

  18. Multiple time scale behaviors and network dynamics in liquid methanol.

    Science.gov (United States)

    Sharma, Ruchi; Chakravarty, Charusita; Milotti, Edoardo

    2008-07-31

    Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterizing the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water, and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/ f (alpha) dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behavior which occurs at approximately 0.1 cm (-1) in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm (-1) in all three systems is dominated by resonances due to localized vibrations, such as librations. The correlation between alpha and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localized motions and the larger length/time scale network reorganizations. Thus, the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.

  19. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    CERN Document Server

    Hamido, Aliou; Madroñero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick; Frapiccini, Ana Laura; Piraux, Bernard

    2011-01-01

    We present an ab initio approach to solve the time-dependent Schr\\"odinger equation to treat electron and photon impact multiple ionization of atoms or molecules. It combines the already known time scaled coordinate method with a new high order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time scaled coordinate method namely that the scaled wave packet stays confined and evolves smoothly towards a stationary state the modulus square of which being directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multi-resolution techniques like for instance, wavelets are the most appropriate ones to represent spatially the scaled wave packet. The approach is illustrated in the case of the interaction of an one-dimensional model atom as well as atomic hydrogen with a strong osci...

  20. Multipulse mode of heating nanoparticles by nanosecond, picosecond and femtosecond pulses

    Science.gov (United States)

    Letfullin, Renat R.; Iversen, Christian B.; George, Thomas F.

    2010-02-01

    Nanoparticles are being researched as a noninvasive method for selectively killing cancer cells. With particular antibody coatings on nanoparticles, they attach to the abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be heated with UV/visible/IR or RF pulses, heating the surrounding area of the cell to the point of death. Researchers often use single-pulse or multipulse lasers when conducting nanoparticle ablation research. In the present paper, we are conducting an analysis to determine if the multipulse mode has any advantage in heating of spherical metal nanoparticles (such as accumulative heating effect). The laser heating of nanoparticles is very sensitive to the time structure of the incident pulsed laser radiation, the time interval between the pulses, and the number of pulses used in the experiments. We perform time-dependent simulations and detailed analyses of the different nonstationary pulsed laser-nanoparticle interaction modes, and show the advantages and disadvantages of multipulse (set of short pulses) and single-pulse laser heating of nanoparticles. A comparative analysis for both radiation modes (single-pulse and multipulse) are discussed for laser heating of metal nanotargets on nanosecond, picosecond and femtosecond time scales to make recommendations for efficient laser heating of nanomaterials in the experiments.

  1. Transient time-domain resonances and the time scale for tunneling

    CERN Document Server

    García-Calderón, G; Garc\\'{\\i}a-Calder\\'on, Gast\\'on; Villavicencio, Jorge

    2003-01-01

    Transient {\\it time-domain resonances} found recently in time-dependent solutions to Schr\\"{o}dinger's equation are used to investigate the issue of the tunneling time in rectangular potential barriers. In general, a time frequency analysis shows that these transients have frequencies above the cutoff frequency associated with the barrier height, and hence correspond to non-tunneling processes. We find, however, a regime characterized by the barrier opacity, where the peak maximum $t_{max}$ of the {\\it time-domain resonance} corresponds to under-the-barrier tunneling. We argue that $t_{max}$ represents the relevant tunneling time scale through the classically forbidden region.

  2. Time scale hierarchies in the functional organization of complex behaviors.

    Directory of Open Access Journals (Sweden)

    Dionysios Perdikis

    2011-09-01

    Full Text Available Traditional approaches to cognitive modelling generally portray cognitive events in terms of 'discrete' states (point attractor dynamics rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human behaviour is decomposable into functional modes (elementary units, which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds. The ensemble of modes at an agent's disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals, in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time.

  3. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    Science.gov (United States)

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  4. Synchronization of Sub-Picosecond Electron and Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  5. The Role of Time-Scales in Socio-hydrology

    Science.gov (United States)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  6. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    Science.gov (United States)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  7. Scale relativity and fractal space-time: theory and applications

    CERN Document Server

    Nottale, Laurent

    2008-01-01

    In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmological constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-p...

  8. Holographic Brownian motion and time scales in strongly coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Atmaja, Ardian Nata [Research Center for Physics, Indonesian Institute of Sciences (LIPI), Kompleks PUSPITEK Serpong, Tangerang 15310 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Bandung 40132 (Indonesia); Boer, Jan de [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Shigemori, Masaki [Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Hakubi Center, Kyoto University, Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2014-03-15

    We study Brownian motion of a heavy quark in field theory plasma in the AdS/CFT setup and discuss the time scales characterizing the interaction between the Brownian particle and plasma constituents. Based on a simple kinetic theory, we first argue that the mean-free-path time is related to the connected 4-point function of the random force felt by the Brownian particle. Then, by holographically computing the 4-point function and regularizing the IR divergence appearing in the computation, we write down a general formula for the mean-free-path time, and apply it to the STU black hole which corresponds to plasma charged under three U(1)R-charges. The result indicates that the Brownian particle collides with many plasma constituents simultaneously.

  9. The role of time scales in extrinsic noise propagation

    Science.gov (United States)

    Iyer-Biswas, Srividya; Pedraza, Juan Manuel; Jayaprakash, C.

    2009-03-01

    Cell-to cell variability in the number of proteins has been studied extensively experimentally. There are many sources of this stochastic variability or noise that can be classified as intrinsic, due to the stochasticity of chemical reactions and extrinsic, due to environmental differences. The different stages in the production of proteins in response to a stimulus, the signaling cascade before transcription, transcription, and translation are characterized by different time scales. We analyze how these time scales determine the effect of the reactions at each stage on different sources of noise. For example, even if intrinsic noise dominates the fluctuations in mRNA number, for typical degradation rates, extrinsic noise can dominate corresponding protein number fluctuations. Such results are important in determining the importance of intrinsic noise at earlier stages of a genetic network on the products of subsequent stages. We examine cases in which the dynamics of the extrinsic noise can lead to differences from cases in which extrinsic noise arises from static (in time) cell-to-cell variations. We will interpret the experiments of Pedraza et al*. in the light of these results. *J. M. Pedraza et al, Science 25 March 2005:Vol. 307. no. 5717, pp. 1965 - 1969.

  10. NATO Advanced Research Workshop on Applications of Picosecond Spectroscopy to Chemistry

    CERN Document Server

    1984-01-01

    With the development of lasers that can generate light 11 14 pulses ranging from 10- - 10- sec duration, and capable of 13 peak powers in excess of 10 watts scientists have been able to investigate the interactions of light with matter in a time and power domain not previously possible. These ultrashort laser pulses provide a powerful tool for the study of chemical phenomena at the most fundamental level. Many of the elementary processes of importance in chemistry including energy dissipa­ tion, molecular motions, structural and chemical changes occur on a very short time scale and thus require special approaches. Th~ use of ultrashort laser pulses to perturb and to probe systems of interest affords a direct approach to the time reso­ lution of very rapid chemical phenomena. It was recognition of the impact of these relatively new approaches to chemical phenomena that motivated NATO to sponsor a meeting on the applications of picosecond spectroscopy in chemistry. The primary aim of the NATO workshop was to ...

  11. Formation processes and time scales for meteorite parent bodies

    Science.gov (United States)

    Weidenschilling, S. J.

    1988-01-01

    The transition from small particles suspended in the solar nebula to the planetesimals (asteroids) that became the parent bodies of meteorites is examined. Planetesimals probably grew by coagulation of grain aggregates that collided due to different rates of settling and drag-induced orbital decay. Their growth was accompanied by radial transport of solids, possibly sufficient to deplete the primordial mass in the asteroid zone, but with relatively little mixing. The formation of asteroid-sized planetesimals was probably rapid, on a time scale less than 1 Myr.

  12. Time-Dependent Earthquake Forecasts on a Global Scale

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.; Graves, W. R.

    2014-12-01

    We develop and implement a new type of global earthquake forecast. Our forecast is a perturbation on a smoothed seismicity (Relative Intensity) spatial forecast combined with a temporal time-averaged ("Poisson") forecast. A variety of statistical and fault-system models have been discussed for use in computing forecast probabilities. An example is the Working Group on California Earthquake Probabilities, which has been using fault-based models to compute conditional probabilities in California since 1988. An example of a forecast is the Epidemic-Type Aftershock Sequence (ETAS), which is based on the Gutenberg-Richter (GR) magnitude-frequency law, the Omori aftershock law, and Poisson statistics. The method discussed in this talk is based on the observation that GR statistics characterize seismicity for all space and time. Small magnitude event counts (quake counts) are used as "markers" for the approach of large events. More specifically, if the GR b-value = 1, then for every 1000 M>3 earthquakes, one expects 1 M>6 earthquake. So if ~1000 M>3 events have occurred in a spatial region since the last M>6 earthquake, another M>6 earthquake should be expected soon. In physics, event count models have been called natural time models, since counts of small events represent a physical or natural time scale characterizing the system dynamics. In a previous research, we used conditional Weibull statistics to convert event counts into a temporal probability for a given fixed region. In the present paper, we move belyond a fixed region, and develop a method to compute these Natural Time Weibull (NTW) forecasts on a global scale, using an internally consistent method, in regions of arbitrary shape and size. We develop and implement these methods on a modern web-service computing platform, which can be found at www.openhazards.com and www.quakesim.org. We also discuss constraints on the User Interface (UI) that follow from practical considerations of site usability.

  13. Continent-scale global change attribution in European birds - combining annual and decadal time scales

    DEFF Research Database (Denmark)

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper;

    2016-01-01

    Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader...... foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we...... on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach...

  14. A biologically plausible model of time-scale invariant interval timing.

    Science.gov (United States)

    Almeida, Rita; Ledberg, Anders

    2010-02-01

    The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing.

  15. A Review of Time-Scale Modification of Music Signals

    Directory of Open Access Journals (Sweden)

    Jonathan Driedger

    2016-02-01

    Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.

  16. Estimating ventilation time scales using overturning stream functions

    Science.gov (United States)

    Thompson, Bijoy; Nycander, Jonas; Nilsson, Johan; Jakobsson, Martin; Döös, Kristofer

    2014-06-01

    A simple method for estimating ventilation time scales from overturning stream functions is proposed. The stream function may be computed using either geometric coordinates or a generalized vertical coordinate, such as potential density (salinity in our study). The method is tested with a three-dimensional circulation model describing an idealized semi-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates obtained from a passive numerical age tracer. The best result is obtained when using the stream function in salinity coordinates. In this case, the reservoir-averaged advection time obtained from the overturning stream function in salinity coordinates agrees rather well with the mean age of the age tracer, and the corresponding maximum ages agree very well.

  17. Generalized dynamic scaling for quantum critical relaxation in imaginary time.

    Science.gov (United States)

    Zhang, Shuyi; Yin, Shuai; Zhong, Fan

    2014-10-01

    We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.

  18. In what time scale proton transfer takes place in a live CHO cell?

    Science.gov (United States)

    Mojumdar, Supratik Sen; Chowdhury, Rajdeep; Mandal, Amit Kumar; Bhattacharyya, Kankan

    2013-06-01

    Excited state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) in a live Chinese hamster ovary (CHO) cell is studied by time resolved confocal microscopy. The cytoplasm region of the cell is stained by a photoacid, HPTS (HA). The time constant of initial proton transfer (τPT) in the cell is found to be ˜10 times longer than that in bulk water, while the time constants of recombination (τrec) and dissociation (τdiss) in the cell are ˜3 times and ˜2 times longer, respectively. The slower rate of proton transfer (˜10 times) inside the CHO cell compared to that in bulk water is ascribed to slower solvation dynamics, lower availability of free water molecules, and disruption of hydrogen-bond network inside the cell. Translational and rotational diffusion of HPTS inside a single CHO cell have been investigated by fluorescence correlation spectroscopy (FCS) and picosecond anisotropy measurement, respectively. Both the translational and rotational diffusion slow down inside the live cell. FCS studies indicate that HPTS remains tightly bound to a macromolecule inside the cell.

  19. MULTI SCALE TIME SERIES PREDICTION FOR INTRUSION DETECTION

    Directory of Open Access Journals (Sweden)

    G. Palanivel

    2014-01-01

    Full Text Available We propose an anomaly-based network intrusion detection system, which analyzes traffic features to detect anomalies. The proposed system can be used both in online as well as off-line mode for detecting deviations from the expected behavior. Although our approach uses network packet or flow data, it is general enough to be adaptable for use with any other network variable, which may be used as a signal for anomaly detection. It differs from most existing approaches in its use of wavelet transform for generating different time scales for a signal and using these scales as an input to a two-stage neural network predictor. The predictor predicts the expected signal value and labels considerable deviations from this value as anomalies. The primary contribution of our work would be to empirically evaluate the effectiveness of multi resolution analysis as an input to neural network prediction engine specifically for the purpose of intrusion detection. The role of Intrusion Detection Systems (IDSs, as special-purpose devices to detect anomalies and attacks in a network, is becoming more important. First, anomaly-based methods cannot achieve an outstanding performance without a comprehensive labeled and up-to-date training set with all different attack types, which is very costly and time-consuming to create if not impossible. Second, efficient and effective fusion of several detection technologies becomes a big challenge for building an operational hybrid intrusion detection system.

  20. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    Science.gov (United States)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  1. Cell assemblies at multiple time scales with arbitrary lag constellations

    Science.gov (United States)

    Russo, Eleonora; Durstewitz, Daniel

    2017-01-01

    Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at multiple temporal scales, partly due to the severe computational burden. Here we present such a unifying methodological and conceptual framework which detects assembly structure at many different time scales, levels of precision, and with arbitrary internal organization. Applying this methodology to multiple single unit recordings from various cortical areas, we find that there is no universal cortical coding scheme, but that assembly structure and precision significantly depends on the brain area recorded and ongoing task demands. DOI: http://dx.doi.org/10.7554/eLife.19428.001 PMID:28074777

  2. Designing for development: Across the scales of time.

    Science.gov (United States)

    Cole, Michael

    2016-11-01

    This essay traces the history of an activity designed to promote the intellectual and social development of elementary-age schoolchildren during the afterschool hours. Following in the footsteps of Urie Bronfenbrenner, I highlight his argument that just as all human development occurs in contexts of varying levels of inclusiveness and mutual interchange, human development occurs at intersecting scales of time that themselves vary in character and duration. The task of exploring Bronfenbrenner's idea confronts scholars interested in person-context coconstitutive processes with a difficult methodological requirement; they must study simultaneously the history of persons (at the microgenetic and ontogenetic time scales) as well the history of "the contexts of development" in which the persons participate. A project implementing such a study focused on the life course of the system of activity is described, followed by a discussion of the lessons to be learned from a temporally extensive study of persons developing in contexts that are themselves changing. (PsycINFO Database Record

  3. Complex processes from dynamical architectures with time-scale hierarchy.

    Directory of Open Access Journals (Sweden)

    Dionysios Perdikis

    Full Text Available The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

  4. Complex processes from dynamical architectures with time-scale hierarchy.

    Science.gov (United States)

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-02-10

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

  5. Picosecond kinetic measurements of the metalloporphyrin fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Aaviskoq, Y.Y.; Freiburg, A.M.; Savikhin, S.F.; Stel' makh, G.F.

    1986-08-01

    The authors attempt to directly measure the deactivation kinetics of the short-lived excited S/sub 2/ and S/sub 1/ states of metalloporphyrins and compare the results with those obtained by other (either direct or indirect) methods. The studies were carried out on diamagnetic metallocomplexes of tetrabenzoporphyrin (MeTBP) exhibiting measurable fluorescence from the S/sub 1/ and S/sub 2/ states. The complexes with Lu, Cd, and Zn in dilute solutions were studied at room temperature. The results of direct kinetic experiments confirm the previously obtained data on picosecond deactivation processes in photoexcited metalloporphyrins.

  6. How noise contributes to time-scale invariance of interval timing

    Science.gov (United States)

    Oprisan, Sorinel A.; Buhusi, Catalin V.

    2013-05-01

    Time perception in the suprasecond range is crucial for fundamental cognitive processes such as decision making, rate calculation, and planning. In the vast majority of species, behavioral manipulations, and neurophysiological manipulations, interval timing is scale invariant: the time-estimation errors are proportional to the estimated duration. The origin and mechanisms of this fundamental property are unknown. We discuss the computational properties of a circuit consisting of a large number of (input) neural oscillators projecting on a small number of (output) coincidence detector neurons, which allows time to be coded by the pattern of coincidental activation of its inputs. We show that time-scale invariance emerges from the neural noise, such as small fluctuations in the firing patterns of its input neurons and in the errors with which information is encoded and retrieved by its output neurons. In this architecture, time-scale invariance is resistant to manipulations as it depends neither on the details of the input population nor on the distribution probability of noise.

  7. Photosynthetic membrane development studied using picosecond fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Karukstis, K.K.; Sauer, K.

    1983-01-01

    Using measurements of the kinetics of chlorophyll a fluorescence emission, the development of the photosynthetic membrane during etioplast-to-chloroplast differentiation was investigated. Tthe chlorophyll fluorescence decay kinetics of pea chloroplasts from plants grown under intermittent (2 min light-118 min dark) and continuous light regimes were monitored with a single-proton timing system with picosecond resolution. The changes in the fluorescence yields and decay kinetics were associated with known structural and organizational developmental phenomena in the chloroplast. This correlation provides a more detailed assignment of the origins of the fluorescence decay components than has been previously obtained by studying only mature chloroplasts. In particular, the analysis of the variable kinetics and multiexponential character of the fluorescence emission during thylakoid development focuses on the organization of photosynthetic units and the degree of communication between reaction centers in the same photosystem. These results further demonstrate that the age of etiolated tissue is critical to plastid development.

  8. Ultrahigh speed photography of picosecond light pulses and echoes.

    Science.gov (United States)

    Duguay, M A; Mattick, A T

    1971-09-01

    Three new results have been obtained with a recently developed camera of 10-psec framing time: (1) The effect of the finite speed of light in photographing relativistic objects is experimentally demonstrated, by photographing a dumbbell-like entity formed by two packets of light. In contrast to material objects, which, theory predicts, should appear rotated, the light dumbbell appears sheared. (2) Photographs of the mode-locked Nd: glass laser radiation show numerous subsidiary pulses accompanying the main ultrashort pulses in the train. The latter have durations ranging from 7 psec to 15 psec. (3) The technique of gated picture ranging, previously used with nanosecond pulses, is extended to the picosecond range where a resolution of 1 cm is demonstrated. Some potentially useful applications are proposed.

  9. Picosecond pulse measurements using the active laser medium

    Science.gov (United States)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  10. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  11. Ultrafast opacity in borosilicate glass induced by picosecond bursts of laser-driven ions

    CERN Document Server

    Dromey, B; Adams, D; Prasad, R; Kakolee, K F; Stefanuik, R; Nersisyan, G; Sarri, G; Yeung, M; Ahmed, H; Doria, D; Dzelzainis, T; Jung, D; Kar, S; Marlow, D; Romagnani, L; Correa, A A; Dunne, P; Kohanoff, J; Schleife, A; Borghesi, M; Currell, F; Riley, D; Zepf, M; Lewis, C L S

    2014-01-01

    Direct investigation of ion-induced dynamics in matter on picosecond (ps, 10-12 s) timescales has been precluded to date by the relatively long nanosecond (ns, 10-9 s) scale ion pulses typically provided by radiofrequency accelerators1. By contrast, laser-driven ion accelerators provide bursts of ps duration2, but have yet to be applied to the study of ultrafast ion-induced transients in matter. We report on the evolution of an electron-hole plasma excited in borosilicate glass by such bursts. This is observed as an onset of opacity to synchronised optical probe radiation and is characterised by the 3.0 +/- 0.8 ps ion pump rise-time . The observed decay-time of 35 +/- 3 ps i.e. is in excellent agreement with modelling and reveals the rapidly evolving electron temperature (>10 3 K) and carrier number density (>10 17cm-3). This result demonstrates that ps laser accelerated ion bursts are directly applicable to investigating the ultrafast response of matter to ion interactions and, in particular, to ultrafast pu...

  12. Modelling Time and Length Scales of Scour Around a Pipeline

    Science.gov (United States)

    Smith, H. D.; Foster, D. L.

    2002-12-01

    The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the

  13. Semiconductor Characterization with Acoustic and Thermal waves on Picosecond Timescales

    Science.gov (United States)

    Wright, Oliver B.

    1997-03-01

    Ultrafast optical techniques for semiconductor characterization can probe the dynamics of photoexcited carriers, leading to applications in, for example, in-line monitoring of semiconductor processing and optimization of materials for sub-picosecond electronic switches or for nanoscale electronic devices.(Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984).) Picosecond or femtosecond optical pulses excite electrons to higher electronic bands, producing a nonequilibrium electron-hole distribution. Various physical effects result from the relaxation of this distribution. Luminescence or photoelectron emission are examples. In the present study the focus is on acoustic and thermal effects. The change in electron and hole occupation probabilities induces an electronic stress distributed throughout the carrier penetration depth. A temperature change of the lattice and an associated thermal stress are also produced. The combined stress distribution launches a strain pulse that propagates into the sample as a longitudinally polarized acoustic wave in the present experiments. Its reflection from sub-surface boundaries, interfaces or defects can be detected at the surface by another, weaker optical probe pulse. During this time the temperature distribution in the semiconductor also changes due to thermal wave propagation,(Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Andreas Mandelis (North Holland, New York, 1987).) and this simultaneously influences the optical probe pulse. Both reflectance modulation and beam deflection methods for probing were used to investigate crystalline and amorphous silicon samples.(O. B. Wright, U. Zammit, M. Marinelli, and V. Gusev, Appl. Phys. Lett. 69, 553 (1996).) (O. B. Wright and V. E. Gusev, Appl. Phys. Lett. 66, 1190 (1995).) (O. B. Wright and K. Kawashima, Phonon Scattering in Condensed Matter VII, edited by R. O. Pohl and M. Meissner, Springer Verlag, Berlin

  14. Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Directory of Open Access Journals (Sweden)

    U.A.K. Chude-Okonkwo

    2012-06-01

    Full Text Available The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband model presented here (especially in the case of multiband UWB frequency synchronization is more accurate than using frequency offset estimate obtained from narrowband models.

  15. Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond Terahertz spectroscopy.

    Science.gov (United States)

    Cánovas, Enrique; Moll, Puck; Jensen, Søren A; Gao, Yunan; Houtepen, Arjan J; Siebbeles, Laurens D A; Kinge, Sachin; Bonn, M

    2011-12-14

    We report the direct and unambiguous determination of electron transfer rates and efficiencies from PbSe quantum dots (QDs) to mesoporous SnO2 films. We monitor the time-dependent electron density within the oxide with picosecond time resolution using Terahertz spectroscopy, following optical excitation of the QDs using a femtosecond laser pulse. QD-oxide electron transfer occurs with efficiencies of ∼2% in our samples under 800 nm pumping with a marked dependence on QD size, ranging from ∼100 ps injection times for the smallest, ∼2 nm diameter QDs, to ∼1 ns time scale for ∼7 nm QDs. The size-dependent electron transfer rates are modeled within the framework of Marcus theory and the implications of the results for device design are discussed.

  16. Scaling in Non-stationary time series I

    CERN Document Server

    Ignaccolo, M; Grigolini, P; Hamilton, P; West, B J

    2003-01-01

    Most data processing techniques, applied to biomedical and sociological time series, are only valid for random fluctuations that are stationary in time. Unfortunately, these data are often non stationary and the use of techniques of analysis resting on the stationary assumption can produce a wrong information on the scaling, and so on the complexity of the process under study. Herein, we test and compare two techniques for removing the non-stationary influences from computer generated time series, consisting of the superposition of a slow signal and a random fluctuation. The former is based on the method of wavelet decomposition, and the latter is a proposal of this paper, denoted by us as step detrending technique. We focus our attention on two cases, when the slow signal is a periodic function mimicking the influence of seasons, and when it is an aperiodic signal mimicking the influence of a population change (increase or decrease). For the purpose of computational simplicity the random fluctuation is taken...

  17. Multi-scale gravity field modeling in space and time

    Science.gov (United States)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2016-04-01

    The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.

  18. Scale-free networks emerging from multifractal time series

    Science.gov (United States)

    Budroni, Marcello A.; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-05-01

    Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations. We finally present a numerical analysis on the properties of weighted and directed network projections.

  19. Scale-free networks emerging from multifractal time series.

    Science.gov (United States)

    Budroni, Marcello A; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-05-01

    Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions connecting the natural measure of a box with its degree in the graph representation. We single out the conditions yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations. We finally present a numerical analysis on the properties of weighted and directed network projections.

  20. Empirical mode decomposition using variable filtering with time scale calibrating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.

  1. Dynamic Leidenfrost effect: relevant time- and length-scales

    CERN Document Server

    Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-01-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it as to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting/drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time- and length-scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  2. Nonoscillation for second order sublinear dynamic equations on time scales

    Science.gov (United States)

    Erbe, Lynn; Baoguo, Jia; Peterson, Allan

    2009-10-01

    Consider the Emden-Fowler sublinear dynamic equation x[Delta][Delta](t)+p(t)f(x([sigma](t)))=0, where , is a time scale, , where ai>0, 0researchers. In this paper, we allow the coefficient function p(t) to be negative for arbitrarily large values of t. We extend a nonoscillation result of Wong for the second order sublinear Emden-Fowler equation in the continuous case to the dynamic equation (0.1). As applications, we show that the sublinear difference equation has a nonoscillatory solution, for b>0, c>[alpha], and the sublinear q-difference equation has a nonoscillatory solution, for , q>1, b>0, c>1+[alpha].

  3. On the superposition of heterogeneous traffic at large time scales

    Directory of Open Access Journals (Sweden)

    Sidney I. Resnick

    2011-01-01

    Full Text Available Various empirical and theoretical studies indicate that cumulative network traffic is a Gaussian process. However, depending on whether the intensity at which sessions are initiated is large or small relative to the session duration tail, [25] and [15] have shown that traffic at large time scales can be approximated by either fractional Brownian motion (fBm or stable Lévy motion. We study distributional properties of cumulative traffic that consists of a finite number of independent streams and give an explanation of why Gaussian examples abound in practice but not stable Lévy motion. We offer an explanation of how much vertical aggregation is needed for the Gaussian approximation to hold. Our results are expressed as limit theorems for a sequence of cumulative traffic processes whose session initiation intensities satisfy growth rates similar to those used in [25].

  4. Variation of atmospheric depth profile on different time scales

    CERN Document Server

    Wilczynska, B; Homola, P; Pekala, J; Risse, M; Wilczynski, H

    2006-01-01

    The vertical profile of atmospheric depth is an important element in extensive air shower studies. The depth of shower maximum is one of the most important characteristics of the shower. In the fluorescence technique of shower detection, the geometrical reconstruction provides the altitude of shower maximum, so that an accurate profile of atmospheric depth is needed to convert this altitude to the depth of shower maximum. In this paper the temporal variation of experimentally measured profiles of atmospheric depth at different sites is studied and implications for shower reconstruction are shown. The atmospheric profiles vary on time scales from hours to years. It is shown that the daily variation of the profile is as important as its seasonal variation and should be accounted for in air shower studies. For precise shower reconstruction, the daily profiles determined locally at the site of the air shower detector are recommended.

  5. Large-scale structure of time evolving citation networks

    Science.gov (United States)

    Leicht, E. A.; Clarkson, G.; Shedden, K.; Newman, M. E. J.

    2007-09-01

    In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.

  6. Decomposition of wind speed fluctuations at different time scales

    Indian Academy of Sciences (India)

    Qinmin Zheng; S Rehman; Md Mahbub Alam; L M Alhems; A Lashin

    2017-04-01

    Understanding the inherent features of wind speed (variability on different time scales) has become critical for assured wind power availability, grid stability, and effective power management. The study utilizes the wavelet, autocorrelation, and FFT (fast Fourier transform) techniques to analyze and assimilate the fluctuating nature of wind speed data collected over a period of 29–42 years at different locations in the Kingdom of Saudi Arabia. The analyses extracted the intrinsic features of wind speed, including the long-term mean wind speed and fluctuations at different time scales (periods), which is critical for meteorological purposes including wind power resource assessment and weather forecasting. The longterm mean wind speed varied between 1.45 m/s at Mecca station and 3.73 m/s at Taif. The annual variation is the largest (±0.97 m/s) at Taif and the smallest (±0.25 m/s) at Mecca. Similarly, the wind speed fluctuation with different periods was also discussed in detail. The spectral characteristics obtained using FFT reveal that Al-Baha, Najran, Taif and Wadi-Al-Dawasser having a sharp peak at a frequency f = 0.00269 (1/day) retain a more regular annual repetition of wind speed than Bisha, Khamis-Mushait, Madinah, Mecca, and Sharourah. Based on the autocorrelation analysis and FFT results, the stations are divided into three groups: (i) having strong annual modulations (Al-Baha, Najran, Taif and Wadi-Al-Dawasser), (ii) having comparable annual and half-yearly modulations (Bisha, Khamis-Mushait, and Mecca) and (iii) having annual modulation moderately prominent (Madinah and Sharourah).

  7. Towards a stable numerical time scale for the early Paleogene

    Science.gov (United States)

    Hilgen, Frederik; Kuiper, Klaudia; Sierro, Francisco J.; Wotzlaw, Jorn; Schaltegger, Urs; Sahy, Diana; Condon, Daniel

    2014-05-01

    The construction of an astronomical time scale for the early Paleogene is hampered by ambiguities in the number, correlation and tuning of 405-kyr eccentricity related cycles in deep marine records from ODP cores and land-based sections. The two most competing age models result in astronomical ages for the K/Pg boundary that differ by ~750 kyr (~66.0 Ma of Vandenberghe et al. (2012) versus 65.25 Ma of Westerhold et al. (2012); these ages in turn are consistent with proposed ages for the Fish Canyon sanidine (FCs) that differ by ~300 kyr (28.201 Ma of Kuiper et al. (2008) versus 27.89 Ma of Westerhold et al. (2012)); an even older age of 28.294 Ma is proposed based on a statistical optimization model (Renne et al., 2011). The astronomically calibrated FCs age of 28.201 ± 0.046 Ma of Kuiper et al. (2008), which is consistent with the astronomical age of ~66.0 Ma for the K/Pg boundary, is currently adopted in the standard geological time scale (GTS2012). Here we combine new and published data in an attempt to solve the controversy and arrive at a stable nuemrical time scale for the early Paleogene. Supporting their younger age model, Westerhold et al. (2012) argue that the tuning of Miocene sections in the Mediterranean, which underlie the older FCs age of Kuiper et al. (2008) and, hence, the coupled older early Paleogene age model of Vandenberghe et al. (2012), might be too old by three precession cycles. We thoroughly rechecked this tuning; distinctive cycle patterns related to eccentricity and precession-obliquity interference make a younger tuning that would be consistent with the younger astronomical age of 27.89 Ma for the FCs of Westerhold et al. (2012) challenging. Next we compared youngest U/Pb zircon and astronomical ages for a number of ash beds in the tuned Miocene section of Monte dei Corvi. These ages are indistinguishable, indicating that the two independent dating methods yield the same age when the same event is dated. This is consistent with results

  8. The stochastic background: scaling laws and time to detection for pulsar timing arrays

    CERN Document Server

    Siemens, Xavier; Jenet, Fredrick; Romano, Joseph D

    2013-01-01

    We derive scaling laws for the signal-to-noise ratio of the optimal cross-correlation statistic, and show that the large power-law increase of the signal-to-noise ratio as a function of the the observation time $T$ that is usually assumed holds only at early times. After enough time has elapsed, pulsar timing arrays enter a new regime where the signal to noise only scales as $\\sqrt{T}$. In addition, in this regime the quality of the pulsar timing data and the cadence become relatively un-important. This occurs because the lowest frequencies of the pulsar timing residuals become gravitational-wave dominated. Pulsar timing arrays enter this regime more quickly than one might naively suspect. For T=10 yr observations and typical stochastic background amplitudes, pulsars with residual RMSs of less than about $1\\,\\mu$s are already in that regime. The best strategy to increase the detectability of the background in this regime is to increase the number of pulsars in the array. We also perform realistic simulations ...

  9. The pace of aging: Intrinsic time scales in demography

    Directory of Open Access Journals (Sweden)

    Tomasz Wrycza

    2014-05-01

    Full Text Available Background: The pace of aging is a concept that captures the time-related aspect of aging. It formalizesthe idea of a characteristic life span or intrinsic population time scale. In the rapidly developing field of comparative biodemography, measures that account for inter-speciesdifferences in life span are needed to compare how species age. Objective: We aim to provide a mathematical foundation for the concept of pace. We derive desiredmathematical properties of pace measures and suggest candidates which satisfy these properties. Subsequently, we introduce the concept of pace-standardization, which reveals differences in demographic quantities that are not due to pace. Examples and consequences are discussed. Conclusions: Mean life span (i.e., life expectancy from birth or from maturity is intuitively appealing,theoretically justified, and the most appropriate measure of pace. Pace-standardizationprovides a serviceable method for comparative aging studies to explore differences indemographic patterns of aging across species, and it may considerably alter conclusionsabout the strength of aging.

  10. Selective attention to temporal features on nested time scales.

    Science.gov (United States)

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features.

  11. Forecasting decadal and shorter time-scale solar cycle features

    Science.gov (United States)

    Dikpati, Mausumi

    2016-07-01

    Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  12. The quenching time scale and quenching rate of galaxies

    CERN Document Server

    Lian, Jianhui; Zhang, Kai; Kong, Xu

    2016-01-01

    The average star formation rate (SFR) in galaxies has been declining since redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching time scale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV-u color space and the distribution in NUV-u v.s. u-i color-color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 10 to 10 and 10 to 10.6 solar mass. In the NUV-u v.s. u-i color-color diagram, the red u-i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV-u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color-color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching p...

  13. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    Science.gov (United States)

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  14. Surfaces and thin films studied by picosecond ultrasonics. Progress report, December 1, 1989--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse (``pump pulse``). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  15. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  16. Kinetics study of the solvated electron decay in THF using laser-synchronised picosecond electron pulse

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Picosecond pulse radiolysis of neat tetrahydrofuran (THF) shows a fast decay of the solvated electron within 2.5ns. The decay of the solvated electron observed at 790nm is because of spur reaction. A numerical simulation using time dependent Smoluchowski equation containing a sink term with a distance dependent reaction rate is used to fit the pulse-probe data and shows that the geminate reaction can proceed at long distance in this low polar solvent.

  17. On the superimposition of heterogeneous traffic at large time scales

    CERN Document Server

    Lopez-Oliveros, Luis

    2010-01-01

    Various empirical and theoretical studies indicate that cumulative network traffic is a Gaussian process. However, depending on whether the intensity at which sessions are initiated is large or small relative to the session duration tail, Mikosch et a. (Ann Appl Probab, 12:23-68, 2002) and Kaj and Taqqu (Progress Probab, 60:383-427, 2008) have shown that traffic at large time scales can be approximated by either fractional Brownian motion (fBm) or stable Levy motion. We study distributional properties of cumulative traffic that consists of a finite number of independent streams and give an explanation of why Gaussian examples abound in practice but not stable Levy motion. We offer an explanation of how much vertical aggregation is needed for the Gaussian approximation to hold. Our results are expressed as limit theorems for a sequence of cumulative traffic processes whose session initiation intensities satisfy growth rates similar to those used in Mikosch et a. (Ann Appl Probab, 12:23-68, 2002).

  18. 100 W all fiber picosecond MOPA laser.

    Science.gov (United States)

    Chen, Sheng-Ping; Chen, Hong-Wei; Hou, Jing; Liu, Ze-Jin

    2009-12-21

    A high power picosecond laser is constructed in an all fiber master oscillator power amplifier (MOPA) configuration. The seed source is an ytterbium-doped single mode fiber laser passively mode-locked by a semiconductor saturable absorber mirror (SESAM). It produces 20 mW average power with 13 ps pulse width and 59.8 MHz repetition rate. A direct amplification of this seed source encounters obvious nonlinear effects hence serious spectral broadening at only ten watt power level. To avoid these nonlinear effects, we octupled the repetition rate to about 478 MHz though a self-made all fiber device before amplification. The ultimate output laser exhibits an average power of 96 W, a pulse width of 16 ps, a beam quality M2 of less than 1.5, and an optical conversion efficiency of 61.5%.

  19. Nanoscale Characterization with Laser Picosecond Acoustics

    Science.gov (United States)

    Wright, Oliver B.

    2007-11-01

    Nanophotonics—the manipulation of light with nanomaterials—is a booming subject, its success owing to the host of nanoscale fabrication techniques now at our disposal. However, for the characterization of such nanomaterials it is expedient to turn to other types of waves with a wavelength commensurate with the nanostructure in question. One such choice is acoustic waves of nanometre wavelength. The aim of this article is to provide an introduction to laser picosecond acoustics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can therefore be used to characterize materials with nanometre spatial resolution. In this article we review the theoretical background for opaque single-layer thin film isotropic samples with reference to key experiments. Solids including metals and semiconductors are discussed, although liquids and, conceivably, gases, are not excluded.

  20. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    Science.gov (United States)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  1. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale

    Science.gov (United States)

    Neidel, Ch.; Klei, J.; Yang, C.-H.; Rouzée, A.; Vrakking, M. J. J.; Klünder, K.; Miranda, M.; Arnold, C. L.; Fordell, T.; L'Huillier, A.; Gisselbrecht, M.; Johnsson, P.; Dinh, M. P.; Suraud, E.; Reinhard, P.-G.; Despré, V.; Marques, M. A. L.; Lépine, F.

    2013-07-01

    Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized neutral molecules (N2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.

  2. Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs.

    Science.gov (United States)

    Scherbakov, A V; Bombeck, M; Jäger, J V; Salasyuk, A S; Linnik, T L; Gusev, V E; Yakovlev, D R; Akimov, A V; Bayer, M

    2013-07-15

    By means of a metal opto-acoustic transducer we generate quasi-longitudinal and quasi-transverse picosecond strain pulses in a (311)-GaAs substrate and monitor their propagation by picosecond acoustic interferometry. By probing at the sample side opposite to the transducer the signals related to the compressive and shear strain pulses can be separated in time. In addition to conventional monitoring of the reflected probe light intensity we monitor also the polarization rotation of the optical probe beam. This polarimetric technique results in improved sensitivity of detection and provides comprehensive information about the elasto-optical anisotropy. The experimental observations are in a good agreement with a theoretical analysis.

  3. EON: software for long time simulations of atomic scale systems

    Science.gov (United States)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  4. Investigation of laser-surface interactions and optical damage mechanisms using excitation by pairs of picosecond laser pulses

    Science.gov (United States)

    Chase, L. L.; Lee, H. W. H.; Hughes, Robert S.

    1990-07-01

    It is demonstrated that laser-surface interactions that cause optical surface damage of nominally transparent materials can be investigated by observing the effects of excitation by pairs of picosecond pulses separated by a variable time delay. Laser-induced emission of neutrals is used as the detection mechanism in the present experiments.

  5. Reliable Dynamic Voltage Scaling for Real-Time Systems with Uncertain Execution Time and Resource Constraints

    Directory of Open Access Journals (Sweden)

    G. AZHAGUNILA,

    2011-02-01

    Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.

  6. A conceptual framework for time and space scale interactions in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Meehl, G.A. [National Center for Atmospheric Research (United States); Lukas, R. [University of Hawaii (United States); Kiladis, G.N. [NOAA Aeronomy Lab (United States); Weickmann, K.M. [NOAA Climate Diagnostics Center (United States); Matthews, A.J. [University of East Anglia, Norwich (United Kingdom); Wheeler, M. [Bureau of Meteorology Research Centre (Australia)

    2001-07-01

    Interactions involving various time and space scales, both within the tropics and between the tropics and midlatitudes, are ubiquitous in the climate system. We propose a conceptual framework for understanding such interactions whereby longer time scales and larger space scales set the base state for processes on shorter time scales and smaller space scales, which in turn have an influence back on the longer time scales and larger space scales in a continuum of process-related interactions. Though not intended to be comprehensive, we do cite examples from the literature to provide evidence for the validity of this framework. Decadal time scale base states of the coupled climate system set the context for the manifestation of interannual time scales (El Nino/Southern Oscillation, ENSO and tropospheric biennial oscillation, TBO) which are influenced by and interact with the annual cycle and seasonal time scales. Those base states in turn influence the large-scale coupled processes involved with intraseasonal and submonthly time scales, tied to interactions within the tropics and extratropics, and tropical-midlatitude teleconnections. All of these set the base state for processes on the synoptic and mesoscale and regional/local space scales. Events at those relatively short time scales and small space scales may then affect the longer time scale and larger space scale processes in turn, reaching back out to submonthly, intraseasonal, seasonal, annual, TBO, ENSO and decadal. Global coupled models can capture some elements of the decadal, ENSO, TBO, annual and seasonal time scales with the associated global space scales. However, coupled models are less successful at simulating phenomena at subseasonal and shorter time scales with hemispheric and smaller space scales. In the context of the proposed conceptual framework, the synergistic interactions of the time and space scales suggest that a high priority must be placed on improved simulations of all of the time and

  7. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)

    2016-07-15

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  8. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    Science.gov (United States)

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  9. Asymptotic Expansions of Backward Equations for Two-time-scale Markov Chains in Continuous Time

    Institute of Scientific and Technical Information of China (English)

    G Yin; Dung Tien Nguyen

    2009-01-01

    This work develops asymptotic expansions for solutions of systems of backward equations of timeinhomogeneons Markov chains in continuous time. Owing to the rapid progress in technology and the increasing complexity in modeling, the underlying Markov chains often have large state spaces, which make the computational tasks infeasible. To reduce the complexity, two-time-scale formulations are used. By introducing a small parameter ε> 0 and using suitable decomposition and aggregation procedures, it is formulated as a singular perturbation problem. Both Markov chains having recurrent states only and Markov chains including also transient states are treated. Under certain weak irreducibility and smoothness conditions of the generators, the desired asymptotic expansions are constructed. Then error bounds are obtained.

  10. Time-resolved and time-scale adaptive measures of spike train synchrony

    CERN Document Server

    Kreuz, Thomas; Greschner, Martin; Andrzejak, Ralph G

    2010-01-01

    A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data.

  11. Time-resolved and time-scale adaptive measures of spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Chicharro, Daniel; Greschner, Martin; Andrzejak, Ralph G

    2011-01-30

    A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales

    Science.gov (United States)

    Zu, Qi-hang; Zhu, Jian-qing

    2016-08-01

    The paper focuses on studying the Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales. First, the Hamilton equations of nonholonomic nonconservative systems on time scales are established, which is based on the Lagrange equations for nonholonomic systems on time scales. Then, based upon the quasi-invariance of Hamilton action of systems under the infinitesimal transformations with respect to the time and generalized coordinate on time scale, the Noether identity and the conserved quantity of nonholonomic nonconservative systems on time scales are obtained. Finally, an example is presented to illustrate the application of the results.

  13. Multiple time scales and the lifetime coefficient of variation: engineering applications.

    Science.gov (United States)

    Kordonsky, K B; Gertsbakh, I

    1997-01-01

    We consider linear combinations of "natural" time scales and choose the "best" one which provides the minimum coefficient of variation of the lifetime. Our time scale is in fact a generalized Miner time scale because the latter is based on an appropriate weighting of the times spent on low and high level loadings. The suggested modus operandi for finding the "best" time scale has many features in common with the approach suggested by Farewell and Cox (1979) and Oakes (1995) which is devoted to multiple time scales in survival analysis.

  14. Two-phase micro- and macro-time scales in particle-laden turbulent channel flows

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Michael Manhart

    2012-01-01

    The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.

  15. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  16. Stretching of Picosecond Laser Pulses with Uniform Reflecting Volume Bragg Gratings

    Science.gov (United States)

    Mokhov, Sergiy

    It is shown that a uniform reflecting volume Bragg grating (VBG) can be used as a compact monolithic stretcher of high-power picosecond laser pulses in cases when chirped Bragg gratings with an appropriate chirp rate are difficult to fabricate. A chirp-free reflected stretched pulse is generated of almost rectangular shape when incident short pulse propagates along a grating and experiences local Bragg diffraction. The increase in duration of the reflected pulse is approximately equal to twice the propagation times along the grating. We derived the analytic expression for diffraction efficiency, which incorporates incident pulse duration, grating thickness, and amplitude of refractive index modulation, enabling an optimum selection of the grating for pulse stretching. The typical expected theoretical value of diffraction efficiency is about 10% after taking into account the spectral narrowing of the reflected emission. We believe that the relatively low energy efficiency of the proposed method is more than offset by a number of advantages, which are chirp-free spectrum of a stretched pulse, compactness, robustness, preservation of setup alignment and beam quality, and tolerance to high power. Obtained pulses of several tens of picoseconds can be amplified by standard methods which are not requiring special measures to avoid undesirable non-linear effects. We propose a simple and reliable method to control the temporal parameters of the high-power picosecond pulses using the same laser source and the VGB of variable thickness that can significantly simplify the experiments requiring different pulse durations.

  17. Changes in channel morphology over human time scales [Chapter 32

    Science.gov (United States)

    John M. Buffington

    2012-01-01

    Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...

  18. Mapping Playgrids for Learning across Space, Time, and Scale

    Science.gov (United States)

    Hollett, Ty; Kalir, Jeremiah H.

    2017-01-01

    In this article, we analyze the production of learner-generated playgrids. Playgrids are produced when learners knit together social media tools to participate across settings and scales, accomplish their goals, pursue interests, and make their learning more enjoyable and personally meaningful. Through case study methodology we examine how two…

  19. Space-time modeling of catchment scale drought characteristics

    NARCIS (Netherlands)

    Tallaksen, L.; Hisdal, H.; Lanen, van H.A.J.

    2009-01-01

    Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the

  20. Input-output description of linear systems with multiple time-scales

    Science.gov (United States)

    Madriz, R. S.; Sastry, S. S.

    1984-01-01

    It is pointed out that the study of systems evolving at multiple time-scales is simplified by studying reduced-order models of these systems valid at specific time-scales. The present investigation is concerned with an extension of results on the time-scale decomposition of autonomous systems to that of input-output systems. The results are employed to study conditions under which positive realness of a transfer function is preserved under singular perturbation. Attention is given to the perturbation theory for linear operators, the multiple time-scale structure of autonomous linear systems, the input-output description of two time-scale linear systems, the positive realness of two time-scale systems, and multiple time-scale linear systems.

  1. Investigation of cosmic rays in very short time scales

    Science.gov (United States)

    Peltonen, J.; Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Vainikka, E.

    1985-01-01

    A fast databuffer system, where cosmic ray events in the Turku hadron spectrometer, including particle arrival times are recorded with time resolution of 100 ns was constructed. The databuffer can be read continuously by a microprocessor, which preanalyzes the data and transfers it to the main computer. The time span, that can be analyzed in every detail, is a few seconds. The high time resolution enables a study of time correlated groups of high energy particles. In addition the operational characteristics of the spectrometer can be monitored in detail.

  2. Grasping Deep Time with Scaled Space in Personal Environs

    DEFF Research Database (Denmark)

    Jacobsen, B. H.

    2014-01-01

    Deep time comprises the deep past before written history all the way back to the Big Bang as well as the deep future from the time of our grandchildren and beyond the lifetime of our Sun. Numerous installations called time walks or geology paths have previously been designed to communicate...... of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...

  3. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures.

    Science.gov (United States)

    Kuriakose, Maju; Raetz, Samuel; Chigarev, Nikolay; Nikitin, Sergey M; Bulou, Alain; Gasteau, Damien; Tournat, Vincent; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E

    2016-07-01

    Picosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.

  4. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    Energy Technology Data Exchange (ETDEWEB)

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  5. Exploring large scale time-series data using nested timelines

    Science.gov (United States)

    Xie, Zaixian; Ward, Matthew O.; Rundensteiner, Elke A.

    2013-01-01

    When data analysts study time-series data, an important task is to discover how data patterns change over time. If the dataset is very large, this task becomes challenging. Researchers have developed many visualization techniques to help address this problem. However, little work has been done regarding the changes of multivariate patterns, such as linear trends and clusters, on time-series data. In this paper, we describe a set of history views to fill this gap. This technique works under two modes: merge and non-merge. For the merge mode, merge algorithms were applied to selected time windows to generate a change-based hierarchy. Contiguous time windows having similar patterns are merged first. Users can choose different levels of merging with the tradeoff between more details in the data and less visual clutter in the visualizations. In the non-merge mode, the framework can use natural hierarchical time units or one defined by domain experts to represent timelines. This can help users navigate across long time periods. Gridbased views were designed to provide a compact overview for the history data. In addition, MDS pattern starfields and distance maps were developed to enable users to quickly investigate the degree of pattern similarity among different time periods. The usability evaluation demonstrated that most participants could understand the concepts of the history views correctly and finished assigned tasks with a high accuracy and relatively fast response time.

  6. Characteristic time-scales for macroscopic quantum tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Panciatichi 64, 50127 Florence (Italy); Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Cacciari, I. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Sandri, P. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Ranfagni, C. [Facolta di Scienze Matematiche, Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Florence (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Florence (Italy)]. E-mail: r.ruggeri@ifac.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Florence (Italy)

    2005-08-22

    Tunneling time ({tau}{sub t}), in its real and imaginary parts, can be deduced from measurements of decay time ({tau}{sub d}) in Josephson junctions. It turns out that the real part of {tau}{sub t} is much shorter than the imaginary one, which can be identified with the semiclassical time. A third quantity is the Zeno-time ({tau}{sub Z}) which, in turn, can be estimated from the previous ones, since it is approximately given by their geometrical mean. The possibility of observing the Zeno-effect is then discussed.

  7. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    Science.gov (United States)

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å(2) for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å(2) for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  8. Time Evolution of Galaxy Scaling Relations in Cosmological Simulations

    CERN Document Server

    Taylor, Philip

    2016-01-01

    We predict the evolution of galaxy scaling relationships from cosmological, hydrodynamical simulations, that reproduce the scaling relations of present-day galaxies. Although we do not assume co-evolution between galaxies and black holes a priori, we are able to reproduce the black hole mass--velocity dispersion relation. This relation does not evolve, and black holes actually grow along the relation from significantly less massive seeds than have previously been used. AGN feedback does not very much affect the chemical evolution of our galaxies. In our predictions, the stellar mass--metallicity relation does not change its shape, but the metallicity significantly increases from $z\\sim2$ to $z\\sim1$, while the gas-phase mass-metallicity relation does change shape, having a steeper slope at higher redshifts ($z\\lesssim3$). Furthermore, AGN feedback is required to reproduce observations of the most massive galaxies at $z\\lesssim1$, specifically their positions on the star formation main sequence and galaxy mass...

  9. Picosecond Photovoltaic Response in Tilted Lanthanum Doped Manganite Films

    Directory of Open Access Journals (Sweden)

    Zhiqing Lu

    2013-01-01

    Full Text Available Anisotropic picosecond photovoltaic responses were observed in lanthanum doped manganite LaxCa1-xMnO3 (x=0.67 and 0.4 thin films, which were deposited on miscut LaSrAlO4 substrates under ultraviolet pulsed laser irradiation without external bias. The 10%–90% rise time and the full width at half maximum of La0.67Ca0.33MnO3 were 470 and 585 ps, respectively, and those of La0.4Ca0.6MnO3 were 220 and 515 ps. The photovoltage sensitivities of La0.67Ca0.33MnO3 and La0.4Ca0.6MnO3, which are sensitive to the concentrations of lanthanum of the samples, are 0.28 V/mJ and 3.47 V/mJ, respectively. The photosensitivity in the films deposited on MgO is higher than that in those deposited on LaSrAlO4 substrates, for it has a big lattice mismatch. These results should open a route for the application of lanthanum doped manganite as an ultrafast photodetector material.

  10. Picosecond photoinduced absorption and long-lived effects in polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Department of Physics, The Ohio State University, Columbus, OH 43210-1173 (United States)]|[Research Department, ETRI, Taejon, 305-350 (Korea, Republic of); Blatchford, J.W. [Department of Physics, The Ohio State University, Columbus, OH 43210-1173 (United States); Gustafson, T.L. [Department of Chemistry, The Ohio State University, Columbus, OH 43210-1173 (United States); MacDiarmid, A.G. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19014-6323 (United States); Epstein, A.J. [Department of Physics, The Ohio State University, Columbus, OH 43210-1173 (United States)]|[Department of Chemistry, The Ohio State University, Columbus, OH 43210-1173 (United States)

    1995-03-01

    We present results ofneutral picosecond photoinduced absorption studies on poly(pernigraniline base) (PNB), the degenerate-ground-state form of polyaniline, and poly(emeraldine base), a nondegenerate form. When pumped at the 2.1eV absorption edge, both polymers display photoinduced absorption in the 1.3-1.6eV region due to charged polarons. PNB displays additional absorption at >1.5eV due to neutral solitons. For each of these polymers, the photogenerated polaron absorption at fixed pump/probe time delay is found to lose oscillator strength with continued exposure to the pump beam, decaying in a stretched-exponential manner over several minutes and saturating at about 10 percent of its initial value. In PNB, the soliton absorption saturates completely and is replaced by a slowly-decaying bleaching signal which is comparable in magnitude. We consider a possible origin of these effects to be the buildup of long-lived electronic states in the polymers. (orig.)

  11. Implementation of Time-Scale Transformation Based on Continuous Wavelet Theory

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties.This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform.For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform.The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.

  12. Weak microlensing effect and stability of pulsar time scale

    CERN Document Server

    Pshirkov, M S

    2006-01-01

    An influence of the weak microlensing effect on the pulsar timing is investigated for pulsar B1937+21. Average residuals of Time of Arrival (TOA) due to the effect would be as large as 10 ns in 20 years observation span. These residuals can be much greater (up to 1 ms in 20 years span) if pulsar is located in globular cluster (or behind it).

  13. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons

    Science.gov (United States)

    Buhusi, Catalin V.; Oprisan, Sorinel A.

    2013-01-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297

  14. Modelling financial markets with agents competing on different time scales and with different amount of information

    Science.gov (United States)

    Wohlmuth, Johannes; Andersen, Jørgen Vitting

    2006-05-01

    We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.

  15. Picosecond luminescence approach to vertical transport in GaAs/GaAlAs superlattices

    Science.gov (United States)

    Deveaud, B.; Chomette, A.; Lambert, B.; Regreny, A.; Romestain, R.; Edel, P.

    1986-03-01

    Picosecond luminescence of GaAs/GaAlAs superlattices has been measured at 5 K. Asymetrical structures where one larger well is introduced at 9000 Å from the surface are studied. It is then possible to estimate the mean transfer time of photoexcited carriers through 9000 Å of superlattice. This time is found to be about 4 nsec in a 40/40 Å superlattice and 800 psec in a 30/30 Å one. This evidences the rather high mobility of small period superlattices in the growth direction.

  16. Considering Time-Scale Requirements for the Future

    Science.gov (United States)

    2013-05-01

    to correct for the annual seasonal variation in the Earth’s rotational speed and is rarely used today. 4 20 " 15 .. Equation of Time 0 0 I 10 ID...York, 1960. R. Coutrez, ’Transactions of the International Astronomical Union." Ciel et Terre , Vol. 73, 1957, pp. 472. S. Newcomb, Tables of the

  17. Beach morphological variations over micro-time scales

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Veerayya, M.; Sastry, J.S.; Varadachari, V.V.R.

    and down the beach face with breakers, locations of which alternately shift landward and seaward with the rise and fall of tide are observed. The ground water table shows an oscillation with tide with a time lag of about 1 hr. When the ground water table...

  18. Perception of short time scale intervals in a hypnotic virtuoso

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari

    2012-01-01

    Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration percep

  19. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  20. Time Scales in the JPL and CfA Ephemerides

    Science.gov (United States)

    Standish, E. M.

    1998-01-01

    Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.

  1. Perception of short time scale intervals in a hypnotic virtuoso

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari

    2012-01-01

    Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration

  2. Does expressive timing in music performance scale proportionally with tempo?

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1994-01-01

    Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with t

  3. Strong light fields coax intramolecular reactions on femtosecond time scales

    CERN Document Server

    Krishnamurthy, M; Mathur, D

    2004-01-01

    Energetic H$_2^+$ ions are formed as a result of intra-molecular rearrangement during fragmentation of linear alcohols (methanol, ethanol, propanol, hexanol, and dodecanol) induced by intense optical fields produced by 100 fs long, infrared, laser pulses of peak intensity 8$\\times10^{15}$ W cm$^{-2}$. Polarization dependent measurements show, counterintuitively, that rearrangement is induced by the strong optical field within a single laser pulse, and that it occurs before Coulomb explosion of the field-ionized multiply charged alcohols.

  4. Generation of sub-picosecond electron bunches from RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Zhang, R. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Pellegrini, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1997-03-11

    In this paper we discuss the possibility to generate sub-picosecond electron bunches directly from a photoinjector by illuminating a photo-cathode in an RF cavity with a phase-locked sub-picosecond laser pulse. In particular, we address all de-bunching effects taking place during acceleration and transport through a photoinjector. We provide analysis of the beam dynamics, as well as the comparison with numerical simulations. The possible performances of the present SATURNUS linac setup are presented, as well as the anticipated capabilities of a multi-cell RF gun structure based on the PWT linac presently in operation at UCLA. (orig.).

  5. Molecular collision processes in the presence of picosecond laser pulses

    Science.gov (United States)

    Lee, H. W.; George, T. F.

    1979-01-01

    Radiative transitions in molecular collision processes taking place in the presence of picosecond pulses are studied within a semiclassical formalism. An expression for adiabatic potential surfaces in the electronic-field representation is obtained, which directly leads to the evaluation of transition probabilities. Calculations with a Landau-Zener-type model indicate that picosecond pulses can be much more effective in inducing transitions than a single long pulse of the same intensity and the same total energy, if the intensity is sufficiently high that the perturbation treatment is not valid.

  6. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale

    Science.gov (United States)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke; Yamazaki, Yosuke; Seemala, Gopi

    2016-07-01

    We report on the first simultaneous observations of poleward and equatorward traveling ionospheric disturbances (TIDs) during the same geomagnetic storm period on a global scale. While poleward propagating TIDs originate from the geomagnetic equator region, equatorward propagating TIDs are launched from the auroral regions. On a global scale, we use total electron content observations from the Global Navigation Satellite Systems to show that these TIDs existed over South American, African, and Asian sectors. The American and African sectors exhibited predominantly strong poleward TIDs, while the Asian sector recorded mostly equatorward TIDs which crossed the geomagnetic equator to either hemisphere on 9 March 2012. However, both poleward and equatorward TIDs are simultaneously present in all three sectors. Using a combination of ground-based magnetometer observations and available low-latitude radar (JULIA) data, we have established and confirmed that poleward TIDs of geomagnetic equator origin are due to ionospheric electrodynamics, specifically changes in E × B vertical drift after the storm onset.

  7. Global Exponential Stability of Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2009-01-01

    Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.

  8. Statistics of bedload transport over steep slopes: Separation of time scales and collective motion

    CERN Document Server

    Heyman, J; Ma, H B; Ancey, C

    2016-01-01

    Steep slope streams show large fluctuations of sediment discharge across several time scales. These fluctuations may be inherent to the internal dynamics of the sediment transport process. A probabilistic framework thus seems appropriate to analyze such a process. In this letter, we present an experimental study of bedload transport over a steep slope flume for small to moderate Shields numbers. The sampling technique allows the acquisition of high-resolution time series of the solid discharge. The resolved time scales range from $10^{-2}$s up to $10^{5}$s. We show that two distinct time scales can be observed in the probability density function for the waiting time between moving particles. We make the point that the separation of time scales is related to collective dynamics. Proper statistics of a Markov process including collective entrainment are derived. The separation of time scales is recovered theoretically for low entrainment rates.

  9. First-passage times in multi-scale random walks: the impact of movement scales on search efficiency

    OpenAIRE

    Campos, Daniel; Bartumeus, Frederic; Raposo, E. P.; Méndez, Vicenç

    2015-01-01

    An efficient searcher needs to balance properly the tradeoff between the exploration of new spatial areas and the exploitation of nearby resources, an idea which is at the core of scale-free L\\'evy search strategies. Here we study multi-scale random walks as an approximation to the scale- free case and derive the exact expressions for their mean-first passage times in a one-dimensional finite domain. This allows us to provide a complete analytical description of the dynamics driving the asymm...

  10. Global and Local Color Time Scales to Encode Timeline Events in Ion Trajectories for Glassies

    Directory of Open Access Journals (Sweden)

    J. M. Sharif

    2015-02-01

    Full Text Available Glassy compounds lead directly to high ionic conductivity. Ionic conductivity generates ion trajectories. However, these trajectories have been represented by two-dimensional graph in order to visualize the timeline events in ion trajectories. This study addresses this problem by encoding the timeline events in ion trajectories with global and local color scales. Two time scales have been introduced namely Global Color Time Scale and Local Color Time Scale. The rainbow color has been chosen to represent global time scale meanwhile solid color has been used to generate local time scale. Based on evaluation, these techniques are successful in representing timeline events in ion trajectories for understanding the complicated heterogeneous movement of ion trajectories.

  11. Continuous-wave laser particle conditioning: Thresholds and time scales

    Science.gov (United States)

    Brown, Andrew; Ogloza, Albert; Olson, Kyle; Talghader, Joseph

    2017-03-01

    The optical absorption of contaminants on high reflectivity mirrors was measured using photo thermal common-path interferometry before and after exposure to high power continuous-wave laser light. The contaminants were micron-sized graphite flakes on hafnia-silica distributed Bragg reflectors illuminated by a ytterbium-doped fiber laser. After one-second periods of exposure, the mirrors demonstrated reduced absorption for irradiances as low as 11 kW cm-2 and had an obvious threshold near 20 kW cm-2. Final absorption values were reduced by up to 90% of their initial value for irradiances of 92 kW cm-2. For shorter pulses at 34 kW cm-2, a minimum exposure time required to begin absorption reduction was found between 100 μs and 200 μs, with particles reaching their final minimum absorption value within 300 ms. Microscope images of the surface showed agglomerated particles fragmenting with some being removed completely, probably by evaporation for exposures between 200 μs to 10 ms. Exposures of 100 ms and longer left behind a thin semi-transparent residue, covering much of the conditioned area. An order of magnitude estimate of the time necessary to begin altering the surface contaminants (also known as "conditioning") indicates about 200 μs seconds at 34 kW cm-2, based on heating an average carbon particle to its sublimation temperature including energy loss to thermal contact and radiation. This estimation is close to the observed exposure time required to begin absorption reduction.

  12. A Cool Business: Trapping Intermediates on the submillisecond time scale

    Science.gov (United States)

    Yeh, Syun-Ru

    2004-03-01

    The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 microseconds. In the microfluidic silicon mixer, seven vertical pillars with 10 micrometer diameter are arranged perpendicular to the flow direction and in a staggered fashion in the 450 picoliter mixing chamber to enhance turbulent mixing. The mixed solution jet, with a cross-section of 10 micrometer by 100 micrometer, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/sec. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultra-fine powder. The ultra-fine frozen powder exhibits excellent spectral quality, high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead-time of the mixer (20 microseconds) and the first observable point for this coupled device was determined to be 50 microseconds, which is approximately two orders of magnitude faster than commercially available instruments. Several new applications of this device in ultra-fast biological reactions will be presented. Acknowledgements: This work is done in collaboration with Dr. Denis Rousseau and is supported by the NIH Grants HL65465 to S.-R.Y. and GM67814 to D.L.R.

  13. Toward the Optimal Configuration of Dynamic Voltage Scaling Points in Real-Time Applications

    Institute of Scientific and Technical Information of China (English)

    Hui-Zhan Yi; Xue-Jun Yang

    2006-01-01

    In real-time applications, compiler-directed dynamic voltage scaling (DVS) could reduce energy consumption efficiently, where compiler put voltage scaling points in the proper places, and the supply voltage and clock frequency were adjusted to the relationship between the reduced time and the reduced workload. This paper presents the optimal configuration of dynamic voltage scaling points without voltage scaling overhead, which minimizes energy consumption. The conclusion is proved theoretically. Finally, it is confirmed by simulations with equally-spaced voltage scaling configuration.

  14. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review.

    Science.gov (United States)

    Ohshiro, Takafumi; Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-06-29

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0-24%; Fair, 25-49%; Good, 50-74%; Excellent, 75-94%; and Complete, 95-100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events.

  15. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review

    Science.gov (United States)

    Ohshiro, Toshio; Sasaki, Katsumi; Kishi, Kazuo

    2016-01-01

    Background and aims: Recently novel picosecond duration lasers (ps-lasers) have been developed for the treatment of multicolored and recalcitrant tattoos, and safety and efficacy have been reported. We therefore hypothesized that the ps-laser could be an alternative treatment for dermal pigmented lesions and performed a retrospective review to evaluate the efficacy and safety of the ps-laser. Subjects and methods: A retrospective photographic review of 10 patients with dermal pigmented lesions was performed (ages from 4 months to 52 yr), 6 nevus of Ota, 3 ectopic Mongolian spots and 1 Mongolian spots. The patients were treated in the Ohshiro Clinic with picosecond 755 nm alexandrite laser (ps-Alex laser) and picosecond 1064 nm Nd:YAG laser (ps-Nd:YAG laser) from April 2014 to December 2015 (ps-Alex laser, 7 patients; ps-Nd:YAG laser, 3 patients, 1 to 3 treatment sessions). Improvement was evaluated as percentage of pigmentation clearance comparing the baseline findings with those at 3 months after the final treatment using a five category grading scale: Poor, 0–24%; Fair, 25–49%; Good, 50–74%; Excellent, 75–94%; and Complete, 95–100% improvement. Adverse events were also assessed. Results: All ten patients obtained clinical improvement ranging from fair to excellent. Treatment with the ps-Alex laser caused transient hyperpigmentation followed by improvement to complete resolution at 3 months follow-up. The ps-Nd:YAG laser caused severe transient erythema and swelling but no post-inflammatory hyperpigmentation. Conclusions: Our results suggest that the 755 nm and 1064 nm ps-lasers are efficacious for the treatment of dermal pigment lesions, with minimum adverse events. PMID:27721561

  16. Sub-picosecond chirped return-to-zero nonlinear optical pulse propagating in dense dispersion-managed fibre

    Science.gov (United States)

    Guo, Shuqin; Le, Zichun; Quan, Bisheng

    2006-01-01

    By numerical simulation, we show that the fourth-order dispersion (FOD) makes sub-picosecond optical pulse broaden as second-order dispersion (SOD), makes optical pulse oscillate simultaneously as third-order dispersion (TOD). Based on above two reasons, sub-picosecond optical pulse will be widely broaden and lead to emission of continuum radiation during propagation. Here, resemble to two- and third-order dispersion compensation, fourth-order dispersion compensation is also suggested in a dispersion-managed optical fiber link, which is realized by arranging two kinds of fiber with opposite dispersion sign in each compensation cell. For sake of avoiding excessively broadening, ultra short scale dispersion compensation cell is required in ultra high speed optical communication system. In a full dispersion compensation optical fiber system which path average dispersion is zero about SOD, TOD, and FOD, even suffering from affection of high order nonlinear like self-steep effect and self-frequency shift, 200 fs gauss optical pulse can stable propagate over 1000 km with an optimal initial chirp. When space between neighboring optical pulse is only 2 picoseconds corresponding to 500 Gbit/s transmitting capacity, eye diagram is very clarity after 1000 km. The results demonstrate that ultra short scale dispersion compensation including FOD is need and effective in ultra-high speed optical communication.

  17. Geomagnetic Instability Time Scale 2008 (GITS-08) and dynamo processes

    Science.gov (United States)

    Singer, B. S.; Hoffman, K. A.

    2008-12-01

    During the past 2.6 million years Earth's outer core geodynamo has produced at least 18 geomagnetic excursions and 5 full polarity reversals. This record has been compiled from terrestrial volcanic rocks, including mainly basaltic lava flow sequences, but also two silicic ash beds, that have been analyzed using modern paleomagnetic techniques and dated using the 40Ar/39Ar method. Several brief periods of field instability associated with excursions correlate with lows in paleointensity or directional changes recorded in marine sediments, for example in the SINT2000 or GLOPIS75 composite records, or the more detailed records found at ODP site 919, that are dated using astronomically-forced oxygen isotope signals or ice layer counting. However, the lack of correlation of several excursions between marine and terrestrial records indicates that neither sediments, nor lava flows, are ideal recording media. Another factor complicating correlation is that some excursions may be geographically localized and not expressed globally. Despite decades of observation, these records remain fragmentary, especially when periods of millions of years are considered. Recent 40Ar/39Ar dating in our laboratory, that includes age determinations for the Mono Lake, Laschamp, Blake, Pringle Falls, Big Lost, West Eifel, and Agua Nova excursions, as well as the Halawa (C2r.2r-1) cryptochron, prompt us to critically review the terrestrial record of geodynamo instability and propose a GITS for the entire Quaternary period. Both the ca. 4:1 ratio of excursions to reversals during the past 2.6 Ma as well as the temporal pattern of occurrence of these events provide fundamental input as to the long-term behavior and, possibly, the structure of the core dynamo. On the one hand, intervals of significant temporal clustering of excursions have highlighted a relatively stable period of high field strength lasting >250 ka in the middle of the Brunhes chron during which time few, or no, excursions took

  18. Are introspective reaction times affected by the method of time estimation? A comparison of visual analogue scales and reproduction.

    Science.gov (United States)

    Bryce, Donna; Bratzke, Daniel

    2015-04-01

    In this study, we investigated whether the method of time estimation plays a role in the apparent limits of introspection in dual-task processing. Previous studies showed that when participants reported introspective reaction times after each trial of a dual task by clicking on a visual analogue scale, they appeared to be unaware of the dual-task costs in their performance. However, visual analogue scales have seldom been used in interval estimation, and they may be inappropriate. In the present study, after each dual-task trial, participants reported their introspective reaction times either via a visual analogue scale or via the method of reproduction. The results replicated the previous findings, irrespective of method. That is, even though responses to the second task slowed down with increasing task overlap, this slowing was only very weakly reflected in the introspective reaction times. Thus, the participants' failure to report the objective dual-task costs in their reaction times is a rather robust finding that cannot be attributed to the method employed. However, introspective reaction times reported via visual analogue scales were more closely related to the objective reaction times, suggesting that visual analogue scales are preferable to reproduction. We conclude that introspective reaction times represent the same information regardless of method, but whether that information is temporal in nature is as yet unsettled.

  19. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    CERN Document Server

    Faatz, B; Feldhaus, J; Krzywinski, J; Pflüger, J; Rossbach, J; Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice ver...

  20. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2015-09-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A

  1. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  2. Modeling geomagnetic storms on prompt and diffusive time scales

    Science.gov (United States)

    Li, Zhao

    The discovery of the Van Allen radiation belts in the 1958 was the first major discovery of the Space Age. There are two belts of energetic particles. The inner belt is very stable, but the outer belt is extremely variable, especially during geomagnetic storms. As the energetic particles are hazardous to spacecraft, understanding the source of these particles and their dynamic behavior driven by solar activity has great practical importance. In this thesis, the effects of magnetic storms on the evolution of the electron radiation belts, in particular the outer zone, is studied using two types of numerical simulation: radial diffusion and magnetohydrodynamics (MHD) test-particle simulation. A radial diffusion code has been developed at Dartmouth, applying satellite measurements to model flux as an outer boundary condition, exploring several options for the diffusion coefficient and electron loss time. Electron phase space density is analyzed for July 2004 coronal mass ejection (CME) driven storms and March-April 2008 co-rotating interaction region (CIR) driven storms, and compared with Global Positioning System (GPS) satellite measurements within 5 degrees of the magnetic equator at L=4.16. A case study of a month-long interval in the Van Allen Probes satellite era, March 2013, confirms that electron phase space density is well described by radial diffusion for the whole month at low first invariant 0.6 MeV by an order of magnitude over 24 hours as observed.

  3. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  4. On the time scale associated with Monte Carlo simulations.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  5. On the time scale associated with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, Kristof M., E-mail: kristof.bal@uantwerpen.be; Neyts, Erik C. [Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  6. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  7. Time-scaled scenario of low-energy heavy-ion collisions

    CERN Document Server

    Iwata, Yoritaka

    2013-01-01

    The underlying scenario of low-energy heavy-ion collisions is presented based on time-dependent density-functional calculations. A classification of several types of reaction dynamics is given with respect to their time-scales.

  8. Freshwater flushing time scales of the Vashishti Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Sarma, R.V.; Zingde, M.D.

    Results are presented for the Vashishti estuary, Kerala, India to evaluate its freshwater flushing time scales based on 8 sets of observations of longitudinal salinity distributions. The results of the flushing time using the fraction of freshwater...

  9. Time and length scales within a fire and implications for numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principles solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.

  10. Detecting abrupt climate changes on different time scales

    Science.gov (United States)

    Matyasovszky, István

    2011-10-01

    Two concepts are introduced for detecting abrupt climate changes. In the first case, the sampling frequency of climate data is high as compared to the frequency of climate events examined. The method is based on a separation of trend and noise in the data and is applicable to any dataset that satisfies some mild smoothness and statistical dependence conditions for the trend and the noise, respectively. We say that an abrupt change occurs when the first derivative of the trend function has a discontinuity and the task is to identify such points. The technique is applied to Northern Hemisphere temperature data from 1850 to 2009, Northern Hemisphere temperature data from proxy data, a.d. 200-1995 and Holocene δ18O values going back to 11,700 years BP. Several abrupt changes are detected that are, among other things, beneficial for determining the Medieval Warm Period, Little Ice Age and Holocene Climate Optimum. In the second case, the sampling frequency is low relative to the frequency of climate events studied. A typical example includes Dansgaard-Oeschger events. The methodology used here is based on a refinement of autoregressive conditional heteroscedastic models. The key element of this approach is the volatility that characterises the time-varying variance, and abrupt changes are defined by high volatilities. The technique applied to δ18O values going back to 122,950 years BP is suitable for identifying DO events. These two approaches for the two cases are closely related despite the fact that at first glance, they seem quite different.

  11. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre.

    Science.gov (United States)

    Kobtsev, Sergey; Kukarin, Sergey; Kokhanovskiy, Alexey

    2015-07-13

    Reported for the first time is picosecond-range pulse generation in an all-fibre Raman laser based on P₂O₅-doped silica fibre. Employment of phosphor-silicate fibre made possible single-cascade spectral transformation of pumping pulses at 1084 nm into 270-ps long Raman laser pulses at 1270 nm. The highest observed fraction of the Stokes component radiation at 1270 nm in the total output of the Raman laser amounted to 30%. The identified optimal duration of the input pulses at which the amount of Stokes component radiation in a ~16-m long phosphorus-based Raman fibre converter reaches its maximum was 140-180 ps.

  12. Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques

    Science.gov (United States)

    Leitner, A.; Lippitsch, M. E.; Draxler, S.; Riegler, M.; Aussenegg, F. R.

    1985-02-01

    The fluorescence properties of dye molecules (rhodamine 6G and erythrosin) adsorbed on pure glass surfaces and on silver islands films are investigated by cw and picosecond time-resolved methods. On pure glass surfaces we observe concentration quenching below a critical intermolecular distance (reduction of the fluorescence power per molecule as well as shortened and non-exponential fluorescence decay). On silver islands films the shortening in fluorescence lifetime is more drastic and is nearly independent of the intermolecular distance. This behavior suggests an electrodynamic interaction between dye monomers and plasmons in the metal particles, modified by a damping influence of dye dimers.

  13. Sub-picosecond ultra-low frequency passively mode-locked fiber laser

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Cruz, José L.; Díez, Antonio; Andrés, Miguel V.

    2016-11-01

    We developed a nonlinear polarization rotation all-fiber mode-locked erbium-doped fiber laser, with the purpose to reach a sub-picosecond and sub-megahertz light pulse emission. In the process, we observed three different emission regimes as the net birefringence is changed, namely high-power dissipative soliton resonance, low-power soliton regime, and a mixed combination of both. In the pure solitonic regime, a 0.961 MHz train of chirp-free Gaussian pulses was obtained, with a time width of 0.919 ps at 1564.3 nm.

  14. Holder's and Hardy's Two Dimensional Diamond-alpha Inequalities on Time Scales

    CERN Document Server

    Ammi, Moulay Rchid Sidi

    2010-01-01

    We prove a two dimensional Holder and reverse-Holder inequality on time scales via the diamond-alpha integral. Other integral inequalities are established as well, which have as corollaries some recent proved Hardy-type inequalities on time scales.

  15. Unique Existence Theorem of Solution of Almost Periodic Differential Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Meng Hu

    2012-01-01

    Full Text Available By using the theory of calculus on time scales and M-matrix theory, the unique existence theorem of solution of almost periodic differential equations on almost periodic time scales is established. The result can be used to a large of dynamic systems.

  16. Unique Existence Theorem of Solution of Almost Periodic Differential Equations on Time Scales

    OpenAIRE

    Meng Hu; Lili Wang

    2012-01-01

    By using the theory of calculus on time scales and M-matrix theory, the unique existence theorem of solution of almost periodic differential equations on almost periodic time scales is established. The result can be used to a large of dynamic systems.

  17. Error estimates for asymptotic solutions of dynamic equations on time scales

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2007-02-01

    Full Text Available We establish error estimates for first-order linear systems of equations and linear second-order dynamic equations on time scales by using calculus on a time scales [1,4,5] and Birkhoff-Levinson's method of asymptotic solutions [3,6,8,9].

  18. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  19. Empirical study on structural properties in temporal networks under different time scales

    Science.gov (United States)

    Chen, Duanbing

    2015-12-01

    Many network analyzing methods are usually based on static networks. However, temporal networks should be considered so as to investigate real complex systems deeply since some dynamics on these systems cannot be described by static networks accurately. In this paper, four structural properties in temporal networks are empirically studied, including degree, clustering coefficient, adjacent correlation, and connected component. Three real temporal networks with different time scales are analyzed in this paper, including short message, telephone, and router networks. Moreover, structural properties of these temporal networks are compared with that of corresponding static aggregation networks in the whole time window. Some essential differences of structural properties between temporal and static networks are achieved through empirical analysis. Finally, the effect of structural properties on spreading dynamics under different time scales is investigated. Some interesting results such as turning point of structure evolving time scale corresponding to certain spreading dynamics time scale from the point of view of infected scale are achieved.

  20. Picosecond Photon Echoes Stimulated from an Accumulated Grating

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1979-01-01

    It is shown that in optical transitions with a bottleneck, a mode-locked cw dye laser may be used to generate and heterodyne detect picosecond photon echoes. These echoes are stimulated from an accumulated grating in the electronic ground state formed by a train of twin excitation pulses of constant

  1. A simple technique for individual picosecond laser pulse duration measurements

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.

    1976-01-01

    We describe here a simple nonlinear optic technique for the measurement of the duration of individual picosecond pulses. The accuracy and relative simplicity of the technique increase with the number of pulses measured. An experimental test of the basis of the technique is described.

  2. Additive interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Veld, B.H. in 't; Ebberink, G.; Del Cerro, D.A.; Eijnden, E. van den; Chall, P.; Zon, B. van der

    2010-01-01

    Laser Induced Forward Transfer (LIFT) is a single step, dry deposition process which shows great potential for interconnect fabrication. TNO, in cooperation with ALSI and University of Twente have studied the feature size and resistivity of copper structures deposited using picosecond (ps) LIFT. Sma

  3. Modification of Cu surface with picosecond laser pulses

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Rao, J. C.; Skolski, J. Z. P.; Romer, G. R. B. E.; in't Veld, A. J. Huis; de Hosson, Jeff

    2014-01-01

    High purity, mirror-polished polycrystalline Cu surface was treated with single picosecond laser pulses at fluence levels close to the single-pulse modification threshold. The induced surface topography and sub-surface changes were examined with scanning and transmission electron microscopy, respect

  4. Additive interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Veld, B.H. in 't; Ebberink, G.; Del Cerro, D.A.; Eijnden, E. van den; Chall, P.; Zon, B. van der

    2010-01-01

    Laser Induced Forward Transfer (LIFT) is a single step, dry deposition process which shows great potential for interconnect fabrication. TNO, in cooperation with ALSI and University of Twente have studied the feature size and resistivity of copper structures deposited using picosecond (ps) LIFT. Sma

  5. Investigation of mid-IR picosecond image upconversion

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Pedersen, Christian; Rodrigo, Peter John

    2017-01-01

    Imaging and spectroscopy in the mid-infrared (Mid-IR) wavelength region have received considerable attention in recent years. The reason is the high Mid-IR spectral specificity of many gases and complex molecules. In this pilot study we focus on picosecond upconversion imaging exploiting the χ(2...

  6. Time-domain diagnostics in the picosecond regime

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1995-12-31

    The measurement of bunch length and longitudinal profile for microbunches of electrons and positrons in the ps and sub-ps regime will be a critical part of validating performance of proposed facilities. Data will be presented showing single-sweep streak camera results at {sigma}{sub res} {approximately} 68 fs and projected synchroscan sweep resolution at {sigma} {approximately} 600 fs. Additionally, an rf cavity operating in a transverse magnetic mode has recently been shown to produce {sigma}{sub res} {approximately} 280 fs when used with a low-emittance beam. The potential for dual-sweep streak work with {sigma}{sub res} < 1 ps on the fast axis is also described.

  7. Rad Hard Imaging Array with Picosecond Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For a wide range of remote sensing applications, there is a critical need to develop imaging arrays that simultaneously achieve high spatial resolution, high...

  8. Linear-scaling computation of excited states in time-domain

    Institute of Scientific and Technical Information of China (English)

    YAM ChiYung; CHEN GuanHua

    2014-01-01

    The applicability of quantum mechanical methods is severely limited by their poor scaling.To circumvent the problem,linearscaling methods for quantum mechanical calculations had been developed.The physical basis of linear-scaling methods is the locality in quantum mechanics where the properties or observables of a system are weakly influenced by factors spatially far apart.Besides the substantial efforts spent on devising linear-scaling methods for ground state,there is also a growing interest in the development of linear-scaling methods for excited states.This review gives an overview of linear-scaling approaches for excited states solved in real time-domain.

  9. Laser-generated micro- and nanoeffects: inactivation of proteins coupled to gold nanoparticles with nano- and picosecond pulses

    Science.gov (United States)

    Radt, Benno; Serbin, Jesper; Lange, Bjoern I.; Birngruber, Reginald; Huettmann, Gereon

    2001-10-01

    Background: Protein denaturation in the fs-ns time regime is of fundamental interest for high precision applications in laser tissue interaction. Conjugates of colloidal gold coupled to proteins are presented as a model system for investigating ultrafast protein denaturation. It is expected that irradiation of such conjugates in tissue using pico- up to nanosecond laser pulses could result in effects with a spatial confinement in the regime of single macromolecules up to organelles. Materials and Methods: Experiments were done with bovine intestinal alkaline phosphatase (aP) coupled to 15 nm colloidal Gold. This complex was irradiated at 527 nm/ 532 nm with a variable number of pico- and nanosecond pulses. The radiant exposure per pulse was varied from 2 to 50 mJ/cm2 in the case of the picosecond pulses and 10 to 500 mJ/cm2 in the case of the nanosecond pulses. Denaturation was detected as a loss of protein function with the help of the uorescence substrate 4MUP. Results and Discussion: Irradiation did result in a steady decrease of the aP activity with increasing radiant exposures and increasing number of pulses. Inactivations up to 80% using 35 ps pulses at 527 nm with 50 mJ/cm2 and a complete inactivation induced by 16 ns pulses at 450 mJ/cm2 are discussed. The induced temperature in the particles and the surrounding water was calculated using Mie's formulas for the absorption of the nanometer gold particles and an analytical solution of the equations for heat diffusion. The calculated temperatures suggest that picosecond pulses heat a molecular scaled area whereas nanosecond pulses could be used for targeting larger cellular compartiments. It is difficult to identify one of the possible damage mechanisms, i.e. thermal denaturation or formation of micro bubbles, from the dependance of the inactivation on pulse energy and number of applied pulses. Therefore experiments are needed to further elucidate the damage mechanisms. The observed inactivation dependencies

  10. High-power transverse-mode-switchable all-fiber picosecond MOPA.

    Science.gov (United States)

    Liu, Tong; Chen, Shengping; Qi, Xue; Hou, Jing

    2016-11-28

    A high-power transverse-mode-switchable all-fiber picosecond laser in a master-oscillator power-amplifier (MOPA) configuration is demonstrated. The master oscillator is a gain-switched laser diode delivering picosecond pulses with 25 MHz repetition rate at the wavelength of 1.06 μm. After multi-stage amplification in ytterbium-doped fibers, the average output power is scaled to 117 W. A mechanical long-period grating is employed as a fiber mode convertor to achieve controllable conversion from the fundamental (LP01) to the second-order (LP11) mode. Efficient mode conversion is demonstrated and the output characteristics for both modes are investigated. It is shown that LP01 and LP11 modes have nearly identical optical-to-optical conversion efficiency during amplification, but the nonlinear spectral degradation is significantly alleviated for LP11 mode operation. Owing to the compact all-fiber architecture, this high-power transverse-mode-switchable fiber laser is reliable during long-term operation and thus promising for many practical applications, e.g. high-resolution laser micro-processing.

  11. Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity.

    Science.gov (United States)

    Yang, X; Li, Z; Tangdiongga, E; Lenstra, D; Khoe, G; Dorren, H

    2004-05-31

    We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.

  12. Pilot production and advanced development of large-area picosecond photodetectors

    Science.gov (United States)

    Minot, Michael J.; Adams, Bernhard W.; Aviles, Melvin; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; Foley, Michael R.; Lyashenko, Alexey; Popecki, Mark A.; Stochaj, Michael E.; Worstell, William A.; Mane, Anil U.; Elam, Jeffrey W.; Siegmund, Oswald H. W.; Ertley, Camden; Frisch, Henry; Elagin, Andrey

    2016-09-01

    We report pilot production and advanced development performance results achieved for Large Area Picosecond Photodetectors (LAPPD). The LAPPD is a microchannel plate (MCP) based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 square centimeters. In December 2015, Incom Inc. completed installation of equipment and facilities for demonstration of early stage pilot production of LAPPD. Initial fabrication trials commenced in January 2016. The "baseline" LAPPD employs an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode and amplified with a stacked chevron pair of "next generation" MCPs produced by applying resistive and emissive atomic layer deposition coatings to borosilicate glass capillary array (GCA) substrates. Signals are collected on RF strip-line anodes applied to the bottom plates which exit the detector via pinfree hermetic seals under the side walls. Prior tests show that LAPPDs have electron gains greater than 107, submillimeter space resolution for large pulses and several mm for single photons, time resolutions of 50 picoseconds for single photons, predicted resolution of less than 5 picoseconds for large pulses, high stability versus charge extraction, and good uniformity. LAPPD performance results for product produced during the first half of 2016 will be reviewed. Recent advances in the development of LAPPD will also be reviewed, as the baseline design is adapted to meet the requirements for a wide range of emerging application. These include a novel ceramic package design, ALD coated MCPs optimized to have a low temperature coefficient of resistance (TCR) and further advances to adapt the LAPPD for cryogenic applications using Liquid Argon (LAr). These developments will meet the needs for DOE-supported RD for the Deep Underground Neutrino

  13. Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Trtica, M.S. [Physical Chemistry Department, Vinca Institute of Nuclear Sciences, P.O. BOX 522, 11001 Belgrade (Serbia)], E-mail: etrtica@vin.bg.ac.yu; Gakovic, B.M. [Atomic Physics Department, Vinca Institute of Nuclear Sciences, P.O. BOX 522, 11001 Belgrade (Serbia); Radak, B.B. [Physical Chemistry Department, Vinca Institute of Nuclear Sciences, P.O. BOX 522, 11001 Belgrade (Serbia); Batani, D.; Desai, T.; Bussoli, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy)

    2007-12-30

    Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm{sup -2}. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm{sup -2}.

  14. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  15. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    CERN Document Server

    Adams, Bernhard W; Bogdan, Mircea; Byrum, Karen; Elagin, Andrey; Elam, Jeffrey W; Frisch, Henry J; Genat, Jean-Francois; Grabas, Herve; Gregar, Joseph; Hahn, Elaine; Heintz, Mary; Insepov, Zinetula; Ivanov, Valentin; Jelinsky, Sharon; Jokely, Slade; Lee, Sun Wu; Mane, Anil U; McPhate, Jason; Minot, Michael J; Murat, Pavel; Nishimura, Kurtis; Northrop, Richard; Obaid, Razib; Oberla, Eric; Ramberg, Erik; Ronzhin, Anatoly; Siegmund, Oswald H; Sellberg, Gregory; Sullivan, Neal T; Tremsin, Anton; Varner, Gary; Veryovkin, Igor; Vostrikov, Alexei; Wagner, Robert G; Walters, Dean; Wang, Hsien-Hau; Wetstein, Matthew; Xi, Junqi; Yusov, Zikri; Zinovev, Alexander

    2016-01-01

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmab...

  16. Multi-time scale analysis of precipitation variation in Guyuan,China:1957-2005

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Morlet wavelet transformation is used in this paper to analyze the multi-time scale characteristics of precipitation data series from 1957 to 2005 in Guyuan region.The results showed that (1) the annual precipitation evolution process had obvious multi-time scale variation characteristics of 15-25 years,7-12 years and 3-6 years,and different time scales had different oscillation energy densities;(2) the periods at smaller time scales changed more frequently,which often nested in a biggish quasi periodic oscillations,so the concrete time domain should be analyzed if necessary;(3) the precipitation had three main periods (22-year,9-year and 4-year) and the 22-year period was especially outstanding,and the analysis of this main period reveals that the precipitation would be in a relative high water period until about 2012.

  17. Super-transient scaling in time-delay autonomous Boolean network motifs

    Science.gov (United States)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  18. Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain

    Energy Technology Data Exchange (ETDEWEB)

    Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.

    2008-02-04

    We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34 {+-} 0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.

  19. Super-transient scaling in time-delay autonomous Boolean network motifs.

    Science.gov (United States)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D; Gauthier, Daniel J

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  20. A wavelet based approach to measure and manage contagion at different time scales

    Science.gov (United States)

    Berger, Theo

    2015-10-01

    We decompose financial return series of US stocks into different time scales with respect to different market regimes. First, we examine dependence structure of decomposed financial return series and analyze the impact of the current financial crisis on contagion and changing interdependencies as well as upper and lower tail dependence for different time scales. Second, we demonstrate to which extent the information of different time scales can be used in the context of portfolio management. As a result, minimizing the variance of short-run noise outperforms a portfolio that minimizes the variance of the return series.

  1. Uniformly Almost Periodic Functions and Almost Periodic Solutions to Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2011-01-01

    Full Text Available Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost periodic functions and the uniformly almost periodic sequences, respectively. Then, based on these, we study the existence and uniqueness of almost periodic solutions and derive some fundamental conditions of admitting an exponential dichotomy to linear dynamic equations. Finally, as an application of our results, we study the existence of almost periodic solutions for an almost periodic nonlinear dynamic equations on time scales.

  2. Application of Time Scale to Parameters Tuning of Active Disturbance Rejection Controller for Induction Motor

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-wei; LIAO Xiao-zhong; ZHANG Yu-he

    2007-01-01

    Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.

  3. A simple scaling for the minimum instability time-scale of two widely spaced planets

    CERN Document Server

    Veras, Dimitri

    2013-01-01

    Long-term instability in multi-planet exosystems is a crucial consideration when confirming putative candidates, analyzing exoplanet populations, constraining the age of exosystems, and identifying the sources of white dwarf pollution. Two planets which are Hill stable are separated by a wide-enough distance to ensure that they will never collide. However, Hill stable planetary systems may eventually manifest Lagrange instability when the outer planet escapes or the inner planet collides with the star. We show empirically that for two nearly coplanar Hill stable planets with eccentricities less than about 0.3, instability can manifest itself only after a time corresponding to X initial orbits of the inner planet, where log_{10}(X) is of the order of 5.2 mu^{-0.18} and mu is the planet-star mass ratio measured in (Jupiter mass/Solar mass). This relation applies to any type of equal-mass secondaries, and suggests that two low-eccentricity Hill stable terrestrial-mass or smaller-mass planets should be Lagrange s...

  4. A time-scale analysis of systematic risk: wavelet-based approach

    OpenAIRE

    Khalfaoui Rabeh, K; Boutahar Mohamed, B

    2011-01-01

    The paper studies the impact of different time-scales on the market risk of individual stock market returns and of a given portfolio in Paris Stock Market by applying the wavelet analysis. To investigate the scaling properties of stock market returns and the lead/lag relationship between them at different scales, wavelet variance and crosscorrelations analyses are used. According to wavelet variance, stock returns exhibit long memory dynamics. The wavelet cross-correlation analysis shows that...

  5. Separation of time-scales and model reduction for stochastic reaction networks

    CERN Document Server

    Kang, Hye-Won

    2010-01-01

    A stochastic model for a chemical reaction network is embedded in a one-parameter family of models with species numbers and rate constants scaled by powers of the parameter. A systematic approach is developed for determining appropriate choices of the exponents that can be applied to large complex networks. When the scaling implies subnetworks have different time-scales, the subnetworks can be approximated separately providing insight into the behavior of the full network through the analysis of these lower dimensional approximations.

  6. Estimating the distribution of rest-frame time-scales for blazar jets: a statistical approach

    Science.gov (United States)

    Liodakis, I.; Blinov, D.; Papadakis, I.; Pavlidou, V.

    2017-03-01

    In any flux-density limited sample of blazars, the distribution of the time-scale modulation factor Δt΄/Δt, which quantifies the change in observed time-scales compared to the rest-frame ones due to redshift and relativistic compression follows an exponential distribution with a mean depending on the flux limit of the sample. In this work, we produce the mathematical formalism that allows us to use this information in order to uncover the underlining rest-frame probability density function of measurable time-scales of blazar jets. We extensively test our proposed methodology using a simulated Flat Spectrum Radio Quasar population with a 1.5 Jy flux-density limit in the simple case (where all blazars share the same intrinsic time-scale), in order to identify limits of applicability and potential biases due to observational systematics and sample selection. We find that for monitoring with time intervals between observations longer than ∼30 per cent of the intrinsic time-scale under investigation the method loses its ability to produce robust results. For time intervals of ∼3 per cent of the intrinsic time-scale, the error of the method is as low as 1 per cent in recovering the intrinsic rest-frame time-scale. We applied our method to rotations of the optical polarization angle of blazars observed by RoboPol. We found that the intrinsic time-scales of the longest duration rotation event in each blazar follows a narrow distribution, well described by a normal distribution with mean 87 d and standard deviation 5 d. We discuss possible interpretations of this result.

  7. Picosecond laser bonding of highly dissimilar materials

    Science.gov (United States)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  8. Picosecond high-power 355-nm UV generation in CsLiBsub>6sub>Osub>10sub> crystal.

    Science.gov (United States)

    Ueda, Kentaro; Orii, Yosuke; Takahashi, Yoshinori; Okada, George; Mori, Yusuke; Yoshimura, Masashi

    2016-12-26

    We report third-harmonic generation (THG) at 355 nm in CsLiBsub>6sub>Osub>10sub> (CLBO) by using sum-frequency mixing process. As a fundamental laser source, we employ a hybrid master oscillator power amplifier (MOPA) system seeded by a gain-switched laser diode (GS-LD) at 1064 nm to produce narrow spectral picosecond pulses. Both CLBO and walk-off compensated prism-coupled CLBO device generate over 30-W output of 355-nm UV lights, which means walk-off effect in CLBO is negligible in the picosecond laser system. The maximum THG conversion efficiency from the fundamental reaches about 48%, which is 1.2 times higher than that of LiBsub>3sub>Osub>5sub> (LBO). Theoretical THG outputs with CLBO and LBO are numerically calculated in order to verify the validity of these experimental results in detail.

  9. A simple and versatile electronic control system for a picosecond Nd:YLF oscillator - Nd:glass amplifier laser chain

    Science.gov (United States)

    Navathe, C. P.; Ansari, M. S.; Upadhyay, J.; Sreedhar, N.; Chandra, R.; Bundel, H. R.; Moorti, A.; Gupta, P. D.

    1997-11-01

    An electronic control system, developed for power conditioning of a picosecond Nd:YLF - Nd:glass laser oscillator - amplifier chain is described. The system generates charging and firing signals required for a commercial picosecond oscillator operated in a repetitive mode, and also carries out a charging and firing sequence of external amplifiers for single-shot operation. The system also controls a mechanical shutter to selectively pass a laser pulse from the oscillator for subsequent amplification. The laser chain includes a Faraday isolator incorporated with a safety check. A control signal is generated by this unit when conditions suitable for a sufficient level of isolation are achieved, and the same is used for gating the oscillator pulse. Good synchronization is confirmed from the measurements of amplifier gain as a function of the relative time delay in firing of different stages. The electronics developed is simple and modular, with sufficient scope for expansion of the system, and resistant to electromagnetic interference.

  10. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  11. Principles of 5D modeling, full integration of 3D space, time and scale

    NARCIS (Netherlands)

    Van Oosterom, P.; Stoter, J.

    2012-01-01

    This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrate

  12. Multi-Scale Gaussian Processes: a Novel Model for Chaotic Time Series Prediction

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-Tong; ZHANG Tai-Yi; SUN Jian-Cheng

    2007-01-01

    @@ Based on the classical Gaussian process (GP) model, we propose a multi-scale Gaussian process (MGP) model to predict the existence of chaotic time series. The MGP employs a covariance function that is constructed by a scaling function with its different dilations and translations, ensuring that the optimal hyperparameter is easy to determine.

  13. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    Science.gov (United States)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  14. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.

    Science.gov (United States)

    Long, Jiangyou; Zhong, Minlin; Zhang, Hongjun; Fan, Peixun

    2015-03-01

    Studies regarding the wettability transition of micro- and nano-structured metal surfaces over time are frequently reported, but there seems to be no generally accepted theory that explains this phenomenon. In this paper, we aim to clarify the mechanism underlying the transition of picosecond laser microstructured aluminum surfaces from a superhydrophilic nature to a superhydrophobic one under ambient conditions. The aluminum surface studied exhibited superhydrophilicity immediately after being irradiated by a picosecond laser. However, the contact angles on the surface increased over time, eventually becoming large enough to classify the surface as superhydrophobic. The storage conditions significantly affected this process. When the samples were stored in CO2, O2 and N2 atmospheres, the wettability transition was restrained. However, the transition was accelerated in atmosphere that was rich with organic compounds. Moreover, the superhydrophobic surface could recover their original superhydrophilicity by low temperature annealing. A detailed XPS analysis indicated that this wettability transition process was mainly caused by the adsorption of organic compounds from the surrounding atmosphere onto the oxide surface.

  15. Machining parameter optimization of C/SiC composites using high power picosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoheng; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei, E-mail: liuys99067@163.com [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China)

    2015-03-01

    Highlights: • We found that the helical line width and the helical line spacing, machining time and the scanning speed on the surface morphology of machined holes had remarkable effects on the qualities of micro-holes such as shape and depth. • The debris consisted of C, Si and O was observed on the machined surface. The Si−C bonds of the SiC matrix transformed into Si−O bonds after machined. - Abstract: Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Si−C bonds of the SiC matrix transformed into Si−O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  16. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    Science.gov (United States)

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  17. Invited article: a test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser.

    Science.gov (United States)

    Adams, Bernhard; Chollet, Matthieu; Elagin, Andrey; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew; Obaid, Razib; Webster, Preston

    2013-06-01

    The Large Area Picosecond Photodetector Collaboration is developing large-area fast photodetectors with time resolution tests on bare 8 in.-square MCP plates or into a smaller chamber for tests on 33-mm circular substrates. We present the experimental setup, detector calibration, data acquisition, analysis tools, and typical results demonstrating the performance of the test facility.

  18. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics

    Science.gov (United States)

    Pütz, Martin; Nielaba, Peter

    2016-08-01

    We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1 /2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.

  19. A Small-Scale, Feasibility Study of Academic Language Time in Primary Grade Language Arts

    Science.gov (United States)

    Roskos, Kathleen A.; Zuzolo, Nicole; Primm, Ashley

    2017-01-01

    A small-scale feasibility study was conducted to explore the implementation of academic language time (ALT) in primary grade classrooms with and without access to digital devices. Academic language time is a structural change that dedicates a portion of language arts instructional time to direct vocabulary instruction using evidence-based…

  20. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale

    NARCIS (Netherlands)

    Mitic, Sandra; Nieuwkasteele, van Jan W.; Berg, van den Albert; Vries, de Simon

    2015-01-01

    Unravelling (bio)chemical reaction mechanisms and macromolecular folding pathways on the (sub)microsecond time scale is limited by the time resolution of kinetic instruments for mixing reactants and observation of the progress of the reaction. To improve the mixing time resolution, turbulent four- a

  1. Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    and deep water circulation changes drive the variability of southwest (SW) monsoon in the Indian subcontinent. Different forcing factors act on different time scales. Arabian Sea sediments consist of distinct fauna that are endemic to areas of upwelling...

  2. A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2006-01-01

    This investigation concerns numerical time-scales ratio and turbulent Prandtl number in fully developed turbulent flows in ducts of various cross-sections. The low Reynolds number version of a non-linear eddy viscosity model is proposed to predict the Reynolds stresses and the temperature field...... is solved using a two-equation heat flux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is defined as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...

  3. Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2013-01-01

    Full Text Available We establish some new oscillation criteria for nonlinear dynamic equation of the form on an arbitrary time scale with , where are positive rd-continuous functions. An example illustrating the importance of our result is included.

  4. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  5. Multiple time scales in modeling the incidence of infections acquired in intensive care units

    Directory of Open Access Journals (Sweden)

    Martin Wolkewitz

    2016-09-01

    Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU

  6. Global Uniform Asymptotic Stability of Competitive Neural Networks with Different-Time Scales and Delay

    Institute of Scientific and Technical Information of China (English)

    LI Hong; L(U) Shu; ZHONG Shou-ming

    2005-01-01

    The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.

  7. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection.

    Science.gov (United States)

    Zhu, Ye; Wang, Wen; Singh, Vijay P; Liu, Yi

    2016-11-15

    Prediction of hydrological drought in the absence of hydrological records is of great significance for water resources management and risk assessment. In this study, two meteorological drought indices, including standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) calculated at different time scales (1 to 12months), were analyzed for their capabilities in detecting hydrological droughts. The predictive skills of meteorological drought indices were assessed through correlation analysis, and two skill scores, i.e. probability of detection (POD) and false alarm rate (FAR). When used independently, indices of short time scales generally performed better than did those of long time scales. However, at least 31% of hydrological droughts were still missed in view of the peak POD score (0.69) of a single meteorological drought index. Considering the distinguished roles of different time scales in explaining hydrological droughts with disparate features, an optimization approach of blending SPI/SPEI at multiple time scales was proposed. To examine the robustness of the proposed method, data of 1964-1990 was used to establish the multiscalar index, then validate during 2000-2010. Results showed that POD exhibited a significant increase when more than two time scales were used, and the best performances were found when blending 8 time scales of SPI and 9 for SPEI, with the corresponding values of 0.82 and 0.85 for POD, 0.205 and 0.21 for FAR, in the calibration period, and even better performance in the validation period. These results far exceeded the performance of any single meteorological drought index. This suggests that when there is lack of streamflow measurements, blending climatic information of multiple time scales to jointly monitor hydrological droughts could be an alternative solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oscillation of Second-order Nonlinear Dynamic Equation on Time Scales

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-shan

    2013-01-01

    The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article.By using the generalized Riccati technique,integral averaging technique and the time scales theory,some new sufficient conditions for oscillation of the equation are proposed.These results generalize and extend many known results for second order dynamic equations.Some examples are given to illustrate the main results of this article.

  9. REGION QUALITATIVE ANALYSIS OF PREDATOR-PREY SYSTEMS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We first investigate some basic properties of dynamic equations on time scales,and propose contained curves to describe the jump direction of the discrete points.Then we perform qualitative analysis regarding the planar predator-prey systems on time scales,thereby obtain two theorems of this system.At last,we emulate application examples to discuss the parameters of the system.

  10. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    OpenAIRE

    Kawada, Y.; H. Nagahama; Nakamura, N.

    2007-01-01

    International audience; We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermod...

  11. A two-time-scale autopilot for high-performance aircraft

    Science.gov (United States)

    Menon, P. K. A.; Chatterji, G. B.; Cheng, V. H. L.

    1991-01-01

    A two-time-scale autopilot is proposed for the Aircraft Controls Design Challenge problem. This control law uses a nonlinear aircraft model constructed from the given vehicle simulation. The vehicle model is partitioned into slow translational dynamics and fast rotational dynamics. Feedback linearization is then employed to synthesize control laws for these two-time scales. Due to the nature of the synthesis, the control law is suitable for automatic trajectory following, and also for pilot control.

  12. Time-frequency scale decomposition of tectonic tremor signals for space-time reconstruction of tectonic tremor sources

    Science.gov (United States)

    Poiata, N.; Satriano, C.; Vilotte, J. P.; Bernard, P.; Obara, K.

    2015-12-01

    Seismic radiation associated with transient deformations along the faults and subduction interfaces encompasses a variety of events, i.e., tectonic tremors, low-frequency earthquakes (LFE), very low-frequency earthquakes (VLFs), and slow-slip events (SSE), with a wide range of seismic moment and characteristic durations. Characterizing in space and time the complex sources of these slow earthquakes, and their relationship with background seismicity and large earthquakes generation, is of great importance for understanding the physics and mechanics of the processes of active deformations along the plate interfaces. We present here first developments towards a methodology for: (1) extracting the different frequency and scale components of observed tectonic tremor signal, using advanced time-frequency and time-scale signal representation such as Gabor transform scheme based on, e.g. Wilson bases or Modified Discrete Cosine Transform (MDCT) bases; (2) reconstructing their corresponding potential sources in space and time, using the array method of Poiata et al. (2015). The methodology is assessed using a dataset of tectonic tremor episodes from Shikoku, Japan, recorded by the Hi-net seismic network operated by NIED. We illustrate its performance and potential in providing activity maps - associated to different scale-components of tectonic tremors - that can be analyzed statistically to improve our understanding of tremor sources and scaling, as well as their relation with the background seismicity.

  13. Multiple time-space scale atmosphere-ocean interactions and improvement of Zebiak-Cane model

    Institute of Scientific and Technical Information of China (English)

    钱维宏; 王绍武

    1997-01-01

    In a real climate system there are multiple time-space scale atmosphere-ocean interactions, ranging from the planetary scale and basin scale to local air-sea interactions. The Zebiak-Cane (ZC) model with one-level atmosphere described only local air-sea interaction process. Thus the planetary scale Hadley cell and Walker cell anomalies should be introduced in the model. Including the planetary scale Hadley cell anomaly in the model improved the prediction skill. It showed that the improved model provided satisfactory prediction of the equatorial eastern Pacific SST anomaly with lead time of 9-10 months not only for 1970-1991 but also for 1992-1995.

  14. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    Science.gov (United States)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  15. Carrier-envelope Phase Drift Detection of Picosecond Pulses

    Directory of Open Access Journals (Sweden)

    Cormier E.

    2013-03-01

    Full Text Available A bandwidth-independent, linear and scalable method for carrier-envelope phase drift measurement demonstrated. Our experiments reveal that carrier-envelope phase drift of a picosecond pulse train can be directly obtained from the spectrally resolved interference pattern of a length-stabilized multiple-beam interferometer. The retrieved phase from the pattern correlates well with the strongly CEP-sensitive coupling signal between the frequency combs of the picosecond oscillator and an ultra-high finesse Fabry-Perot interferometer. Our results can lead to the generation of a robust CEP-stabilized seed pulse train for high resolution comb spectroscopy as well as to compact Compton X-ray and gamma-ray sources

  16. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    Science.gov (United States)

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  17. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  18. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  19. Picosecond X-ray streak camera dynamic range measurement

    Science.gov (United States)

    Zuber, C.; Bazzoli, S.; Brunel, P.; Fronty, J.-P.; Gontier, D.; Goulmy, C.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C.

    2016-09-01

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l'Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  20. Applications des lasers picosecondes à l'optoélectronique

    OpenAIRE

    Chesnoy, J.

    1989-01-01

    Cet article tend à dégager parmi les techniques laser ultra-rapides (picosecondes et femtosecondes) celles qui devraient être appelées à un développement dans le domaine de l'électronique, de l'optoélectronique et des télécommunications. Sont d'abord analysées les possibilités d'étude de circuits électroniques ultra-rapides par laser picoseconde. Les possibilités d'étude de circuits optoélectroniques sont ensuite considérées ainsi que le développement d'appareillages possibles dans ce domaine...

  1. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  2. Upconversion imaging using short-wave infrared picosecond pulses

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter

    2017-01-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm—both with a pulse width of 1 ps and a pulse...... by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination....

  3. Universality and extremal aging for dynamics of spin glasses on sub-exponential time scales

    CERN Document Server

    Arous, G Ben

    2010-01-01

    We consider Random Hopping Time (RHT) dynamics of the Sherrington - Kirkpatrick (SK) model and p-spin models of spin glasses. For any of these models and for any inverse temperature we prove that, on time scales that are sub-exponential in the dimension, the properly scaled clock process (time-change process) of the dynamics converges to an extremal process. Moreover, on these time scales, the system exhibits aging like behavior which we called extremal aging. In other words, the dynamics of these models ages as the random energy model (REM) does. Hence, by extension, this confirms Bouchaud's REM-like trap model as a universal aging mechanism for a wide range of systems which, for the first time, includes the SK model.

  4. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    Science.gov (United States)

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  5. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    Science.gov (United States)

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  6. Machining parameter optimization of C/SiC composites using high power picosecond laser

    Science.gov (United States)

    Zhang, Ruoheng; Li, Weinan; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2015-03-01

    Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Sisbnd C bonds of the SiC matrix transformed into Sisbnd O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  7. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    CERN Document Server

    Clark, Logan W; Chin, Cheng

    2016-01-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...

  8. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts.

    Science.gov (United States)

    Vea, Isabelle M; Grimaldi, David A

    2016-03-22

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228-273], and of the neococcoids 60 million years later [210-165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous.

  9. A multi-time scale approach to remaining useful life prediction in rolling bearing

    Science.gov (United States)

    Qian, Yuning; Yan, Ruqiang; Gao, Robert X.

    2017-01-01

    This paper presents a novel multi-time scale approach to bearing defect tracking and remaining useful life (RUL) prediction, which integrates enhanced phase space warping (PSW) with a modified Paris crack growth model. As a data-driven method, PSW describes the dynamical behavior of the bearing being tested on a fast-time scale, whereas the Paris crack growth model, as a physics-based model, characterizes the bearing's defect propagation on a slow-time scale. Theoretically, PSW constructs a tracking metric by evaluating the phase space trajectory warping of the bearing vibration data, and establishes a correlation between measurement on a fast-time scale and defect growth variables on a slow-time scale. Furthermore, PSW is enhanced by a multi-dimensional auto-regression (AR) model for improved accuracy in defect tracking. Also, the Paris crack growth model is modified by a time-piecewise algorithm for real-time RUL prediction. Case studies performed on two run-to-failure experiments indicate that the developed technique is effective in tracking the evolution of bearing defects and accurately predict the bearing RUL, thus contributing to the literature of bearing prognosis .

  10. Change ΔS of the entropy in natural time under time reversal: Complexity measures upon change of scale

    Science.gov (United States)

    Sarlis, N. V.; Christopoulos, S.-R. G.; Bemplidaki, M. M.

    2015-01-01

    The entropy S in natural time as well as the entropy in natural time under time reversal S- have already found useful applications in the physics of complex systems, e.g., in the analysis of electrocardiograms (ECGs). Here, we focus on the complexity measures Λl which result upon considering how the statistics of the time series Δ S≤ft[\\equiv S- S-\\right] changes upon varying the scale l. These scale-specific measures are ratios of the standard deviations σ(Δ S_l) and hence independent of the mean value and the standard deviation of the data. They focus on the different dynamics that appear on different scales. For this reason, they can be considered complementary to other standard measures of heart rate variability in ECG, like SDNN, as well as other complexity measures already defined in natural time. An application to the analysis of ECG —when solely using NN intervals— is presented: We show how Λl can be used to separate ECG of healthy individuals from those suffering from congestive heart failure and sudden cardiac death.

  11. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    Science.gov (United States)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of ‑0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of ‑0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  12. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  13. Characteristic Time Scales of Transport Processes for Chemotactic Bacteria in Groundwater: Analysis of Pore-scale to Field-scale Experimental Data

    Science.gov (United States)

    Ford, R. M.

    2010-12-01

    Many processes contribute to the transport of microorganisms in groundwater environments. One process of interest is chemotaxis, whereby motile bacteria are able to detect and swim toward increasing concentrations of industrial hydrocarbons that they perceive as food sources. By enabling bacteria to migrate to the sources of pollutants that they degrade, chemotaxis has the potential to enhance bioremediation efforts, especially in less permeable zones where contamination may persist. To determine the field conditions under which chemotaxis might be exploited in a bioremediation scheme requires an understanding of the characteristic time scales in the system. We defined a dimensionless chemotaxis number that compares the time over which a bacterial population is exposed to a chemical gradient to the time required for a bacterial population to migrate a significant distance in response to a chemical gradient. The exposure time and the response time are dependent upon the experimental conditions and properties of the bacteria and chemical attractant. Experimental data was analyzed for a range of groundwater flow rates over a wide scope of experimental systems including a single-pore with NAPL source, a microfluidic channel with and without a porous matrix, a laboratory column, a bench-scale microcosm and a field-scale study. Chemical gradients were created transverse to the flow direction. Distributions of chemotactic and nonchemotactic bacteria were compared to determine the extent of migration due to chemotaxis. Under some conditions at higher flow rates, the effect of chemotaxis was diminished to the point of not being detected. The goal of the study was to determine a critical value for the dimensionless chemotaxis number (which is independent of scale) that can be used as a design criterion to ascertain a priori the conditions under which a chemotactic response will impact bacterial transport relative to other processes such as advection and dispersion.

  14. Production of petawatt laser pulses of picosecond duration via Brillouin amplification of nanosecond laser beams

    CERN Document Server

    Humphrey, Kathryn; Alves, Paulo; Fiuza, Frederico; Speirs, David; Bingham, Robert; Cairns, Alan; Fonseca, Ricardo; Silva, Luis; Norreys, Peter

    2013-01-01

    Previous studies have shown that Raman amplification in plasma is a potential route for the production of petawatt pulses of picosecond duration at 351 nm [Trines et al., Phys. Rev. Lett. 107, 105002 (2011)]. In this paper we show, through analytic theory and particle-in-cell simulations, that similar results can also be obtained through Brillouin amplification of a short seed laser beam off a long pump beam at moderate intensity. Scaling laws governing the optimal parameter space for pump beam, seed beam and plasma will be derived using a self-similar model for Brillouin scattering, and verified via simulations. A comparison with Raman scattering will be made, to determine which scheme is most suitable for a range of laser-plasma configurations.

  15. Micro- and nano- second time scale, high power electrical wire explosions in water.

    Science.gov (United States)

    Grinenko, Alon; Efimov, Sergey; Sayapin, Arkadii; Fedotov, Alexander; Gurovich, Viktor; Krasik, Yakov

    2006-10-01

    Experimental and magneto-hydro-dynamic simulation results of micro- and nanosecond time scale underwater electrical Al, Cu and W wires explosions are presented. A capacitor bank with stored energy up to 6 kJ (discharge current up to 80 kA with 2.5 μs quarter period) was used in microsecond time scale experiments and water forming line generator with current amplitude up to 100 kA and pulse duration of 100 ns were used in nanosecond time scale experiments. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered in nanosecond time scale explosions. A discharge channel evolution and surface temperature were analyzed by streak shadow imaging and using fast photo-diode with a set of interference filters, respectively. Microsecond time scale electrical explosion of cylindrical wire array showed extremely high pressure of converging shock waves at the axis, up to 0.2 MBar. A 1D and 2D magneto-hydro-dynamic simulation demonstrated good agreement with such experimental parameters as discharge channel current, voltage, radius, and temperature.

  16. Interplay between multiple length and time scales in complex chemical systems

    Indian Academy of Sciences (India)

    Biman Bagchi; Charusita Chakravarty

    2010-07-01

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.

  17. Urban Freight Management with Stochastic Time-Dependent Travel Times and Application to Large-Scale Transportation Networks

    Directory of Open Access Journals (Sweden)

    Shichao Sun

    2015-01-01

    Full Text Available This paper addressed the vehicle routing problem (VRP in large-scale urban transportation networks with stochastic time-dependent (STD travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP, and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.

  18. Mixing and flushing time scales in the Azhikode Estuary, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Pylee, A.

    Flushing time scales of the Azhikode Estuary, Kerala, India showed pronounced dry season and wet season signals as well as large inter-annual variation. Cumulative flushing time of the estuary varies from 4.8 tide cycles in April to 1.22 tide cycles...

  19. Time-scale decomposition of an optimal control problem in greenhouse climate management

    NARCIS (Netherlands)

    Henten, van E.; Bontsema, J.

    2009-01-01

    Based on differences in dynamic response times in the crop production process, a hierarchical decomposition of greenhouse climate management is proposed. To a large extent the proposed decomposition builds on the time-scale decomposition of singularly perturbed systems commonly found in the

  20. TIME SCALES OF FUSION-FISSION REACTIONS CALCULATED FROM PRESCISSION NEUTRON MULTIPLICITIES

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; SIEMSSEN, RH; WILSCHUT, HW

    1995-01-01

    The time scale of fusion-fission reactions was found to be in the range from tau(f) = 5 . 10(-20) to 5 . 10(-19) s. This result was obtained from the analysis of the prescission neutron multiplicities with a new method combining the time-dependent statistical cascade calculations with the nuclear