WorldWideScience

Sample records for phytotoxin undergoes photo-degradation

  1. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity.

    Science.gov (United States)

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H; Bais, Harsh P

    2009-06-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.

  2. THE FTIR STUDIES OF PHOTO-OXIDATIVE DEGRADATION OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    WEN Zaiqing; HU Xingzhou; SHEN Deyan

    1988-01-01

    The photo-oxidative degradation process of polypropylene film containing iron ions was investigated via FTIR and absorbance substraction technique. It is shown that the iron ions play an important role in the decomposition of hydroperoxide and the increase of the degradation rate of polypropylene film. Theamorphous region of PP film undergoes degradation prior to the crystalline one.

  3. Photo, thermal and chemical degradation of riboflavin

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Sheraz

    2014-08-01

    Full Text Available Riboflavin (RF, also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented.

  4. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE was identified from Paenibacillus polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes, despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Å in length, and contains a Mn(II ion interacting with one histidine residue, two glutamate residues, and three water molecules in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II-coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the degradation of toxoflavin in a manner dependent on oxygen, Mn(II, and the reducing agent dithiothreitol. These results provide the structural features of TxDE and the early events in catalysis.

  5. Identification of a volatile phytotoxin from algae

    Science.gov (United States)

    Garavelli, J. S.; Fong, F.; Funkhouser, E. A.

    1984-01-01

    The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.

  6. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    International Nuclear Information System (INIS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-01-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  7. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Science.gov (United States)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-03-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  8. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2010-03-24

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  9. Photo catalytic degradation of nitrobenzene using nanocrystalline TiO2 photo catalyst doped with Zn ions

    International Nuclear Information System (INIS)

    Reynoso S, E. A.; Perez S, S.; Reyes C, A. P.; Castro R, C. L.; Felix N, R. M.; Lin H, S. W.; Paraguay D, F.; Alonso N, G.

    2013-01-01

    Photo catalysis is a method widely used in the degradation of organic pollutants of the environment. The development of new materials is very important to improve the photo catalytic properties and to find new applications for TiO 2 as a photo catalyst. In this article we reported the synthesis of a photo catalyst based on TiO 2 doped with Zn 2+ ions highly efficient in the degradation of nitrobenzene. The results of photo catalytic activity experiments showed that the Zn 2+ doped TiO 2 is more active that un-doped TiO 2 catalyst with an efficiency of 99% for the nitrobenzene degradation at 120 min with an apparent rate constant of 35 x 10 -3 min -1 . For the characterization of photo catalyst X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used. (Author)

  10. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents

    Directory of Open Access Journals (Sweden)

    Prahlad Vaishnave

    2014-12-01

    Full Text Available A model for the decomposition of azure-B by photo-Fenton reagent in the presence of ultrasound in homogeneous aqueous solution has been described. The photochemical decomposition rate of azure-B is markedly increased in the presence of ultrasound. It is a rather inexpensive reagent for wastewater treatment. The effect of different variables like the concentration of ferric ion, concentration of dye, hydrogen peroxide, pH, light intensity etc. on the reaction rate has been observed. The progress of the sono-photochemical degradation was monitored spectrophotometrically. The optimum sono-photochemical degradation conditions were experimentally determined. The results showed that the dye was completely oxidized and degraded into CO2 and H2O. A suitable tentative mechanism for sono-photochemical bleaching of azure-B by sono-photo-Fenton’s reaction has been proposed.

  11. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    Science.gov (United States)

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  12. Photo catalytic degradation of nitrobenzene using nanocrystalline TiO{sub 2} photo catalyst doped with Zn ions

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso S, E. A.; Perez S, S.; Reyes C, A. P.; Castro R, C. L.; Felix N, R. M.; Lin H, S. W. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion, Apdo. Postal 1166, 22000 Tijuana, Baja California (Mexico); Paraguay D, F. [Centro de Investigacion en Materiales Avanzados, Apdo. Postal 311109, Chihuahua (Mexico); Alonso N, G. [UNAM, Centro de Nanociencias y Nanotecnologia, Carretera Tijuana-Ensenada Km 107, Apdo. Postal 356, 22800 Ensenada, Baja California (Mexico)

    2013-07-01

    Photo catalysis is a method widely used in the degradation of organic pollutants of the environment. The development of new materials is very important to improve the photo catalytic properties and to find new applications for TiO{sub 2} as a photo catalyst. In this article we reported the synthesis of a photo catalyst based on TiO{sub 2} doped with Zn{sup 2+} ions highly efficient in the degradation of nitrobenzene. The results of photo catalytic activity experiments showed that the Zn{sup 2+} doped TiO{sub 2} is more active that un-doped TiO{sub 2} catalyst with an efficiency of 99% for the nitrobenzene degradation at 120 min with an apparent rate constant of 35 x 10{sup -3} min{sup -1}. For the characterization of photo catalyst X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used. (Author)

  13. Photo-oxidative degradation of TiO{sub 2}/polypropylene films

    Energy Technology Data Exchange (ETDEWEB)

    García-Montelongo, X.L. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Vázquez-Rodríguez, S. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Torres-Martínez, Leticia M. [Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico)

    2014-03-01

    Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO{sub 2} incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO{sub 2} is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO{sub 2} nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO{sub 2} powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO{sub 2}/polypropylene were prepared with 0.1, 0.5 and 1.0 wt% of TiO{sub 2}. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO{sub 2} dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)

  14. Phytotoxins: environmental micropollutants of concern?

    Science.gov (United States)

    Bucheli, Thomas D

    2014-11-18

    Natural toxins such as mycotoxins or phytotoxins (bioactive compounds from fungi and plants, respectively) have been widely studied in food and feed, where they are stated to out-compete synthetic chemicals in their overall human and animal toxicological risk. A similar perception and awareness is yet largely missing for environmental safety. This article attempts to raise concern in this regard, by providing (circumstantial) evidence that phytotoxins in particular can be emitted into the environment, where they may contribute to the complex mixture of organic micropollutants. Exposures can be orders-of-magnitude higher in anthropogenically managed/affected (agro-)ecosystems than in the pristine environment.

  15. Photo catalytic degradation of m-cresol

    International Nuclear Information System (INIS)

    Chavarria C, N.; Jimenez B, J.; Garcia S, I.; Valenzuela, M.A.

    2002-01-01

    The degradation of m-cresol was studied, a persistent organic compound that is consider a pollutant of residual water. There for a photo catalysis system was used, which consists in a glass reactor where is placed an aqueous solution of m-cresol and a semiconductor is added, in this case, titanium oxide. The solutions were irradiated with ultraviolet light and the surplus m-cresol was measured by UV vis spectrometry. The results indicate that the m-cresol is degraded until a 40% after 5 hours of irradiation in such conditions. (Author)

  16. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  17. Concentrated Light for Accelerated Photo Degradation of Polymer Materials

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Tromholt, Thomas; Norrman, Kion

    2013-01-01

    Concentrated light is used to perform photochemical degradation of polymer solar cell materials with acceleration factors up to 1200. At constant temperature the photon efficiency in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates are not a limiting factor...

  18. Modes of Action of Microbially-Produced Phytotoxins

    Science.gov (United States)

    Duke, Stephen O.; Dayan, Franck E.

    2011-01-01

    Some of the most potent phytotoxins are synthesized by microbes. A few of these share molecular target sites with some synthetic herbicides, but many microbial toxins have unique target sites with potential for exploitation by the herbicide industry. Compounds from both non-pathogenic and pathogenic microbes are discussed. Microbial phytotoxins with modes of action the same as those of commercial herbicides and those with novel modes of action of action are covered. Examples of the compounds discussed are tentoxin, AAL-toxin, auscaulitoxin aglycone, hydantocidin, thaxtomin, and tabtoxin. PMID:22069756

  19. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    Science.gov (United States)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  20. Photo-induced degradation of some flavins in aqueous solution

    International Nuclear Information System (INIS)

    Holzer, W.; Shirdel, J.; Zirak, P.; Penzkofer, A.; Hegemann, P.; Deutzmann, R.; Hochmuth, E.

    2005-01-01

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are φ D (riboflavin, pH 8) ∼ 7.8 x 10 -3 , φ D (FMN, pH 5.6) ∼ 7.3 x 10 -3 , φ D (FMN, pH 8) ∼ 4.6 x 10 -3 , φ D (FAD, pH 8) ∼ 3.7 x 10 -4 , φ D (lumichrome, pH 8) ∼ 1.8 x 10 -4 , and φ D (lumiflavin, pH 8) approx. 1.1 x 10 -5 . In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out

  1. Photo-induced degradation of some flavins in aqueous solution

    Science.gov (United States)

    Holzer, W.; Shirdel, J.; Zirak, P.; Penzkofer, A.; Hegemann, P.; Deutzmann, R.; Hochmuth, E.

    2005-01-01

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are ϕD(riboflavin, pH 8) ≈ 7.8 × 10 -3, ϕD(FMN, pH 5.6) ≈ 7.3 × 10 -3, ϕD(FMN, pH 8) ≈ 4.6 × 10 -3, ϕD(FAD, pH 8) ≈ 3.7 × 10 -4, ϕD(lumichrome, pH 8) ≈ 1.8 × 10 -4, and ϕD(lumiflavin, pH 8) ⩽ 1.1 × 10 -5. In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out.

  2. Photo-induced degradation of some flavins in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, W. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Shirdel, J. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Zirak, P. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A. [Institut II-Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany)]. E-mail: alfons.penzkofer@physik.uni-regensburg.de; Hegemann, P. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Deutzmann, R. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Hochmuth, E. [Institut fuer Biochemie I, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2005-01-10

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are {phi}{sub D}(riboflavin, pH 8) {approx} 7.8 x 10{sup -3}, {phi}{sub D}(FMN, pH 5.6) {approx} 7.3 x 10{sup -3}, {phi}{sub D}(FMN, pH 8) {approx} 4.6 x 10{sup -3}, {phi}{sub D}(FAD, pH 8) {approx} 3.7 x 10{sup -4}, {phi}{sub D}(lumichrome, pH 8) {approx} 1.8 x 10{sup -4}, and {phi}{sub D}(lumiflavin, pH 8) approx. 1.1 x 10{sup -5}. In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out.

  3. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available of Photochemistry and Photobiology A: Chemistry 293 (2014) 72–80 An instant photo-excited electrons relaxation on the photo- degradation properties of TiO2−x films S.S. Nkosi a,b,∗, I. Kortidis d, D.E. Motaungc,∗, P.R. Makgwanec, O.M. Ndwandwe b, S.S. Rayc, G...

  4. Analysis of selected phytotoxins and mycotoxins in environmental samples.

    Science.gov (United States)

    Hoerger, Corinne C; Schenzel, Judith; Strobel, Bjarne W; Bucheli, Thomas D

    2009-11-01

    Natural toxins such as phytotoxins and mycotoxins have been studied in food and feed for decades, but little attention has yet been paid to their occurrence in the environment. Because of increasing awareness of the presence and potential relevance of micropollutants in the environment, phytotoxins and mycotoxins should be considered and investigated as part of the chemical cocktail in natural samples. Here, we compile chemical analytical methods to determine important phytotoxins (i.e. phenolic acids, quinones, benzoxazinones, terpenoids, glycoalkaloids, glucosinolates, isothiocyanates, phytosterols, flavonoids, coumestans, lignans, and chalcones) and mycotoxins (i.e. resorcyclic acid lactones, trichothecenes, fumonisins, and aflatoxins) in environmentally relevant matrices such as surface water, waste water-treatment plant influent and effluent, soil, sediment, manure, and sewage sludge. The main problems encountered in many of the reviewed methods were the frequent unavailability of suitable internal standards (especially isotope-labelled analogues) and often absent or fragmentary method optimization and validation.

  5. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  6. Omics methods for probing the mode of action of natural and synthetic phytotoxins.

    Science.gov (United States)

    Duke, Stephen O; Bajsa, Joanna; Pan, Zhiqiang

    2013-02-01

    For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances the probability of success. Generally, compounds with the same mode of action generate similar responses with a particular omics method. Stress and detoxification responses to phytotoxins can be much clearer than effects directly related to the target site. Clues to new modes of action must be validated with in vitro enzyme effects or genetic approaches. Thus far, the only new phytotoxin target site discovered with omics approaches (metabolomics and physionomics) is that of cinmethylin and structurally related 5-benzyloxymethyl-1,2-isoxazolines. These omics approaches pointed to tyrosine amino-transferase as the target, which was verified by enzyme assays and genetic methods. In addition to being a useful tool of mode of action discovery, omics methods provide detailed information on genetic and biochemical impacts of phytotoxins. Such information can be useful in understanding the full impact of natural phytotoxins in both agricultural and natural ecosystems.

  7. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  8. Phytotoxin produced by Bipolaris euphorbiae in-vitro is effective against the weed Euphorbia heterophylla

    Directory of Open Access Journals (Sweden)

    Barbosa Aneli M.

    2002-01-01

    Full Text Available Four virulent strain isolates of the fungus, Bipolaris euphorbiae (previously identified as a Helminthosporium sp., isolated from host plants in four states within Brazil were screened for the production of phytotoxins that promoted wilting and defoliation of the Brazilian weed, Euphorbia heterophylla, commonly found growing among soyabean crops. Only one isolate, B. euphorbiae Strain I (EUPH petropar from Mato Grosso state, produced phytotoxin in-vitro when grown in stationary culture for 7 d at 28 ° C on minimum salts medium supplemented with 1.5 % glucose as the sole carbon source. Phytotoxin was also produced when the fungal strain was grown on fructose, galactose, mannose, xylose and sucrose. The addition of nitrogen source (yeast extract, peptone or malt extract to the culture medium did not influence phytotoxin production. The phytotoxin produced by Strain I was most active at pH 6.0, stable between pH 3-9, and was highly thermostable, remaining fully active when heated at 90 ° C for 1 h.

  9. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects.

    Science.gov (United States)

    Itoh, Hideomi; Tago, Kanako; Hayatsu, Masahito; Kikuchi, Yoshitomo

    2018-04-12

    Covering: up to 2018Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds. Here, we review recent advances in our understanding on the symbiont-mediated degradation of natural and artificial toxins, with a special emphasis on their underlying genetic basis, focus on the importance of environmental microbiota as a resource of toxin-degrading microorganisms, and discuss the ecological and evolutionary significance of these symbiotic associations.

  10. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  11. Photo-Fenton degradation of the insecticide esfenvalerate in aqueous medium using a recirculation flow-through UV photoreactor

    International Nuclear Information System (INIS)

    Colombo, Renata; Ferreira, Tanare C.R.; Alves, Suellen A.; Lanza, Marcos R.V.

    2011-01-01

    Highlights: ► The photo-Fenton reaction provides an efficient process by which to degrade esfenvalerate in aqueous suspensions. ► Photo-Fenton oxidation with Fe 3+ is more efficient in degrading esfenvalerate than the Fe 2+ -based reaction. ► Esfenvalerate was degraded most efficiently by photo-Fenton reaction in the presence of 5 mM Fe 3+ complex and 25 mM hydrogen peroxide at pH 2.5. ► The degradation of esfenvalerate by photo-Fenton (Fe 3+ ) generates organic by-products. ► Organic compounds present in commercial esfenvalerate-based insecticides affect the degradation process. - Abstract: The aim of the study was to evaluate the efficiencies of photo-Fenton (Fe 2+ ) and (Fe 3+ ) processes in the degradation of high-concentrations of esfenvalerate (in the form of aqueous emulsion of a commercial formulation) using a recirculation flow-through photoreactor irradiated with UV light from a 15 W lamp (254 nm emission peak). The results obtained using a basic photo-Fenton (Fe 2+ ) reaction (esfenvalerate 17 mg L −1 ; ferrous sulphate 1 mM; hydrogen peroxide 25 mM; pH 2.5) were compared with those acquired when ferrioxalate (1, 3 or 5 mM) served as the iron source. Degradation of the active component of the commercial formulation was significantly greater, and the rate of oxidation more rapid, using a photo-Fenton (Fe 3+ ) process compared with its Fe 2+ counterpart. The most efficient degradation of the insecticide (75% in 180 min) was achieved with a reaction mixture containing 5 mM ferrioxalate. However, under the same experimental conditions, degradation of pure esfenvalerate preceded much faster (99% in 60 min) and was 100% complete within 180 min reaction time.

  12. Methylene blue and 4-chloro phenol degradation by photo catalysis with ultraviolet light, using TiO2 as catalyst

    International Nuclear Information System (INIS)

    Martinez H, A.

    2010-01-01

    Within the decontamination and remediation processes of the contaminated waters, as the refining or tertiary processes are the Advanced Oxidation Technologies. Among this technology is the heterogeneous photo catalysis, which is the object of this work to de grate 4-chloro phenol and methylene blue, using as semiconductor commercial titanium dioxide (TiO 2 ). On the degradation the combination is exposed in the use of TiO 2 under gamma irradiation of 60 Co at different doses 400, 500, 800, 1000 and 1500 kGy. The organic compounds degradation was determined and the results show that to more radiation dose, the material is modified in such way that shows a major absorption of the organic compound, in the same way it is determined that to more dose which undergoes the TiO 2 generally a major degradation is observed, but also it is has to give a more time of previous stabilization, for that the degradation is observed of better way. (Author)

  13. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  14. The synthesis of hierarchical nanostructured MoS_2/Graphene composites with enhanced visible-light photo-degradation property

    International Nuclear Information System (INIS)

    Zhao, Yongjie; Zhang, Xiaowei; Wang, Chengzhi; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, HaiBo

    2017-01-01

    Graphical abstract: Introducing graphene layer into MoS_2 could construct the steady hierarchical structure which could efficiently separate the photo-induced electrons so as to enhance the photo- degradation behavior. - Highlights: • The MoS_2 and MoS_2/Graphene nanocomposite have been synthesized via a solvothermal process. • The scrolled nanosheets of MoS_2 combining with interconnected graphene network promoted the formation of steady hierarchical architecture. • Comparing with MoS_2, the hierarchical MoS_2/Graphene nanocomposite achieved relatively higher degradation rate. • The synergistic effect mechanism for excellent photo-degradation activity was proposed. - Abstract: Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. Herein, MoS_2 and MoS_2/Graphene nanocomposite with hierarchical nanostructure were successfully synthesized employing a one-step hydrothermal method. Photo-degradation of methylene blue (MB) and rhodamine (RHB) were adopted to assess the photo-degradation ability of the products. Comparing with bare MoS_2, the hierarchical MoS_2/Graphene nanocomposite achieved relatively higher degradation rate of 99% in 28 min for MB as well in 50 min for RHB. These results verified that this proposed hierarchical nanocomposite is a good photo-degradation semiconductor. The excellent performance was mainly ascribed to the synergistic effect of MoS_2 and graphene layers. The MoS_2 possessing a band gap of 1.9 eV would provide abundant electron-hole pairs. The graphene layers with excellent electro-conductivity could realize the quick transport of electrons via its extended π-conjugation structure, consequently benefiting the separation of photo-generated carriers. These findings indicate that the graphene layer is a promising candidate as a co-catalyst for MoS_2 photo-catalyst, and also provide useful information for understanding the observed enhanced photocatalytic mechanism

  15. Heterogeneous Photo catalytic Degradation of Hazardous Waste in Aqueous Suspension

    International Nuclear Information System (INIS)

    Sadek, S.A.; Ebraheem, S.; Friesen, K.J.

    1999-01-01

    The photo catalytic degradation of hazardous waste like chlorinated paraffin compound (1,12-Dichlorodoecane Ded) was investigated in different aquatic media using GC-MSD. The direct photolysis of Ded in HPLC water was considered to be negligible (k = 0.0020+-0.0007h - 1 ) . An acceleration of the photodegradation rate was occurred in presence of different TiO 2 catalyst systems. Molecular oxygen was found to play a vital role in the degradation process. Anatase TiO 2 was proved to be the most efficient one (k=0.7670+-0.0876h -1 ), while the rate constant of the rutile TiO 2 was calculated to be 0.2780+-0.0342h -1 . Improvement of photo catalytic efficiency of rutile TiO 2 was achieved by addition of Fe +2 giving a rate constant =0.6710+-0.0786h -1

  16. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    International Nuclear Information System (INIS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-01-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO 2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO 2 and nitrogen-doped TiO 2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO 2 showed superior photo-catalytic activity compared to that for pure TiO 2 . TiO 2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO 2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  17. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  18. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  19. Microbially produced phytotoxins and plant disease management ...

    African Journals Online (AJOL)

    Nowadays, these evaluation techniques are becoming an important complement to classical breeding methods. The knowledge of the inactivation of microbial toxins has led to the use of microbial enzymes to inactivate phytotoxins thereby reducing incidence and severity of disease induced by microbial toxins. Considering ...

  20. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species.

    Science.gov (United States)

    Trovó, Alam G; Pupo Nogueira, Raquel F; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto

    2012-10-15

    The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO(4) and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO(4) in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO(4) in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO(4) or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO(4) indicates a safe application of the process for the removal of this pharmaceutical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The synthesis of hierarchical nanostructured MoS{sub 2}/Graphene composites with enhanced visible-light photo-degradation property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhang, Xiaowei; Wang, Chengzhi [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhao, Yuzhen; Zhou, Heping [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Li, Jingbo; Jin, HaiBo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China)

    2017-08-01

    Graphical abstract: Introducing graphene layer into MoS{sub 2} could construct the steady hierarchical structure which could efficiently separate the photo-induced electrons so as to enhance the photo- degradation behavior. - Highlights: • The MoS{sub 2} and MoS{sub 2}/Graphene nanocomposite have been synthesized via a solvothermal process. • The scrolled nanosheets of MoS{sub 2} combining with interconnected graphene network promoted the formation of steady hierarchical architecture. • Comparing with MoS{sub 2}, the hierarchical MoS{sub 2}/Graphene nanocomposite achieved relatively higher degradation rate. • The synergistic effect mechanism for excellent photo-degradation activity was proposed. - Abstract: Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. Herein, MoS{sub 2} and MoS{sub 2}/Graphene nanocomposite with hierarchical nanostructure were successfully synthesized employing a one-step hydrothermal method. Photo-degradation of methylene blue (MB) and rhodamine (RHB) were adopted to assess the photo-degradation ability of the products. Comparing with bare MoS{sub 2}, the hierarchical MoS{sub 2}/Graphene nanocomposite achieved relatively higher degradation rate of 99% in 28 min for MB as well in 50 min for RHB. These results verified that this proposed hierarchical nanocomposite is a good photo-degradation semiconductor. The excellent performance was mainly ascribed to the synergistic effect of MoS{sub 2} and graphene layers. The MoS{sub 2} possessing a band gap of 1.9 eV would provide abundant electron-hole pairs. The graphene layers with excellent electro-conductivity could realize the quick transport of electrons via its extended π-conjugation structure, consequently benefiting the separation of photo-generated carriers. These findings indicate that the graphene layer is a promising candidate as a co-catalyst for MoS{sub 2} photo-catalyst, and also provide useful information

  2. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    International Nuclear Information System (INIS)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes; Rath, Susanne; Guimarães, José Roberto

    2013-01-01

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L −1 ) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L −1 Fe(II), 2.0 mmol L −1 H 2 O 2 and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L −1 Fe(II) and 10.0 mmol L −1 H 2 O 2 were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed

  3. Photo catalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation

    International Nuclear Information System (INIS)

    Arghya, N.B.; Sang, W.J.; Bong-Ki, M.

    2012-01-01

    Photo catalytic degradation of toxic organic chemicals is considered to be the most efficient green method for surface water treatment. We have reported the sol-gel synthesis of Gadoped anatase TiO 2 nanoparticles and the photo catalytic oxidation of organic dye into nontoxic inorganic products under UV irradiation. Photodegradation experiments show very good photo catalytic activity of Ga-doped TiO 2 nanoparticles with almost 90% degradation efficiency within 3 hrs of UV irradiation, which is faster than the undoped samples. Doping levels created within the bandgap of TiO 2 act as trapping centers to suppress the photo generated electron-hole recombination for proper and timely utilization of charge carriers for the generation of strong oxidizing radicals to degrade the organic dye. Photo catalytic degradation is found to follow the pseudo-first-order kinetics with the apparent 1 st-order rate constant around 1.3 x 10 -2 min -1 . The cost-effective, sol-gel-derived TiO 2 : Ga nanoparticles can be used efficiently for light-assisted oxidation of toxic organic molecules in the surface water for environmental remediation.

  4. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  5. Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins

    OpenAIRE

    Duke, Stephen O.; Bajsa, Joanna; Pan, Zhiqiang

    2013-01-01

    For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances ...

  6. Degradation of ethylparaben under simulated sunlight using photo-Fenton.

    Science.gov (United States)

    Zúñiga-Benítez, Henry; Peñuela, Gustavo A

    2016-01-01

    Ethylparaben (EPB) has been classified by different research groups as a potential endocrine-disrupting chemical, implying that it can potentially interfere with the normal balance of the endocrine system of living beings, which with its presence in different effluents, including drinking water, generates the need to seek methods that allow its removal from different water bodies. Advanced oxidation processes have been employed widely to remove organic compounds from different matrices. In this way, Fenton technology (process based on the reaction between ferrous ions and hydrogen peroxide) has been able to degrade different substrates, but due to the Fe(2+) requirements to carry out the reaction optimally, combination of the conventional Fenton process with visible light radiation (photo-Fenton) is an alternative used in the treatment of pollution due to the presence of chemicals. In this way, the effectiveness of photo-Fenton on EPB degradation was assessed using a face-centered central composite experimental design that allowed assessment of the effects of Fe(2+) and H2O2 initial concentrations on process. In general, results indicated that after 180 min of reaction almost all EPB was eliminated, the dissolved organic carbon in solution was reduced and the sample biodegradability index was increased.

  7. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil); Rath, Susanne [Chemistry Institute, University of Campinas — UNICAMP, P.O. Box 6154, CEP 13084-971, Campinas, SP (Brazil); Guimarães, José Roberto, E-mail: jorober@fec.unicamp.br [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil)

    2013-02-15

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L{sup −1}) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L{sup −1} Fe(II), 2.0 mmol L{sup −1} H{sub 2}O{sub 2} and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L{sup −1} Fe(II) and 10.0 mmol L{sup −1} H{sub 2}O{sub 2} were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed.

  8. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  9. Photo-catalytic degradation of an oil-water emulsion using the photo-fenton treatment process: effects and statistical optimization.

    Science.gov (United States)

    Tony, Maha A; Purcell, P J; Zhao, Y Q; Tayeb, A M; El-Sherbiny, M F

    2009-02-01

    The application of advanced oxidation processes (AOPs) to the treatment of an effluent contaminated with hydrocarbon oils was investigated. The AOPs conducted were Fe2+/H2O2 (Fenton's reagent), Fe2+/H2O2/UV (Photo-Fenton's reagent) and UV-photolysis. These technologies utilize the very strong oxidizing power of hydroxyl radicals to oxidize organic compounds to harmless end products such as CO2 and H2O. A synthetic wastewater generated by emulsifying diesel oil and water was used. This wastewater might simulate, for example, a waste resulting from a hydrocarbon oil spill, onto which detergent was sprayed. The experiments utilising the Photo-Fenton treatment method with an artificial UV source, coupled with Fenton's reagent, suggest that the hydrocarbon oil is readily degradable, but that the emulsifying agent is much more resistant to degradation. The results showed that the COD (chemical oxygen demand) removal rate was affected by the Photo-Fenton parameters (Fe2+, H2O2 concentrations and the initial pH) of the aqueous solution. In addition, the applicability of the treatment method to a 'real' wastewater contaminated with hydrocarbon oil is demonstrated. The 'real' wastewater was sourced at a nearby car-wash facility located at a petroleum filling station and the experimental results demonstrate the effectiveness of the treatment method in this case. A statistical analysis of the experimental data using the Statistical Analysis System (SAS) and the response surface methodology (RSM) based on the experimental design was applied to optimize the Photo-Fenton parameters (concentrations of Fe2+, H2O2 and initial pH) and to maximize the COD removal rate (more than 70%).

  10. Photo catalytic degradation of m-cresol; Degradacion fotocatalitica de m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Chavarria C, N.; Jimenez B, J.; Garcia S, I.; Valenzuela, M.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The degradation of m-cresol was studied, a persistent organic compound that is consider a pollutant of residual water. There for a photo catalysis system was used, which consists in a glass reactor where is placed an aqueous solution of m-cresol and a semiconductor is added, in this case, titanium oxide. The solutions were irradiated with ultraviolet light and the surplus m-cresol was measured by UV vis spectrometry. The results indicate that the m-cresol is degraded until a 40% after 5 hours of irradiation in such conditions. (Author)

  11. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    International Nuclear Information System (INIS)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M.

    2016-01-01

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k_o_b_s) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k_o_b_s was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R_c_t). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  12. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M., E-mail: pmalvare@unex.es

    2016-11-05

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k{sub obs}) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k{sub obs} was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R{sub ct}). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  13. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    Science.gov (United States)

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety

  14. Photo-degradation of poly(neopentyl isophthalate). Part II: Mechanism of cross-linking.

    NARCIS (Netherlands)

    Malanowski, P.; Benthem, van R.A.T.M.; Ven, van der L.G.J.; Laven, J.; Kisin, S.; With, de G.

    2011-01-01

    The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized

  15. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine

    Directory of Open Access Journals (Sweden)

    Rajesha Bedre Jagannatha

    2017-01-01

    Full Text Available In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and UV-visible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures. There are no other impurities in the diffraction peak. In addition, SEM measurement shows that most of the nanoparticles are spongy and spherical in shape and fairly mono dispersed. A significant degradation of the Caffeine was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photo degradation increaseds with the photocatalyst loading. Besides the photocatalyst loading, the effect of some parameters on the photo degradation efficiency such as initial concentration and pH were also studied.

  16. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides.

    Science.gov (United States)

    Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna

    2013-02-01

    Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Copyright © 2012 Wiley Periodicals, Inc.

  17. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  18. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    International Nuclear Information System (INIS)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin

    2015-01-01

    Graphical abstract: - Highlights: • Highly efficient visible-light-driven Ag 3 PO 4 /SBA-15 nanocomposite. • Application in the photo-degradation of RhB. • Synthesis from a facile and simple colloidal method. • 20%-Ag 3 PO 4 /SBA-15 shows 8 times faster degradation rate than Ag 3 PO 4 . • Super stability and recycling ability. - Abstract: A novel visible light-driven environmental-benign Ag 3 PO 4 /SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag 3 PO 4 /SBA-15 nanocomposite increases by 3 times compared with that of the Ag 3 PO 4 particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag 3 PO 4 nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag 3 PO 4 loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag 3 PO 4 /SBA-15. Compared to pure Ag 3 PO 4 nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag 3 PO 4 /SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and N 2 -adsorption–desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag 3 PO 4 /SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag 3 PO 4 loading on the SBA-15 catalyst will not result in the extra environment and health problems and reduce the cost of wastewater treatment

  19. Biosynthesis and regulation of coronatine, a non-host-specific phytotoxin produced by Pseudomonas syringae.

    Science.gov (United States)

    Bender, C L; Palmer, D A; Peñaloza-Vázquez, A; Rangaswamy, V; Ullrich, M

    1998-01-01

    Many P. syringae pathovars are known to produce low-molecular-weight, diffusible toxins in infected host plants. These phytotoxins reproduce some of the symptoms of the relevant bacterial disease and are effective at very low concentrations. Phytotoxins generally enhance the virulence of the P. syringae pathovar which produces them, but are not required for pathogenesis. Genes encoding phytotoxin production have been identified and cloned from several P. syringae pathovars. With the exception of coronatine, toxin biosynthetic gene clusters are generally chromosomally encoded. In several pathovars, the toxin biosynthetic gene cluster also contains a resistance gene which functions to protect the producing strain from the biocidal effects of the toxin. In the case of phaseolotoxin, a resistance gene (argK) has been utilized to engineer phaseolotoxin-resistant tobacco plants. Although P. syringae phytotoxins can induce very similar effects in plants (chlorosis and necrosis), their biosynthesis and mode of action can be quite different. Knowledge of the biosynthetic pathways to these toxins and the cloning of the structural genes for their biosynthesis has relevance to the development of new bioactive compounds with altered specificity. For example, polyketides constitute a huge family of structurally diverse natural products including antibiotics, chemotherapeutic compounds, and antiparasitics. Most of the research on polyketide synthesis in bacteria has focused on compounds synthesized by Streptomyces or other actinomycetes. It is also important to note that it is now possible to utilize a genetic rather than synthetic approach to biosynthesize novel polyketides with altered biological properties (Hutchinson and Fujii, 1995; Kao et al., 1994; Donadio et al., 1993; Katz and Donadio, 1993). Most of the reprogramming or engineering of novel polyketides has been done using actinomycete PKSs, but much of this technology could also be applied to polyketides synthesized by

  20. Chemical and biological characterization of phytotoxins produced by Diplodia species, fungi involved in forest plants diseases

    OpenAIRE

    Masi, Marco

    2013-01-01

    In recent years, numerous studies have been initiated in order to understand what are the microorganisms involved in forest plants diseases and the role played by phytotoxins produced in the pathogenesis processes. The aim of the present thesis was to study the fungi and the phytotoxins associated with canker disease of the Italian cypress (Cupressus sempervirens L.) and the branch dieback of juniper (Juniperus phoenicea L.) which are plant diseases with noteworthy social and economical impli...

  1. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    BELDEAN-GALEA M.S.

    2015-03-01

    Full Text Available In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative process, the highest degradation efficiencies were 19% for DEP, 50% for BBP, 84% for DEHP, 90% for DINP and 48% for DIDP, when the experiments were carried out using concentrations of 20 mg L-1 phthalate mixture, 100 mg L-1 H2O2, 10 mg L-1 Fe2+ at a pH value of 3, with a total reaction time of 30 minutes. For the Photo-Fenton oxidative process carried out in the same conditions as Fenton oxidative process, it was observed that after an irradiation time of 90 minutes under UV radiation the degradation efficiencies of phthalates were improved, being 22% for DEP, 71% for BBP, 97% for DEHP, 97% for DINP and 81% for DIDP.

  2. Molecular mechanisms of toxicity of important food-borne phytotoxins.

    Science.gov (United States)

    Rietjens, Ivonne M C M; Martena, Martijn J; Boersma, Marelle G; Spiegelenberg, Wim; Alink, Gerrit M

    2005-02-01

    At present, there is an increasing interest for plant ingredients and their use in drugs, for teas, or in food supplements. The present review describes the nature and mechanism of action of the phytochemicals presently receiving increased attention in the field of food toxicology. This relates to compounds including aristolochic acids, pyrrolizidine alkaloids, beta-carotene, coumarin, the alkenylbenzenes safrole, methyleugenol and estragole, ephedrine alkaloids and synephrine, kavalactones, anisatin, St. John's wort ingredients, cyanogenic glycosides, solanine and chaconine, thujone, and glycyrrhizinic acid. It can be concluded that several of these phytotoxins cause concern, because of their bioactivation to reactive alkylating intermediates that are able to react with cellular macromolecules causing cellular toxicity, and, upon their reaction with DNA, genotoxicity resulting in tumors. Another group of the phytotoxins presented is active without the requirement for bioactivation and, in most cases, these compounds appear to act as neurotoxins interacting with one of the neurotransmitter systems. Altogether, the examples presented illustrate that natural does not equal safe and that in modern society adverse health effects, upon either acute or chronic exposure to phytochemicals, can occur as a result of use of plant- or herb-based foods, teas, or other extracts.

  3. Omics methods for probing the mode of action of natural phytotoxins

    Science.gov (United States)

    For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics...

  4. Degradation of phthalate in aqueous solution by advanced oxidation process, photo-fenton

    International Nuclear Information System (INIS)

    Trabelsi, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.

    2009-01-01

    A photochemical method for degradation of persistent organic pollutants present in liquid effluents from the plastic industry and in the leaching described. This method, called P hoto-Fenton i nvolves the generation of radicals hydroxyl coupling between the Fenton reaction and photochemistry, OH radicals. Thus formed react with very high speeds, organic substances pollutants leading to their oxidation to total mineralization. In this study, we applied the process photo-Fenton treatment Plasticizers, Phthalates. For this, optimization of experimental parameters (namely the relationship between the concentrations of hydrogen peroxide and iron concentration catalyst) was performed. Under optimal conditions and determined the kinetics mineralization of phthalic anhydride by OH was studied. The overall results confirm the effectiveness of photo-Fenton process for the decontamination of liquid effluents responsible for persistent organic pollutants (Pop's).

  5. Study of the degradation performance (TOC, BOD, and toxicity) of bisphenol A by the photo-Fenton process.

    Science.gov (United States)

    Pérez-Moya, M; Kaisto, T; Navarro, M; Del Valle, L J

    2017-03-01

    Degradation of bisphenol A (BPA, 0.5 L, 30 mg L -1 ) was studied by photo-Fenton treatment, while Fenton reagents were variables. The efficiency of the degradation process was evaluated by the reduction of total organic carbon (TOC), the biochemical oxygen demand (BOD), and toxicity. For toxicity analysis, bacterial methods were found infeasible, but the in vitro assay of VERO cells culture was successfully applied. Experiments according to a 2 2 design of experiments (DOE) with star points and three center points for statistical validity allowed selecting those process conditions (Fe(II) and H 2 O 2 load) that maximized the process performance. Photo-Fenton process effectively eliminated BPA and partly degraded its by-products (residual TOC TOC = 92 %) was attained. Toxicity was also detected to 50 % of cellular mortality even at long reaction times. However, 40.25 mg L -1 of H 2 O 2 decreased residual TOC to 70 % while cell mortality decreased down to 25 %. With more H 2 O 2 , the residual TOC decreased down to 15 % but cell mortality remained within the 20-25 % level. Photo-Fenton increased the biodegradability and reduced the toxicity of the studied sample.

  6. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: assessment of acute toxicity and transformation products.

    Science.gov (United States)

    da Costa, Elizângela Pinheiro; Bottrel, Sue Ellen C; Starling, Maria Clara V M; Leão, Mônica M D; Amorim, Camila Costa

    2018-05-08

    This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UV λ > 254nm and UV-Vis λ > 320nm ). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe 2+ and H 2 O 2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H 2 O 2 /UV λ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L -1 ), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.

  7. PHOTO-CATALYST DEGRADATION OF TARTRAZINE COMPOUND IN WASTEWATER USING TiO2 AND UV LIGHT

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2013-12-01

    Full Text Available Organic contaminants present in industrial wastewater are of major concern with respect to the health of the general public. Photo-catalytic process, one of the Advanced Oxidation Processes, is a promising technology for remediation of organic pollutants at ambient conditions. Photo-catalytic processes in the presence of TiO2 provide an interesting method to destroy hazardous organic contaminants. The experimental results showed that considerable degradation of Tartrazine organic compound has been achieved by combination of TiO2 and UV light, the process followed first order kinetics. The results showed that the increased level of TiO2 concentration does not necessarily increase the rate of degradation of organic compounds. Also, it was found that the higher the TiO2 concentrations the higher the pH values and more oscillatory behaviors were observed. Not much effect has been noted on the process due to temperature variation.

  8. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    Science.gov (United States)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation

  9. A novel visible light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin, E-mail: wldai@fudan.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • Highly efficient visible-light-driven Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. • Application in the photo-degradation of RhB. • Synthesis from a facile and simple colloidal method. • 20%-Ag{sub 3}PO{sub 4}/SBA-15 shows 8 times faster degradation rate than Ag{sub 3}PO{sub 4}. • Super stability and recycling ability. - Abstract: A novel visible light-driven environmental-benign Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite increases by 3 times compared with that of the Ag{sub 3}PO{sub 4} particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag{sub 3}PO{sub 4} nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag{sub 3}PO{sub 4} loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag{sub 3}PO{sub 4}/SBA-15. Compared to pure Ag{sub 3}PO{sub 4} nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag{sub 3}PO{sub 4}/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and N{sub 2}-adsorption–desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag{sub 3}PO{sub 4}/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag{sub 3}PO{sub 4} loading on the SBA-15 catalyst will not result in the extra environment and health

  10. Degradation of estrone in aqueous solution by photo-Fenton system

    International Nuclear Information System (INIS)

    Feng Xianghua; Ding Shimin; Tu Jianfeng; Wu Feng; Deng Nansheng

    2005-01-01

    Photodegradation of estrone (E1) in aqueous solutions by UV-VIS/Fe(III)/H 2 O 2 system (photo-Fenton system) was preliminarily investigated under a 250-W metal halide lamp (λ≥313 nm). The influences such as initial pH value, initial concentration of Fe(III), H 2 O 2 and E1 on degradation efficiency of E1 were discussed in detail. The results indicated that E1 could be decomposed efficiently in UV-VIS/Fe(III)/H 2 O 2 system. After 160-min irradiation, the photodegradation efficiency of 18.5 μmol L -1 E1 reached 98.4% in the solution containing 20.8 μmol L -1 Fe(III), and 1664 μmol L -1 H 2 O 2 at initial pH value 3.0. The degradation efficiencies of E1 were dependent on initial pH value, Fe (III) concentration and H 2 O 2 concentration. The degradation of four estrogens estrone (E1), estradiol (E2), 17α-ethynylestradiol (EE2) and diethylstibestrol (DES) in UV-VIS/Fe(III)/H 2 O 2 system were also conducted. Under the conditions of pH 3.0, the E1 apparent kinetics equation -dC E1 /dt=0.00093[H 2 O 2 ] 0.47 [Fe(III)] 0.63 [E1] 0.24 (r=0.9935, n=11) was obtained. The E1 mineralization efficiency was lower than degradation efficiency under the same conditions, which implied the mineralization occurred probably only at aromatic ring. There are several intermediate products produced during the course of E1 degradation. The comparison of the degradation efficiencies of E1, E2, EE2 and DES degradation in UV-VIS/Fe(III)/H 2 O 2 system were also conducted, and the relative degradability among different estrogens were followed the sequence: DES>E2>EE2>E1

  11. Session 6: photo-catalytic degradation of Toluene using sunlight-type excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerte, A.; Hernandez-Alonso, M.D.; Martinez-Arias, A.; Conesa, J.C.; Soria, J.; Fernandez-Garcia, M. [Instituto de Catalisis y Petroleoquimica, CSIC, -Madrid (Spain)

    2004-07-01

    In this report we investigate the doping of anatase-TiO{sub 2} with nine different cations. It is shown that W can be one of the best options for toluene photo-degradation using sunlight-type excitation. Thermal and hydrothermal treatments were applied to amorphous Ti-W mixed oxide precursors with varying W:Ti atomic ratio for obtaining nano-structured particles having different properties. All Ti-W precursors were prepared by a microemulsion method and the mixed oxides characterized by using XRD, XPS, as well as XAFS, Raman and UV-Vis Spectroscopies. (authors)

  12. Synthesis and Activity of Grape Wood Phytotoxins and Related Compounds

    OpenAIRE

    S. Perrin-Cherioux; E. Abou-Mansour; R. Tabacchi

    2004-01-01

    The synthesis of analogues and derivatives of two o-hydroxyphenylacetylenes, eutypine and sterehirsutinal, the main phytotoxins isolated from the culture medium of Eutypa lata and Stereum hirsutum, is reported. Two means of synthesis are described, based on cyclisation, oxidation, oxidative decarboxylation or reduction reactions, and producing o-hydroxyphenylacetylene or benzofuran derivatives. Some of these synthetic compounds were tested on grapevine callus in order to compare t...

  13. Fungal Phytotoxins in Sustainable Weed Management.

    Science.gov (United States)

    Vurro, Maurizio; Boari, Angela; Casella, Francesca; Zonno, Maria Chiara

    2018-01-01

    Fungal phytotoxins are natural secondary metabolites produced by plant pathogenic fungi during host-pathogen interactions. They have received considerable particular attention for elucidating disease etiology, and consequently to design strategies for disease control. Due to wide differences in their chemical structures, these toxic metabolites have different ecological and environmental roles and mechanisms of action. This review aims at summarizing the studies on the possible use of these metabolites as tools in biological and integrated weed management, e.g. as: novel and environmentally friendly herbicides; lead for novel compounds; sources of novel mechanisms of action. Moreover, the limiting factors for utilizing those metabolites in practice will also be briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Synthesis and Activity of Grape Wood Phytotoxins and Related Compounds

    Directory of Open Access Journals (Sweden)

    S. Perrin-Cherioux

    2004-04-01

    Full Text Available The synthesis of analogues and derivatives of two o-hydroxyphenylacetylenes, eutypine and sterehirsutinal, the main phytotoxins isolated from the culture medium of Eutypa lata and Stereum hirsutum, is reported. Two means of synthesis are described, based on cyclisation, oxidation, oxidative decarboxylation or reduction reactions, and producing o-hydroxyphenylacetylene or benzofuran derivatives. Some of these synthetic compounds were tested on grapevine callus in order to compare their toxicity with the natural analogues.

  15. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry

    Science.gov (United States)

    Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.

    2017-12-01

    Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.

  16. Fe(III/TiO2-Montmorillonite Photocatalyst in Photo-Fenton-Like Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2015-01-01

    Full Text Available A photodegradation process of methylene blue (MB in aqueous solution using Fe(III/TiO2-montmorillonite photocatalyst is presented. The photocatalyst material was prepared using Indonesian natural montmorillonite in TiO2 pillarization process followed by Fe(III ion exchange. Kinetic study on MB degradation was conducted and evaluated by three kinetic models: the pseudo-first- and second-order equations and the Elovich equation. From the results, it is concluded that the degradation under the photo-Fenton-like process utilizing Fe(III/TiO2-montmorillonite photocatalyst conformed to the Elovich kinetic model.

  17. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  18. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study

    International Nuclear Information System (INIS)

    Kusic, Hrvoje; Koprivanac, Natalija; Bozic, Ana Loncaric; Selanec, Iva

    2006-01-01

    In this study the application of advanced oxidation processes (AOPs), dark Fenton and photo-assisted Fenton type processes; Fe 2+ /H 2 O 2 , Fe 3+ /H 2 O 2 , Fe 0 /H 2 O 2 , UV/Fe 2+ /H 2 O 2 , UV/Fe 3+ /H 2 O 2 and UV/Fe 0 /H 2 O 2 , for degradation of phenol as a model organic pollutant in the wastewater was investigated. A detail kinetic modeling which describes the degradation of phenol was performed. Mathematical models which predict phenol decomposition and formation of primary oxidation by-products: catechol, hydroquinone and benzoquinone, by applied processes were developed. The study also consist the modeling of mineralization kinetic of the phenol solution by applied AOPs. This part, besides well known reactions of Fenton and photo-Fenton chemistry, involves additional reactions which describe removal of iron from catalytic cycle through formation of ferric complexes and its regeneration induced by UV radiation. Phenol decomposition kinetic was monitored by HPLC analysis and total organic carbon content measurements (TOC). Complete phenol removal was obtained by all applied processes. Residual TOC by applied Fenton type processes ranged between 60.2 and 44.7%, while the efficiency of those processes was significantly enhanced in the presence of UV light, where residual TOC ranged between 15.2 and 2.4%

  19. Aqueous degradation kinetics of pharmaceutical drug diclofenac by photo catalysis using nano structured titania–zirconia composite catalyst

    International Nuclear Information System (INIS)

    Das, L.; Barodia, S. K.; Sengupta, S.; Basu, J. K.

    2015-01-01

    Diclofenac is an anti-inflammatory pharmaceutical drug and its presence in a trace amount in waste water makes severe environmental pollution. The degradation of diclofenac was investigated by a photo catalytic process in presence of ultra violet irradiation at room temperature using titania and titania-zirconia nano composite catalysts in a batch reactor. The composite catalyst was prepared by sol-gel method and characterized by X-ray diffraction, transmission electron microscopy as well as BET surface area analyzer. The effect of various process parameters such as catalyst loading, initial concentration of diclofenac and p H of the experimental solution was observed on the degradation of diclofenac. The titania-zirconia nano composites exhibited reasonably higher photo catalytic activity than that of anatase form of titania without zirconia. The maximum removal of diclofenac of about 92.41% was achieved using Zr/Ti mass ratio of 11.8 wt% composite catalyst. A rate equation was proposed for the degradation of diclofenac using the composite catalyst. The values of rate constant (kc) and adsorption equilibrium constant (K1) were found to vary with the catalyst content in the reaction mixture.

  20. High-efficiency and conveniently recyclable photo-catalysts for dye degradation based on urchin-like CuO microparticle/polymer hybrid composites

    Science.gov (United States)

    Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng

    2018-05-01

    In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.

  1. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy

    Science.gov (United States)

    Pasparakis, George; Manouras, Theodore; Vamvakaki, Maria; Argitis, Panagiotis

    2014-04-01

    Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis.

  2. Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan, E-mail: jiedeng05@sina.com [School of Environment, Guang Xi University, Nanning 530004 (China); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Yankui; Wang, Yinghui [School of Environment, Guang Xi University, Nanning 530004 (China)

    2013-01-15

    Highlights: ► The photo-Fenton-like reaction and membrane separation was coupled. ► FeVO{sub 4} was used as catalyst in the PFM reactor. ► Dynamics simulation would direct the actual application of the reactor. -- Abstract: To resolve the continuously reuse problem of fine catalysts, a new reactor was investigated by coupling the heterogeneous photo-Fenton-like oxidation with membrane separation. The reactor consisted of a Xe lamp, a submerged membrane module and FeVO{sub 4} as catalyst with high activity. Results showed that the catalyst was successfully left in the reactor. It was proved by the kinetics study of membrane fouling that the avoidless membrane fouling was brought mainly by surface cake, at catalyst concentration of 4 g/L, it accounted for more than 90% of the total resistance. The kinetics study of catalytic degradation of AO II under sub-critical flux showed the optimal concentration of catalyst was 0.5 g/L and under this concentration the membrane fouling was negligible. For a residence time of 60 min, the degradation efficiency of AO II reached more than 99% and the chemical oxygen demand (COD) removal efficiency was as high as 91%. The model of continuous stirred tank reactor could predict well for the degradation which was consistent with hydrodynamics study. Moreover, the PFM reactor shows a long-term behavior with both membrane and catalyst in it and merits consideration for scaled-up trials.

  3. Mevalocidin: a novel, phloem mobile phytotoxin from Fusarium DA056446 and Rosellinia DA092917.

    Science.gov (United States)

    Gerwick, B Clifford; Brewster, William K; Deboer, Gerrit J; Fields, Steve C; Graupner, Paul R; Hahn, Donald R; Pearce, Cedric J; Schmitzer, Paul R; Webster, Jeffery D

    2013-02-01

    A multiyear effort to identify new natural products was built on a hypothesis that both phytotoxins from plant pathogens and antimicrobial compounds might demonstrate herbicidal activity. The discovery of one such compound, mevalocidin, is described in the current report. Mevalocidin was discovered from static cultures of two unrelated fungal isolates designated Rosellinia DA092917 and Fusarium DA056446. The chemical structure was confirmed by independent synthesis. Mevalocidin demonstrated broad spectrum post-emergence activity on grasses and broadleaves and produced a unique set of visual symptoms on treated plants suggesting a novel mode of action. Mevalocidin was rapidly absorbed in a representative grass and broadleaf plant. Translocation occurred from the treated leaf to other plant parts including roots confirming phloem as well as xylem mobility. By 24 hr after application, over 20 % had been redistributed through-out the plant. Mevalocidin is a unique phytotoxin based on its chemistry, with the uncommon attribute of demonstrating both xylem and phloem mobility in grass and broadleaf plants.

  4. Changes of plasma IL-6 and TNF-α levels during peri-operative period in patients undergoing laser photo-coagulation of greater saphenous varicosities

    International Nuclear Information System (INIS)

    Wang Taihan; Wang Chunxi

    2005-01-01

    Objective: To investigate the plasma levels of IL-6 and TNF-α during peri-operative period in patients undergoing laser photocoagulation of greater saphenous varicosities. Methods: Plasma IL-6 and TNF-α levels were determined with RIA before operation and 1, 3, 7, 14 days post-operatively in 110 patients with greater saphenous vein varicosity undergoing different forms of treatment (intravascular laser photo-coagulation 43, photo-coagulation combined with venous valve repair 35, high ligation and segmental stripping 32). Skin trophic disturbances were present in 56 of the 110 patients. Plasma IL-6 and TNF-α levels were also measured in 33 controls. Results: The plasma IL-6 and TNF-α levels in patients with skin trophic disturbances were significantly higher than those in controls (P<0.01), while levels in patients without skin lesions were not much changed. The plasma IL-6 and TNF-α levels were increased at first and dropped later to approaching pre-operative value by d14 in all the 110 patients after operation, however, the amount of increase was least and the normalization was also soonest in the simple photo-coagulation group, the reverse was true for the conventional operation group. Conclusion: Laser photo-coagulation is least stressful among the three types of operation and magnitude of changes of plasma IL-6 and TNF-α levels correctly reflects the intensity of stress. (authors)

  5. Reinvestigation of structure of porritoxin, a phytotoxin of Alternaria porri.

    Science.gov (United States)

    Horiuchi, Masayuki; Maoka, Takashi; Iwase, Noriyasu; Ohnishi, Keiichiro

    2002-08-01

    The structure of porritoxin, a phytotoxin of Alternaria porri, was reinvestigated by detailed 2D NMR analysis including (1)H-(13)C and (1)H-(15)N HMBC experiments. The structure of porritoxin was determined to be 2-(2'-hydroxyethyl)-4-methoxy-5-methyl-6-(3' '-methyl-2' '-butenyloxy)-2,3-dihydro-1H-isoindol-1-one (1). Thus our previous proposed structure, 8-(3',3'-dimethylallyloxy)-10-methoxy-9-methyl-1H-3,4-dihydro-2,5-benzoxazocin-6(5H)-one (2), is incorrect.

  6. Synthesis and application of multiple rods gold-zinc oxide nano structures in the photo catalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B.

    2015-01-01

    Zinc oxide and gold-zinc oxide (Au-Zn O) nano structures with multiple rods (multi pods) morphology were successfully prepared. Au-Zn O nano structures were synthesized via a simple precipitation route method in the presence of oligo aniline-coated gold nanoparticles. The Au-Zn O catalyst obtained was applied for the degradation of methyl orange in an aqueous solution under UV irradiation Effects of the operational parameters such as the solution p H, amount of photocatalyst, and dye concentration on the photo catalytic degradation and decolorisation of methyl orange were studied. Detailed studies including kinetic study and regeneration of catalyst were carried out on the optimal conditions for the photodegradation of methyl orange by Au-Zn O multi pods in aqueous solution. Effect of foreign species on the photodegradation of methyl orange was also studied. An enhancement of the photo catalytic activities for photodegradation of methyl orange was observed when the gold nanoparticles were loaded on the zinc oxide multi pods. The proposed catalyst was applied for the degradation of methyl orange in synthetic wastewater samples with satisfactory results.

  7. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Ananna; Kim, Donghwi [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Yim, Un Hyuk; Shim, Won Joon [Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834 (Korea, Republic of); Kim, Sunghwan, E-mail: sunghwank@knu.ac.kr [Kyungpook National University, Department of Chemistry, Daegu 702-701 (Korea, Republic of); Green Nano Center, Department of Chemistry, Daegu 702-701 (Korea, Republic of)

    2015-10-15

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N{sub 1} class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S{sub 1}O{sub 1} compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N{sup +}· and [N − H + D]{sup +} ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H]{sup +} and [N + D]{sup +} ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S{sub 1}O{sub 1} + H]{sup +} and [S{sub 1}O{sub 1} + D]{sup +} ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S{sub 1} class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.

  8. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Islam, Ananna; Kim, Donghwi; Yim, Un Hyuk; Shim, Won Joon; Kim, Sunghwan

    2015-01-01

    Highlights: • We examined source crude oil and weathered oils from M/V Hebei accident. • APPI hydrogen/deuterium exchange ultrahigh mass spectrometry was applied. • N 1 class compounds with 2° and/or 3° amine decrease in larger scale than pyridines. • Preferential degradation of nitrogen-containing compounds was confirmed. • Significant increase in S 1 O 1 compounds was observed as the weathering proceeds. - Abstract: The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N + · and [N − H + D] + ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N + H] + and [N + D] + ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S 1 O 1 + H] + and [S 1 O 1 + D] + ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S 1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components

  9. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol.

    Science.gov (United States)

    Romero, V; Acevedo, S; Marco, P; Giménez, J; Esplugas, S

    2016-01-01

    The need for acidification in the Fenton and photo-Fenton process is often outlined as one of its major drawbacks, thus in this work the acidification of the Metoprolol (MET) is avoided by the addition of resorcinol (RES), which is used to simulate model organic matter. The experiments were carried out at natural pH (6.2) with different Fe(2+) (1, 2.5, 5, and 10 mg/L) and H2O2 (25, 50, 125 and 150 mg/L) concentrations. The performance of MET and RES degradation was assessed along the reaction time. Working with the highest concentrations (5 and 10 mg/L of ferrous iron and 125 and 150 mg/L of H2O2) more than 90% of MET and RES removals were reached within 50 and 20 min of treatment, respectively, by Fenton process. However a low mineralization was achieved in both cases, likely, due to by-products accumulation. Regarding to photo-Fenton process, within 3 min with the highest iron and hydrogen peroxide concentrations, a complete MET degradation was obtained and 95% of RES conversion was achieved. Parameters such Total Organic Carbon, Chemical Oxygen Demand, and AOS were measured. Intermediates were identified and MET degradation path was proposed in the presence of resorcinol. Finally, a comparison between Fenton and photo-Fenton processes at acid pH and at initial circumneutral pH was discussed. The positive effect of RES on Fenton and photo-Fenton systems has been confirmed, allowing the work at circumneutral pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    Science.gov (United States)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  11. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevate...

  12. Cellular protein receptors of maculosin, a host specific phytotoxin of spotted knapweed (Centaurea maculosa L.).

    Science.gov (United States)

    Park, S H; Strobel, G A

    1994-01-05

    Maculosin (the diketopiperazine, cyclo (L-Pro-L-Tyr)) is a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa L.). Receptors for this phytotoxin have been isolated from spotted knapweed. Knapweed leaves possess most of the maculosin-binding activity in the cytosolic fraction. However, activity was also observed in the whole membrane fraction of the leaf. The binding component of the cytosolic fraction was identified as a protein(s) because of its heat-lability and sensitivity to proteases. A 16-fold purification of a toxin-binding protein was carried out by ammonium sulfate fractionation, and Sephadex G-200, and maculosin-affinity column chromatography. The affinity column was prepared with epoxy activated Sepharose 6B to which the phenolic group of maculosin was attached. The receptor was estimated to contain more than one binding protein by native and SDS-PAGE. At least one of the maculosin-binding proteins was identified as ribulose-1,5-biphosphate carboxylase (RuBPcase).

  13. Anthraquinone derivatives as organic stabilizers for rigid poly (vinyl chloride) against photo-degradation

    International Nuclear Information System (INIS)

    Sabaa, M.W.; Mohamed, R.R.

    2005-01-01

    Anthraquinone derivatives have been prepared and investigated as photo-stabilizers for rigid PVC by measuring the extent of weight loss (%), the amount of gel formation as well as the intrinsic viscosity of the soluble fractions of the degraded polymer. The results indicated a reasonable stabilizing effect of these derivatives compared with UV-commorcially used stabilizers. A synergistic effect is achieved when the Anthraquinone derivatives are mixed with UV-absorbers in a weight ratio of 75 % of investigated organic stabilizer and 25 % of reference stabilizer. A probable radical mechanism is proposed to account for the stabilizing action of the organic investigated materials

  14. Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction.

    Science.gov (United States)

    Colombo, Renata; Ferreira, Tanare C R; Alves, Suellen A; Carneiro, Renato L; Lanza, Marcos R V

    2013-03-30

    Lambda-cyhalothrin is a potent pyrethroid insecticide used widely in pest management. Detectable levels of the pyrethroid in agricultural watersheds are potentially toxic to aquatic organisms. There is little information in the scientific literature about degradation in aqueous media of the Lambda-cyhalothrin by Advanced Oxidative Process. A mathematical approach for the degradation of this compound has not yet been fully explored… The Central composite design (CCD) and response surface method (RSM) were applied to evaluate and optimize the interactive effects of two operating variables. The initial dosages of H2O2 and Fe(2+) on photo-Fenton degradation of an aqueous solution of Lambda-cyhalothrin in a recirculation flow-through UV photoreactor were used. The remaining concentration of Lambda-cyhalothrin (y1) and the percentage removal of total organic carbon (y2) were the monitored factors since they are dependent parameters of y1 and y2. According to analysis of variances (ANOVA) results, two proposed models can be used to navigate the design space with regression coefficient R(2) - 0.834 and 0.843 for y1 and y2, respectively. A multi-response optimization procedure, based on the global desirability of the factors, was performed to establish the best concentrations of hydrogen peroxide and ferrous sulfate that would allow the most efficient degradation of Lambda-cyhalothrin concomitant with a maximal removal of total organic carbon. The global desirability surface revealed that 0.295 mmol L(-1) of ferrous sulfate and 3.85 mmol L(-1) of hydrogen peroxide were close to the optimum conditions to satisfy both factors simultaneously using minimal amounts of reagents. These photo-Fenton conditions promoted 100% of Lambda-cyhalothrin degradation and 79.83% TOC removal (mineralization) in 120 min of reaction time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  16. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Islam, Ananna; Cho, Yunju; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2013-01-01

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S 1 class in the saturate fraction and increase of S 1 O 1 class compounds with high DBE values in resin fraction. Levels of N 1 and N 1 O 1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  17. Methylene blue and 4-chloro phenol degradation by photo catalysis with ultraviolet light, using TiO{sub 2} as catalyst; Degradacion de azul de metileno y 4-clorofenol por fotocatalisis con luz ultravioleta, utilizando TiO{sub 2} como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez H, A.

    2010-07-01

    Within the decontamination and remediation processes of the contaminated waters, as the refining or tertiary processes are the Advanced Oxidation Technologies. Among this technology is the heterogeneous photo catalysis, which is the object of this work to de grate 4-chloro phenol and methylene blue, using as semiconductor commercial titanium dioxide (TiO{sub 2}). On the degradation the combination is exposed in the use of TiO{sub 2} under gamma irradiation of {sup 60}Co at different doses 400, 500, 800, 1000 and 1500 kGy. The organic compounds degradation was determined and the results show that to more radiation dose, the material is modified in such way that shows a major absorption of the organic compound, in the same way it is determined that to more dose which undergoes the TiO{sub 2} generally a major degradation is observed, but also it is has to give a more time of previous stabilization, for that the degradation is observed of better way. (Author)

  18. Photo-oxidative degradation of Chicago Sky Blue azo dye on transition metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Slote, J.; Luo, J.; Hepel, M. [State Univ. of New York at Potsdam, NY (United States). Dept. of Chemistry; Zhong, C.-J. [State Univ. of New York at Binghamton, NY (United States). Dept. of Chemistry

    2003-07-01

    Every day, an average of 128 tons of dye staffs are discharged into waste water, causing environmental harm. The authors discussed the photo-electrical method for separating the semiconductor catalyst particles from the solution and direct control of the interfacial potential as an efficient and convenient method for degrading organic dyes. Photocurrent-potential measurements were made using a standard photoelectrochemical setup. It involved a microcomputer-controlled potentiostat and a 500 watts (W) quartz halogen lamp as the illumination source. The measurement of the photocurrent represented the difference between the current under illumination and current in the dark. Three-electrode electrochemical cells were used for all experiments. The best results concerning the degradation of dyes were obtained with tungsten oxides (WO3) and molybdenum oxides (MoO3) electrodes. Confirmation that the dyes had been fully degraded was obtained by performing absorbance measurements and a high performance liquid chromatography (HPLC) analysis of the samples after degradation. The effect on the rate of decolorisation process of Chicago Sky Blue, a diazo dye, and other dyes, of pH, potential, concentration, and type of supporting electrolyte was examined. The supporting electrolyte was found to have a strong influence on the degradation of diazo dye. Illumination with visible light yielded lower degradation rates than that with ultraviolet-visible light. It appears that Chicago Sky Blue dye sensitizes the semiconductor to expand the absorption of light energy well into visible range, despite the photoelectrochemical degradation of the dye being mainly induced by the ultraviolet light. The authors proposed the mechanisms of the reactions occurring during the photodegradation process. 6 refs., 1 fig.

  19. Biodegradation of photo-oxidized lignite and characterization of the products

    Science.gov (United States)

    Li, Jiantao; Liu, Xiangrong; Yue, Zilin; Zhang, Yaowen

    2018-01-01

    Biodegradation of photo-oxidized Inner Mongolia lignite by pseudomonas aeruginosa was studied and the degradation percentage reached 56.27%, while the corresponding degradation percentage of the strain degrading raw Inner Mongolia lignite is only 23.16%. The degradation products were characterized. Proximate and ultimate analyses show that the higher oxygen content increased by photo-oxidation pretreatment maybe promoted the degradation process. Ultraviolet spectroscopy (UV) analysis of the liquid product reveals that it contains unsaturated structures and aromatic rings are the main structure units. Gas chromatography-mass spectrometry (GC-MS) analysis indicates that the main components of the ethyl acetate extracts are low molecular weight organic compounds, such as ketones, acids, hydrocarbons, esters and alcohols. Infrared spectroscopy (IR) analysis of raw lignite, photo-oxidized lignite and residual lignite demonstrates that the absorption peaks of functional groups in residual lignite disappeared or weakened obviously. Scanning electron microscopy (SEM) analysis manifests that small holes appear in photo-oxidized lignite surface, which may be promote the degradation process and this is only from the physical morphology aspects, so it can be inferred from the tests and analyses results that the more important reason of the high degradation percentage is mostly that the photo-oxidation pretreatment changes the chemical structures of lignite.

  20. Heterogeneous photo-Fenton degradation of acid red B over Fe{sub 2}O{sub 3} supported on activated carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Huachun [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,China (China); Wang, Aiming [Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University,China (China); Liu, Ruiping, E-mail: liuruiping@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,China (China); Liu, Huijuan; Qu, Jiuhui [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,China (China)

    2015-03-21

    Highlights: • Fe{sub 2}O{sub 3} with small particle size was highly dispersed on activated carbon fiber. • Fe{sub 2}O{sub 3}/ACF exhibited higher photo-Fenton activity toward ARB degradation. • Fe{sub 2}O{sub 3}/ACF has an excellent long-term stability without obvious deactivation. - Abstract: Fe{sub 2}O{sub 3} supported on activated carbon fiber (Fe{sub 2}O{sub 3}/ACF) was prepared via an impregnation method and characterized by X-ray diffraction, scanning electron microscopy and BET analysis. The results indicated that Fe{sub 2}O{sub 3} with small particle size was highly dispersed on the surface of the ACF and the introduction of Fe{sub 2}O{sub 3} did not change the ACF pore structure. Fe{sub 2}O{sub 3}/ACF exhibited a higher Fenton efficiency for the degradation of acid red B (ARB), especially under simulated solar irradiation. Complete decoloration of the ARB solution and 43% removal of TOC could be achieved within 200 min under optimal conditions. It was verified that more ·OH radicals were generated in the photo-assisted Fenton process and involved as active species in ARB degradation. FTIR analysis indicated that the degradation of ARB was initiated through the cleavage of −N=N−, followed by hydroxylation and opening of phenyl rings to form aliphatic acids, and further oxidation of aliphatic acids would produce CO{sub 2} and H{sub 2}O. Moreover, Fe{sub 2}O{sub 3}/ACF maintained its activity after being reused 4 times and the release of iron from the catalyst was found to be insignificant during the Fenton and photo-Fenton processes, indicating that Fe{sub 2}O{sub 3}/ACF had good long-term stability.

  1. Scalable total synthesis and comprehensive structure–activity relationship studies of the phytotoxin coronatine

    OpenAIRE

    Littleson, Mairi M.; Baker, Christopher M.; Dalençon, Anne J.; Frye, Elizabeth C.; Jamieson, Craig; Kennedy, Alan R.; Ling, Kenneth B.; McLachlan, Matthew M.; Montgomery, Mark G.; Russell, Claire J.; Watson, Allan J. B.

    2018-01-01

    The authors thank the EPSRC UK National Mass Spectrometry Facility at Swansea University for analyses, the University of Strathclyde for PhD studentship (M.M.L), and Syngenta for financial and chemical support. Natural phytotoxins are valuable starting points for agrochemical design. Acting as a jasmonate agonist, coronatine represents an attractive herbicidal lead with novel mode of action, and has been an important synthetic target for agrochemical development. However, both restricted a...

  2. Cardiac troponin I degradation in serum of patients with hypertrophic obstructive cardiomyopathy undergoing percutaneous septal ablation

    DEFF Research Database (Denmark)

    Madsen, Lene H; Lund, Terje; Grieg, Zanina

    2009-01-01

    prior to initiation of PTSMA and up to 50 h following the procedure. Western blot analysis was performed with subsequent analysis of relative intensities of the bands as compared to the degradation of cTnI in STEMI patients from the ASSENT-2 troponin substudy. RESULTS: We demonstrate intact cTnI and 9...... degradation products [molecular weight (MW) 12.0-23.5 kDa]. The bands were comparable in MW to degradation fragments in STEMI. Their early rise in intensity, occurring within few minutes after the alcohol injection, emphasizes how susceptible troponin bands are to chemical/ischemic insults. Moreover, two...... additional bands were visible in the PTSMA population. CONCLUSION: This work describes the degradation products of troponin I in HOCM patients undergoing PTSMA. The detected bands appear fast and are similar to degradations following STEMI. This model contributes to our knowledge of the degradation patterns...

  3. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)

    2005-10-01

    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  4. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    Science.gov (United States)

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata

    Science.gov (United States)

    Stierle, Andrea C.; Cardellina, John H.; Strobel, Gary A.

    1988-01-01

    Several diketopiperazines have been isolated from liquid cultures of Alternaria alternata, the causal agent of black leaf blight of spotted knapweed, Centaurea maculosa Lam. One of these compounds, maculosin [the diketopiperazine cyclo(-L-Pro-L-Tyr-)], was active in the nicked-leaf bioassay at 10-5 M; synthetic maculosin possessed chemical and biological activities identical to those of the natural product. Other diketopiperazines isolated from the fungus possessed either less activity or none at all. In tests against 19 plant species, maculosin was phytotoxic only to spotted knapweed. Thus maculosin is a host-specific phytotoxin from a weed pathogen. PMID:16593989

  6. [Phytotoxic activity of chernozem saprophytic micromycetes: specificity, sorption and stability of phytotoxins in soil].

    Science.gov (United States)

    Svistova, I D; Shcherbakov, A P; Frolova, L O

    2003-01-01

    Micromycetes of the complex of typical chernozem saprotrophic fungi released phytotoxic metabolites into medium. The metabolites displayed their phytotoxic activities directly in soil. Evaluation of the toxicities, range of biological effects activities, and stabilities of phytotoxins in soil and the rates of their biodegradation allowed the species that can serve as indicators of chernozem microbial toxicosis to be selected, namely, Aspergillus clavatus, Fusarium solani, Talaromyces flavus, Penicillium rubrum, and P. funiculosum.

  7. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dauskardt, Reinhold H. [Stanford Univ., CA (United States)

    2017-04-30

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Miller of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.

  8. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. IMPACT D’UN AGENT COMPLEXANT DU FER DANS LE PROCEDE DE PHOTO-FENTON SUR LA DEGRADATION DU 3-METHYLPHENOL EN PHASE HOMOGENE

    Directory of Open Access Journals (Sweden)

    Nassira SERAGHNI

    2017-12-01

    Full Text Available In this study we used 3-methylphenol (3MP as a pollutant model of phenols to study the effectiveness of the photo-Fenton Fe(IIIOx system. The preliminary study of the mixture 3MP-Fe(IIIOx-H2O2 in the absence of light and at room temperature allowed us to confirm the absence of interaction under our experimental conditions. However, the same system was studied in the presence of light (365 nm in order to study the photo-Fenton process. Various parameters (H2O2 concentrations and pH were tested in order to optimize the efficiency of the system in terms of degradation of 3MP. In order to understand the mechanism involved in radical inhibition experiments (•OH and HO2• / O2•- have been carried out. One of the important conclusions of this work is that the Fe(IIIOx complex plays a very positive role in the degradation of 3MP. In addition, we have also shown that this process is very efficient in the neutral pH range. This complex is really a very promising source of iron in the photo-Fenton processes.

  10. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe_2O_4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Al-Kahtani, Abdullah A.; Abou Taleb, Manal F.

    2016-01-01

    Highlights: • CS/CF/GONCs were synthesized via γ-irradiation and used as a heterogeneous photo-Fenton catalyst. • It can degrade Maxilon C.I. basic dye under sunlight irradiation. • A possible degradation pathway of Maxilon C.I. Basic was proposed. • The degradation of Maxilon follows pseudo-first-order kinetics. • The catalyst can be separated by an external magnetic field. • Cyclic degradation tests show the catalyst is highly active, stable and recoverable. - Abstract: CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H_2O_2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10 mM H_2O_2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal.

  11. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Spataru, S.

    2014-08-01

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevated stress temperature, their use to determine the maximum power at 25 degrees C standard test conditions (STC), and distribution statistics for determining degradation rates as a function of stress level. The semi-continuous data obtained by this method clearly show degradation curves of the maximum power, including an incubation phase, rates and extent of degradation, precise time to failure, and partial recovery. Stress tests were performed on crystalline silicon modules at 85% relative humidity and 60 degrees C, 72 degrees C, and 85 degrees C. Activation energy for the mean time to failure (1% relative) of 0.85 eV was determined and a mean time to failure of 8,000 h at 25 degrees C and 85% relative humidity is predicted. No clear trend in maximum degradation as a function of stress temperature was observed.

  12. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Varela, A R; Kyriakou, S; Manaia, C M; Fatta-Kassinos, D

    2012-11-01

    This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound.

    Science.gov (United States)

    Expósito, A J; Monteagudo, J M; Durán, A; San Martín, I; González, L

    2018-01-15

    The intensification of the solar photo-Fenton system with ferrioxalate photoactive complexes and ultrasound applied to the mineralization of 15mg/L carbamazepine aqueous solution (CBZ) was evaluated. The experiments were carried out in a solar compound parabolic collector (CPC) pilot plant reactor coupled to an ultrasonic processor. The dynamic behavior of hydroxyl radicals generated under the different studied reaction systems was discussed. The initial concentrations of hydrogen peroxide and ferrous/oxalic acid and pH were found to be the most significant variables (32.79%, 25.98% and 26.04%, respectively). Under the selected optimal conditions ([H 2 O 2 ] 0 =150mg/L; [Fe 2+ ] 0 =2.5mg/L/[(COOH) 2 ] 0 =12.1mg/L; pH=5) CBZ was fully degraded after 5min and 80% of TOC was removed using a solar photo-Fenton system intensified with ferrioxalate (SPFF). However, no improvement in the mineralization using SPFF process combined with ultrasound was observed. More mild pH conditions could be used in the SPFF system if compared to the traditional photo-Fenton (pH 3) acidic systems. Finally, a possible reaction pathway for the mineralization of CBZ by the SPFF system was proposed and therein discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Photo-induced reduction of flavin mononucleotide in aqueous solutions

    International Nuclear Information System (INIS)

    Song, S.-H.; Dick, B.; Penzkofer, A.

    2007-01-01

    The photo-induced reduction of flavin mononucleotide (FMN) in aqueous solutions is studied by absorption spectra measurement under aerobic and anaerobic conditions. Samples without exogenous reducing agent and with the exogenous reducing agents ethylene-diamine-tetraacetic acid (EDTA) and dithiothreitol (DTT) are investigated. Under anaerobic conditions the photo-induced reduction with and without reducing agents is irreversible. Under aerobic conditions the photo-reduction without added reducing agent is small compared to the photo-degradation, and the photo-reduction of FMN by the reducing agents is reversible (re-oxidation in the dark). During photo-excitation of FMN the dissolved oxygen is consumed by singlet oxygen formation and subsequent chemical reaction. After light switch-off slow re-oxidation (slow absorption recovery) occurs due to air in-diffusion from surface. EDTA degradation by FMN excitation leads to oxygen scavenging. The quantum efficiencies of photo-reduction under aerobic and anaerobic conditions are determined. The re-oxidation of reduced FMN under aerobic conditions and due to air injection is investigated

  15. Preparation of weak-light-driven TiO2-based catalysts via adsorbed-layer nanoreactor synthesis and enhancement of their photo-degradation performance in seawater

    Science.gov (United States)

    Wang, Ting; Xu, Zhi-yong; Zhu, Yi-chen; Wu, Li-guang; Yuan, Hao-xuan; Li, Chang-chun; Liu, Ya-yu; Cai, Jing

    2017-11-01

    Graphene oxide (GO) was first employed as a support in preparing TiO2 nanoparticles by adsorbed-layer nanoreactor synthesis (ALNS). Both TiO2 crystallization and GO reduction simultaneously occurred during solvothermal treatment with alcohol as a solvent. By transmission electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy, the results showed that TiO2 nanoparticles with less than 10 nm of size distributed very homogeneously on the GO surface. Tight interaction between TiO2 particles and GO surface could effectively inhibit the aggregation of TiO2 particles, during solvothermal treatment for anatase TiO2 formation. Alcohol could also reduce oxygenated functional groups on GO surface after solvothermal treatment. TiO2 particles with small size and the decrease in oxygenated functional groups on the GO surface both caused high separation efficiency of photo-generated charge carriers, thus resulting in high photo-degradation performance of catalysts. Strong phenol adsorption on photocatalyst was key to enhancing photo-degradation efficiency for phenol in seawater. Moreover, the change in catalyst structure was minimal at different temperatures of solvothermal treatment. But, the degradation rate and efficiency for phenol in seawater were obviously enhanced because of the sensitive structure-activity relationship of catalysts under weak-light irradiation.

  16. Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach

    Energy Technology Data Exchange (ETDEWEB)

    Kalal, Sangeeta; Ameta, Noopur; Kumar, Sudhish; Punjabi, Pinki Bala [M. L. Sukhadia University, Udaipur (India); Chauhan, Narendra Pal Singh [B. N. P. G. College, Udaipur (India); Ameta, Rakshit [PAHER University, Udaipur (India)

    2014-12-15

    The heterogeneous photo-Fenton like process is a green chemical pathway.. It has an edge over conventional Fenton and photo-Fenton processes as it does not require the removal of ferrous/ferric ions in the form of sludge. We prepared copper pyrovanadate or Volborthite (Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O) composite photocatalyst by wet chemical method. The photocatalyst was characterized by SEM, XRD, IR, TGA/DSC, EDX and BET. Experiments demonstrated that catalyst could effectively catalyze degradation of neutral red and azure-B in presence of H{sub 2}O{sub 2} in visible light. Moreover, the photo-Fenton-like catalytic activity of Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O was much higher than CuO and V{sub 2}O{sub 5}, when used alone as photocatalyst. The effect of variation of different parameters, i.e., pH, amount of photocatalyst, concentration of dye, amount of H{sub 2}O{sub 2} and light intensity was also investigated. The degradation was well fitted under pseudo-first-order reaction with a rate constant of 2.081x10{sup −4} sec{sup −1} and 3.876x10{sup −4} sec{sup −1} for neutral red and azure-B, respectively. Quality parameters of dye solutions before and after photo-Fenton degradation were also determined. A tentative mechanism involving •OH radical as an oxidant has been proposed. The high catalytic activity may be due to the Cu{sub 3}V{sub 2}(OH){sub 2}O{sub 7}·2H{sub 2}O shell, which not only increased the surface hydroxyl groups, but also enhanced the interfacial electron transfer.. The catalyst has been found to possess good recyclability.

  17. Role of copper pyrovanadate as heterogeneous photo-Fenton like catalyst for the degradation of neutral red and azure-B: An eco-friendly approach

    International Nuclear Information System (INIS)

    Kalal, Sangeeta; Ameta, Noopur; Kumar, Sudhish; Punjabi, Pinki Bala; Chauhan, Narendra Pal Singh; Ameta, Rakshit

    2014-01-01

    The heterogeneous photo-Fenton like process is a green chemical pathway.. It has an edge over conventional Fenton and photo-Fenton processes as it does not require the removal of ferrous/ferric ions in the form of sludge. We prepared copper pyrovanadate or Volborthite (Cu_3V_2(OH)_2O_7·2H_2O) composite photocatalyst by wet chemical method. The photocatalyst was characterized by SEM, XRD, IR, TGA/DSC, EDX and BET. Experiments demonstrated that catalyst could effectively catalyze degradation of neutral red and azure-B in presence of H_2O_2 in visible light. Moreover, the photo-Fenton-like catalytic activity of Cu_3V_2(OH)_2O_7·2H_2O was much higher than CuO and V_2O_5, when used alone as photocatalyst. The effect of variation of different parameters, i.e., pH, amount of photocatalyst, concentration of dye, amount of H_2O_2 and light intensity was also investigated. The degradation was well fitted under pseudo-first-order reaction with a rate constant of 2.081x10"−"4 sec"−"1 and 3.876x10"−"4 sec"−"1 for neutral red and azure-B, respectively. Quality parameters of dye solutions before and after photo-Fenton degradation were also determined. A tentative mechanism involving •OH radical as an oxidant has been proposed. The high catalytic activity may be due to the Cu_3V_2(OH)_2O_7·2H_2O shell, which not only increased the surface hydroxyl groups, but also enhanced the interfacial electron transfer.. The catalyst has been found to possess good recyclability

  18. Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Purna K. [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India); Sharma, Bhagyasmeeta [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Karbhal, Indrapal; Shelke, Manjusha V. [Academy of Scientific and Innovative Research (AcSIR) (India); Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-11008, Maharashtra (India); Das, Manash R., E-mail: mnshrdas@yahoo.com [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India)

    2017-03-05

    Highlights: • Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles. • Photocatalytic and photo-Fenton degradation of phenolic compounds. • An excellent reusability of the nanocomposite was observed up to ten cycles. - Abstract: Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe{sub 3}O{sub 4} nanoparticles (AG/Fe{sub 3}O{sub 4}) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe{sub 3}O{sub 4} nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe{sub 3}O{sub 4} nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70–120 min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50–80 min using AG/Fe{sub 3}O{sub 4} nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe{sub 3}O{sub 4} nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe{sub 3}O{sub 4} NPs. Furthermore, the remarkable reusability of the AG/Fe{sub 3}O{sub 4} nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds.

  19. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    International Nuclear Information System (INIS)

    Garcia-Montano, Julia; Torrades, Francesc; Garcia-Hortal, Jose A.; Domenech, Xavier; Peral, Jose

    2006-01-01

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l -1 ) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD 5 /COD), as well as the toxicity (EC 50 ), DOC, colour (Abs 543.5 ) and H 2 O 2 evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l -1 Fe(II) and 125 mg l -1 H 2 O 2 photo-Fenton pre-treatment and 1 day HRT in SBR

  20. The enhanced catalytic degradation of SiO{sub 2}/Fe{sub 3}O{sub 4}/C@TiO{sub 2} photo-Fenton system on p-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yanhui; Wang, Yechen; Yuan, Huili; Chen, Hang; Chen, Guowei; Shen, Junhai; Li, Liangchao, E-mail: sky52@zjnu.cn [Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry (China)

    2016-11-15

    Heterogeneous photo-Fenton SiO{sub 2}/Fe{sub 3}O{sub 4}/C@TiO{sub 2} (SFCT) catalyst with a core-multishell structure and a diameter of about 550 nm was successfully prepared and was characterized by scanning electron microscopy (SEM), TEM, XRD, Raman, and Fourier transform infrared (FT-IR). The results illustrated that anatase TiO{sub 2} coexisted with rutile TiO{sub 2}, in which the anatase phase was the main crystal phase. In addition, the catalytic activity of SFCT catalyst had been evaluated in the catalytic degradation on p-nitrophenol (PNP). The influence factors on the PNP degradation, including SFCT component ratio (m{sub SFC}/ m{sub TiO2}), H{sub 2}O{sub 2} dosage, solution pH, and PNP concentration, had been investigated. And the contrast experiments about the photo-Fenton catalytic mechanism revealed that the SFCT-2 catalyst possessed a superior activity in the neutral environment due to the optimal activity matching between Fe{sub 3}O{sub 4} and TiO{sub 2}, and it exhibited the stable catalytic performance after five successive recycles. Therefore, the SFCT-2 catalyst had a promising application for the photo-Fenton degradation of organic contaminant.

  1. Photo-degradation of basic green 1 and basic red 46 dyes in their binary solution by La2O3-Al2O3nanocomposite using first-order derivative spectra and experimental design methodology

    Science.gov (United States)

    Fahimirad, Bahareh; Asghari, Alireza; Rajabi, Maryam

    2017-05-01

    In this work, the lanthanum oxide-aluminum oxide (La2O3-Al2O3) nanocomposite is introduced as an efficient photocatalyst for the photo-degradation of the dyes basic green 1 (BG1) and basic red 46 (BR46) in their binary aqueous solution under the UV light irradiation. The properties of this catalyst are determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and UV-visible spectrophotometry. The first-order derivative spectra are used for the simultaneous analysis of the dyes in their binary solution. The screening investigations indicate that five parameters including the catalyst dosage, concentration of the dyes, irradiation time, and solution pH have significant effects on the photo-degradation of the dyes. The effects of these variables together with their interactions in the photo-degradation of the dyes are studied using the Box-Behnken design (BBD). Under the optimum experimental conditions, obtained via the desirability function, the photo-catalytic activities of La2O3-Al2O3 and pure Al2O3 are also investigated. The results obtained show an enhancement in the photo-catalytic activity when La2O3 nanoparticles are loaded on the surface of Al2O3 nanoparticles. The La2O3-Al2O3nanocomposite was synthesized as new photo-catalyst for the degradation of binary dyes. The photo-catalytic effect on the binary dyes solution was followed by the first-order derivative spectrophotometric method. Simultaneous dyes photodegradation methodology was presented by using experimental design.

  2. Synthesis and characterization of Fullerene modified ZnAlTi-LDO in photo-degradation of Bisphenol A under simulated visible light irradiation

    International Nuclear Information System (INIS)

    Ju, Liting; Wu, Pingxiao; Lai, Xiaolin; Yang, Shanshan; Gong, Beini; Chen, Meiqing

    2017-01-01

    In this study, ZnAlTi layered double hydroxide (ZnAlTi-LDH) combined with fullerene (C 60 ) was fabricated by the urea method, and calcined under vacuum atmosphere to obtain nanocomposites of C 60 -modified ZnAlTi layered double oxide (ZnAlTi-LDO). The morphology, structure and composition of the nanocomposites were analyzed by Scanning Electron Microscopy, High-resolution transmission electron microscopy, X-ray diffraction patterns, Fourier transform infrared and specific surface area. The UV-vis diffuse reflectance spectra indicated that the incorporation of C 60 expanded the absorption of ZnAlTi-LDO to visible-light region. The photo-degradation experiment was conducted by using a series of C 60 modified ZnAlTi-LDO with different C 60 weight percentage to degrade Bisphenol A (BPA) under simulated visible light irradiation. In this experiment, the degradation rate of C 60 modified ZnAlTi-LDO in photo-degradation of BPA under simulated visible light irradiation was over 80%. The intermediates formed in the degradation of BPA process by using LDO/C 60 -5% were 4-hydroxyphenyl-2-propanol, 4-isopropenylphenol and Phenol. Photogenerated holes, superoxide radical species, ·OH and singlet oxygen were considered to be responsible for the photodegradation process, among which superoxide radical species and ·OH played a predominant role in the photocatalytic reaction system. C 60 modified ZnAlTi-LDO catalysts for photocatalytic reduction shows great potential in degradation of organic pollutants and environmental remediation. - Highlights: • C 60 modified ZnAlTi-LDO enhance the photocatalytic reduction of BPA. • C 60 modified ZnAlTi-LDO was an efficient photocatalytic in the degradation of BPA under visible light. • Superoxide radical species played a predominant role in the photocatalytic reaction system. • C 60 expanded the absorption of ZnAlTi-LDO to visible-light region with the increasing content of C 60 .

  3. Magnetic diatomite(Kieselguhr)/Fe2O3/TiO2 composite as an efficient photo-Fenton system for dye degradation

    Science.gov (United States)

    Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko

    2017-10-01

    We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.

  4. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.

    Science.gov (United States)

    Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing

    2010-03-15

    Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.

  5. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe{sub 2}O{sub 4}/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kahtani, Abdullah A. [Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451 (Saudi Arabia); Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Abou Taleb, Manal F., E-mail: abutalib_m@yahoo.com [Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Polymer Department National Center for Radiation Research and Technology, Nasr city, Cairo (Egypt)

    2016-05-15

    Highlights: • CS/CF/GONCs were synthesized via γ-irradiation and used as a heterogeneous photo-Fenton catalyst. • It can degrade Maxilon C.I. basic dye under sunlight irradiation. • A possible degradation pathway of Maxilon C.I. Basic was proposed. • The degradation of Maxilon follows pseudo-first-order kinetics. • The catalyst can be separated by an external magnetic field. • Cyclic degradation tests show the catalyst is highly active, stable and recoverable. - Abstract: CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H{sub 2}O{sub 2} concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10 mM H{sub 2}O{sub 2} at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal.

  6. Hydrothermal synthesis of Yttrium Orthovanadate (YVO4) and its application in photo catalytic degradation of sewage water

    International Nuclear Information System (INIS)

    Komal, J. K.; Karimi, P.; Hui, K. S.

    2010-01-01

    In this paper; YVO 4 powder was successfully synthesized from Vanadium Pentaoxide (V 2 O 5 ), Yttrium Oxide (Y 2 O 3 ) and ethyl acetate as a mineralizer by hydrothermal method at a low temperature (T=.230 d egree C , and P=100 bars). The as-prepared powders were characterized by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, UV-V Spectroscopy and Chemical Oxygen Demand of the sewage water, respectively. The results show that hydrothermal method can greatly promote the crystallization and growth of YVO 4 phase. X-ray Diffraction pattern clearly indicates the tetragonal structure and crystallinity. An fourier transform infrared spectrum of the YVO 4 shows the presence of Y-O and V-O bond, respectively. The presence of these two peaks indicates that yttrium vanadate has been formed. UV-V is absorption spectra suggesting that YVO 4 particles have stronger UV absorption than natural sunlight and subsequent photo catalytic degradation data also confirmed their higher photo catalytic activity.

  7. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    Science.gov (United States)

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  8. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  9. Controlling photo-oxidation processes of a polyfluorene derivative: The effect of additives and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, G.R. [Laboratory of Polymers and Electronic Properties of Materials – UFOP, Ouro Preto, MG (Brazil); Nowacki, B. [Paulo Scarpa Polymer Laboratory – UFPR, Curitiba, PR (Brazil); Magalhães, A. [Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP (Brazil); Azevedo, E.R. de [Instituto de Física de São Carlos, Universidade de São Paulo – USP, São Carlos, SP (Brazil); Sá, E.L. de [Chemistry Department, Federal University of Parana, Curitiba, PR (Brazil); Akcelrud, L.C. [Paulo Scarpa Polymer Laboratory – UFPR, Curitiba, PR (Brazil); Bianchi, R.F., E-mail: bianchi@iceb.ufop.br [Laboratory of Polymers and Electronic Properties of Materials – UFOP, Ouro Preto, MG (Brazil)

    2014-08-01

    The control of the photo degradation of a fluorene–vinylene–phenylene based-polymer, poly(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene) (LaPPS16) was achieved by addition of a radical scavenger (RS) (enhancing photo resistance) or a radical initiator (RI) (reducing photo resistance). Photoluminescence, UV–Vis absorption, {sup 1}H NMR spectroscopies and gel permeation chromatography (GPC) revealed that the incorporating small amounts of RS or RI is an efficient way to control the rates of the photo-oxidation reactions, and thus to obtain the conjugated polymer with foreseeable degradation rates for applications in blue-light sensitive detectors for neonatal phototherapy. - Highlights: • Photo degradation control of a fluorene–vinylene–phenylene based polymer was achieved. • A radical scavenger enhanced photo resistance and radical initiator decreased it. • Color change rate with irradiation dose provided a basis for dosimeter construction.

  10. Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies.

    Science.gov (United States)

    Santoro, Ernesto; Mazzeo, Giuseppe; Petrovic, Ana G; Cimmino, Alessio; Koshoubu, Jun; Evidente, Antonio; Berova, Nina; Superchi, Stefano

    2015-08-01

    The absolute configuration (AC) of the plant phytotoxin inuloxin A, produced by Inula viscosa, and of the fungal phytotoxin seiricardine A, obtained from Seiridium fungi, pathogen for cypress, has been determined by experimental measurements and theoretical simulations of chiroptical properties of three related methods, namely, Optical Rotatory Dispersion (ORD), Electronic Circular Dichroism (ECD), and Vibrational Circular Dichroism (VCD). Computational prediction by Density Functional Theory (DFT) of VCD spectra and by Time-dependent DFT (TDDFT) of ORD and ECD spectra allowed to assign (7R,8R,10S) AC to naturally occurring (+)-inuloxin A. In the case of compound (-)-seiricardine A, which lacks useful for the analysis UV-Vis absorption, and thus provides a hardly detectable ECD spectrum and quite low ORD values, an introduction of a suitable chromophore by chemical derivatization was performed. The corresponding derivative, 2-O-p-bromobenzoate ester, gave rise to an intense ECD spectrum and higher ORD and VCD values. The comparison of computed spectra with the experimental ones allowed to assign (1S,2R,3aS,4S,5R,7aS) AC to (-)-2-O-p-bromobenzoate ester of seiricardine A and then to (-)-seiricardine A. This study further supports a recent trend of concerted application of more than a single chiroptical technique toward an unambiguous assignment of AC of flexible and complex natural products. Moreover, the use of chemical derivatization, with insertion of suitable chromophoric moieties has allowed to treat also UV-Vis transparent molecules by ECD and ORD spectroscopies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. NATURAL IRON OXIDE AS A HETEROGENEOUS PHOTO-FENTON-LIKE CATALYST FOR THE DEGRADATION OF 1-NAPHTHOL UNDER ARTIFICIAL AND SOLAR LIGHT

    Directory of Open Access Journals (Sweden)

    L MAMMERI

    2014-07-01

    Full Text Available A heterogeneous photo-Fenton-like degradation process of 1-naphthol (1-NP promoted by natural iron oxide (NIO in the presence of H2O2 was studied under artificial (365 nm and solar irradiation. This is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural waters. Furthermore, iron oxides function as catalysts in chemical oxidation processes used with H2O2 for treatment of contaminated waters. The NIO used in this study was characterized by X-ray diffraction (XRD, X-ray fluorescence and Brunauer–Emmett–Teller (BET methods. The results show that the NIO is a composite material that contains predominantly crystalline hematite particales (Fe2O3. The Fe2O3 in NIO was able to initiate the Fenton-like and photo-Fenton-like reactions. The effects of initial pH, catalyst dosage, H2O2 concentration and the wavelength of the light source (UV and solar on the photodegradation of 1-NP were investigated. The optimal content of the NIO was 1 g L-1 and the optimal H2O2 concentration was 10 mM. The degradation could occur efficiently over a wide pH range of 3-8.3. Furthermore, an important effect of light was observed. The photo-oxidation of 1-NP in NIO-H2O2 system under solar light was significantly accelerated in comparison with artificial irradiation at 365 nm.

  12. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  13. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    International Nuclear Information System (INIS)

    Alanis O, R.; Jimenez B, J.

    2010-01-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO 2 , which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO 2 synthesized by the Degussa company (TiO 2 Degussa P25) with and oxide of mixed cobalt valence (Co 3 O 4 ) synthesized using the sol-gel method. The synthesized photo catalyst TiO 2 /Co 3 O 4 was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  14. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Montano, Julia [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Garcia-Hortal, Jose A. [Departament d' Enginyeria Textil i Paperera, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-06-30

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l{sup -1}) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD{sub 5}/COD), as well as the toxicity (EC{sub 50}), DOC, colour (Abs{sub 543.5}) and H{sub 2}O{sub 2} evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l{sup -1} Fe(II) and 125 mg l{sup -1} H{sub 2}O{sub 2} photo-Fenton pre-treatment and 1 day HRT in SBR.

  15. De novo Biosynthesis of "Non-Natural" Thaxtomin Phytotoxins.

    Science.gov (United States)

    Winn, Michael; Francis, Daniel; Micklefield, Jason

    2018-03-30

    Thaxtomins are diketopiperazine phytotoxins produced by Streptomyces scabies and other actinobacterial plant pathogens that inhibit cellulose biosynthesis in plants. Due to their potent bioactivity and novel mode of action there has been considerable interest in developing thaxtomins as herbicides for crop protection. To address the need for more stable derivatives, we have developed a new approach for structural diversification of thaxtomins. Genes encoding the thaxtomin NRPS from S. scabies, along with genes encoding a promiscuous tryptophan synthase (TrpS) from Salmonella typhimurium, were assembled in a heterologous host Streptomyces albus. Upon feeding indole derivatives to the engineered S. albus strain, tryptophan intermediates with alternative substituents are biosynthesized and incorporated by the NRPS to deliver a series of thaxtomins with different functionalities in place of the nitro group. The approach described herein, demonstrates how genes from different pathways and different bacterial origins can be combined in a heterologous host to create a de novo biosynthetic pathway to "non-natural" product target compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    Science.gov (United States)

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  17. Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3-MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material.

    Science.gov (United States)

    Pradhan, Amaresh C; Nanda, Binita; Parida, K M; Das, Mira

    2013-01-14

    The present study reports the photo-Fenton degradation of phenolic compounds (phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol) in aqueous solution using mesoporous Cu/Al(2)O(3)-MCM-41 nanocomposite as a heterogeneous photo-Fenton-like catalyst. The in situ incorporation of mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (sol-gel method) forms Al(2)O(3)-MCM-41 and wetness impregnation of Cu(II) on Al(2)O(3)-MCM-41 generates mesoporous Cu/Al(2)O(3)-MCM-41 composite. The effects of pH and H(2)O(2) concentration on degradation of phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol are studied. Kinetics analysis shows that the photocatalytic degradation reaction follows a first-order rate equation. Mesoporous 5 Cu/Al(2)O(3)-MCM-41 is found to be an efficient photo-Fenton-like catalyst for the degradation of phenolic compounds. It shows nearly 100% degradation in 45 min at pH 4. The combined effect of small particle size, stabilization of Cu(2+) on the support Al(2)O(3)-MCM-41, ease reducibility of Cu(2+) and visible light activeness are the key factors for quick degradation of phenolic compounds by Cu/Al(2)O(3)-MCM-41.

  18. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  19. Further research on the photo-SPME of triclosan

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Prado, Lucia; Llompart, Maria; Lores, Marta; Fernandez-Alvarez, Maria; Garcia-Jares, Carmen; Cela, Rafael [Universidad de Santiago de Compostela, Departamento de Quimica Analitica, Nutricion y Bromatologia. Facultad de Quimica, Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela (Spain)

    2006-04-15

    In this study the photoinduced degradation of triclosan has been investigated by photo-solid-phase microextraction (photo-SPME). In photo-SPME, photodegradation is carried out on the SPME fibre containing the target compound. Triclosan was extracted from aqueous solutions by use of polydimethylsiloxane SPME fibres and these were subsequently exposed to UV irradiation (power 8 W, wavelength 254 nm) for different times (from 2 to 60 min). The photodegradation kinetics of triclosan were investigated, the photoproducts generated were tentatively identified, and the photochemical behaviour of these products was studied by use of this on-fibre approach followed by gas chromatographic-mass spectrometric analysis. Eight photoproducts were tentatively identified, including chlorinated phenols, chlorohydroxydiphenyl ethers, 2,8-dichlorodibenzo-p-dioxin, and a possible dichlorodibenzodioxin isomer or dichlorohydroxydibenzofuran. The main photodegradation mechanisms were postulated and photodegradation pathways proposed. The effect of pH on triclosan degradation and on triclosan-to-dioxin conversion was also investigated. Triclosan degradation occurred, and generation of 2,8-dichlorodibenzo-p-dioxin was confirmed, throughout the pH range studied (from 3 to 9). (orig.)

  20. Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa.

    Science.gov (United States)

    Weir, Tiffany L; Bais, Harsh Pal; Stull, Valerie J; Callaway, Ragan M; Thelen, Giles C; Ridenour, Wendy M; Bhamidi, Suresh; Stermitz, Frank R; Vivanco, Jorge M

    2006-03-01

    Centaurea maculosa Lam. is a noxious weed in western North America that produces a phytotoxin, (+/-)-catechin, which is thought to contribute to its invasiveness. Areas invaded by C. maculosa often result in monocultures of the weed, however; in some areas, North American natives stand their ground against C. maculosa and show varying degrees of resistance to its phytotoxin. Two of these resistant native species, Lupinus sericeus Pursh and Gaillardia grandiflora Van Houtte, were found to secrete increased amounts of oxalate in response to catechin exposure. Mechanistically, we found that oxalate works exogenously by blocking generation of reactive oxygen species in susceptible plants and reducing oxidative damage generated in response to catechin. Furthermore, field experiments show that L. sericeus indirectly facilitates native grasses in grasslands invaded by C. maculosa, and this facilitation can be correlated with the presence of oxalate in soil. Addition of exogenous oxalate to native grasses and Arabidopsis thaliana (L.) Heynh grown in vitro alleviated the phytotoxic effects of catechin, supporting the field experiments and suggesting that root-secreted oxalate may also act as a chemical facilitator for plant species that do not secrete the compound.

  1. COMPARATIVE ANALYSIS USING DIPIRONA DEGRADATION PROCESS WITH PHOTO-FENTON UV-C LIGHT AND SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Daniella Carla Napoleão

    2015-01-01

    Full Text Available The contamination of water bodies is a major concern on the part of scientists from different parts of the world. Domestic and industrial activities are the cause of the daily pouring of various types of pollutants which are in most cases resistant to conventional treatments of waters. Among the contaminants, especially noteworthy are the drugs in which it is found that 50% to 90% are discarded without treatment. The concerns about these substances are the adverse effects to human health and animals, especially in aquatic environments. The advanced oxidation processes (AOP have been studied and applied as an efficient alternative treatment, in order that it can be applied to the degradation of the different pollutants, considering that can generate hydroxyl radicals, highly reactive even somewhat selective. This study evaluated the efficiency of the photo-Fenton process using UV-C radiation and sunlight to degradation of the drug dipyrone in aqueous solution contaminated with the active ingredient of the drug at a concentration of 20 mg.L-1. Assays were performed with 50 mL aliquots of the solution following 23 factorial designs with central point, and the variables studied: addition of H2O2, adding FeSO4.7H2O and time. The detection and quantification of dipyrone before and after the AOP was performed by high performance liquid chromatography (HPLC and verified that about DE100% degradation of the compound was obtained.

  2. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  3. Assessment of Microwave/UV/O3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO2 Particles Dispersions

    Directory of Open Access Journals (Sweden)

    Kim Sun-Jae

    2010-01-01

    Full Text Available Abstract In this study, a microwave/UV/TiO2/ozone/H2O2 hybrid process system, in which various techniques that have been used for water treatment are combined, is evaluated to develop an advanced technology to treat non-biodegradable water pollutants efficiently. In particular, the objective of this study is to develop a novel advanced oxidation process that overcomes the limitations of existing single-process water treatment methods by adding microwave irradiation to maximize the formation of active intermediate products, e.g., OH radicals, with the aid of UV irradiation by microwave discharge electrodeless lamp, photo-catalysts, and auxiliary oxidants. The results of photo-catalytic degradation of BTB showed that the decomposition rate increased with the TiO2 particle dosages and microwave intensity. When an auxiliary oxidant such as ozone or hydrogen peroxide was added to the microwave-assisted photo-catalysis, however, a synergy effect that enhanced the reaction rate considerably was observed.

  4. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    Science.gov (United States)

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  5. Sono-chemical Synthesis Fe3O4-Mg(OH2 Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation

    Directory of Open Access Journals (Sweden)

    G. Nabiyouni

    2014-10-01

    Full Text Available In this work firstly Fe3O4 nanoparticles were synthesized via a sono-chemical method. At the second step magnesium hydroxide shell was synthesized on the magnetite-core under ultrasonic waves. For preparation Fe3O4-MgO the product was calcinated at 400 ºC for 2h. Properties of the product were examined by X-ray diffraction pattern (XRD, scanning electron microscope (SEM and Fourier transform infrared (FT-IR spectroscopy. Vibrating sample magnetometer (VSM shows nanoparticles exhibit super-paramagnetic behavior. The photo-catalytic behavior of Fe3O4-Mg(OH2  nanocomposite was evaluated using the degradation of a methyl orange (MeO aqueous solution under ultraviolet (UV light irradiation. The results show that Fe3O4-Mg(OH2 nanocomposites have applicable magnetic and photo-catalytic performance.

  6. Solar photo-Fenton optimisation in treating carbofuran-contaminated water

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Hernández-Shek

    2012-01-01

    Full Text Available Box-Benkhen design response-surface methodology was developed to optimise photo-Fenton degradation of carbofuran (C12H15NO3 by using a compound parabolic collector pilot plant. The four variables considered in Box-Benkhen design model included carbofuran degradation percentage, initial carbofuran concentration, hydrogen peroxide [H2O2] concentration and iron [Fe2+] concentration. Degradation was monitored by using total organic carbon concentration and high-performance liquid chromatography. A 93.2 mg l-1 carbofuran concentration was completely degraded in t30W = 15 min with 17.1 mg l-1 Fe2+ and 121.6 mg l-1 H2O2. Photo-Fenton degradation led to 76.7% mineralisation. Biodegradability during optimisation was evaluated by using the BOD5/COD ratio; this value increased from 0.04 at the beginning of the process to 0.52 in t30W = 20 min, thereby showing the effectiveness of using biological treatments.

  7. Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics

    International Nuclear Information System (INIS)

    Huo Pengwei; Yan Yongsheng; Li Songtian; Li Huaming; Huang Weihong

    2010-01-01

    A series of poly-o-phenylenediamine/TiO 2 /fly-ash cenospheres(POPD/TiO 2 /fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO 2 /fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO 2 /fly-ash cenospheres which have good performance are prepared at pH 3 and 4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH 3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO 2 /fly-ash cenospheres to degrade the antibiotics waste water is viable.

  8. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation.

    Science.gov (United States)

    Newman, Michael J; Speller, Emily M; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C 71 butyric acid methyl ester (BTR:PC 71 BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

  9. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    Science.gov (United States)

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  10. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    Science.gov (United States)

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Photo-isomerization induced rapid photo-degradation of optical nonlinearity in cyano substituted stilbene derivative doped poled polymer

    International Nuclear Information System (INIS)

    Yan Jieyun; Liu Liying; Ji Liyong; Ye Mingxin; Xu Lei; Wang Wencheng

    2004-01-01

    We found that, although alpha'-cyano-4'-nitro-4-N, N-dimethylaminostilbene has larger hyperpolarizability than that of conventional 4'-N, N-dimethylamino-nitrostilbene, the addition of the cyano group makes it much more easy to photo-isomerize, thus destroying the molecular ordering in poled chromophore doped polymers. Experimental evidence was obtained by monitoring the second-harmonic generation intensity, UV-Vis absorption spectrum, and FTIR spectrum. The photo-isomerization reaction process was monitored by optical pump induced absorption anisotropy measurement. Comparisons with the behaviour of a azobenzene dye are also made

  12. High-resolution mapping of Rsn1, a locus controlling sensitivity of rice to a necrosis-inducing phytotoxin from Rhizoctonia solani AG1-IA

    Science.gov (United States)

    Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on all major crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa), one of the most important rice diseases worldwide. R. solani AG-IA produces a necrosis-inducing phytotoxin a...

  13. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland.

    Science.gov (United States)

    Chen, Meilian; Jaffé, Rudolf

    2014-09-15

    Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation

  14. Biotransformation of the streptomyces scabies phytotoxin thaxtomin A by the fungus aspergillus niger

    International Nuclear Information System (INIS)

    Lazarovits, G.; Hill, J.; King, R.; Calhoun, L.A.

    2004-01-01

    Of several hundred microorganisms randomly selected from the environment, only a fungal isolate identified as Aspergillus niger van Tiegham var. niger was found to transform the phytotoxin thaxtomin A to much less toxic metabolites. The rate and extent of transformation of thaxtomin A was tested under a variety of conditions, including different growth media, biomass concentrations, incubation periods, and shaker speeds. Under optimum conditions the fungus converted thaxtomin A into two major and five minor metabolites. The two major metabolites and three of the five minor metabolites were fully characterized by a combination of mass spectral and nuclear magnetic resonance techniques. When assayed on aseptically produced mini-tubers, the major metabolites proved to be much less phytotoxic than thaxtomin A. (author)

  15. Biotransformation of the streptomyces scabies phytotoxin thaxtomin A by the fungus aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Lazarovits, G.; Hill, J. [Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario (Canada)]. E-mail: Lazarovitsg@agr.gc.ca; King, R. [Agriculture and Agri-Food Canada, Potato Research Centre, Fredericton, New Brunswick (Canada); Calhoun, L.A. [Univ. of New Brunswick, Dept. of Chemistry, Fredericton, New Brunswick (Canada)

    2004-07-01

    Of several hundred microorganisms randomly selected from the environment, only a fungal isolate identified as Aspergillus niger van Tiegham var. niger was found to transform the phytotoxin thaxtomin A to much less toxic metabolites. The rate and extent of transformation of thaxtomin A was tested under a variety of conditions, including different growth media, biomass concentrations, incubation periods, and shaker speeds. Under optimum conditions the fungus converted thaxtomin A into two major and five minor metabolites. The two major metabolites and three of the five minor metabolites were fully characterized by a combination of mass spectral and nuclear magnetic resonance techniques. When assayed on aseptically produced mini-tubers, the major metabolites proved to be much less phytotoxic than thaxtomin A. (author)

  16. Scalable total synthesis and comprehensive structure-activity relationship studies of the phytotoxin coronatine.

    Science.gov (United States)

    Littleson, Mairi M; Baker, Christopher M; Dalençon, Anne J; Frye, Elizabeth C; Jamieson, Craig; Kennedy, Alan R; Ling, Kenneth B; McLachlan, Matthew M; Montgomery, Mark G; Russell, Claire J; Watson, Allan J B

    2018-03-16

    Natural phytotoxins are valuable starting points for agrochemical design. Acting as a jasmonate agonist, coronatine represents an attractive herbicidal lead with novel mode of action, and has been an important synthetic target for agrochemical development. However, both restricted access to quantities of coronatine and a lack of a suitably scalable and flexible synthetic approach to its constituent natural product components, coronafacic and coronamic acids, has frustrated development of this target. Here, we report gram-scale production of coronafacic acid that allows a comprehensive structure-activity relationship study of this target. Biological assessment of a >120 member library combined with computational studies have revealed the key determinants of potency, rationalising hypotheses held for decades, and allowing future rational design of new herbicidal leads based on this template.

  17. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    International Nuclear Information System (INIS)

    Martínez-Romo, A; Mota, R González; Bernal, J J Soto; Candelas, I Rosales; Reyes, C Frausto

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation

  18. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment

    International Nuclear Information System (INIS)

    Ding, Xing; Ai, Zhihui; Zhang, Lizhi

    2012-01-01

    Highlights: ► Coupling PEC and EF oxidation significantly improves pollutant degradation efficiency. ► The degradation of the PEC/EF system was increased by 154%. ► The instantaneous current efficiency of the PEC/EF system was increased by 26%. - Abstract: In this study, we report on a photo-electrochemical/electro-Fenton oxidation (PEC/EF) system by coupling visible light driven photo-electrochemical oxidation (PEC) and electro-Fenton oxidation (EF) in an undivided cell. Bi 2 WO 6 nanoplates deposited on FTO glass (Bi 2 WO 6 /FTO) and Fe-Fe 2 O 3 core–shell nanowires supported on activated carbon fiber (Fe-Fe 2 O 3 /ACF) were used as the anode and the cathode in the PEC/EF system, respectively. This novel PEC/EF system showed much higher activity than the single PEC and EF systems on degradation of rhodamine B in aqueous solution at natural pH. Moreover, the degradation and the instantaneous current efficiencies of the PEC/EF system were increased by 154% and 26% in comparison with the sum of those of single PEC and EF systems, respectively. These significant enhancements could be attributed to the synergetic effect from better separation of photo-generated carriers in the photo-anode and the transfer of photo-electrons to the oxygen diffusion cathode to generate more electro-generated H 2 O 2 and hydroxyl radicals on the Fenton cathode. The better separation of photo-generated carriers contribute more to the overall degradation enhancement than the photo-electrons generated H 2 O 2 and the subsequent Fenton reaction on the cathode during the PEC/EF process.

  19. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    Pesticides belong to the large family of organic pollutants. In general, they are intended to fight against crop pests. Distribution of pesticides in nature creates pollution in DIFFERENT compartments of the biosphere (water, soil and air) and can induce acute toxic effects on human beings of the terrestrial and aquatic living biomass. It is now shown that some pesticides are endocrine disruptors and are particularly carcinogenic and mutagenic effects in humans. Pesticides can undergo various processes of transformation in the natural life cycle (biodegradation, volatilization, solar radiation ...) or following applied in the sectors of natural water purification and treatment stations sewage treatment. The presence of degradation products of pesticides in our environment is even more alarming that their structures and potential toxicities generally unknown. Molecules belonging to two families of pesticides were selected for this study: herbicides, represented by metolachlor, and fungicides represented by procymidone, pyrimethanil and boscalid. The first part of the thesis focused on the development of an analytical strategy to characterize the structures of compounds from degradation by photolysis of pesticides. The second part focused on estimating the toxicity of degradation products using a test database in silico. Identification of degradation products was achieved through two complementary analysis techniques: the gas chromatography coupled to a mass spectrometer ''multi-stage'' (GC-MSn) and liquid chromatography coupled to a tandem mass spectrometer (LC-MS/MS). The estimation of the toxicity of the degradation products was performed using the TEST program QSAR recently developed to try to predict the toxicity of molecules. The strategy of the structural elucidation of degradation products of pesticides studied is based on studying of the mechanisms of fragmentation of parent molecules of the degradation products. The molar mass of parent

  20. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  1. Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process.

    Science.gov (United States)

    Yamal-Turbay, E; Ortega, E; Conte, L O; Graells, M; Mansilla, H D; Alfano, O M; Pérez-Moya, M

    2015-01-01

    An experimental study of the homogeneous Fenton and photo-Fenton degradation of 4-amidophenol (paracetamol, PCT) is presented. For all the operation conditions evaluated, PCT degradation is efficiently attained by both Fenton and photo-Fenton processes. Also, photonic efficiencies of PCT degradation and mineralization are determined under different experimental conditions, characterizing the influence of hydrogen peroxide (H2O2) and Fe(II) on both contaminant degradation and sample mineralization. The maximum photonic degradation efficiencies for 5 and 10 mg L(-1) Fe(II) were 3.9 (H2O2 = 189 mg L(-1)) and 5 (H2O2 = 378 mg L(-1)), respectively. For higher concentrations of oxidant, H2O2 acts as a "scavenger" radical, competing in pollutant degradation and reducing the reaction rate. Moreover, in order to quantify the consumption of the oxidizing agent, the specific consumption of the hydrogen peroxide was also evaluated. For all operating conditions of both hydrogen peroxide and Fe(II) concentration, the consumption values obtained for Fenton process were always higher than the corresponding values observed for photo-Fenton. This implies a less efficient use of the oxidizing agent for dark conditions.

  2. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    Science.gov (United States)

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  4. Degradation of Sunset Yellow FCF using copper loaded bentonite and H2O2 as photo-Fenton like reagent

    Directory of Open Access Journals (Sweden)

    Kiran Chanderia

    2017-02-01

    Full Text Available In the present work, photo-Fenton degradation of Sunset Yellow FCF under visible light was carried out by using copper loaded bentonite and hydrogen peroxide. The photocatalyst was prepared by loading copper ions on bentonite by wet impregnation method. The rate of photocatalytic degradation of dye was measured spectrophotometrically by measuring absorbance of the reaction mixture at regular time intervals. The effect of various parameters such as pH, concentration of dye, amount of photocatalyst, amount of H2O2 and light intensity on the reaction rate has also been studied. Characterization of photocatalyst has been done by IR spectroscopy, scanning electron microscopy and X-ray diffraction. The Chemical Oxygen Demand (COD of the reaction mixture has been determined before and after treatment. A tentative mechanism involving ·≡OH radical as an oxidant for degradation of dye has also been proposed. Involvement of ·≡OH radicals as an active oxidizing agent has been confirmed by using isopropanol and butylated hydroxy toluene (BHT as radical scavengers. It has been observed that the rate of reaction is drastically reduced in the presence of these scavengers. The rate of reaction is much retarded by using BHT as compared with isopropanol.

  5. Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.

    Science.gov (United States)

    Manu, B; Mahamood, S

    2011-01-01

    For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.

  6. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  7. Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions.

    Science.gov (United States)

    Issa, Salah; Wood, Martin

    2005-02-01

    The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.

  8. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    Science.gov (United States)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  9. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  10. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    Science.gov (United States)

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.

  11. Validation of an HPLC method for the determination of fleroxacin and its photo-degradation products in pharmaceutical forms.

    Science.gov (United States)

    Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena

    2004-01-01

    HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.

  12. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes

    Institute of Scientific and Technical Information of China (English)

    Yao-Hui Huang; Hsiao-Ting Su; Li-Way Lin

    2009-01-01

    Both citrate and hypophosphite in aqueous solution were degraded by advanced oxidation processes (Fe2+/H2O2, UV/Fe2+/H2O2, and electrolysis/ Fe2+/H2O2) in this study. Comparison of these techniques in oxidation efficiency was undertaken. It was found that Fenton process could not degrade completely citrate in the presence of hypophosphite since it caused a series inhibition. Therefore, UV light (photo-Fenton) or electron current (electro-Fenton) was applied to improve the degradation efficiency of the Fenton process. Results showed that both photo-Fenton and electro-Fenton processes could overcome the inhibition of hypophosphite, especially the electro-Fenton.

  13. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test.

    Science.gov (United States)

    Su, Tong; Deng, Huiping; Benskin, Jonathan P; Radke, Michael

    2016-04-01

    Occurrence of the antibiotic sulfamethoxazole (SMX) in the aquatic environment is of concern due to its potential to induce antibiotic resistance in pathogenic bacteria. While degradation of SMX can occur by numerous processes, the environmental fate of its transformation products (TPs) remains poorly understood. In the present work, biodegradation of SMX photo-TPs was investigated in a water/sediment system. Photo-TPs were produced by exposing SMX to artificial sunlight for 48 h. The resulting mixture of 8 photo-TPs was characterized using a combination of ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry and tandem mass spectrometry, and then used in biodegradation experiments. Significant differences in transformation among SMX photo-TPs were observed in the water/sediment system, with four photo-TPs displaying evidence of biodegradation (dissipation half-lives [DT50] of 39.7 d for 3-amino-5-methylisoxazole, 12.7 d for 4-nitro-sulfamethxoazole, 7.6 d for an SMX isomer and 2.4 d for [C10H13N3O4S]), two displaying primarily abiotic degradation (DT50 of 31 d for sulfanilic acid and 74.9 d for 5-methylisoxazol-3-yl-sulfamate), and two photo-TPs behaving largely recalcitrantly. Remarkably, TPs previously reported to be photo-stable also were persistent in biodegradation experiments. The most surprising observation was an increase in SMX concentrations when the irradiated solution was incubated, which we attribute to back-transformation of certain photo-TPs by sediment bacteria (85% from 4-nitro-sulfamethoxazole). This process could contribute to exposure to SMX in the aquatic environment that is higher than one would expect based on the fate of SMX alone. The results highlight the importance of considering TPs along with their parent compounds when characterizing environmental risks of emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Thiocyanate ligands as crucial elements for regeneration and photo-degradation in TiO2 vertical bar dye vertical bar CuI solar cells

    International Nuclear Information System (INIS)

    Sirimanne, P.M.; Tributsch, H.

    2006-01-01

    Size control of CuI grains and thus better-matched interfaces were observed in the presence of crystal growth inhibitors in the CuI coating solution for TiO 2 vertical bar dye vertical bar CuI solar cells. Evidence is given that these growth inhibitor molecules simultaneously act as an electron transfer mediator between the CuI and dye molecules via thiocyanate bridges. A reverse reaction of injected electrons from TiO 2 nanoparticles electrochemically inactivates the thiocyanate electron transfer bridge in the illuminated cells causing photo-degradation

  15. Autointoxication mechanism ofOryza sativa : III. Effect of temperature on phytotoxin production during rice straw decomposition in soil.

    Science.gov (United States)

    Chou, C H; Chiang, Y C; Chfng, H H

    1981-07-01

    The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20-25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone lettuce or rice seedlings was also at the highest at the temperature range of 25-30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.

  16. Radicinols and radicinin phytotoxins produced by Alternaria radicina on carrots.

    Science.gov (United States)

    Solfrizzo, Michele; Vitti, Carolina; De Girolamo, Annalisa; Visconti, Angelo; Logrieco, Antonio; Fanizzi, Francesco P

    2004-06-02

    The phytotoxin epi-radicinol, a diastereomer of radicinol, was isolated from large cultures of Alternaria radicina grown on carrot slices and identified by GC-MS, LC-MS, (1)H NMR, and (13)C NMR. Four strains of A. radicina isolated from rotted carrot produced epi-radicinol as the major metabolite (up to 39414 microg/g) together with radicinol (up to 2423 microg/g), and, to a lesser extent, radicinin when cultured on carrot slices, whereas on rice they mainly produced radicinin (2486-53800 microg/g). Radicinin and epi-radicinol reduced root elongation of germinating carrot seeds at concentrations of 10-20 microg/mL. Carrot samples naturally infected by A. radicina contained detectable quantities of epi-radicinol also in combination with lower levels of radicinin or radicinol. Accumulation of radicinols and radicinin in stored carrots, either naturally contaminated or artificially inoculated with A. radicina, was stimulated by successive temperature rises from 1 to 10 degrees C and from 10 to 20 degrees C, reaching maximum levels of 60 microg/g epi-radicinol and 26 microg/g radicinin. This is the first report on the production of radicinols by A. radicina and its natural occurrence in carrots in association with radicinin.

  17. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    International Nuclear Information System (INIS)

    Bijlsma, Lubertus; Boix, Clara; Niessen, Wilfried M.A.; Ibáñez, María; Sancho, Juan V.; Hernández, Félix

    2013-01-01

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  18. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Bijlsma, Lubertus; Boix, Clara [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Niessen, Wilfried M.A. [hyphen MassSpec, Leiden (Netherlands); Ibáñez, María; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain); Hernández, Félix, E-mail: felix.hernandez@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón (Spain)

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC–tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work. Highlights: ► Cocaine and benzoylecgonine degradation/transformation products investigated in water ► Hydrolysis, chlorination and photo degradation studied under laboratory conditions ► Several TPs discovered and tentatively elucidated by high resolution MS ► Structures of non-previously reported TPs have been suggested. ► Several reported/known TPs but also new TPs were found in sewage and surface

  19. Photo-oxidation. Of the system chrome hexavalent-4-chlorophenol

    International Nuclear Information System (INIS)

    Gil Pavas, Edison; Cabrera Limpias, Marianela; Jaramillo Jimenez, Sergio Alejandro

    2003-01-01

    As a proposal to eliminate highly toxic chemical components derived from industrial waste, the researchers study the behavior of the compound hexavalent chromium / 4-chlorophenol system when subjected to photo degradation in a photo-reactor compound parabolic cylinder (CPC) to scale pilot. The effect is analyzed in order to determine the operation conditions to reach the highest degradation levels possible. The analyzed variables were pH, concentration of catalyst (TiO 2 ), time of recirculation and the relation of initial concentrations among polluting agents. The factor that most influences the levels of removal reached is the pH, which has a different effect for each of the pollutants. This implies that, theoretically, you cannot adopt a unique group of operation parameters to favor the degradation of both however, in the practice; high levels of degradation of both pollutants are obtained in the optimal point of operation of the chrome. It is also observed that the catalyst concentration does not influence the degradation of the polluting agents significantly, at least for the initial concentrations studied. The recirculation time is closely related to the kinetics of degradation of each polluting agent. Elevated degradation levels are reached in a short time for 4-chlorophenol, while more prolonged recirculation times are required for hexavalent chromium. The relation of initial concentrations of the polluting agents also exerts an opposite effect on the degradation levels reached for each polluting agent; the hexavalent chromium reduction is favored with high initial concentrations of 4-chlorophenol, whereas the oxidation of 4-chlorophenol is favored with high initial hexavalent chromium concentrations, which suggests some synergy between the oxidation-reduction reactions of 4-chlorophenol and hexavalent chromium. Finally, a 97% hexavalent chromium reduction and a 94.9% oxidation of 4-chlorophenol were obtained

  20. Laser Photo-Oxidative Degradation of 4,6-Dimethyldibenzothiophene

    Czech Academy of Sciences Publication Activity Database

    Gondal, M.A.; Masoudi, H.M.; Pola, Josef

    2008-01-01

    Roč. 71, č. 9 (2008), s. 1765-1768 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z40720504 Keywords : 4,6-dimethyldibenzothiophene * laser oxidative degradation * molecular oxygen Subject RIV: CC - Organic Chemistry Impact factor: 3.054, year: 2008

  1. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Mohamad Mohsen Momeni

    2016-01-01

    Full Text Available To improve the photo-catalytic degradation of salicylic acid, we reported the fabrication of ordered TiO2 nanotube arrays by a simple and effective two-step anodization method and then these TiO2 nanotubes treated in a methanol solution under UV light irradiation. The TiO2 nanotubes prepared in the two-step anodization process showed better photo-catalytic activity than TiO2 nanotubes prepared in one-step anodization process. Also, compared with TiO2 nanotubes without the UV pretreatment, the TiO2 nanotubes pretreated in a methanol solution under UV light irradiation exhibited significant enhancements in both photocurrent and activity. The treated TiO2 nanotubes exhibited a 5-fold enhancement in photocurrent and a 2.5-fold increase in the photo-catalytic degradation of salicylic acid. Also the effect of addition of persulfate and periodate on the photo-catalytic degradation of salicylic acid were investigated. The results showed that the degradation efficiency of salicylic acid increased with increasing persulfate and periodate concentrations. These treated TiO2 nanotubes are promising candidates for practical photochemical reactors.

  2. Photochemical Degradation of Polybrominated Diphenyl Ethers in Micro Photo-Reactor

    Czech Academy of Sciences Publication Activity Database

    Vajglová, Zuzana; Veselý, M.; Křišťál, Jiří; Vychodilová, Hana; Tříska, Jan; Jiřičný, Vladimír

    2012-01-01

    Roč. 42, SI (2012), s. 1378-1382 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA ČR GA104/09/0880 Institutional support: RVO:67985858 ; RVO:67179843 Keywords : polybrominated diphenyl ethers * micro photo reactor * debromination Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Treatment of the liquid waste of the laboratories of the engineering Department by means of photo catalysis

    International Nuclear Information System (INIS)

    Porras, Paula; Avalos, Yasmin; Mejia, Gloria; Penuela, Gustavo

    2000-01-01

    In this paper are showed the results of wastewater treatment of CIA and ISA laboratories of engineering Department. Photo catalysis was used in treatment of wastewater, with a removal between 52% and 68% as chemical oxygen demand (COD) during 6 hours of photo degradation. In photo catalysis, TiO 2 , hydrogen peroxide and ultraviolet light were used

  4. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Ghosh, Amrita; Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India); Ganguly, Saibal [Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17 B Bypass Road, Zuarinagar, Sancoale, Goa 403726 (India); Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-30

    species and accordingly a mechanism was proposed. Electrochemical impedance spectroscopy and linear scan voltammetry under dark and visible-light irradiation also established the visible-light activity of the PAZ hybrid due to decrease in the electron transfer resistance that resulted in an enhancement in photocurrent. The significant enhancement of photo degradation may be attributed to the efficiency of charge separation, induced by synergistic effect between an organic conductor PANI and an inorganic semiconductor AlZnO. Owing to its superior photo electrochemical performance and photocatalytic degradation, aluminium doped zinc oxide-polyaniline (PAZ) hybrid offers stable and efficient organic-inorganic hybrid hetero-structures in near future.

  5. Synthesis and characterization of M-fullerene/TiO2 photocatalysts designed for degradation azo dye

    International Nuclear Information System (INIS)

    Meng, Ze-Da; Zhang, Feng-Jun; Zhu, Lei; Park, Chong-Yeon; Ghosh, Trishs; Choi, Jong-Geun; Oh, Won-Chun

    2012-01-01

    Metal-fullerene/TiO 2 composites were prepared using a sol–gel method, and their photocatalytic activity was evaluated by degradation of methylene blue (MB) solutions under UV light. The surface area, surface structure, crystal phase and elemental identification of these composites were characterized by Brunauer–Emmett–Teller analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction and transmission electron microscopy, respectively. The degradation effect of MB was determined using UV/Vis spectrophotometry. Photocatalytic activity was increased because of the increase in photo-absorption effect by fullerene, and the cooperative effect of the metal introduced as a dopant. - Highlights: ► C 60 has good effect in photo-degradation process, added metal can improve this effect. ► C 60 have good effect in photo-degradation process. ► C 60 has larger pore sizes, volumes, conjugated structures, electron-accepting ability. ► Increase the photo-absorption effect by C 60 and cooperative effect of metal.

  6. Trap Generation Dynamics in Photo-Oxidised DEH Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2015-07-01

    Full Text Available A series of polyester films doped with a hole transport molecule, p-diethylaminobenzaldehyde-1,1'-diphenylhydrazone (DEH, have been systematically exposed to ultraviolet radiation with a peak wavelength of about 375 nm. The electronic performance of the films, evaluated using time-of-flight and space-charge current injection methods, is observed to continuously degrade with increasing ultraviolet exposure. The degradation is attributed to photo cyclic oxidation of DEH that results in the creation of indazole (IND molecules which function as bulk hole traps. A proposed model for the generation dynamics of the IND traps is capable of describing both the reduction in current injection and the associated time-of-flight hole mobility provided around 1% of the DEH population produce highly reactive photo-excited states which are completely converted to indazole during the UV exposure period. The rapid reaction of these states is incompatible with bulk oxygen diffusion-reaction kinetics within the films and is attributed to the creation of excited states within the reaction radius of soluble oxygen. It is suggested that encapsulation strategies to preserve the electronic integrity of the films should accordingly focus upon limiting the critical supply of oxygen for photo cyclic reaction.

  7. Photo-induced travelling waves in condensed Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Tabe, Y [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yamamoto, T [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yokoyama, H [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan)

    2003-06-01

    We report the detailed properties of photo-induced travelling waves in liquid crystalline Langmuir monolayers composed of azobenzene derivatives. When the monolayer, in which the constituent rodlike molecules are coherently tilted from the layer normal, is weakly illuminated to undergo the trans-cis photo-isomerization, spatio-temporal periodic oscillations of the molecular azimuth begin over the entire excited area and propagate as a two-dimensional orientational wave. The wave formation takes place only when the film is formed at an asymmetric interface with broken up-down symmetry and when the chromophores are continuously excited near the long-wavelength edge of absorption to induce repeated photo-isomerizations between the trans and cis forms. Under proper illumination conditions, Langmuir monolayers composed of a wide variety of azobenzene derivatives have been confirmed to exhibit similar travelling waves with velocity proportional to the excitation power irrespective of the degree of amphiphilicity. The dynamics can be qualitatively explained by the modified reaction-diffusion model proposed by Reigada, Sagues and Mikhailov.

  8. Photo-induced Mass Transport through Polymer Networks

    Science.gov (United States)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  9. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.

    Science.gov (United States)

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David

    2015-05-15

    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters

    International Nuclear Information System (INIS)

    Leal, J.F.; Esteves, V.I.; Santos, E.B.H.

    2016-01-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC. - Highlights: • Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. • OTC photolysis in marine aquaculture's water is faster than in deionised water. • The sunlight radiation quickly remove the OTC from aquaculture's water. • Outdoor half-life for a midsummer day is 21–25 min in aquaculture's water. • High pH's and salinities increase the OTC photo-degradation. - This work

  11. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    Science.gov (United States)

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mechanisms of Photo Degradation for Layered Silicate-Polycarbonate Nanocomposites

    National Research Council Canada - National Science Library

    Sloan, James M; Patterson, Philip

    2005-01-01

    ...., lightweight structure, rugged abrasion resistance, and high ballistic impact strength). However, as with any polymer system, these materials are susceptible to degradation over time when exposed to various environmental (i.e...

  13. Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei

    2009-01-01

    As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.

  14. Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach.

    Science.gov (United States)

    Changotra, Rahil; Rajput, Himadri; Dhir, Amit

    2017-12-01

    This paper manifests the potential viability of soil as a cost-free catalyst in photo-Fenton-like processes for treating pharmaceuticals at large scale. Naturally available soil without any cost intensive modification was utilized as a catalyst to degrade pharmaceuticals, specifically ornidazole (ORZ) and ofloxacin (OFX). Soil was characterized and found enriched with various iron oxides like hematite, magnetite, goethite, pyrite and wustite, which contributes toward enhanced dissolution of Fe 3+ than Fe 2+ in the aqueous solution resulting in augmented rate of photo-Fenton reaction. The leached iron concentration in solution was detected during the course of experiments. The degradation of ORZ and OFX was assessed in solar induced batch experiments using H 2 O 2 as oxidant and 95% ORZ and 92% OFX removal was achieved. Elevated efficiencies were achieved due to Fe 2+ /Fe 3+ cycling, producing more hydroxyl radical leading to the existence of homogeneous and heterogeneous reactions simultaneously. The removal efficiency of solar photo-Fenton like process was also compared to photo-Fenton process with different irradiation sources (UV-A and UV-B) and were statistically analysed. Continuous-scale studies were conducted employing soil either in the form of soil beads or as a thin layer spread on the surface of baffled reactor. Soil beads were found to have satisfactory reusability and stability. 84 and 79% degradation of ORZ and OFX was achieved using soil as thin layer while with soil beads 71 and 68% degradation, respectively. HPLC and TOC study confirmed the efficient removal of both the compounds. Toxicity assessment demonstrates the inexistence of toxic intermediates during the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Graphite Doped TiO_2 Nanoparticles on Smoke Degradation

    International Nuclear Information System (INIS)

    Roshasnorlyza Hazan; Mohamad Shahrizal Md Zain; Natrah Syafiqah Rosli

    2016-01-01

    Secondhand smoke affects in the same way as regular smoker. The best solution is to purify the air efficiently and effectively. In this study, we were successfully doped TiO_2 nanoparticle with graphite to accelerate the degradation of cigarette smoke. The graphite doped and undoped TiO_2 nanoparticles were prepared from synthetic rutile using alkaline fusion method and their photo catalytic activity were investigated under visible light irradiation. The photo catalytic activity of the TiO_2 nanoparticles was analyzed in terms of their particle size analysis, crystallization and optical band gap. TiO_2 nanoparticle act as photo catalyzer by utilization of light energy to excite electron-hole pairs in smoke degradation processes. With the aided from graphite in TiO_2 nanoparticles, the smoke degradation was accelerate up to 44.4 %. In this case, graphite helps to reduce optical band gap of TiO_2 nanoparticle, thus increasing excitation of electron from valence band to conduction band. (author)

  16. Photo Degradation in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    T. J. Abodunrin

    2015-05-01

    Full Text Available Mesoporous TiO2 of 20nm diameter is prepared in-tandem with organic dyes and based on Fluorine –doped SnO2 (FTO, conducting base is produced by hydrothermal process. The prepared mesoporous Cola Acuminata (C.acuminata, Lupinus Arboreus (L.arboreus and Bougainvillea Spectabilis (B.spectabilis films (0.16 cm2 are applied; individually and in combination as interfacial layer in-between nanocrystalline TiO2 (NC- TiO2 and the FTO anode in the dye-sensitized solar cell (DSSC. Absorbance index (A.I of all three dyes was studied within wavelength range 200-900 nm for a period of 11 months, equivalent to 352 sun exposure. C.acuminata had A.I value 4.00 that decreased to 2.32 under exposure to AM1.5 global conditions. B.spectabilis A.I was 1.19 but decreased to 0.520 within same period of study. Combination of C.acuminata and B.spectabilis gave A.I value 1.40, dye cocktails of C.acuminata, B.spectabilis and L.arboreus gave 2.00 A.I value for same wavelength range. A UV/Vis photo spectrometer was used to determine the prominent peaks and absorbance at such wavelengths. This exponential relationship is subject of our explorative study.

  17. Photo- and electro-chromism of diarylethene modified ITO electrodes - towards molecular based read-write-erase information storage

    NARCIS (Netherlands)

    Areephong, J.; Browne, W.R.; Katsonis, N.; Feringa, B.L.

    2006-01-01

    Molecular memory devices based on dithienylethene switch modified ITO electrodes undergo reversible ring opening/closing both photo- and electro-chemically with non-destructive electrochemical readout.

  18. Photo catalytic BiFeO3 Nano fibrous Mats for Effective Water Treatment

    International Nuclear Information System (INIS)

    Shaibani, P.M.; Prashanthi, K.; Sohrabi, A.; Thundat, Th.

    2013-01-01

    One-dimensional BiFeO 3 (BFO) nano fibers fabricated by electro spinning of a solution of Nylon 6 /BFO followed by calcination were used for photo catalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nano fibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nano fibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nano fibers. Photo catalytic activity of the nano fibers and their application in water purification were investigated against 4-chloro phenol (4CP) as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photo catalytic activity of the BFO nano fibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.

  19. A comparative study on the crystal structure of bicycle analogues to the natural phytotoxin helminthosporins

    Science.gov (United States)

    Barbosa, Luiz Cláudio de Almeida; Teixeira, Robson Ricardo; Nogueira, Leonardo Brandão; Maltha, Celia Regina Alvares; Doriguetto, Antônio Carlos; Martins, Felipe Terra

    2016-02-01

    Herein we described structural insights of a series of analogues to helminthosporin phytotoxins. The key reaction used to prepare the compounds corresponded to the [3 + 4] cycloaddition between the oxyallyl cation generated from 2,4-dibromopentan-3-one and different furans. Their structures were confirmed upon IR, NMR and X-ray diffraction analyses. While bicycles 7, 8 and 9 crystallize in the centrosymmetric monoclinic space group P21/c, compound 10 was solved in the noncentrosymmetric orthorhombic space group P212121. The solid materials obtained were shown to be racemic crystals (7, 8, 9) or racemic conglomerate (10). In all compounds, there is formation of a bicycle featured by fused tetrahydropyranone and 2,5-dihydrofuran rings. They adopt chair and envelope conformations, respectively. Crystal packing of all compounds is stabilized through C-H•••O contacts. Conformational aspects as well as similarities and differences among the crystal structures of the synthesized analogues are discussed.

  20. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    International Nuclear Information System (INIS)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-01-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  1. Application of Sonocatalyst and Sonophotocatalyst for Degradation of Acid Red 14 in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Aref Shokri

    2016-09-01

    Full Text Available Background & Aims of the Study: Azo dyes are employed in industrial processes such as textile industry to create large quantities of colored sewages that have organic and non-organic materials. So, remediation of them is essential. In this project, degradation and mineralization of Acid red 14 (AR14 that is a mono Azo dye and widely used in the textile industries was investigated by Sonocatalysis and Sono photo catalyst in the presence of homogeneous (Fe3+ photo catalyst. Materials & Methods: This study is an experimental investigation on a laboratory scale. The study performed on synthetic wastewater that hold Acid red 14.The influence of operational parameters such as initial dye concentration and ultrasonic power on the sonochemical degradation was also studied. The optimization of variables was done by one factor at a time method. Results: The efficiency of the Sonophotocatalytic process with Fe3+ was higher than Sonocatalysis and photo catalyst processes alone. The combination of sonolysis, Fe3+ and  photo catalyst caused a highly synergistic effect and the synergy index obtained for Fe3+ Sono photo catalysis was 2.05. Chemical oxygen demand (COD analysis was used to study the degree of mineralization. After 180 min of reaction, the removal of COD was 15, 25.4 and 55.5% for UV/Fe3+, US/Fe3+ and UV/US/Fe3+ process, respectively. The degradation by photocatalysis and sonolysis followed pseudo first-order with respect to the concentration of AR14. Conclusions: The results showed that the Sono photo catalytic degradation and mineralization of AR14 in the presence of Fe3+ was synergistic, most likely because of the participation of Sono-Fenton and photo-Fenton reactions.

  2. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  3. Comparison of AOPs Efficiencies on Phenolic Compounds Degradation

    Directory of Open Access Journals (Sweden)

    Lourdes Hurtado

    2016-01-01

    Full Text Available In this work, a comparison of the performances of different AOPs in the phenol and 4-chlorophenol (4-CP degradation at lab and pilot scale is presented. It was found that, in the degradation of phenol, the performance of a coupled electro-oxidation/ozonation process is superior to that observed by a photo-Fenton process. Phenol removal rate was determined to be 0.83 mg L−1 min−1 for the coupled process while the removal rate for photo-Fenton process was only 0.52 mg L−1 min−1. Regarding 4-CP degradation, the complete disappearance of the molecule was achieved and the efficiency decreasing order was as follows: coupled electro-oxidation/ozonation > electro-Fenton-like process > photo-Fenton process > heterogeneous photocatalysis. Total organic carbon was completely removed by the coupled electro-oxidation/ozonation process. Also, it was found that oxalic acid is the most recalcitrant by-product and limits the mineralization degree attained by the technologies not applying ozone. In addition, an analysis on the energy consumption per removed gram of TOC was conducted and it was concluded that the less energy consumption is achieved by the coupled electro-oxidation/ozonation process.

  4. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  5. Preparation of nickel ferrite/carbon nanotubes composite by microwave irradiation technique for use as catalyst in photo-fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Rigo, C.; Severo, E.C.; Mazutti, M.A.; Dotto, G.L.; Jahn, S.L.; Sales, J.C. [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Chiavone-Filho, O. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil); Gundel, A.; Lucchese, M. [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil)

    2016-07-01

    Full text: Nickel ferrite/multi-walled carbon nanotubes (NiFe2O4/MWCNTs) composite has been rapidly synthesized via microwave irradiation technique. The structural properties of the formed product was investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms, thermogravimetric analysis (TGA), Raman spectroscopy and, scanning electron microscopy (SEM). The catalytic behavior of composite material was evaluated by the degradation of Amaranth dye in the photo-Fenton reaction under visible light irradiation. The overall results showed that the prepared composite was successfully synthesized, demonstrating good performance in the dye degradation, with higher degradation rate compared to the NiFe2O4. The high efficiency in dye degradation can be attributed to synergism between NiFe2O4 and MWCNTs. Therefore, NiFe2O4/MWCNTs composite can be used as promising photo-Fenton catalyst to degrade Amaranth dye from aqueous solutions. (author)

  6. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  7. Treatment of decontamination liquid waste of nuclear power plant components by heterogeneous photo catalysis with a continuous recirculation equipment

    International Nuclear Information System (INIS)

    Litter, Marta I.; La Gamma, Ana M.; Chocron, Mauricio; Blesa, Miguel A.; Repetto, Pablo

    1999-01-01

    It has been designed a bench scale, recirculation device, for testing the degradation of solutions of ethylendiamine tetraacetic acid (EDTA) by heterogeneous photo catalysis under irradiation with UV and titanium dioxide (TiO 2 ). Solutions of EDTA have been employed at concentrations and pH values similar to those used when a decontamination of nuclear power plant equipment is carried out. The circuit is composed of a photo reactor, a heat exchanger, a reservoir tank and a peristaltic pump. In the present paper, the results of the experiments of photo catalytic degradation of aqueous suspensions of TiO 2 (Degussa P-25) 1 g/L with EDTA (10 g/L) at pH 3.7 and 25 degree C and two irradiation wavelengths (366 and 254 nm) have been presented. At 366 nm the full degradation of EDTA has occurred in 10 hours. The 95% degradation of total organic carbon (TOC) has been achieved after 39 hours of irradiation. The irradiation at 254 nm in the same conditions has been much less effective (EDTA and TOC reduction of approximately 1%), due to a screening effect produced by the semiconductor. (author)

  8. Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater.

    Science.gov (United States)

    Klamerth, N; Malato, S; Maldonado, M I; Agüera, A; Fernández-Alba, A R

    2010-03-01

    This work focuses on the treatment of real effluents from a municipal wastewater treatment plant (RE) with solar photo-Fenton (5 mg and 20 mg L(-1) Fe, pH approximately 3 and 50 mg L(-1) initial H(2)O(2) concentration) at pilot plant scale. In some experiments RE was spiked with 15 different (acetaminophen, antipyrine, atrazine, caffeine, carbamazepine, diclofenac, flumequine, hydroxybiphenyl, ibuprofen, isoproturon, ketorolac, ofloxacin, progesterone, sulfamethoxazole, and triclosan) emerging contaminants (ECs) at 100 and 5 microg L(-1) each which were added directly into RE prior to treatment. All experiments showed successful degradation of ECs in real effluents from different municipal wastewater treatment plants at low iron concentration (5 mg L(-1)). Although the most degradation took place during the Fenton process, photo-Fenton was necessary to degrade all ECs below their limit of detection (LOD). In the case of the RE containing 52 ECs (determined by HPLC-QTRAP-MS), four of them could not be degraded to their LOD and were still present, although at extremely low concentrations (nicotine 47 ng L(-1), cotinine 11 ng L(-1), chlorfenvinphos 99 ng L(-1), and caffeine 8 ng L(-1)). ECs were easily degraded by (*)OH without substantial competition with the organic content of the RE.

  9. Degradation of 4-Chlorophenol Under Sunlight Using ZnO Nanoparticles as Catalysts

    Science.gov (United States)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Sherazi, Tufail H.; Kumar, Raj

    2018-03-01

    Herein we demonstrate a simplistic microwave assisted chemical precipitation approach regarding the synthesis of zinc oxide nanoparticles. As-prepared ZnO nanoparticles (NPs) were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy, atomic force microscopy and x-ray diffractometry and scrutinized as photo-catalysts for degradation of 4-chlorophenol (4-CP) under sunlight. The study substantiated that 98.5% of 4-CP was degraded within 20 min in the absence of initiator like H2O2 which reflects an outstanding prospective use for ZnO NPs as photo-catalysts. The nanocatalysts were recycled four times and still showed catalytic efficiency up to 95.5% for degradation of 4-CP in the specified 20 min.

  10. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  11. Electrical and Photo-Induced Degradation of ZnO Layers in Organic Photovoltaics

    DEFF Research Database (Denmark)

    Manor, Assaf; Katz, Eugene A.; Tromholt, Thomas

    2011-01-01

    minutes) does not affect the short-circuit current of the device. However, a significant degradation of V-OC and FF has been recorded by measurements of the cell current-voltage curves with a variation of light intensity, for the devices before and after the treatment. The same degradation was found......We present the case of degradation of organic solar cells by sunlight concentrated to a moderate level (similar to 4 suns). This concentration level is not enough for sufficient acceleration of the photobleaching or trap-generation in the photoactive layer and therefore such short treatment (100...

  12. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Zirak, P.; Penzkofer, A.; Hegemann, P.; Mathes, T.

    2007-01-01

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster (τ rec ∼ 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be φ s ∼ 0.3 (for AppA-wt: φ s ∼ 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed

  14. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    Science.gov (United States)

    Zirak, P.; Penzkofer, A.; Hegemann, P.; Mathes, T.

    2007-05-01

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ( τrec ≈ 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be ϕs ≈ 0.3 (for AppA-wt: ϕs ≈ 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  15. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  16. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  17. Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Haithem Bel Hadjltaief

    2018-06-01

    Full Text Available This paper describes a simple and low-cost process for the degradation of 4-Chlorophenol (4-CP from aqueous solution, using natural Tunisian Hematite (M1 and Siderite (M2. Two natural samples were collected in the outcroppings of the Djerissa mining site (Kef district, northwestern Tunisia. Both Hematite and Siderite ferrous samples were characterized using several techniques, including X-Ray Diffraction (XRD, Nitrogen Physisorption (BET, Infrared Spectroscopy (FTIR, H2-Temperature Programmed Reduction (H2-TPR, Scanning Electronic Microscopy (SEM linked with Energy Dispersive X-ray (EDS and High-Resolution Transmission Electron Microscopy (HRTEM. Textural, structural and chemical characterization confirmed the presence of Hematite and Siderite phases with a high amount of iron on the both surface materials. Their activity was evaluated in the oxidation of 4-CP in aqueous medium under heterogeneous photo-Fenton process. Siderite exhibited higher photocatalytic oxidation activity than Hematite at pH 3. The experimental results also showed that 100% conversion of 4-CP and 54% TOC removal can be achieved using Siderite as catalyst. Negligible metal leaching and catalyst reutilization without any loss of activity point towards an excellent catalytic stability for both natural catalysts.

  18. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany)], E-mail: alfons.penzkofer@physik.uni-regensburg.de; Hegemann, P.; Mathes, T. [Institut fuer Biologie, Experimentelle Biophysik, Humboldt-Universitaet zu Berlin, Invalidenstr. 42, D-10115 Berlin (Germany)

    2007-05-21

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ({tau}{sub rec} {approx} 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be {phi}{sub s} {approx} 0.3 (for AppA-wt: {phi}{sub s} {approx} 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  19. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Kyung; Zoh, Kyung-Duk, E-mail: zohkd@snu.ac.kr

    2013-04-01

    Photo-decomposition of methylmercury (MeHg) in surface water is thought to be an important process that reduces the bioavailability of mercury (Hg) to aquatic organisms. In this study, photo-initiated decomposition of MeHg was investigated under UVA irradiation in the presence of natural water constituents including NO{sub 3}{sup −}, Fe{sup 3+}, and HCO{sub 3}{sup −} ions, and dissolved organic matter such as humic and fulvic acid. MeHg degradation followed the pseudo-first-order kinetics; the rate constant increased with increasing UVA intensity (0.3 to 3.0 mW cm{sup −2}). In the presence of NO{sub 3}{sup −}, Fe{sup 3+}, and fulvic acid, the decomposition rate of MeHg increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO{sub 3}{sup −} ions lowered the degradation rate through a radical scavenging effect. Increasing the pH of the solution increased the degradation rate constant by enhancing the generation of hydroxyl radicals. Hydroxyl radicals play an important role in the photo-decomposition of MeHg in water, and natural constituents in water can affect the photo-decomposition of MeHg by changing radical production and inhibition. - Highlights: ► The abiotic photodecomposition of methylmercury (MeHg) in water was examined. ► UVA light is a primary factor inducing MeHg photodecomposition in water. ► Fulvic acid, NO{sub 3}{sup −}, and Fe{sup 3+} ion increased MeHg photo-decomposition rate significantly. ► Humic acid and HCO{sub 3}{sup −} ions inhibited photodecomposition through radical scavenging. ► OH radical is an important compound affecting photodecomposition of MeHg in water.

  20. Tertiary treatment of pulp mill wastewater by solar photo-Fenton

    International Nuclear Information System (INIS)

    Lucas, Marco S.; Peres, José A.; Amor, Carlos; Prieto-Rodríguez, Lucía; Maldonado, Manuel I.; Malato, Sixto

    2012-01-01

    Highlights: ► We firstly report a real pulp mill wastewater treatment by solar photo-Fenton in a CPC reactor. Fenton reagent experiments were tested firstly. ► Solar photo-Fenton presents excellent ability to treat the pulp mill wastewater. ► Experimental conditions were optimised. ► Biodegradability and toxicity tests (respirometry assays and BOD 5 /COD ratio) were performed during the wastewater treatment. ► A way to reduce the economic and environmental impact was evaluated. - Abstract: This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe 2+ /H 2 O 2 ) and solar photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5 mg Fe L −1 reaches 90% of DOC mineralisation with 31 kJ L −1 of UV energy and 50 mM of H 2 O 2 . The initial non-biodegradability of PMW, as shown by respirometry assays and BOD 5 /COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50 mg Fe L −1 revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H 2 O 2 and time. Diluting the initial organic load to 50% also diminishes the dosage of H 2 O 2 and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  1. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  2. Tabular map of bank mining in North Czech and photo-documentation

    International Nuclear Information System (INIS)

    Svec, J.; Jenista, J.

    2003-01-01

    Quarry coal mining in North Bohemian coal territory represents actual problem that resulted in destabilisation up to devastation of land. Mining activities represent total area about 300 square kilometres. It is documented by tabular map with photo-documentation. Anthropogenic land degradation requires restoration actions in land in this range that will return its stability and natural functions

  3. Photos

    Science.gov (United States)

    GPS U.S. Air Force Academy Warrior Care Warrior Games Women's History Month Tag: Search Tag Sort By Squadron Ruck March Download Full Image Photo Details F-22 Demonstration Download Full Image Photo Details

  4. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  5. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.; McGehee, Michael D.

    2016-01-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  6. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  7. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: in vitro release, ex vivo skin penetration and photo-stability studies.

    Science.gov (United States)

    Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar

    2012-02-01

    To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.

  8. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    Science.gov (United States)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  9. Study on degrading graphene oxide in wastewater under different conditions for developing an efficient and economical degradation method.

    Science.gov (United States)

    Li, Ting; Zhang, Chao-Zhi; Gu, Chengyue

    2017-12-01

    With popular application of graphene and graphene oxide (GO), they have been discharged into water. Graphene and GO harm organisms. However, an efficient and economical method for removing graphene and GO in wastewater has seldom been reported. Graphene can be oxidized by hydrogen peroxide to give GO; therefore, degradation of graphene oxide is an important step in the procedure of removal of graphene from water. In this paper, GO degradation via photo-Fenton reaction under different conditions was carried out. Experimental results suggested that GO in wastewater can be efficiently and economically degraded into carbon dioxide and H 2 O when pH value is 3, concentration of H 2 O 2 and FeCl 3 are 35 mM and 5 ppm, respectively. Degradation mechanism of GO was suggested based on UV-vis absorption spectra, scanning electron microscopy, X-ray diffraction and liquid chromatography-mass spectra data of degradation intermediates. This paper suggests an efficient and economical degradation way of GO in wastewater.

  10. The effect of PCBM on the photo-degradation kinetics of polymers for organic photovoltaics

    NARCIS (Netherlands)

    Distler, A.; Kutka, P.; Sauermann, T.; Egelhaaf, H-J.; Guldi, D.M.; Di Nuzzo, D.; Meskers, S.C.J.; Janssen, R.A.J.

    2012-01-01

    The photo-oxidation behavior of three different polymers—namely, poly(3-hexylthiophene) (P3HT), poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT), and

  11. Degradation study of pesticides used in Dourados-MS

    Directory of Open Access Journals (Sweden)

    Virgilio Vieira de Olival

    2012-10-01

    Full Text Available The intensive use and irregular disposal of pesticides in agriculture has caused serious environmental and health problems. In this work was evaluated the efficiency of UV and some advanced oxidation processes involving photo-Fenton reaction, O3 and O3/UV for the treatment of aqueous solutions containing commercial and standard pesticides. The results showed that the combination of UV radiation in alkaline means with O3 significantly increased the efficiency of the process of degradation and the photo-Fenton system is a promising alternative for the treatment of effluents containing pesticides.

  12. Comparative Study of Pure g-C₃N₄ and Sulfur-Doped g-C₃N₄ Catalyst Performance in Photo-Degradation of Persistent Pollutant Under Visible Light.

    Science.gov (United States)

    Liu, Guixian; Qiao, Xingdu; Gondal, M A; Liu, Yun; Shen, Kai; Xu, Qingyu

    2018-06-01

    Graphitic carbon nitride (g-C3N4) and sulfur-doped g-C3N4 were prepared by pyrolysis of melamine and thiourea respectively. Their comparative performance was investigated for photo-degradation of a Rhodamine B (RhB) an organic toxic pollutant. The crystal structure, morphology, microscopic components and properties of the synthesized samples were characterized by XRD, TEM, FT-IR, photoluminescence (PL) emission spectroscopy and zeta potential. TG-DTA is a record of the process for pyrolysis of thiourea. Two simplified kinetic models, pseudo-first-order and pseudo-second-order were applied to predict the adsorption rate constants. Thermodynamic parameters, such as the change in free energy, enthalpy and entropy were also calculated to analyze the process of adsorption. Adsorption isotherms and equilibrium adsorption capacities were established by three well-known isotherm models including Langmuir, Freundlich and Dubinin-Radushkevich (D-R). Both samples were investigated for underlining the reaction mechanism during the photodegradation RhB process and then can be assigned to the overall reaction. The photosensitive hole is regarded as main oxidation species for the degradation by sulfur-doped g-C3N4, but not the exclusive way for g-C3N4. It is worth mentioning that the optimum operating condition can be obtained by orthogonal experiments.

  13. Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost.

    Science.gov (United States)

    Cabrera Reina, A; Miralles-Cuevas, S; Casas López, J L; Sánchez Pérez, J A

    2017-12-15

    This study evaluates the combined effect of photo-catalyst concentration and irradiance level on photo-Fenton efficiency when this treatment is applied to industrial wastewater decontamination. Three levels of irradiance (18, 32 and 46W/m 2 ) and three iron concentrations (8, 20 and 32mg/L) were selected and their influence over the process studied using a raceway pond reactor placed inside a solar box. For 8mg/L, it was found that there was a lack of catalyst to make use of all the available photons. For 20mg/L, the treatment always improved with irradiance indicating that the process was photo-limited. For 32mg/L, the excess of iron caused an excess of radicals production which proved to be counter-productive for the overall process efficiency. The economic assessment showed that acquisition and maintenance costs represent the lowest relative values. The highest cost was found to be the cost of the reagents consumed. Both sulfuric acid and sodium hydroxide are negligible in terms of costs. Iron cost percentages were also very low and never higher than 10.5% while the highest cost was always that of hydrogen peroxide, representing at least 85% of the reagent costs. Thus, the total costs were between 0.76 and 1.39€/m 3 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tertiary treatment of pulp mill wastewater by solar photo-Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Marco S., E-mail: mlucas@utad.pt [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Peres, Jose A.; Amor, Carlos [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Prieto-Rodriguez, Lucia; Maldonado, Manuel I.; Malato, Sixto [Plataforma Solar de Almeria (CIEMAT), Carretera de Senes, Km 4, 04200, Tabernas, Almeria (Spain)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We firstly report a real pulp mill wastewater treatment by solar photo-Fenton in a CPC reactor. Fenton reagent experiments were tested firstly. Black-Right-Pointing-Pointer Solar photo-Fenton presents excellent ability to treat the pulp mill wastewater. Black-Right-Pointing-Pointer Experimental conditions were optimised. Black-Right-Pointing-Pointer Biodegradability and toxicity tests (respirometry assays and BOD{sub 5}/COD ratio) were performed during the wastewater treatment. Black-Right-Pointing-Pointer A way to reduce the economic and environmental impact was evaluated. - Abstract: This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}) and solar photo-Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}/UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5 mg Fe L{sup -1} reaches 90% of DOC mineralisation with 31 kJ L{sup -1} of UV energy and 50 mM of H{sub 2}O{sub 2}. The initial non-biodegradability of PMW, as shown by respirometry assays and BOD{sub 5}/COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50 mg Fe L{sup -1} revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H{sub 2}O{sub 2} and time. Diluting the initial organic load to 50% also diminishes the dosage of H{sub 2}O{sub 2} and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  15. Photo- and thermal degradation of olive oil measured using an optical fibre smartphone spectrofluorimeter

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Jamalipour, Abbas

    2017-04-01

    Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.

  16. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  17. Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes

    International Nuclear Information System (INIS)

    Purcar, Violeta; Caprarescu, Simona; Donescu, Dan; Petcu, Cristian; Stamatin, Ioan; Ianchis, Raluca; Stroescu, Hermine

    2013-01-01

    Hybrid thin films, silica–titanium oxides and silica–aluminum oxides, designed based on the sol–gel process are evaluated as catalysts in the photo-degradation of the cationic dyes. Silica matrices from different precursors with various organic functional groups and cross-linked with titanium or aluminum agents (tetraisopropyl orthotitanate and aluminum sec-butoxide) allow the surface property tailoring related to the high capacity of the dye adsorption respective, high photo-degradation activity. The cationic dyes (methylene blue, rhodamine B, crystal violet, malachite green) embedded on the hybrid silica matrix, under ultraviolet light, have a first order kinetics of photodegradation. The cross-linking agents play a key role in the photocatalytic degradation and silica matrix as dye absorbent. The photo-degradation rate for the binary system derived from methyltriethoxysilane/vinyltriethoxysilane precursors with both cross linkers showed a significant improvement by comparison with other hybrid materials. The significant increasing in the photodecomposition rate is related to the capacity to generate additional oxidizing species by each silica hybrid compounds. - Highlights: ► Dyes display different electrostatic interactions to the silica matrix. ► Cross-linking agent influences the photocatalytic degradation of dyes. ► Photodegradation reaction obeyed the rules of a pseudo-first-order kinetic reaction. ► UV radiation can be the origin of the photodegradation

  18. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance

    Science.gov (United States)

    Wang, Kaixuan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao

    2017-05-01

    LaFeO3 nanoparticles immobilized on the surface of monodisperse carbon spheres have been obtained through a facile and environmentally friendly ultrasonic assisted surface ions adsorption method. The LaFeO3/C nanocomposite was evaluated as photo-Fenton like catalyst for the degradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The LaFeO3/C nanocomposite possesses high specific surface area compared with pure LaFeO3 and significantly enhanced photo-Fenton like catalytic performance. The possible formation process of the LaFeO3/C nanocomposite and the mechanism for photo-Fenton like reaction were discussed. The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of carbon spheres. In addition, the heterogeneous process led to better recyclability of this type of catalyst.

  19. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    Science.gov (United States)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  20. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole.

    Science.gov (United States)

    Li, Yingjie; Zhang, Biaojun; Liu, Xiangliang; Zhao, Qun; Zhang, Heming; Zhang, Yuechao; Ning, Ping; Tian, Senlin

    2018-07-05

    Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H 2 O 2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics. Copyright © 2018. Published by Elsevier B.V.

  1. Semantic photo books: leveraging blogs and social media for photo book creation

    Science.gov (United States)

    Rabbath, Mohamad; Sandhaus, Philipp; Boll, Susanne

    2011-03-01

    Recently, we observed a substantial increase in the users' interest in sharing their photos online in travel blogs, social communities and photo sharing websites. An interesting aspect of these web platforms is their high level of user-media interaction and thus a high-quality source of semantic annotations: Users comment on the photos of each others, add external links to their travel blogs, tag each other in the social communities and add captions and descriptions to their photos. However, while those media assets are shared online, many users still highly appreciate the representation of these media in appealing physical photo books where the semantics are represented in form of descriptive text, maps, and external elements in addition to their related photos. Thus, in this paper we aim at fulfilling this need and provide an approach for creating photo books from Web 2.0 resources. We concentrate on two kinds of online shared media as resources for printable photo books: (a) Blogs especially travel blogs (b) Social community websites like Facebook which witness a rapidly growing number of shared media elements including photos. We introduce an approach to select media elements including photos, geographical maps and texts from both blogs and social networks semi-automatically, and then use these elements to create a printable photo book with an appealing layout. Because the selected media elements can be too many for the resulting book, we choose the most proper ones by exploiting content based, social based, and interactive based criteria. Additionally we add external media elements such as geographical maps, texts and externally hosted photos from linked resources. Having selected the important media, our approach uses a genetic algorithm to create an appealing layout using aesthetical rules, such as positioning the photo with the related text or map in a way that respects the golden ratio and symmetry. Distributing the media over the pages is done by

  2. Epitomize Your Photos

    Directory of Open Access Journals (Sweden)

    Peter Vajda

    2011-01-01

    Full Text Available With the rapid growth of digital photography, sharing of photos with friends and family has become very popular. When people share their photos, they usually organize them into albums according to events or places. To tell the story of some important events in one’s life, it is desirable to have an efficient summarization tool which can help people to receive a quick overview of an album containing large number of photos. In this paper, we present and analyze an approach for photo album summarization through a novel social game “Epitome” as a Facebook application. This social game can collect research data, and, at the same time, it provides a collage or a cover photo of the user’s photo album, while the user enjoys playing the game. The proof of concept of the proposed method is demonstrated through a set of experiments on several photo albums. As a benchmark comparison to this game, we perform automatic visual analysis considering several state-of-the-art features. We also evaluate the usability of the game by making use of a questionnaire on several subjects who played the “Epitome” game. Furthermore, we address privacy issues concerning shared photos in Facebook applications.

  3. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  4. Experimental study and modelling of X-ray photo-triggering of a discharge for exciplex laser

    International Nuclear Information System (INIS)

    Louvet, Yolande

    1986-01-01

    As the excitation of the laser medium by using a photo-triggered discharge revealed to be more reliable that an excitation by pre-ionised discharge, this research thesis reports the use of such an excitation and the study of initiation mechanisms for discharges photo-triggered by X rays. The author first recalls the main characteristics of excimer and exciplex systems, and presents the principle of discharge photo-triggering. He presents the experimental set-up, and reports the use of an original method to characterise the X radiation. This method uses theoretical data related to Bremsstrahlung emission, and results are validated by experimental tests. Realistic data regarding X ray properties are introduced into the theoretical model which also takes X-ray-induced ionisation reactions and photo-electron energetic degradation into account. By using this model, the author determines the electron distribution function produced by the X pre-ionisation, and the resulting thermalized electron density [fr

  5. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    Science.gov (United States)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  6. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    International Nuclear Information System (INIS)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-01-01

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N 2 adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  7. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide.

    Science.gov (United States)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hui-Pin [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Yao-Hui, E-mail: yhhuang@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Lee, Changha, E-mail: clee@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 698-805 (Korea, Republic of)

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N{sub 2} adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation ({lambda} = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  9. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    Science.gov (United States)

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  10. ATLAS HEC PHOTOS TRIUMF

    CERN Multimedia

    1997-01-01

    Photo 1 - Removal of a glued foil from the glue press. The foils still need to be cut with a steel rule die and the HV pins soldered on. Photo 2 - Inspection of EST foil. Photo 3 - Placing the first plate of the front Module 0 on the stacking table with the tie-rods in place. Photo 4 - As each gap is stacked, it is tested by applying 3kV across each honeycomb sheet and ensuring that the current draw is low (a few tens of nA). Photo 5 - HV testing on a stacked front module. Photo 6 - Detail of a gap in a module. Four sheets of honeycomb spacing mats separate the centre PAD foil from the two EST foils on either side, and hold the EST foils away from the copper absorber structure. Photo 7 - Last plate of rear module being stacked. Photo 8 - Stacked rear module 0. Photo 9 - Four Module 0's, one front and one rear from TRIUMF, one from Germany, and one from and one from Russia, are "married" into one structure. In this picture, two front modules are married together. Photo 10 - After two modules are married, they ...

  11. HD Photo: a new image coding technology for digital photography

    Science.gov (United States)

    Srinivasan, Sridhar; Tu, Chengjie; Regunathan, Shankar L.; Sullivan, Gary J.

    2007-09-01

    This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

  12. Influenza Photos

    Science.gov (United States)

    ... Polio Whooping cough Influenza (flu) Rabies Yellow fever Influenza Photos Photographs accompanied by text that reads "Courtesy ... of these photos are quite graphic. Shows how influenza germs spread through the air when someone coughs ...

  13. Combined Effect of Temperature and Dissolved Oxygen on Degradation of 4-chlorophenol in Photo Microreactor

    Czech Academy of Sciences Publication Activity Database

    Vondráčková, Magdalena; Hejda, S.; Stavárek, Petr; Křišťál, Jiří; Klusoň, Petr

    2015-01-01

    Roč. 94, SI (2015), s. 35-38 ISSN 0255-2701 R&D Projects: GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 Keywords : photo microreactor * phthalocyanine * chlorophenol oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.154, year: 2015

  14. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    Science.gov (United States)

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  15. The effect of aeration and solar intensity power on photocatalytic degradation of textile industrial wastewater using TiO2 thin film

    International Nuclear Information System (INIS)

    Abu Kassim, N.F.; Ku Hamid, K.H.; Azizan, A.

    2006-01-01

    Solar photo catalytic degradation of the textile industry wastewater using TiO 2 thin films was studied. This experiment was performed to investigate the effect of aeration and solar intensity power on decreasing of Chemical Oxygen Demand (COD). A serpentine flow photo catalytic reactor was developed for this purpose. TiO 2 thin films photo catalyst supported on the stainless steel 304 substrates were prepared using sol-gel dip coating method. The results of thin films were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffractometer (XRD). XRD result showed that the prepared thin films gave the anatase crystallite formation whilst SEM demonstrated the macro pores were formed. Finally, the aeration and solar intensity power factors are considered to be responsible for the photo catalytic degradation. (Author)

  16. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.

    Science.gov (United States)

    Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin

    2018-05-10

    Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

  17. OAS :: Photos

    Science.gov (United States)

    subscriptions Videos Photos Live Webcast Social Media Facebook @oasofficial Facebook Twitter @oas_official Photos and Symbols Authorities Social Media Facebook Twitter Newsletters Press and Communications Rights Actions against Corruption C Children Civil Registry Civil Society Contact Us Culture Cyber

  18. Modification of Titanium Dioxide Nanoparticles With Copper Oxide Co-Catalyst for Photo catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid

    International Nuclear Information System (INIS)

    Leny Yuliati; Siah, W.R.; Nur Azmina Roslan; Mustaffa Shamsuddin

    2016-01-01

    2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO_2) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO_2. On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photo catalytic removal of the 2,4-D. The photo catalytic activity of the TiO_2 increased with the increase of copper oxide loading up to 0.5 mol %. Unfortunately, the higher loading amount of copper oxide resulted in the lower photo catalytic activity. This study suggested that the higher photo catalytic activities obtained on the low loading samples were due to the lower electron-hole recombination. (author)

  19. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  20. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: Transformation products and toxicity in different water matrices

    Science.gov (United States)

    Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformat...

  1. Color-tunable electrophosphorescent device fabricated by a photo-bleaching method

    International Nuclear Information System (INIS)

    Kim, Tae-Ho; Park, Jong Hyeok; Park, O Ok

    2011-01-01

    We demonstrated an efficient color-tunable electrophosphorescent device fabricated by a photo-bleaching method. Electroluminescence studies indicate that excellent device performance can be achieved through efficient Foerster energy transfer from the conjugated polymer to the iridium complexes by improving their miscibility. The use of a very low concentration of red phosphorescent dye and the easy degradation characteristics of conjugated structure of the red dopant enable color-tuning from red to green emission by a simple UV-irradiation process without a sacrifice of luminescent properties.tp

  2. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2016-05-01

    findings demonstrate the potency of CALR mutants to drive expression of megakaryocytic differentiation markers such as NF-E2 and CD41 as well as Mpl. Furthermore, CALR mutants undergo accelerated protein degradation that involves the secretory pathway and/or protein glycosylation.

  3. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    Science.gov (United States)

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.

  4. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  5. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Augustine Chioma Affam

    2018-01-01

    Full Text Available The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2 for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio index (BI were observed to be (i Fenton - 69.03% (COD, 55.61% (TOC, and 0.35 (BI; (ii UV photo-Fenton -78.56% (COD, 63.76% (TOC and 0.38 (BI;  (iii solar photo-Fenton - 74.19% (COD, 58.32% (TOC and 0.36 (BI; (iv UV/TiO2/H2O2 - 53.62% (COD, 21.54% (TOC, and 0.26 (BI; and  (v the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3, the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 179-186 (doi:10.9767/bcrec.13.1.1394.179-186

  6. Chitosan/Fe spheres on the blue QR-19 dye degradation by photo Fenton processes using artificial or solar light; Esferas de quitosana/Fe na degradacao do corante azul QR-19 por processos foto-Fenton utilizando luz artificial ou solar

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Kely V. de; Zamora, Patricio G.P.; Zawadzki, Sonia F. [Universidade Federal do Parana (DQ/UFPR), Curitiba, PR (Brazil). Dept. de Quimica], E-mail: zawadzki@quimica.ufpr.br

    2010-07-15

    The contamination of water resources is one of the greatest environmental problems today. Among the polluting sources are the textile industries due to the production of large volumes of effluent, often treated inefficiently. The main reason for the environmental impact of the rejected materials is the presence of dyes such as azo reactive compounds that can generate by-products with carcinogenic and mutagenic effects. They may also include anthraquinone type compounds, which are highly resistant to degradation and persist in the effluent for a long time. The purpose of this study is the use of photo-Fenton processes assisted by artificial or solar light, using immobilized iron on chitosan beads, crosslinked with glutaraldehyde, for the anthraquinone type compound Blue QR-19 standard dye degradation in aqueous solutions. The obtained spheres showed a regular size and 4.0 mm diameter. The results showed 90% discoloration of the system within 180 minutes and a 60% total organic carbon (TOC)reduction for the photo-Fenton system using artificial light. For the system using sunlight, the total discoloration was achieved in 120 minutes and the TOC value decreased 70%. Also observed was that iron remained in the polymeric matrix after the treatment, thus allowing reuse. (author)

  7. ATLAS TileCal Submodule Production Photos (2001)

    CERN Multimedia

    Errede, S.

    2001-01-01

    Photo 1 - Dirty Spacers Photo 2 - Washing Plates Photo 3 - Throw Photo 4 - Catch Photo 5 - Mascot Photo 6 - Glue Machine Photo 7 - Gluing Photo 8 - Finished submodule Photo 9 - Submodule being final welded Photo 10 - Paint tank Photo 11 - Submodule is wrapped Photo 12 - Exhaustion

  8. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  9. Hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol

    International Nuclear Information System (INIS)

    Abreu Zamora, Maria A.; Gonzalez Lopez, Dagoberto E.; Robaina Leon, Yalaina; Dominguez Catasus, Judith; Borroto Portela, Jorge I.; Jauregui Haza, Ulises J.

    2015-01-01

    The conventional wastewater treatment plants do not guarantee the degradation of Persistent Organic Pollutants (POPs). Advanced oxidation processes, like photodegradation that use artificial ultraviolet and solar radiation, are proposed as an alternative for the treatment of contaminated water with POPs. In the present work, the hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol are presented. The hydrodynamic characterization was performed through the analysis of the residence time distribution using a radioisotope 99m Tc. This process was done in two steps. First, the open channel reactor was evaluated in continuous mode operation. To study the influence of the fluid volume in the reactor and the diameter of the flow distributor's orifices on the flow pattern, an experimental 3 2 design with two replicas in the center was used. The dependent variables were the number of perfectly mixed tanks (J), the mean residence time of the model (τ) and the experimental mean residence time (Trm). The model of perfectly mixed tanks in series exchanging with stagnant zones was assumed as the best model. In a second moment, the mixing time of the system operating in close loop mode was determined. Finally, the degradation of paracetamol in aqueous dissolution trough photolysis, photolysis intensified with H 2 O 2 , photo-Fenton with artificial ultraviolet radiation and photo-Fenton with solar radiation was evaluated. The results show that the photo-Fenton processes employing artificial ultraviolet and solar radiation warranty the total degradation of the pharmaceutical after 15 minutes of reaction. (Author)

  10. USRCRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of USRCRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD). Photos are...

  11. Kodak's Photo CD and Proposed Photo YCC Color Standard.

    Science.gov (United States)

    Urrows, Henry; Urrows, Elizabeth

    1991-01-01

    Describes new technology being developed by Eastman Kodak for storing 35mm color photos on compact disk (CD) and discusses its applications for desktop publishing. Benefits of photo CD and costs are examined, a proposed universal color standard that is an improved way to represent color digitally is explained, and software is discussed. (LRW)

  12. Satellite photo of CERN

    CERN Multimedia

    1991-01-01

    This photo from the Landsat5 orbital telescope shows the locations of CERN's Meyrin and Prevessin sites near Geneva on the Swiss-France border. The tunnels housing the LHC and SPS accelerators are also illustrated. Photo credit: US Geological Survey/photo by Jane Doe.

  13. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    International Nuclear Information System (INIS)

    Guo Wenlu; Liu Xiaolin; Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng

    2012-01-01

    Anatase TiO 2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO 2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO 2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO 2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h).

  14. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    International Nuclear Information System (INIS)

    Villa, Ricardo D.; Trovo, Alam G.; Nogueira, Raquel F. Pupo

    2010-01-01

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC eff ). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  15. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ricardo D., E-mail: ricardovilla@ufmt.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Trovo, Alam G., E-mail: alamtrovo@smail.ufsm.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Nogueira, Raquel F. Pupo, E-mail: nogueira@iq.unesp.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil)

    2010-02-15

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC{sub eff}). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  16. Recent Overview of Solar Photocatalysis and Solar Photo-Fenton Processes for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. G. Gutierrez-Mata

    2017-01-01

    Full Text Available This literature research, although not exhaustive, gives perspective to solar-driven photocatalysis, such as solar photo-Fenton and TiO2 solar photocatalysis, reported in the literature for the degradation of aqueous organic pollutants. Parameters that influence the degradation and mineralization of organics like catalyst preparation, type and load of catalyst, catalyst phase, pH, applied potential, and type of organic pollutant are addressed. Such parameters may also affect the photoactivity of the catalysts used in the studied solar processes. Solar irradiation is a renewable, abundant, and pollution-free energy source for low-cost commercial applications. Therefore, these solar processes represent an environmentally friendly alternative mainly because the use of electricity can be decreased/avoided.

  17. CRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of CRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD). Photos are used...

  18. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole

    Science.gov (United States)

    Cai, Li; Jiang, Hui; Wang, Luxi

    2017-10-01

    Ag3PO4 photocatalysts modified with BiPO4 and polypyrrole (PPy) were successfully synthesized via a combination of co-precipitation hydrothermal technique and oxidative polymerization method. Their morphologies, structures and optical and electronic properties were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), X-ray photo-electron spectroscopy (XPS), UV-vis diffuse reflection spectra (UV-vis DRS), photocurrent technique and electrochemical impedance spectra (EIS). The typical triphenylmethane dye (malachite green) was chosen as a target organic contaminants to estimate the photocatalytic activities and photo-stabilities of Ag3PO4-BiPO4-PPy heterostructures under visible light irradiation. The results indicated that the existence of BiPO4 and PPy not only showed great influences on the photocatalytic activity, but also significantly enhanced photo-stability of Ag3PO4 in repeated and long-term applications. The degradation conversion of Ag3PO4-BiPO4-PPy heterostructures (ABP-3) was 1.58 times of that of pure Ag3PO4. The photo-corrosion phenomenon of Ag3PO4 was effectively avoided. The photocatalytic activity of up to 87% in the Ag3PO4-BiPO4-PPy heterostructures (ABP-3) can be remained after five repeated cycles, while only about 33% of the degradation efficiency can be reserved in pure Ag3PO4. The possible mechanism of enhanced photo-stability and photocatalytic activity of Ag3PO4-BiPO4-PPy heterostructures was also discussed in this work.

  19. Immobilizing LaFeO_3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance

    International Nuclear Information System (INIS)

    Wang, Kaixuan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao

    2017-01-01

    Highlights: • LaFeO_3 nanoparticles sub–10 nm were successfully immobilized on monodisperse carbon spheres for the first time through a facile and environmental friendly ultrasonic assisted surface ions adsorption method. • LaFeO_3/C nanocomposite exhibits much higher photo-Fenton like catalytic activity than LaFeO_3. • The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of monodisperse carbon spheres. - Abstract: LaFeO_3 nanoparticles immobilized on the surface of monodisperse carbon spheres have been obtained through a facile and environmentally friendly ultrasonic assisted surface ions adsorption method. The LaFeO_3/C nanocomposite was evaluated as photo-Fenton like catalyst for the degradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The LaFeO_3/C nanocomposite possesses high specific surface area compared with pure LaFeO_3 and significantly enhanced photo-Fenton like catalytic performance. The possible formation process of the LaFeO_3/C nanocomposite and the mechanism for photo-Fenton like reaction were discussed. The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of carbon spheres. In addition, the heterogeneous process led to better recyclability of this type of catalyst.

  20. Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao, E-mail: zy19830808@163.com [College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu, Fusheng; Yu, Shitao [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2015-11-15

    Highlights: • The montmorillonite was used as the carrier for the synthesis of FeOOH nano-material and FeOOH/ZnO nano-material. • TEM was used to study the structure of the two nano-materials with the composite structure of goethite and wurtzite. • TEM was used to demonstrate FeOOH/ZnO nano-material can formed with the appropriate interface: wurtzite-(1 0 1)/(1 1 1)-goethite. • There were some coupling effect between FeOOH and ZnO, which can improve the photo-catalytic activities of FeOOH. • According to FTIR and TOC, PCP was degraded to aromatic ketone compounds and then to H{sub 2}O, CO{sub 2}, HCl. - Abstract: Montmorillonite (MMT) was used as the carrier for synthesis of FeOOH and FeOOH/ZnO nano-material. FeOOH and FeOOH/ZnO were synthesized by the aqueous solutions of Fe(NO{sub 3}){sub 3}–HNO{sub 3} and Zn(NO{sub 3}){sub 2}–NaOH/Fe(NO{sub 3}){sub 3}–HNO{sub 3} with the carrier of montmorillonite respectively. Transmission electron-microscopy (TEM) and X-ray diffraction (XRD) were used to study the morphology form and structure of the nano-materials. TEM was also used to demonstrate that FeOOH/ZnO can be formed with the appropriate interface. According to UV–vis absorption spectra, FeOOH/ZnO has a better response to visible light than FeOOH and ZnO, which indicates there is some coupling effect between FeOOH and ZnO. Pentachlorophenol (PCP) was used as a representative organic pollutant to evaluate the photo-catalytic efficiency of the FeOOH/ZnO and FeOOH catalysts in visible light (λ > 400 nm). The photo-catalytic efficiency of FeOOH/ZnO/MMT is better than FeOOH/MMT. According to FTIR, changes of pH and TOC, the degradation mechanism was also discussed. PCP was degraded to aromatic ketone and chloro-hydrocarbon compounds and then to H{sub 2}O, CO{sub 2} and HCl.

  1. A study on heterogeneous photocatalytic degradation of various organic compounds using N-Tio2 under Uv-light irradiation

    Science.gov (United States)

    Srujana, Dhegam; Sailu, Chinta

    2018-04-01

    The aim of this work is to determine the photocatalytic degradation of mixture of four selected organic compounds are Congo Red (CR), Methylene Blue (MB), Diclofenaec (DC), 4-Chlorophenol (4-CP) have been subjected to Photo catalytic degradation by Ultraviolet (λ=254nm) radiation in presence of Nitrogen-doped Titanium dioxide (N-TiO2) catalyst. This paper focused on the enhancement of photo catalysis by modification of TiO2 employing non-metal ion (Nitrogen) doping. Experiments are conducted with a mixture of equal proportions of organic compounds (CR, MB, DC, and 4-CP) with combined concentrations of 10, 20, 30, 40 and 50 mg/l in water in a batch reactor in presence of N-TiO2catalyst with UV light (λ=254nm). The rate of degradation of each compound is determined by using spectrophotometer. The kinetics of degradation of the selected organic compounds is followed first order rate.

  2. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    Science.gov (United States)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  3. Correlation-Preserving Photo Collage.

    Science.gov (United States)

    Liu, Lingjie; Zhang, Hongjie; Jing, Guangmei; Guo, Yanwen; Chen, Zhonggui; Wang, Wenping

    2017-05-12

    A new method is presented for producing photo collages that preserve content correlation of photos. We use deep learning techniques to find correlation among given photos to facilitate their embedding on the canvas, and develop an efficient combinatorial optimization technique to make correlated photos stay close to each other. To make efficient use of canvas space, our method first extracts salient regions of photos and packs only these salient regions. We allow the salient regions to have arbitrary shapes, therefore yielding informative, yet more compact collages than by other similar collage methods based on salient regions. We present extensive experimental results, user study results, and comparisons against the state-of-the-art methods to show the superiority of our method.

  4. Thermal degradation chemistry of ruthenium complexes in the dye-sensitized solar cell and strategies for reducing the dark current

    DEFF Research Database (Denmark)

    Lund, Torben

    on the surface of a semiconductor anode (TiO2). In my lecture, I will present and overview of our degradation investigations of the ruthenium dyes N719, Z907 and C106 with the general structure RuLL´(NCS)2 and show how detailed degradation mechanistic knowledge is important in the developing of DSC cells...... transfer from the photo anode to the mediator R+ and the oxidized dye S+ we have applied electrochemical grafting strategies to attach an electrical isolation layer of mono and multilayers of organic molecules on the TiO2 photo anode [3]....

  5. Photo-catalysis Plants from basic research to commercial reality; Plantas de tratamiento mediante fotocatalisis solar: de la investigacion basica a una realidad comercial

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.

    2007-07-01

    The degradation process of nonbiodegradable organic substances by means of photo catalysis techniques allows the effective elimination of pollutants presents in water and air. The development during the last years of the solar photo catalysis technology, commonly called solar detoxification, has allowed that the first commercial plants based on solar collectors for the treatment of waste water containing persistent organic compounds become a reality. CIEMAT has played an essential roll on this process. This technology is based on the application of two different techniques (photo-Fenton and UV/TiO{sub 2} processes) implemented in static solar collectors CPC type (parabolic-compound). (Author)

  6. Photochemical degradation of alachlor in water

    Directory of Open Access Journals (Sweden)

    Tajana Đurkić

    2017-01-01

    Full Text Available This study investigates the photochemical degradation of alachlor, a chloroacetanilide herbicide. All experiments were conducted in ultra-pure deionized water (ASTM Type I quality using direct ultraviolet (UV photolysis and the UV/H2O2 advanced oxidation process. The direct UV photolysis and UV/H2O2 experiments were conducted in a commercial photochemical reactor with a quartz reaction vessel equipped with a 253.7 nm UV low pressure mercury lamp (Philips TUV 16 W. The experimental results demonstrate that UV photolysis was very effective for alachlor degradation (up to 97% removal using a high UV fluence of 4200 mJ/cm2. The UV/H2O2 process promoted alachlor degradation compared to UV photolysis alone, with a high degree of decomposition (97% achieved at a significantly lower UV fluence of 600 mJ/cm2 when combined with 1 mg H2O2/L. The application of UV photolysis alone with a UV fluence of 600 mJ/cm2 gave a negligible 4% alachlor degradation. The photo degradation of alachlor, in both direct UV photolysis and the UV/H2O2 process, followed pseudo first-order kinetics. The degradation rate constant was about 6 times higher for the UV/H2O2 process than for UV photolysis alone.

  7. Preparation of Stellerite Loading Titanium Dioxide Photo catalyst and Its Catalytic Performance on Methyl Orange

    International Nuclear Information System (INIS)

    Chen, H.; Wang, J.; Wang, H.; Chen, H.; Yang, F.; Chen, H.; Zhou, J.; Fu, J.; Yang, J.; Yuan, Z.; Zheng, B.

    2015-01-01

    TiO 2 /stellerite composite photo catalysts were prepared by dispersing TiO 2 onto the surface of HCl, NaOH, or NaCl treated stellerite using a sol-gel method. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), BET surface area analysis, and X-ray diffraction (XRD). HCl and NaCl modification result in the promotion of the pore formation at the stellerite surfaces and induced the microscopic changes, while the surface morphology and structure of the stellerite were almost ruined by NaOH modification. Supported TiO 2 calcinate at 200 degree presented anatase structure. The photo catalytic degradation activities of TiO 2 loaded HCl and NaCl modified stellerite were better than that of natural stellerite, accompanied with increasing specific surface area. On the contrary, NaOH modification induced the loss of photo catalytic ability of composite due to the generation of silicates

  8. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach.

    Science.gov (United States)

    Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César

    2015-01-01

    This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Wastewater treatment using photo-impinging streams cyclone reactor: Computational fluid dynamics and kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Royaee, Sayed Javid; Shafeghat, Amin [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Sohrabi, Morteza [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-02-15

    A photo impinging streams cyclone reactor has been used as a novel apparatus in photocatalytic degradation of organic compounds using titanium dioxide nanoparticles in wastewater. The operating parameters, including catalyst loading, pH, initial phenol concentration and light intensity have been optimized to increase the efficiency of the photocatalytic degradation process within this photoreactor. The results have demonstrated a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes. In the next step, residence time distribution (RTD) of the slurry phase within the reactor was measured using the impulse tracer method. A CFD-based model for predicting the RTD was also developed which compared well with the experimental results. The RTD data was finally applied in conjunction with the phenol degradation kinetic model to predict the apparent rate coefficient for such a reaction.

  10. Risk of disseminated intravascular coagulation in patients undergoing US-guided transperineal prostatic biopsy

    International Nuclear Information System (INIS)

    Stella, M.S.; Comparato, D.; Camici, M.; Evangelisti, L.; Gaudio, V.; De Negri, F.; Talarico, L.; Giusti, C.; Morelli, G.

    1991-01-01

    Disseminated intravascular coagulation (DIC) is a severe life-threatening acute bleeding disorder. Traumatized tissues, tumors, necrotic tissues, or bacterial endotoxines release similar material in the blood to the tissutal factors activating the coagulation cascade. This preliminary study was aimed at verifying the risk of DIV in patients undergoing US-guided transperineal prostatic biopsy with Chiba and Tru-Cut needles. To evaluate the activation degree of coagulation factors in the circulation, the authors measured the concentrations of urinary fibrin degradation products in 10 patients undergoing US-guided transperineal prostatic biopsy, both before and after biopsy, every second hour, for 24 hours. Every tube of urine sample contained soya bean trypsin inhibitor and bovine thrombin to prevent any further fibrin degradation during incubation period for the possible presence of blood in urine samples. The results showed that 7/10 patients had marked increase in urinary fibrin degradation product levels (up to 800 XXXX%), with a 3-phase trend: early peak after 2-6 hours, middle peak after 6-14 hours, and late peak after 18-24 hours, which proved the activation of the coagulation cascade

  11. Photocatalytic degradation trichloroethylene: influence of type of TiO/sub 2/ and water depth

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.

    2005-01-01

    Wastewater is frequently released untreated into the rivers and streams in developing countries, contaminating the major sources of freshwater. There is a need to find an economical solution to clean these essential water supplies. This paper describes the photo catalytic degradation of trichloroethylene (TCE) using three types of TiO/sub 2/. The performance of scientific grade (P25) and commercial grade TiO/sub 2/ was compared. The powder TiO/sub 2/ was found more effective than the sand TiO/sub 2/ for decomposing TCE. The effect of sand TiO/sub 2/ as photo catalyst was investigated at various water depths. It was observed that up to 45 mm water depth, sand TiO/sub 2/ showed photodegradation of TCE. The degradation rates of sand decreased. (author)

  12. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  13. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  14. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  16. [Microwave assisted UV electrodeless discharge lamp photochemical degradation of 4-chlorophenol in aquatic solutions].

    Science.gov (United States)

    Ai, Zhi-hui; Jiang, Jun-qing; Yang, Peng; Zhou, Tao; Lu, Xiao-hua

    2004-07-01

    A microwave assisted UV electrodeless discharge lamp system (MW/UV) was used for photo-degradation of 4CP simulated wastewater. In order to evaluate the degradation efficiency of 4CP, UV spectrophotometry and ion chromatography were used for determination of 4CP and Cl- respectively. The degradation rate in MW/UV system was higher than that in the UV system within 120min, which were 52.40% and 21.56% respectively. The degradation efficiency was improved by increasing pH value of the solution, aerating O2 gas, enhancing light intensity, or adding H2O2 oxidant. The degradation of 4CP under MW/UV accords with the first order kinetics equation.

  17. Advances in Home Photo Printing

    Institute of Scientific and Technical Information of China (English)

    Qian Lin; Brian Atkins; Huitao Luo

    2004-01-01

    With digital camera adoptions going main stream, consumers capture a record number of photos.Currently, the majority of the digital photos are printed at home. One of the key enablers of this transformation is the advancement of home photo printing technologies. In the past few years, inkjet printing technologies have continued to deliver smaller drop size, larger number of inks, and longer-lasting prints. In the mean time, advanced image processing automatically enhances captured digital photos while being printed. The combination of the above two forces has closed the gap between the home photo prints and AgX prints. It will give an overview of the home photo printing market and technology trends, and discuss major advancements in automatic image processing.

  18. Does cooperativity influence the lifetime of the photo-induced HS state?

    International Nuclear Information System (INIS)

    Letard, Jean-Francois; Costa, Jose Sanchez; Marcen, Silvia; Carbonera, Chiara; Desplanches, Cedric; Kobayashi, Atsushi; Daro, Nathalie; Guionneau, Philippe; Ader, Jean-Pierre

    2005-01-01

    We have first recalled the T(LIESST) procedure which consists to determine the temperature above which the photo-magnetic effect is erased. In addition we have selected to series of iron(II) spin crossover complexes, the [Fe(PM-L) 2 (NCS) 2 ] and [Fe(bpp) 2 ]X 2 ·nH 2 O families, to analyse the influence of the cooperativity on the stability of the photo-induced HS state. Some of these complexes exhibit gradual thermal spin crossover behaviours while some others undergo an abrupt thermal transition, with and without hysteresis. Interestingly, whatever the cooperativity effect on the thermal spin crossover transition, the lifetime of the metastable state of all these derivates remains governed by the T(LIESST) = T 0 - 0.31 T 1/2 relation. Finally, we have investigated the magnetic and the photomagnetic properties of a [Fe(bpp) 2 ]-Nafion film. Once more the role of the cooperativity on the stability of the photoinduced HS state appears minor. Conversely, the influence of the nature and the geometry of the inner coordination sphere appears preponderant

  19. Immobilizing LaFeO{sub 3} nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaixuan [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Niu, Helin, E-mail: niuhelin@ahu.edu.cn [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Gao, Yuanhao [Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2017-05-15

    Highlights: • LaFeO{sub 3} nanoparticles sub–10 nm were successfully immobilized on monodisperse carbon spheres for the first time through a facile and environmental friendly ultrasonic assisted surface ions adsorption method. • LaFeO{sub 3}/C nanocomposite exhibits much higher photo-Fenton like catalytic activity than LaFeO{sub 3}. • The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of monodisperse carbon spheres. - Abstract: LaFeO{sub 3} nanoparticles immobilized on the surface of monodisperse carbon spheres have been obtained through a facile and environmentally friendly ultrasonic assisted surface ions adsorption method. The LaFeO{sub 3}/C nanocomposite was evaluated as photo-Fenton like catalyst for the degradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The LaFeO{sub 3}/C nanocomposite possesses high specific surface area compared with pure LaFeO{sub 3} and significantly enhanced photo-Fenton like catalytic performance. The possible formation process of the LaFeO{sub 3}/C nanocomposite and the mechanism for photo-Fenton like reaction were discussed. The superior property was attributed to the synergistic effects from the photo-Fenton like process and the presence of carbon spheres. In addition, the heterogeneous process led to better recyclability of this type of catalyst.

  20. Photocatalytic behaviour of CdS/ZnS nanocomposite for dye degradation in presence of visible light

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B. N. [Department of Physics, Shri Datta Meghe Polytechnic, Nagpur, M.S. (India); Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rastrasant Tukdoji Maharaj Nagpur University, Nagpur-440033 (India)

    2016-05-06

    In the present work ZnS-CdS composite was prepared by hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD) to confirm formation of nano particles, Scanning electron microscopy (SEM) images exhibit nanoscale dimensions of as synthesized individual phases. UV/VIS spectra were recorded for evaluation of photophysical properties. The composite was explored as photocatalysts to study dye degradation using methylene blue in aqueous slurry under irradiation of 663 nm wavelength and congo red under irradiation of 493 nm wavelength. Under the same conditions the photocatalytic activity of the individual phases ZnS and CdS were also examined. The ZnS-CdS composite is found in enhancing the rate of photo degradation of toxic dyes as compare to ZnS and CdS individually in presence of visible light. This ZnS based metal sulphide/oxide semiconductor nanocomposites are high potential material for Photo-degradation of toxic dyes, and act as good photocatalyst in visible light.

  1. Structural modification of mordenite zeolite with Fe For the photo-degradation of EDTA

    International Nuclear Information System (INIS)

    Emara, Mostafa M.; Tourky, Amal S.M.; El-Moselhy, Medhat M.

    2009-01-01

    Fe 2+ was incorporated inside mordenite through ion exchange technique in aqueous solution. The amount of Fe loading was 25-100 wt %, using FeSO 4 .7H 2 O as precursor and Na-mordenite starting material Na-M. The Fe incorporated (Fe-M) thus prepared was characterized by XRD, FTIR and N 2 adsorption measurements. It was found that Fe mordenite retained the same structure as that for Na-mordenite which may indicate that Fe well dispersed into mordenite channels. BET indicated that Fe-M samples possessed higher surface area compared to the parent Na-M. Photocatalytic degradation of EDTA was carried out in presence of the prepared Fe-M catalysts. Effects of catalyst concentration and temperature were also studied. Thermodynamic parameters calculated for 50% Fe-M showed the highest catalytic activity toward EDTA degradation.

  2. Structural modification of mordenite zeolite with Fe For the photo-degradation of EDTA

    Energy Technology Data Exchange (ETDEWEB)

    Emara, Mostafa M. [Chemistry Department, Faculty of Science (boys), Al-Azha University, Nasr city 11884, Cairo (Egypt); Tourky, Amal S.M. [Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr city, Cairo (Egypt); El-Moselhy, Medhat M., E-mail: medhatmohamed@yahoo.com [Chemistry Department, Faculty of Science (boys), Al-Azha University, Nasr city 11884, Cairo (Egypt)

    2009-07-15

    Fe{sup 2+} was incorporated inside mordenite through ion exchange technique in aqueous solution. The amount of Fe loading was 25-100 wt %, using FeSO{sub 4}.7H{sub 2}O as precursor and Na-mordenite starting material Na-M. The Fe incorporated (Fe-M) thus prepared was characterized by XRD, FTIR and N{sub 2} adsorption measurements. It was found that Fe mordenite retained the same structure as that for Na-mordenite which may indicate that Fe well dispersed into mordenite channels. BET indicated that Fe-M samples possessed higher surface area compared to the parent Na-M. Photocatalytic degradation of EDTA was carried out in presence of the prepared Fe-M catalysts. Effects of catalyst concentration and temperature were also studied. Thermodynamic parameters calculated for 50% Fe-M showed the highest catalytic activity toward EDTA degradation.

  3. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    Zulkarnain Zainal; Chan, Sook Keng; Abdul Halim Abdullah

    2008-01-01

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO 2 / AC was found to be two times better than the removal by immobilised AC or immobilised TiO 2 alone. In 4 hours and with the concentration of 10 ppm, TiO 2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  4. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tobias, E-mail: tobias.schulze@ufz.d [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Sara [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Fraunhofer Institute of Toxicology and Experimental Medicine, Department of Chemical Risk Assessment, Nikolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Schymanski, Emma; Ohe, Peter Carsten von der [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Schmitt-Jansen, Mechthild; Altenburger, Rolf [UFZ Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig (Germany); Streck, Georg; Brack, Werner [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-05-15

    The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC{sub 50} of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log K{sub ow} = 3.62) compared with DCF (log D{sub ow} = 2.04) at pH 7.0. - Effect-directed analysis of irradiated diclofenac results in the identification of one photo-transformation product responsible for the enhanced toxicity to Scenedesmus vacuolatus.

  5. Pi-pi* orbital transitions and photo-degeneracy of C.acuminata sensitized solar cells

    Science.gov (United States)

    Abodunrin, T.; Boyo, A.; Usikalu, M.; Obafemi, L.; Oladapo, O.; Kotsedi, L.; Yenus, Z.; Maaza, M.

    2017-04-01

    Dye-sensitized solar cells (DSSCs) have acquired great prominence as favourable low-cost photovoltaics due to their ease of fabrication, all- year -availability, ease of obtaining raw materials and adjustable optical properties like transparency and colour. These advantages coupled with the ability to work under poor lighting makes them a suitable candidate for next generation of research. In this research, C.acuminata-sensitized photo anodes play an important role for achieving high performance since the porous metal oxide films provide a large specific surface area for dye loading and the possibility to extend the absorption threshold of past studies of sensitizers. The doctor blade method and high-temperature sintering were some of the methods used in the fabrication of the photo anode. A study of the performance of the C.acuminata-DSSCs with four different electrolyte sensitizers based on iodide redox mediator is determined. The result is DSSCs that exhibit a maximum power output of 39.37 W, fill factor of 0.7 and a power conversion efficiency of 0.6% under unfavourable sunlight intensity conditions and photo-degradation of about 37.5 % in absorbance after 425 suns.

  6. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  7. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  8. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain.

    Science.gov (United States)

    Demuner, Antonio Jacinto; Barbosa, Luiz Cláudio Almeida; Miranda, Ana Cristina Mendes; Geraldo, Guilherme Carvalho; da Silva, Cleiton Moreira; Giberti, Samuele; Bertazzini, Michele; Forlani, Giuseppe

    2013-12-27

    Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

  9. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [Notre Dame Univ., IN (United States); Kakar, S.N.; Coleman, R.D. [Argonne National Lab., IL (United States)

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  10. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. (Notre Dame Univ., IN (United States)); Kakar, S.N.; Coleman, R.D. (Argonne National Lab., IL (United States))

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  11. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.

    Science.gov (United States)

    Yang, Liming; Yu, Liya E; Ray, Madhumita B

    2008-07-01

    In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.

  12. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Radiolytic degradation and stability of polycarbonate

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1993-01-01

    The radiolytic stability of polycarbonate was studied using national commercial additives, employed in the photo and thermo-oxidative stabilization of polymers. Among several additives tested only two showed the efficiency to radiolytic protection: one quencher and one radical scavenger. It was derived a linear relation that provides by slope of the straight line the degree of degradation (scissions), G, and the factors of radiolytic protection P (degree of protection) and CE (capture of energy) conferred by radioprotector additive easily. Therefore the method developed in this work (viscosity) to study the molecular degradation and stability of polymers is a simply and precise method. The synergic mixture of two additives (1% of weight total) confers at polycarbonate excellent radiolytic protection of 98% (20 - 40 kGy) reducing the G value of 16.7 to only 0.4. (author). 69 refs, 31 figs, 17 tabs

  14. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    International Nuclear Information System (INIS)

    Confortin, Daria; Brustolon, Marina; Franco, Lorenzo; Neevel, Han; Bommel, Maarten R van; Kettelarij, Albert J; Williams, Rene M

    2010-01-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  15. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization

    Science.gov (United States)

    Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.

    2018-05-01

    Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.

  16. The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior

    Science.gov (United States)

    Uma, Kasimayan; Arjun, Nadarajan; Pan, Guan-Ting; Yang, Thomas C.-K.

    2017-12-01

    In this study, a simple sol-gel method was used for the synthesis of a core-shell structure of SiO2@α-Fe2O3 nanocomposites for employment as a visible light photocatalyst. It was observed that Ag nanoparticles about 20 nm in size were successfully deposited on the surface of the SiO2@α-Fe2O3 nanocomposites. The photocatalytic activity of the Ag-SiO2@α-Fe2O3 nanocomposites catalyst was investigated by observing the degradation of methylene blue (MB) dye in a photo-Fenton process. The results showed that the Ag nanoparticles acted as centers for photo induced electron transfer. The catalytic activity in the SiO2@α-Fe2O3 nanocomposites were enhanced due to the plasmoni c effect of Ag metal under visible light irradiation. The addition of H2O2 played an important role, generating more OH radicals which improved the photo-Fenton catalytic activity, resulting in quicker degradation of the MB dye using the Ag-SiO2@α-Fe2O3 nanocomposite catalyst.

  17. Photo-electret effects in homogenous semiconductors

    International Nuclear Information System (INIS)

    Nabiev, G.A.

    2004-01-01

    In the given work is shown the opportunity and created the theory of photo-electret condition in semiconductors with Dember mechanism of photo-voltage generation. Photo-electret of such type can be created, instead of traditional and without an external field as a result of only one illumination. Polar factor, in this case, is the distinction of electrons and holes mobility. Considered the multilayered structure with homogeneous photoactive micro areas shared by the layers, which are interfering to alignment of carriers concentration. We consider, that the homogeneous photoactive areas contain deep levels of stick. Because of addition of elementary photo voltage in separate micro photo cells it is formed the abnormal-large photo voltage (APV-effect). Let's notice, that Dember photo-voltage in a separate micro photo-cell ≤kT/q. From the received expressions, in practically important, special case, when quasi- balance between valent zone and stick levels established in much more smaller time, than free hole lifetime, and we received, that photo-voltage is relaxing. Comparing of the received expressions with the laws of photo voltage attenuation in p-n- junction structures shows their identity; the difference is only in absolute meanings of photo voltage. During the illumination in the semiconductor are created the superfluous concentration of charge carriers and part from them stays at deep levels. At de-energizing light there is a gradual generation of carriers located at these levels

  18. IN VITRO DEGRADATION OF POLYLACTIDE AND POLYLACTIDE-CO-GLYCOLIDE MICROSPHERES

    Institute of Scientific and Technical Information of China (English)

    ZHUJia-Hui; SHENZheng-Rong; WULan-Tin; TANGShi-Lin

    1989-01-01

    Polylaectide (PLA) and poly lactiide-co-glyeolide (PLGA) wore known to undergo degradation in the physiological environment and yield normal metabolites of low toxicity. Such polymers have been investigated for controlled release of contraceptives in

  19. Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.F.P.; Silva, M.R.A.; Trovo, A.G. [UNESP, Sao Paulo State University, Institute of Chemistry of Araraquara, P.O. Box 355, 14800-970, Araraquara, SP (Brazil)

    2005-10-01

    In this work the influence of two different iron sources, Fe(NO{sub 3}){sub 3} and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO{sub 3}){sub 3}, the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. On the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5L capacity and 4.5cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9Lh{sup -1}, in the presence of 10.0mmolL{sup -1} H{sub 2}O{sub 2} and 1.0mmolL{sup -1} ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (author)

  20. Photo-catalytic reactors for in-building grey water reuse. Comparison with biological processes and market potential

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, B.; Murray, C.; Diaper, C.; Parsons, S.A.; Jeffrey, P. [School of Water Sciences, Cranfield Univ., Cranfield, Bedfordshire (United Kingdom); Bedel, C. [Dept. of Industrial Process, National Inst. of Applied Sciences (France); Centeno, C. [Dept. of the Faculty of Engineering, Univ. of Santo Tomas, Manila (Philippines)

    2003-07-01

    Photo catalytic reactors potentially have a market in the reuse of grey water as they do not suffer from problems associated with toxic shocks and can be compact. The process is dependant upon the ratio of TOC to TiO{sub 2} concentration such that a greater proportion of the feed is degraded when either are increased. Economic assessment of grey water recycling showed both scale of operation and regional location to be the two most important factors in deciding the financial acceptability of any reuse technology. Overall the assessment suggested that photo catalytic oxidation (PCO) technology was suitable for grey water recycling and that the technology should be marketed at large buildings such as residential accommodation and offices. (orig.)

  1. Hydrothermal synthesis spherical TiO{sub 2} and its photo-degradation property on salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Wenlu, E-mail: liu287856624@163.com [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Liu Xiaolin [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-07-01

    Anatase TiO{sub 2} spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO{sub 2} consisted of well-defined spheres with size of 3-5 {mu}m. The photocatalytic activity of spherical TiO{sub 2} was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO{sub 2} which was processed at 150 Degree-Sign C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h).

  2. Winery wastewater treatment by heterogeneous Photo-Fenton process and activated sludges; Depuracion de efluentes vinicolas ediante tratamientos Foto-Fenton en fase heterogenea y lodos activos

    Energy Technology Data Exchange (ETDEWEB)

    Mosteo, R.; Lalinde, N.; Ormad, Maria O. M.; Ovelleiro, J. L.

    2007-07-01

    The system composed by heterogeneous Photon-Fenton assisted by solar light and biological treatment based on activated sludge process treats adequately real winery wastewaters. the previous stage based on heterogeneous Photo-Fenton process produces a partial degradation of winery wastewaters and achieves a yield of degradation of organic matter (measured as TOC) close to 50%. The activated sludge process in simple stage doesn't present any operation problems (bulking phenomenon) and achieves a yield of degradation of organic matter of 90%. (Author) 16 refs.

  3. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  4. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  5. Photos from the CMS Photo Book

    CERN Multimedia

    Boreham, S

    2008-01-01

    Photos from the CMS Photo Book. Activities at Point 5 in Cessy, France, between 1998 - 2008. Images of assembly and Installation of the CMS detector: - Civil Engineering - Assembly in the Surface Building - Lowering of the Heavy Elements - Installing and connecting the CMS detector in the underground experiment These images illustrate the assembly, installation and commissioning of the CMS detector. They cover the activities at Point 5 in Cessy, France, between 1998 and 2008. CMS is one of the most complex scientific instruments ever built. It has taken about 20 years to go from conceptual design to the completion of construction of the CMS detector for the LHC start-up in September 2008. Accomplishing this has required the talents, efforts and resources of over 2500 scientists and engineers from about 180 institutions in 38 countries. caverns Compiled by: S. Cittolin, F. Marcastel and T.S. Virdee

  6. Natural dye sensitizer from cassava (Manihot utilissima) leaves extract and its adsorption onto TiO2 photo-anode

    Science.gov (United States)

    Nurlela; Wibowo, R.; Gunlazuardi, J.

    2017-04-01

    Interaction between TiO2 and dyes sensitizer have been studied. The chlorophyll presents in the crude leave extract (CLE-dye) from cassava (Manihot utilissima) was immobilized on to the photo-anode, consists of TiO2 supported by fluor doped Tin oxide (SnO2-F) Glass. The TiO2 was prepared by Rapid Breakdown Anodization (RBA) method then immobilized on to glass coated by SnO2-F using doctor blade technique, to give CLE-dye/TiO2/SnO2-F/Glass photo-anode. The prepared photo-anode was characterized by UV-Vis-DRS, FTIR, XRD, SEM, electrochemical and spectro-electrochemical systems. In this study, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy level of the CLE-dye were empirically determined by cyclic voltammetry method, while spectro-electro-chemistry method was used to determine the coefficient of degradation and formation of the dyes, and diffusion coefficient of the hole recombination as well. Good anchoring between TiO2 with dye extracts (CLE-dye) can be seen from value of dye LUMO energy level (-4.26 eV), which is approaching the conduction band of TiO2 (-4.3 eV). The coefficient of degradation and formation of the CLE-dye showed a quasi reversible and diffusion coefficient hole recombination values were small, indicated that it is quite suitable as a sensitizer in a dyes sensitized solar cell.

  7. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  8. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid

    International Nuclear Information System (INIS)

    Farre, Maria Jose; Domenech, Xavier; Peral, Jose

    2007-01-01

    A combined chemical (photo-Fenton) and biological treatment has been proposed for Diuron and Linuron degradation in water containing natural dissolved organic matter (DOM). Humic acid (HA) was used to simulate the DOM. During the photo-Fenton process ([Fe(II)]=15.9mgL -1 , [H 2 O 2 ]=202mgL -1 , 60min of UVA irradiation time), the chemical oxygen demand (COD), total organic carbon (TOC), toxicity (EC 50 15 ) and biodegradability (BOD 5 /COD) of the generated intermediates were assessed. A reduction of photo-Fenton efficiency was observed when HA was present in solution. This effect has been explained as the result of a UVA light screening as well as a OH? radical quenching process by the HA. After the photo-Fenton process, the initial toxic and non-biodegradable herbicides were transformed into intermediates suitable for a subsequent aerobic biological treatment that was performed in a sequencing batch reactor (SBR). Complete elimination of the intermediates in presence of HA was reached at the end of the chemical-biological coupled system. Biosorption of HA onto the aerobic biomass was characterized. The results indicate that the Freundlich model adequately describes the adsorption of HA, a phenomena that follows a pseudo second-order adsorption kinetic model

  9. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Farre, Maria Jose [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Peral, Jose [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)]. E-mail: jose.peral@uab.es

    2007-08-17

    A combined chemical (photo-Fenton) and biological treatment has been proposed for Diuron and Linuron degradation in water containing natural dissolved organic matter (DOM). Humic acid (HA) was used to simulate the DOM. During the photo-Fenton process ([Fe(II)]=15.9mgL{sup -1}, [H{sub 2}O{sub 2}]=202mgL{sup -1}, 60min of UVA irradiation time), the chemical oxygen demand (COD), total organic carbon (TOC), toxicity (EC{sub 50}{sup 15}) and biodegradability (BOD{sub 5}/COD) of the generated intermediates were assessed. A reduction of photo-Fenton efficiency was observed when HA was present in solution. This effect has been explained as the result of a UVA light screening as well as a OH? radical quenching process by the HA. After the photo-Fenton process, the initial toxic and non-biodegradable herbicides were transformed into intermediates suitable for a subsequent aerobic biological treatment that was performed in a sequencing batch reactor (SBR). Complete elimination of the intermediates in presence of HA was reached at the end of the chemical-biological coupled system. Biosorption of HA onto the aerobic biomass was characterized. The results indicate that the Freundlich model adequately describes the adsorption of HA, a phenomena that follows a pseudo second-order adsorption kinetic model.

  10. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene.

    Science.gov (United States)

    da Silva, Syllos S; Chiavone-Filho, Osvaldo; de Barros Neto, Eduardo L; Nascimento, Claudio A O

    2012-01-15

    Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H(2)O(2) concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Organic Photovoltaic Structures as Photo-active Electrodes

    International Nuclear Information System (INIS)

    Gustafson, Matthew P.; Clark, Noel; Winther-Jensen, Bjorn; MacFarlane, Douglas R.

    2014-01-01

    This study demonstrated the novel use of a bulk heterojunction (BHJ), as present in modern organic solar cells, as a light-assisted electrocatalyst for water electrolysis reactions. Two separate organic photo-voltaic electrode structures were designed for targeting both the reduction, (ITO-PET/PEDOT:PSS/P3HT:PCBM)* and oxidation, (ITO-PET/ZnO/P3HT:PCBM)* reactions of water, denoted as OPE-R and OPE-O respectively. The OPE-R electrode supported both the proton reduction reaction (PRR) and oxygen reduction reaction (ORR) achieving photocurrents of -0.04 mAcm −2 (ORR) and -0.03 mAcm −2 (PRR) and a photovoltage of 0.50 V (ORR) and onset photovoltage at -0.59 V (PRR). By comparison, the OPE-O electrode achieved photocurrents of 0.15 mAcm −2 and photovoltages of 0.35 V for the water oxidation reaction (WOR). Both BHJ designs confirmed evidence of photo-enhanced Bulk Heterojunction Electrode (BHE) activity. The stability and sources of electrode degradation were also studied, with the OPE-O electrode proving to be more stable than the OPE-R electrode, most likely due to the PEDOT:PSS layer and PSS migration in the presence of water. *Indium Tin Oxide (ITO), Polyethylene Terephthalate (PET), Poly(3,4-ethylenedioxythiophene) (PEDOT), Polystyrenesulfonate acid (PSS), Poly(3-hexylthiophene) (P3HT), Phenyl-C 61 -Butyric acid Methyl ester (PCBM), Zinc Oxide (ZnO)

  12. Photocatalytic degradation of textile dye direct orange 26 by using CoFe2O4/Ag2O

    International Nuclear Information System (INIS)

    Azhdari, F.; Mehdipour Ghazi, M.

    2016-01-01

    The magnetic and recyclable nanoparticles of CoFe 2 O 4 were synthesized by a reverse co-precipitation process. Sonication was used to couple the CoFe 2 O 4 surface with Ag 2 O. The characteristics and optical properties of the catalyst were studied by powder X-ray diffraction, UV–visible reflectance spectroscopy and scanning electron microscopy analyses. Pure CoFe 2 O 4 and CoFe 2 O 4 /Ag 2 O were utilized to determine the visible light photo catalytic degradation of Direct Orange 26. The effects of p H, the initial concentration of catalyst and initial dye concentration on the photo catalytic process were investigated. It was found that the presence of Ag 2 O remarkably improved the photo catalytic adsorption capacity and degradation efficiency of CoFe 2 O 4 /Ag 2 O when compared with the pure CoFe 2 O 4 . Moreover, due to the magnetic behavior of CoFe 2 O 4 , these coupled nanoparticles can be easily separated from the aqueous solution by applying an external magnetic field. The prepared Ag 2 O-modified CoFe 2 O 4 exhibited much higher (about 40%) photo catalytic activity than the unmodified one. The results showed that the loading of the Ag 2 O significantly improved the photo catalytic performance of the CoFe 2 O 4 in which the Ag 2 O acted as a charge carrier to capture the delocalized electrons.

  13. Taking Your iPhoto '11 to the Max

    CERN Document Server

    Grothaus, Michael

    2011-01-01

    Taking Your iPhoto '11 to the Max walks users through Apple's most popular software application in the iLife suite - iPhoto. This book helps readers use iPhoto to its fullest to organize and create digital memories and keepsakes. * Learn all about Apple's newest version of iPhoto - iPhoto '11 * Explore iPhoto, one menu button at a time * Walk-through tutorials guide you step-by-step What you'll learn * How to import existing photo libraries from popular Windows applications * How to organize and edit your photos * How to tag your photos using iPhoto's Faces and Places features * How to create

  14. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  15. On the excess photon noise in single-beam measurements with photo-emissive and photo-conductive cells

    NARCIS (Netherlands)

    Alkemade, C.T.J.

    In this paper the so-called excess photon noise is theoretically considered with regard to noise power measurements with a single, illumined photo-emissive or photo-conductive cell. Starting from a modification of Mandel's stochastic association of the emission of photo-electrons with wave

  16. Reduced graphene oxide-CdS nanocomposite with enhanced photocatalytic 4-Nitrophenol degradation

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-05-01

    We report the photocatalytic activity of reduced graphene oxide cadmium sulfide (RGO-CdS) composite towards the degradation of 4-Nitrophenol (4-NP) under simulated solar light illumination. The solution processable RGO-CdS composite was synthesized by one pot single step low cost solvothermal process, where the reduction of graphene oxide (GO), synthesis and attachment of CdS onto RGO sheets were done simultaneously. The structural and morphological characterization of the RGO-CdS composite and the reduction of GO was confirmed by X-ray diffractometry, TEM imaging and Fourier transform infrared spectroscopy respectively. The photocatalytic efficiency of RGO-CdS composite is 2.6 times higher in compare to controlled CdS. In RGO-CdS composite the photo induced electrons transfer from CdS nanorod to RGO sheets, which reduces the recombination probability of photo generated electron-hole in the CdS. These well separated photoinduced charges enhanced the photocatalytic activity of the RGO-CdS composite. Our study establishes the RGO-CdS composite as a potential photocatalyst for the degradation of organic water pollutant.

  17. DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice

    Directory of Open Access Journals (Sweden)

    Qingliang Hu

    2017-11-01

    Full Text Available Strigolactones (SLs are the latest confirmed phytohormones that regulate shoot branching by inhibiting bud outgrowth in higher plants. Perception of SLs depends on a novel mechanism employing an enzyme-receptor DWARF14 (D14 that hydrolyzes SLs and becomes covalently modified. This stimulates the interaction between D14 and D3, leading to the ubiquitination and degradation of the transcriptional repressor protein D53. However, the regulation of SL perception in rice remains elusive. In this study, we provide evidences that D14 is ubiquitinated after SL treatment and degraded through the 26S proteasome system. The Lys280 site of the D14 amino acid sequence was important for SL-induced D14 degradation, but did not change the subcellular localization of D14 nor disturbed the interaction between D14 and D3, nor D53 degradation. Biochemical and genetic analysis indicated that the key amino acids in the catalytic center of D14 were essential for D14 degradation. We further showed that D14 degradation is dependent on D3 and is tightly correlated with protein levels of D53. These findings revealed that D14 degradation takes place following D53 degradation and functions as an important feedback regulation mechanism of SL perception in rice.

  18. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States); Shao, Lingmin [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Gao, Jianmin, E-mail: jmgao@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Guo, Hongwu, E-mail: hwg5052@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Chen, Yao [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Cheng, Qingzheng; Via, Brian K. [Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States)

    2015-03-15

    Highlights: • Investigate the selective absorption of different wavelengths of UV–vis light by dyed wood chromophores. • Identify connection between light wavelengths and surface color changes and chemical structure degradation. • Study hypochromic effect based on surface reflectance and K/S absorption changes during UV–vis irradiation. - Abstract: The surface of dyed wood is prone to discoloration when exposed to light irradiation which significantly decreases its decorative effect and shortens its service life. The influence of light wavelength exposure to the surface of dyed wood was investigated to study the effect on discoloration and degradation. Acid Blue V and Acid Red GR dyed wood veneers were subjected to light exposure with different wavelengths from the UV to visible region (254–420 nm). Results showed that the surface discoloration of dyed wood was linearly related to lignin concentration and dyes degradation and the consequent transformation of chromophoric groups such as aromatic (C=C) and carbonyl (C=O) through methoxy reaction. The dyes, lignin and some active constituents were degraded severely, even at short exposures. Acid Blue V dyed wood exhibited greater discoloration than the Acid Red GR treatment. The reflectance and K/S absorption curve showed a hypochromic effect on the dyed wood surface. The dyes and wood chemical structure played a complex and combined role on the selective absorption of different wavelengths of light. The color change rate was apparent with 254 nm exposure in the initial stages, but a greater discoloration rate occurred on the samples irradiated at 313 and 340 nm than at 254 and 420 nm with the time prolonged. The degradation rate and degree of discoloration correlated well with the light energy and wavelength.

  19. Investigation of 207 nm UV radiation for degradation of organic dye ...

    African Journals Online (AJOL)

    The photo-degradation of organic dye C.I. Acid Red 213 (AR-213) was achieved by 207 nm UV radiation emitted from a planar KrBr* excimer lamp without addition of oxidants at varying initial pH values. Precipitates were found to be generated when the irradiated solution of initial acid pH was adjusted to alkaline pH and ...

  20. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  1. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  2. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  3. BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system.

    Science.gov (United States)

    Appavu, Brindha; Thiripuranthagan, Sivakumar; Ranganathan, Sudhakar; Erusappan, Elangovan; Kannan, Kathiravan

    2018-04-30

    Herein, we report the synthesis of novel nitrogen doped reduced graphene oxide/ BiVO 4 photo catalyst by single step hydrothermal method. The physicochemical properties of the catalysts were characterized using XRD, N 2 adsorption-desorption, Raman, XPS, SEM TEM, DRS-UV and EIS techniques. The synthesized catalysts were tested for their catalytic activity in the photo degradation of some harmful textile dyes (methylene blue & congo red) and antibiotics (metronidazole and chloramphenicol) under visible light irradiation. Reduced charge recombination and enhanced photocatalytic activity were observed due to the concerted effect between BiVO 4 and nitrogen-rGO. The degradation efficiency of BiVO 4 /N-rGO in the degradation of CR and MB was remarkably high i.e 95% and 98% under visible light irradiation. Similarly 95% of MTZ and 93% of CAP were degraded under visible light irradiation. HPLC studies implied that both the dyes and antibiotics were degraded to the maximum extent. The plausible photocatalytic mechanism on the basis of experimental results was suggested. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  5. Evaluation of fungal- and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1

    International Nuclear Information System (INIS)

    Gago-Ferrero, Pablo; Badia-Fabregat, Marina; Olivares, Alba; Piña, Benjamin; Blánquez, Paqui; Vicent, Teresa; Caminal, Gloria; Díaz-Cruz, M. Silvia

    2012-01-01

    Photodecomposition might be regarded as one of the most important abiotic factors affecting the fate of UV absorbing compounds in the environment and photocatalysis has been suggested as an effective method to degrade organic pollutants. However, UV filters transformation appears to be a complex process, barely addressed to date. The white rot fungus Trametes versicolor is considered as a promising alternative to conventional aerobic bacterial degradation, as it is able to metabolise a wide range of xenobiotics. This study focused on both degradation processes of two widely used UV filters, benzophenone-3 (BP3) and benzophenone-1 (BP1). Fungal treatment resulted in the degradation of more than 99% for both sunscreens in less than 24 h, whereas photodegradation was very inefficient, especially for BP3, which remained unaltered upon 24 h of simulated sunlight irradiation. Analysis of metabolic compounds generated showed BP1 as a minor by-product of BP3 degradation by T. versicolor while the main intermediate metabolites were glycoconjugate derivatives. BP1 and BP3 showed a weak, but significant estrogenic activity (EC50 values of 0.058 mg/L and 12.5 mg/L, respectively) when tested by recombinant yeast assay (RYA), being BP1 200-folds more estrogenic than BP3. Estrogenic activity was eliminated during T. versicolor degradation of both compounds, showing that none of the resulting metabolites possessed significant estrogenic activity at the concentrations produced. These results demonstrate the suitability of this method to degrade both sunscreen agents and to eliminate estrogenic activity. - Highlights: ► Fungus T. versicolor is able to degrade totally BP3 and BP1 in few hours in a fluidised bed bioreactor. ► BP3 is not degraded under simulated sunlight. ► Glycoconjugates have been identified as the main intermediate metabolites. ► Decrease in endocrine activity was found in both photodegradation and biodegradation.

  6. A new liquid chromatography - tandem mass spectrometry method using atmospheric pressure photo ionization for the simultaneous determination of azaarenes and azaarones in Dutch river sediments

    NARCIS (Netherlands)

    Brulik, J.; Simek, Z.; de Voogt, P.

    2013-01-01

    A new method for the analysis of azaarenes and their degradation products (azaarones) was developed, optimized and validated using liquid chromatography coupled with atmospheric pressure photo ionization tandem mass spectrometric detection (LC-APPI/MS/MS). Seventeen compounds including 4 PAHs

  7. A discussion of current issues and concepts in the practice of skull-photo/craniofacial superimposition.

    Science.gov (United States)

    Gordon, G M; Steyn, M

    2016-05-01

    A recent review paper on cranio-facial superimposition (CFS) stated that "there have been specific conceptual variances" from the original methods used in the practice of skull-photo superimposition, leading to poor results as far as accuracy is concerned. It was argued that the deviations in the practice of the technique have resulted in the reduced accuracies (for both failure to include and failure to exclude) that are noted in several recent studies. This paper aims to present the results from recent research to highlight the advancement of skull-photo/cranio-facial superimposition, and to discuss some of the issues raised regarding deviations from original techniques. The evolving methodology of CFS is clarified in context with the advancement of technology, forensic science and specifically within the field of forensic anthropology. Developments in the skull-photo/cranio-facial superimposition techniques have largely focused on testing reliability and accuracy objectively. Techniques now being employed by forensic anthropologists must conform to rigorous scientific testing and methodologies. Skull-photo/cranio-facial superimposition is constantly undergoing accuracy and repeatability testing which is in line with the principles of the scientific method and additionally allows for advancement in the field. Much of the research has indicated that CFS is useful in exclusion which is consistent with the concept of Popperian falsifiability - a hypothesis and experimental design which is falsifiable. As the hypothesis is disproved or falsified, another evolves to replace it and explain the new observations. Current and future studies employing different methods to test the accuracy and reliability of skull-photo/cranio-facial superimposition will enable researchers to establish the contribution the technique can have for identification purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    Science.gov (United States)

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Practices surrounding children's photos in homes

    NARCIS (Netherlands)

    Vyas, Dhaval; van der Veer, Gerrit C.; Nijholt, Antinus; Grassel, Guido; Chi, E.H.; Höök, K,

    2012-01-01

    New parents cherish photos of their children. In their homes one can observe a varied set of arrangements of their young ones' photos. We studied eight families with young children to learn about their practices related to photos. We provide preliminary results from the field study and elaborate on

  10. Photocatalytic degradation of water containing trichloroethylene with Ti/sub 2/O -mechanism

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.; Farooq, R.; Bhutti, Z.A.

    2005-01-01

    Wastewater containing highly toxic materials such as trichloroethylene are released directly into rivers and streams. Most of the rivers have fallen into dangerous condition. These major fresh water supplies are contaminate to such a level where it may affect severely the human health and ecological system. There is a need to find out cost effective techniques to decontaminate these. Photo catalysis is a rapidly expanding technology for wastewater treatment. Among various catalyst titanium dioxide TiO/sub 2/ is widely used for wastewater detoxification. This paper describes the mechanism of photo catalytic degradation of trichloroethylene (TCE) using TiO/sub 2/. The result shows that no decomposition occurs in the absence UV radiation. (author)

  11. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  12. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  13. Application of response surface methodology for degradation of methyl orange with TiO{sub 2} sol-gel sulphated Ti; Aplicacion de metodologia de superficie de respuesta para la degradacion de naranja de metilo con TiO{sub 2} sol-gel sulfatado

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, M. T.; Garcia A, R. [Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo y Sor Juana I. de la Cruz, Col. Los Mangos, 89440 Ciudad Madero, Tamaulipas (Mexico); Garcia A, P.; Lagunes G, L. M. [Universidad Juarez Autonoma de Tabasco, Division Academica de Ciencias Agropecuarias, Av. Universidad s/n, Zona de la Cultura, Col. Magisterial, 86040 Villahermosa, Tabasco (Mexico); Cabrera C, E. G., E-mail: shish_kko@yahoo.com.mx [Instituto Tecnologico de Villahermosa, Carretera Villahermosa-Frontera Km. 3.5, Cd. Industrial, 86010 Villahermosa, Tabasco (Mexico)

    2015-06-01

    In this work we report the implementation of the response surface methodology for the optimization of photo catalytic degradation of methyl orange dye (MO) using as photo catalyst sulphated TiO{sub 2} prepared by sol-gel method. The variables studied were ph of the solution (3-11), catalyst concentration (0.1-1 g/L), and MO concentration (10-30 ppm). The effects of these parameters over the degradation of MO were evaluated according to a Box-Behnken design. The only crystal structure identified by X-ray diffraction was anatase phase. The optimum conditions for the photo catalytic degradation of MO according to the methodology applied were ph 6.0, 17.78 ppm MO concentration at each concentration level of the catalyst. (Author)

  14. Content-aware automatic cropping for consumer photos

    Science.gov (United States)

    Tang, Hao; Tretter, Daniel; Lin, Qian

    2013-03-01

    Consumer photos are typically authored once, but need to be retargeted for reuse in various situations. These include printing a photo on different size paper, changing the size and aspect ratio of an embedded photo to accommodate the dynamic content layout of web pages or documents, adapting a large photo for browsing on small displays such as mobile phone screens, and improving the aesthetic quality of a photo that was badly composed at the capture time. In this paper, we propose a novel, effective, and comprehensive content-aware automatic cropping (hereafter referred to as "autocrop") method for consumer photos to achieve the above purposes. Our autocrop method combines the state-of-the-art context-aware saliency detection algorithm, which aims to infer the likely intent of the photographer, and the "branch-and-bound" efficient subwindow search optimization technique, which seeks to locate the globally optimal cropping rectangle in a fast manner. Unlike most current autocrop methods, which can only crop a photo into an arbitrary rectangle, our autocrop method can automatically crop a photo into either a rectangle of arbitrary dimensions or a rectangle of the desired aspect ratio specified by the user. The aggressiveness of the cropping operation may be either automatically determined by the method or manually indicated by the user with ease. In addition, our autocrop method is extended to support the cropping of a photo into non-rectangular shapes such as polygons of any number of sides. It may also be potentially extended to return multiple cropping suggestions, which will enable the creation of new photos to enrich the original photo collections. Our experimental results show that the proposed autocrop method in this paper can generate high-quality crops for consumer photos of various types.

  15. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    CERN Document Server

    Delsante, M L; Arnau-Izquierdo, G

    2004-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  16. Evaluation of fungal- and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo, E-mail: pablo.gago@idaea.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Badia-Fabregat, Marina, E-mail: marina.badia@uab.cat [Departament d' Enginyeria Quimica, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Olivares, Alba, E-mail: esalba.olivares@idaea.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Pina, Benjamin, E-mail: benjami.pina@idaea.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Blanquez, Paqui, E-mail: paqui.blanquez@uab.cat [Departament d' Enginyeria Quimica, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Vicent, Teresa, E-mail: teresa.vicent@uab.cat [Departament d' Enginyeria Quimica, Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Caminal, Gloria, E-mail: gloria.caminal@uab.cat [Unitat de Biocatalisi Aplicada associada al IQAC (CSIC-UAB). Escola d' Enginyeria, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Diaz-Cruz, M. Silvia, E-mail: silvia.diaz@idaea.csic.es [Departament de Quimica Ambiental, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); and others

    2012-06-15

    Photodecomposition might be regarded as one of the most important abiotic factors affecting the fate of UV absorbing compounds in the environment and photocatalysis has been suggested as an effective method to degrade organic pollutants. However, UV filters transformation appears to be a complex process, barely addressed to date. The white rot fungus Trametes versicolor is considered as a promising alternative to conventional aerobic bacterial degradation, as it is able to metabolise a wide range of xenobiotics. This study focused on both degradation processes of two widely used UV filters, benzophenone-3 (BP3) and benzophenone-1 (BP1). Fungal treatment resulted in the degradation of more than 99% for both sunscreens in less than 24 h, whereas photodegradation was very inefficient, especially for BP3, which remained unaltered upon 24 h of simulated sunlight irradiation. Analysis of metabolic compounds generated showed BP1 as a minor by-product of BP3 degradation by T. versicolor while the main intermediate metabolites were glycoconjugate derivatives. BP1 and BP3 showed a weak, but significant estrogenic activity (EC50 values of 0.058 mg/L and 12.5 mg/L, respectively) when tested by recombinant yeast assay (RYA), being BP1 200-folds more estrogenic than BP3. Estrogenic activity was eliminated during T. versicolor degradation of both compounds, showing that none of the resulting metabolites possessed significant estrogenic activity at the concentrations produced. These results demonstrate the suitability of this method to degrade both sunscreen agents and to eliminate estrogenic activity. - Highlights: Black-Right-Pointing-Pointer Fungus T. versicolor is able to degrade totally BP3 and BP1 in few hours in a fluidised bed bioreactor. Black-Right-Pointing-Pointer BP3 is not degraded under simulated sunlight. Black-Right-Pointing-Pointer Glycoconjugates have been identified as the main intermediate metabolites. Black-Right-Pointing-Pointer Decrease in endocrine activity

  17. Acetate and butyrate as substrates for hydrogen production through photo-fermentation: Process optimization and combined performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Prathima Devi, M.; Peri, Dinakar; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, AP 500 007 (India)

    2009-09-15

    Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H{sub 2}) through photo-fermentation process using mixed culture at mesophilic temperature (34 C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H{sub 2} production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H{sub 2} production and substrate degradation were observed with acetic acid [3.51 mol/Kg COD{sub R}-day; 1.22 Kg COD{sub R}/m{sup 3}-day (92.96%)] compared to butyric acid [3.33 mol/Kg COD{sub R}-day; 1.19 Kg COD{sub R}/m{sup 3}-day (88%)]. Higher H{sub 2} yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H{sub 2} production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate. (author)

  18. Nanorods on surface of GaN-based thin-film LEDs deposited by post-annealing after photo-assisted chemical etching

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu

    2017-01-01

    This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.

  19. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  20. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes.

    Science.gov (United States)

    de Oliveira, Dirce Martins; Cavalcante, Rodrigo Pereira; da Silva, Lucas de Melo; Sans, Carme; Esplugas, Santiago; de Oliveira, Silvio Cesar; Junior, Amilcar Machulek

    2018-02-09

    This paper reports the degradation of 10 mg L -1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV 254 ) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe 2+ and H 2 O 2 concentrations. The effectiveness of the UV 254 and UV 254 /H 2 O 2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV 254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H 2 O 2 . It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H 2 O 2 . The kinetic constant of the reaction between Ametryn and HO ● for UV 254 /H 2 O 2 was 3.53 × 10 8  L mol -1  s -1 . The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe 2+ and H 2 O 2 under investigation. Working with the highest concentration (150 mg L -1 H 2 O 2 and 10 mg L -1 Fe 2+ ), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

  1. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    International Nuclear Information System (INIS)

    Silva, Syllos S. da; Chiavone-Filho, Osvaldo; Barros Neto, Eduardo L. de; Nascimento, Claudio A.O.

    2012-01-01

    Highlights: ► We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. ► We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. ► The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min −1 for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H 2 O 2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  2. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  3. Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation.

    Science.gov (United States)

    Koltsakidou, Α; Antonopoulou, M; Sykiotou, M; Εvgenidou, Ε; Konstantinou, I; Lambropoulou, D A

    2017-02-01

    In the present study, photo-Fenton and Fenton-like processes were investigated for the degradation and mineralization of the antineoplastic drug 5-fluorouracil (5-FU). For the optimization of photo-Fenton treatment under simulated solar light (SSL) radiation, the effects of several operating parameters (i.e., 5-FU concentration, Fe 3+ , and oxidant concentration) on the treatment efficiency were studied. According to the results, SSL/[Fe(C 2 Ο 4 ) 3 ] 3- /Η 2 Ο 2 process was the most efficient, since faster degradation of 5-FU and higher mineralization percentages were achieved. All the applied processes followed quite similar transformation routes which include defluorination-hydroxylation as well as pyrimidine ring opening, as demonstrated by the transformation products identified by high resolution mass spectrometry analysis. The toxicity of the treated solutions was evaluated using the Microtox assay. In general, low toxicity was recorded for the initial solution and the solution at the end of the photocatalytic treatment, while an increase in the overall toxicity was observed only at the first stages of SSL/Fe 3+ /Η 2 Ο 2 and SSL/Fe 3+ /S 2 O 8 2- processes.

  4. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  5. Photo-catalytic degradation of surfactants hexadecyltrimethyl-ammonium chloride in aqueous medium - a kinetic study

    International Nuclear Information System (INIS)

    Soomro, S.A.; Aziz, S.; Memon, A.R.

    2011-01-01

    Surfactants in the environment are a prerequisite for the sustainable development of human health and ecosystems. Surfactants are important in daily life in households as well as in industrial cleansing processes. It is important to have a detailed knowledge about their lifetime in the environment, their biodegradability in wastewater treatment plants and in natural waters, and their eco toxicity. Most of the issues on environmental acceptability focus on the effects on the environment associated with the use and disposal of these surfactants. These effects are taken into account by a risk assessment. The first step in a risk assessment is to estimate the concentrations of surfactants in the environmental compartment of interest, such as wastewater treatment plant effluents, surface waters, sediments, and soils. This estimate is generated either by actual measurement or by prediction via modelling. The measured or predicted concentrations are then compared to the concentrations of surfactant known to be toxic to organisms living in these environmental compartments. There are many situations where industry is producing both heavy metals ions and organic pollutants. Successful treatment of effluents of this type to achieve legislative compliance will depend on whether the heavy metals effect the process of degradation of the organic species and whether the presence of organic molecules hinder the process of removal of heavy metals. Degradation of cationic surfactant was studied with a photolytic cell system. Compressed air was used as oxidant and the temperature was maintained at 25-30 deg. C. Effect of UV source, hydrogen peroxide (H/sub 2/O/sub 2/) and titanium (TiO/sub 2/) on Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl) were recorded. HPLC and IR were used to analyse the rate of degradation of Hexadecyltrimethyl-ammonium chloride (C/sub 19/H/sub 42/NCl).

  6. Analytical imaging studies of the migration of degraded orpiment, realgar, and emerald green pigments in historic paintings and related conservation issues

    NARCIS (Netherlands)

    Keune, K.; Mass, J.; Mehta, A.; Church, J.; Meirer, F.

    2016-01-01

    Yellow orpiment (As2S3) and red–orange realgar (As4S4) photo-degrade and the nineteenth-century pigment emerald green (Cu(C2H3O2)2·3Cu(AsO2)2) degrades into arsenic oxides. Because of their solubility in water, arsenic oxides readily migrate and are found throughout the multi-layered paint system.

  7. ECR Plasma Photos

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2009-01-01

    Complete text of publication follows. In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The effects of the main external setting parameters (gas pressure, gas composition, magnetic field, microwave power, microwave frequency) were studied to the shape, color and structure of the plasma. The double frequency mode (9+14 GHz) was also realized and photos of this special 'star-in-star' shape plasma were recorded. A study was performed to analyze and understand the color of the ECR plasmas. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas. To our best knowledge our work is the first systematic study of ECR plasmas in the visible light region. When looking in the plasma chamber of an ECRIS we can see an axial image of the plasma (figure 1) in conformity with experimental setup. Most of the quantitative information was obtained through the summarised values of the Analogue Digital Unit (ADU) of pixels. By decreasing the strength of the magnetic trap we clearly observed that the brightness of the central part of the plasma gradually decreases, i.e. the plasma becomes more and more 'empty'. Figure 2 shows a photo series of ECR plasma at decreasing axial magnetic field. The radial size of the plasma increased because of the ascendant resonant zone. By increasing the power of the injected microwave an optimum (or at least saturation) was found in the brightness of the plasma. We found correlation between the gas dosing rates and plasma intensities. When sweeping the frequency of the microwave in a wide region

  8. Effect of Abiotic Factors on Degradation of Imidacloprid.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi, G Guru P; Gowda, G Basana; Yadav, Manoj Kumar; Mohapatra, S D; Rath, P C; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    The role of soil moisture, light and pH on imidacloprid dissipation was investigated. A high performance liquid chromatography (HPLC) based method was developed to quantify imidacloprid present in soil with a recovery of more than 82%. Rate of dissipation of imidacloprid from soil was faster in submerged condition compared to field capacity and air dried condition. Imidacloprid dissipated non-significantly between sterile and non-sterile soils, but at field capacity, the dissipation was faster in non-sterile soil compared to sterile soil after 60 days of incubation. Similarly, under submergence, the dissipation of imidacloprid was 66.2% and 79.8% of the initial in sterile and non-sterile soils, respectively. Imidacloprid was rather stable in acidic and neutral water but was prone to photo-degradation. Therefore, imidacloprid degradation will be faster under direct sunlight and at higher soil moisture.

  9. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  10. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  11. Preparation and photo Fenton-like activities of high crystalline CuO fibers

    Science.gov (United States)

    Zhang, Yan; He, Jing; Shi, Ruixia; Yang, Ping

    2017-11-01

    CuO fibers were successfully fabricated by a simple electrospinning method, followed by calcination. Some experimental parameters such as the content of Cu(NO3)2•3H2O, the content of PVP, the stirring time, the applied voltage, as well the calcination temperature were investigated, respectively, and their influences on the morphologies of fibers and the spinnability of precursor solution were analyzed. The CuO fibers calcined at 550 °C consisted of numerous CuO grains exhibited a well-crystalline structure. Furthermore, the CuO fibers demonstrated effective photo-Fenton degradation to methyl orange with the assist of H2O2 and the adding volume of H2O2 affects the degradation activities greatly. The degradation rate of methyl orange by the CuO fibers in the presence of 238.8 mmol/L H2O2 is 3.8 times as much as one by P25 alone under the irradiation of Xe lamp. The degradation ratio of methyl orange could achieve 83% in 180 min. The enhanced photocatalytic activities of the CuO fibers were attributed to two aspects: one is the well-crystalline of CuO fibers; the other is that H2O2 accepted the photogenerated electrons and holes effectively, which not only prevented the recombination of charge carriers but also produced additional rad OH. In this work, the formation and photocatalysis mechanisms of CuO fibers were also investigated.

  12. Photo-polymer for recording holograms

    International Nuclear Information System (INIS)

    Hideo Tanigawa; Taichi Ichihashi; Takashi Matsuo

    1999-01-01

    The photo-polymerizable materials for recording holograms were composed of higher-index polymers, lower-index monomers, and photo-initiators. The materials have sensitivity from UV green light (514.5 nm ). The diffraction efficiencies of the transmission holograms recorded by two beams from a laser were more than 80%. These holograms have good physical and chemical stability. The mechanisms of the formation of holograms was discussed. In this paper, experimental results for transmission holograms are reported and the mechanisms of refractive index modulation in photo-polymerization of the materials are discussed

  13. Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Culebradas, R; San Martín, I; Carnicer, A

    2013-10-15

    The degradation of a pharmaceutical wastewater using a ferrioxalate-assisted solar/photo-Fenton system has been studied. The photochemical reaction was carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and Neuronal Networks that included the following variables: initial concentrations of H2O2, catalyst Fe (II) and oxalic acid (H2C2O4), temperature and solar power. Under optimal conditions, 84% TOC (Total Organic Carbon) removal was achieved in 115 min. Oxalic acid had a positive effect on mineralization when solar power was above 30 W m(-2). The minimum amount of H2O2 to degrade 1 mol of TOC was found to be 3.57 mol. Both the H2O2 conversion efficiency and the degree of mineralization were highest when the oxalic/Fe(II) initial molar relation was close to 3. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO(2)(·)) also played a role. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Humic Acid Degradation via Solar Photo-Fenton Process in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Seyed Ali Sajjadi

    2015-08-01

    Full Text Available Control of mutagenic and carcinogenic disinfection by-products, particularly Trihalomethanes (THMs and Halo Acetic Acids (HAAs in water treatment process is critical, due to their adverse effects on human health. Generally, reducing the toxicity of these by-products hinges on prior removal of the precursor materials, such as Humic Acid (HA in drinking water. This study was conducted to investigate the role of some parameters that could affect the removal of HA, including HA (5 and 10 ppm and H2O2 (20, 40, 60, and 80 ppm initial concentrations, Iron (II, sulfate heptahydrate dosage (4, 8, 12, and 16 ppm, pH (2, 3, 4 and 5, Oxidation time (5, 10, 15 and 30 min, and Sunlight levels (322±13 kWm-2. To accelerate the process of HA removal, the Solar Photo-Fenton (SPF process was employed by direct irradiation of converged sunlight in a Parabolic Trough Collectors (PTC, with 3m2 effective area. HA levels were measured via quantifying Dissolved Organic Carbon (DOC concentrations by means of a TOC Analyzer method. The results showed that the SPF process is under control of the Fe & H2O2 ratio, the Fe2+ dosage and especially the pH quantity. In optimal condition, (pH: 4, oxidation time: 30min, initial HA levels: 50 ppm, H2O2 concentrations: 20 ppm Fe+2 levels: 4 ppm, the study found more than 98% DOC removal. In conclusion, the SPF, as an economically effective technique, could be applied for the removal of HA in aqueous environments.

  15. Synthesis and characterization of kaolin assisted metal nanocomposite and its tremendous adsorptive and photo catalytic applications

    International Nuclear Information System (INIS)

    Tahir, H.; Saad, M.; Saleem, U.

    2018-01-01

    The present work demonstrates the synthesis of Kaolin assisted Ag nanocomposite (Ag-KNC) by co-precipitation method. The surface morphology of them was studied through SEM and chemical constituents by EDS techniques. The removal of efficaciousness of Ag-KNC was tested by Malachite Green Oxalate (MGO) dye through batch adsorption and photocatalytic strategies. The sorption experiments were preceded under the optimized conditions like amount of adsorbent, stay time and pH. The feasibility of the process was determined by employing Freundlich, Langmuir and D-R (Dubinin –Radushkevich) adsorption isotherms. The pH at point of zero charge (pHpzc) was conjointly calculable to work out the surface neutrality of the system. The salt effect for the removal of MGO dye was investigated. Thermodynamic parameters like free energy (∆Go), entropy (∆So) and enthalpy (∆Ho), of the system was investigated. Adsorption Kinetic was resolute by Intra particle diffusion (IPD) and Boyd’s models. An attempt was made to prepare (Ag-KCN) nanophoto catalyst by UV light assisted degradation of Malachite Green Oxalate (MGO) dye. They were prepared by the reduction of Ag+ ion under alkaline conditions on kaolin surface. The photo degradation (PD) process was initiated by photo generated electrons. The present study recommended that projected strategies were successfully applied for the remediation of environmental problems. (author)

  16. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    International Nuclear Information System (INIS)

    Missori, Mauro; Bicchieri, Marina; Mondelli, Claudia; De Spirito, Marco; Arcovito, Giuseppe; Papi, Massimiliano; Castellano, Carlo; Castellano, Agostina Congiu; Schweins, Ralf

    2006-01-01

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose's supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed

  17. Nanoparticle-assisted photo-Fenton reaction for photo-decomposition of humic acid

    Science.gov (United States)

    Banik, Jhuma; Basumallick, Srijita

    2017-11-01

    We report here the synthesis of CuO-doped ZnO composite nanomaterials (NMs) by chemical route and demonstrated for the first time that these NMs are efficient catalysts for H2O2-assisted photo-decomposition (photo-Fenton type catalyst) of humic acid, a natural pollutant of surface water by solar irradiation. This has been explained by faster electron transfer to OH radical at the p-n hetero-junction of this composite catalyst. Application of this composite catalyst in decomposing humus substances of local pond water by solar energy has been demonstrated.

  18. High voltage photo switch package module

    Science.gov (United States)

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  19. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  20. iPhoto '11 The Missing Manual

    CERN Document Server

    Pogue, David

    2011-01-01

    With better ways to get your photos online and new options for creating printed projects, iPhoto '11 makes it easier than ever to transfer photos from a digital camera, organize them, and publish, print, or share them in maps-but there's still no printed manual for the program. Fortunately, David Pogue and Lesa Snider team up in this witty, authoritative book that should have been in the box. Organize your collection. Discover all of the options for grouping your pictures-by events, in albums, or based on who's in the photo or where it was taken.Sharpen your editing skills. Learn how to use

  1. Degradation of chlorpyrifos in tropical rice soils.

    Science.gov (United States)

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  3. Person Recognition in Social Media Photos

    OpenAIRE

    Oh, Seong Joon; Benenson, Rodrigo; Fritz, Mario; Schiele, Bernt

    2017-01-01

    People nowadays share large parts of their personal lives through social media. Being able to automatically recognise people in personal photos may greatly enhance user convenience by easing photo album organisation. For human identification task, however, traditional focus of computer vision has been face recognition and pedestrian re-identification. Person recognition in social media photos sets new challenges for computer vision, including non-cooperative subjects (e.g. backward viewpoints...

  4. Podocytes degrade endocytosed albumin primarily in lysosomes.

    Science.gov (United States)

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, plysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic potential in slowing the progression of glomerulosclerosis by enhancing the ability of podocytes to process and degrade albumin.

  5. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Syllos S. da [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Chiavone-Filho, Osvaldo, E-mail: osvaldo@eq.ufrn.br [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Barros Neto, Eduardo L. de [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Nascimento, Claudio A.O. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo 05508-900, SP (Brazil)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. Black-Right-Pointing-Pointer We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. Black-Right-Pointing-Pointer The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min{sup -1} for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H{sub 2}O{sub 2} concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  6. Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance

    Directory of Open Access Journals (Sweden)

    S. Martorell

    2017-01-01

    Full Text Available One can find many reliability, availability, and maintainability (RAM models proposed in the literature. However, such models become more complex day after day, as there is an attempt to capture equipment performance in a more realistic way, such as, explicitly addressing the effect of component ageing and degradation, surveillance activities, and corrective and preventive maintenance policies. Then, there is a need to fit the best model to real data by estimating the model parameters using an appropriate tool. This problem is not easy to solve in some cases since the number of parameters is large and the available data is scarce. This paper considers two main failure models commonly adopted to represent the probability of failure on demand (PFD of safety equipment: (1 by demand-caused and (2 standby-related failures. It proposes a maximum likelihood estimation (MLE approach for parameter estimation of a reliability model of demand-caused and standby-related failures of safety components exposed to degradation by demand stress and ageing that undergo imperfect maintenance. The case study considers real failure, test, and maintenance data for a typical motor-operated valve in a nuclear power plant. The results of the parameters estimation and the adoption of the best model are discussed.

  7. Temperature behaviour of photo-emissive films. The case of photo-multipliers used in scintillation counters

    International Nuclear Information System (INIS)

    Ardalan, A.H.

    1966-01-01

    This work concerns the changes in the spectral sensitivity of 3 types of normal photo-cathodes (Cs 3 Sb, tri-alkali and bi-alkali without cesium) as a function of temperature. The photo-cathodes of cathodes of commercial photomultipliers (DARIO, E.M.I., R.C.A., A.S.C.O.F.) were used for these tests. The temperature range studied was -25 C to +55 C (except for the bi-alkali photo-cathodes which were tested up to +150 C) and the wave-length range was 3250 to 7000 angstrom. After a brief review of photo-electric effect theories, the experimental device is described and the measurement results presented. Finally, an interpretation of these results is proposed. For the normal range of scintillator emission, i.e. between 3000 and 5000 angstroms (Na I (Tl), plastics, anthracene) the temperature coefficient is always negative: -0.15 % C for Cs 3 Sb and up to -0.5 % C for the most temperature-sensitive photo-cathode. Above 5000 angstrom, the temperature coefficient of Cs 3 Sb films becomes positive: +0.5 % C on the overage. The accuracy of the spectral sensitivity measurements is ±4 % in absolute value and ±1 % in relative value. (author) [fr

  8. Automatic digital photo-book making system

    Science.gov (United States)

    Wang, Wiley; Teo, Patrick; Muzzolini, Russ

    2010-02-01

    The diversity of photo products has grown more than ever before. A group of photos are not only printed individually, but also can be arranged in specific order to tell a story, such as in a photo book, a calendar or a poster collage. Similar to making a traditional scrapbook, digital photo book tools allow the user to choose a book style/theme, layouts of pages, backgrounds and the way the pictures are arranged. This process is often time consuming to users, given the number of images and the choices of layout/background combinations. In this paper, we developed a system to automatically generate photo books with only a few initial selections required. The system utilizes time stamps, color indices, orientations and other image properties to best fit pictures into a final photo book. The common way of telling a story is to lay the pictures out in chronological order. If the pictures are proximate in time, they will coincide with each other and are often logically related. The pictures are naturally clustered along a time line. Breaks between clusters can be used as a guide to separate pages or spreads, thus, pictures that are logically related can stay close on the same page or spread. When people are making a photo book, it is helpful to start with chronologically grouped images, but time alone wont be enough to complete the process. Each page is limited by the number of layouts available. Many aesthetic rules also apply, such as, emphasis of preferred pictures, consistency of local image density throughout the whole book, matching a background to the content of the images, and the variety of adjacent page layouts. We developed an algorithm to group images onto pages under the constraints of aesthetic rules. We also apply content analysis based on the color and blurriness of each picture, to match backgrounds and to adjust page layouts. Some of our aesthetic rules are fixed and given by designers. Other aesthetic rules are statistic models trained by using

  9. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Mistry, Amit S; Cheng, Stacy H; Yeh, Tiffany; Christenson, Elizabeth; Jansen, John A; Mikos, Antonios G

    2009-04-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed of PPF/PF-DA and boehmite microparticles, and a nanocomposite composed of PPF/PF-DA and surface-modified alumoxane nanoparticles were used to fabricate porous scaffolds by photo-crosslinking and salt-leaching. Scaffolds then underwent 12 weeks of in vitro degradation in phosphate buffered saline at 37 degrees C. The presence of boehmite microparticles and alumoxane nanoparticles in the polymer inhibited scaffold shrinkage during crosslinking. Furthermore, the incorporation of alumoxane nanoparticles into the polymer limited salt-leaching, perhaps due to tighter crosslinking within the nanocomposite. Analysis of crosslinking revealed that the acrylate and overall double bond conversions in the nanocomposite were higher than in the PPF/PF-DA polymer alone, though these differences were not significant. During 12 weeks of in vitro degradation, the nanocomposite lost 5.3% +/- 2.4% of its mass but maintained its compressive mechanical properties and porous architecture. The addition of alumoxane nanoparticles into the fumarate-based polymer did not significantly affect the degradation of the nanocomposite compared with the other materials in terms of mass loss, compressive properties, and porous structure. These results demonstrate the feasibility of fabricating degradable nanocomposite scaffolds for bone tissue engineering by photo-crosslinking and salt-leaching mixtures of fumarate-based polymers, alumoxane nanoparticles, and salt microparticles. Copyright 2008 Wiley Periodicals, Inc.

  10. A library of georeferenced photos from the field

    Science.gov (United States)

    Xiao, Xiangming; Dorovskoy, Pavel; Biradar, Chandrashekhar; Bridge, Eli

    2011-12-01

    A picture is worth a thousand of words, and every day hundreds of scientists, students, and environmentally aware citizens are taking field photos to document their observations of rocks, glaciers, soils, forests, wetlands, croplands, rangelands, livestock, and birds and mammals, as well as important events such as droughts, floods, wildfires, insect emergences, and infectious disease outbreaks. Where are those field photos stored? Can they be shared in a timely fashion to support education, research, and the leisure activities of citizens across the world? What are the financial and intellectual costs if those field photos are lost or not shared? Recently, researchers at the University of Oklahoma developed and released the Global Geo-Referenced Field Photo Library (hereinafter referred to as the Field Photo Library; http://www.eomf.ou.edu/photos/), a Web-based data portal designed for researchers and educators who wish to archive and share field photos from across the world, each tagged with exact positioning data (Figure 1). The data portal has a simple user interface that allows people to upload, query, and download georeferenced field photos in the library.

  11. Neutron scattering and HPLC study on L-ascorbic acid and its degradation

    International Nuclear Information System (INIS)

    Bellocco, E.; Barreca, D.; Lagana, G.; Leuzzi, U.; Migliardo, F.; Torre, R. La; Galli, G.; Galtieri, A.; Minutoli, L.; Squadrito, F.

    2008-01-01

    The present paper shows a systematic dynamic and kinetic study on L-ascorbic acid and its degradation at high temperature. The neutron scattering study allows, through the behavior of quasi-elastic neutron scattering (QENS) spectra, to characterize the diffusive dynamics of L-ascorbic acid in water mixtures. Ascorbic acid undergoes degradation process at high temperature, but the presence of trehalose in solution markedly avoids ascorbic acid loss enhancing its t 1/2 (half life time), as determined by high performance liquid chromatography (HPLC)

  12. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    Science.gov (United States)

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  13. TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

    DEFF Research Database (Denmark)

    Andreasen, Birgitta; Tanenbaum, David; Hermenau, Martin

    2012-01-01

    -depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without......-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in...... of organic solar cells....

  14. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  15. BVA members wow judges in photo competition.

    Science.gov (United States)

    2016-09-03

    Earlier this year, BVA ran its inaugural photo competition, giving members the opportunity to showcase the work of the veterinary profession and the animals and wildlife they encounter. Standing out from over 400 high-quality entries, judges picked the images reproduced in this month's BVA News as the winning and highly commended photos. To see all the entries and hear from the winners, visit www.bva.co.uk/vet-photos-2016/. There will be another photo competition in 2017 with more categories to be announced. British Veterinary Association.

  16. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results.

    Science.gov (United States)

    Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S

    2018-03-14

    The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  18. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); The Instrument Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-08-15

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag{sub 2}O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag{sub 2}O. The excess Ag{sup +} ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag{sub 2}O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag{sub 2}O side. ZnO photodetector with the appropriate Ag{sub 2}O nanoparticles possesses the best rejection ratio.

  19. A fast photo-counter with multi-level buffers

    International Nuclear Information System (INIS)

    Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan

    1992-01-01

    Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer

  20. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  1. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  2. All new custom path photo book creation

    Science.gov (United States)

    Wang, Wiley; Muzzolini, Russ

    2012-03-01

    In this paper, we present an all new custom path to allow consumers to have full control to their photos and the format of their books, while providing them with guidance to make their creation fast and easy. The users can choose to fully automate the initial creation, and then customize every page. The system manage many design themes along with numerous design elements, such as layouts, backgrounds, embellishments and pattern bands. The users can also utilize photos from multiple sources including their computers, Shutterfly accounts, Shutterfly Share sites and Facebook. The users can also use a photo as background, add, move and resize photos and text - putting what they want where they want instead of being confined to templates. The new path allows users to add embellishments anywhere in the book, and the high-performance platform can support up to 1,000 photos per book and up to 25 pictures per page. The path offers either Smart Autofill or Storyboard features allowing customers to populate their books with photos so they can add captions and customize the pages.

  3. Zika-Virus-Related Photo Sharing on Pinterest and Instagram.

    Science.gov (United States)

    Fung, Isaac Chun-Hai; Blankenship, Elizabeth B; Goff, M Elizabeth; Mullican, Lindsay A; Chan, Kwun Cheung; Saroha, Nitin; Duke, Carmen H; Eremeeva, Marina E; Fu, King-Wa; Tse, Zion Tsz Ho

    2017-12-01

    Pinterest (San Francisco, CA) and Instagram (Menlo Park, CA) are 2 popular photo-sharing social media platforms among young individuals. We assessed differences between Instagram and Pinterest in relaying photographic information regarding Zika virus. Specifically, we investigated whether the percentage of Zika-virus-related photos with Spanish or Portuguese texts embedded therein was higher for Instagram than for Pinterest and whether the contents of Zika-virus-related photos shared on Pinterest were different from those shared on Instagram. We retrieved and manually coded 616 Pinterest (key words: "zika" AND "virus") and 616 Instagram (hashtag: #zikavirus) photos. Among the manually coded samples, 47% (290/616) of Pinterest photos and 23% (144/616) of Instagram photos were relevant to Zika virus. Words were embedded in 57% (164/290) of relevant Pinterest photos and all 144 relevant Instagram photos. Among the photos with embedded words, photos in Spanish or Portuguese were more prevalent on Instagram (77/144, 53%) than on Pinterest (14/164, 9%). There were more Zika-virus-related photos on Instagram than on Pinterest pertinent to Zika virus prevention (59/144, 41%, versus 41/290, 14%; PInstagram are similar platforms for Zika virus prevention communication. (Disaster Med Public Health Preparedness. 2017;11:656-659).

  4. Participatory Surveillance and Photo Sharing Practices

    DEFF Research Database (Denmark)

    Albrechtslund, Anders; Damkjaer, Maja Sonne; Bøge, Ask Risom

    2019-01-01

    -material perspective on photo-sharing practices. Information, Communication & Society, 19(4), 475–488. Sontag, S. (1977). On Photography. Picador. Steeves, V., & Jones, O. (2010). Editorial: Surveillance, Children and Childhood. Surveillance & Society, 7(3/4), 187–191....... that parents do not generally plan to store or organize their photos, and even less their children’s photos. This seems to indicate a shift from a pre-digital perception of photos as objects to be packaged, accumulated, framed etc. which can age and disappear (see Sontag, 1977) to something perceived less....... References: Albrechtslund, A. (2008). Online Social Networking as Participatory Surveillance. First Monday, 13(3). Fotel, T., & Thomsen, T. U. (2002). The Surveillance of Children’s Mobility. Surveillance & Society, 1(4), 535-554. Lobinger, K. (2016). Photographs as things–photographs of things. A texto...

  5. Enhanced the hydrophobic surface and the photo-activity of TiO2-SiO2 composites

    Science.gov (United States)

    Wahyuni, S.; Prasetya, A. T.

    2017-02-01

    The aim of this research is to develop nanomaterials for coating applications. This research studied the effect of various TiO2-SiO2 composites in acrylic paint to enhance the hydrophobic properties of the substrate. Titanium dioxide containing silica in the range 20-35 mol% has been synthesized using sol-gel route. The XRD’s spectra show that increasing SiO2 content in the composite, decreasing its crystalline properties but increasing the surface area. TiO2-SiO2 composite was dispersed in acrylic paint in 2% composition by weight. The largest contact angle was 70, which produced by the substrate coated with TS-35-modified acrylic paint. This study also investigated the enhanced photo-activity of TiO2-SiO2 modified with poly-aniline. The XRD spectra show that the treatment does not change the crystal structure of TiO2. The photo-activity of the composite was evaluated by degradation of Rhodamine-B with visible light. The best performance of the degradation process was handled by the composite treated with 0.1mL anilines per gram of TiO2-SiO2 composite (TSP-A). On the other side, the contact angle 70 has not shown an excellent hydrophobic activity. However, the AFM spectra showed that nanoroughness has started to form on the surface of acrylic paint modified with TiO2-SiO2 than acrylic alone.

  6. Influence of radiation on photo-electric characteristics of silicon photo cells with optical coverings

    International Nuclear Information System (INIS)

    Madatov, R.S.; Safarov, N.A.; Gasymova, V.G.; Abdurragimov, A.A.; Allahverdiev, A.M.

    2003-01-01

    In the given work results of measurements volt-ampere and spectral characteristics of silicon photo cells with optical coverings ZnS+Nd 2 O 3 irradiated accelerated electrons with energy 4.5 MeV are carried out. Elements have been made by diffusion of phosphorus in p-silicon with specific resistance 2 Ω·cm. Under condition of illumination from source AMI the photocurrent of short circuit made 40 mA/cm 2 , and a photo voltage of idling 0.52 V, efficiency made 15 %. To receive low reflection in wide area of spectral sensitivity and by that as much as possible to increase efficiency of elements with the help of two-layer coverings. The irradiation of samples was made on linear accelerator EL4-6 at room temperature. It is received, that with increase in a dose of an irradiation the Photocurrent and photo voltage decreases, and speed reduction of a photo-current is stronger, than photo voltage. The critical integrated stream for these elements makes 4·10 12 el/cm 2 . In all researched samples radiating reduction of a voltage of idling in an interval of 10 10 -10 14 el/cm 2 makes 8-10 %. The analysis of spectral characteristics of the irradiated samples show, that reduction of a photocurrent in long-wave areas of a spectrum is connected by creation of radiating defects in a base part of an element. The increase in a critical stream in silicon solar elements with optical a covering in comparison with elements without a covering is connected with low concentration of defects in the base, created with electron. Thus, on the basis of complex research of influence on radiating stability silicon solar elements us it is established, that two-layer coverings not only increases efficiency of photo cells, but also considerably raise value of an integrated stream electrons, that is equivalent to increase in service life of the elements working in conditions of radiation

  7. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo; Webb-Robertson, Bobbie-Jo M.; Nicora, Carrie D.; Hu, Zeping; Metz, Thomas O.; Lipton, Mary S.; Smith, Richard D.; Currie, Cameron R.; Burnum-Johnson, Kristin E.

    2014-08-01

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.

  8. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.

    Science.gov (United States)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Larsen, Flemming Hofmann; Sathitsuksanoh, Noppadon; Goodell, Barry; Jellison, Jody

    2012-10-01

    Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Toxicity of fluorescent tracers and their degradation byproducts

    Directory of Open Access Journals (Sweden)

    Philippe Gombert

    2017-01-01

    Full Text Available Tracer tests are frequently used to delineate catchment area of water supply springs in karstic zones. In the karstic chalk of Normandy, the main tracers used are fluorescent: uranine, sulforhodamine B, naphtionate, and Tinopal®. In this area, a statistical analysis shows that less than half of the injected tracers joins the monitored restitution points and enters the drinking water system where they undergo chlorination. Most of the injected tracers is absorbed in the rock matrix or is thrown out of the aquifer via karstic springs: then it can join superficial waters where it is degraded due to the sun and air action. The paper presents firstly the laboratory degradation of a first batch of fluorescent tracers in contact with chlorine, in order to simulate their passage through a water treatment system for human consumption. A second batch of the same tracers is subjected to agents of natural degradation: ultraviolet illumination, sunlight and air sparging. Most tracers is degraded, and toxicity and ecotoxicity tests (on rats, daphniae and algae are performed on degradation byproducts. These tests do not show any acute toxicity but a low to moderate ecotoxicity. In conclusion, the most used fluorescent tracers of the Normandy karstic chalk and their artificial and natural degradation byproducts do not exhibit significant toxicity to humans and the aquatic environment, at the concentrations generally noted at the restitution points.

  10. Assessment of the advanced oxidation process , photo-fenton, on the degradation of polyaromatics hydrocarbons contained on the aqueous part of oil in superficial sea water; Avaliacao do processo oxidativo avancado, foto-fenton, na degradacao dos hidrocarbonetos poliaromaticos contidos na fracao soluvel do petroleo em agua superficial salina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rita C.R. da; Silva, Valdinete L. da; Paim, Ana Paula Silveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Rocha, Otidene R.S. da; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The pollution for oil has been one of the main ambient problems of the last decades. It exists an increasing interest in the study of the destination and forms of disappearance of the constituent hydrocarbons of the oil aiming at the development of more efficient methods of removal of the same ones of the environment. With objective to evaluate the process photo-fenton, in the treatment of the contaminated saline superficial water with polyaromatics hydrocarbons (HPAs) contained in the crude oil, mounted an experiment using reactor of black light, the hydrogen peroxide as oxidant agent. After the degradation the samples had been submitted to the analysis in the GC-MS, and for the 31 specters it was observed that the best ones resulted had been gotten when mmol of H{sub 2}O{sub 2} in 8 was used h of exposition to the irradiation and with pH of the equal system the 4. In the specter of this assay the characteristic peaks of the HPAs disappear completely or appear in a lowly intensities, proving that it had rupture of aromatical rings consequently and the degradation of the same ones or that its concentrations meet below of the limit of detention of the equipment. Soon, with the gotten results it can be concluded that the POAs, in special the process photo-fenton, is presented as a viable alternative in the contaminated saline superficial water treatment with the HPAs contained in the rude oil. (author)

  11. Protein degradation during reconsolidation as a mechanism for memory reorganization

    Directory of Open Access Journals (Sweden)

    Bong-Kiun Kaang

    2011-02-01

    Full Text Available Memory is a reference formed from a past experience that is used to respond to present situations. However, the world is dynamic and situations change, so it is important to update the memory with new information each time it is reactivated in order to adjust the response in the future. Recent researches indicate that memory may undergo a dynamic process that could work as an updating mechanism. This process which is called reconsolidation involves destabilization of the memory after it is reactivated, followed by restabilization. Recently, it has been demonstrated that the initial destabilization process of reconsolidation requires protein degradation. Using protein degradation inhibition as a method to block reconsolidation, recent researches suggest that reconsolidation, especially the protein degradation-dependent destabilization process is necessary for memory reorganization.

  12. Neutron scattering and HPLC study on L-ascorbic acid and its degradation

    Energy Technology Data Exchange (ETDEWEB)

    Bellocco, E. [Department of Organic and Biological Chemistry, University of Messina, Messina (Italy)], E-mail: bellocco@isengard.unime.it; Barreca, D.; Lagana, G.; Leuzzi, U. [Department of Organic and Biological Chemistry, University of Messina, Messina (Italy); Migliardo, F.; Torre, R. La; Galli, G. [Department of Physics, University of Messina, Messina (Italy); Galtieri, A. [Department of Organic and Biological Chemistry, University of Messina, Messina (Italy); Minutoli, L.; Squadrito, F. [Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina (Italy)

    2008-04-18

    The present paper shows a systematic dynamic and kinetic study on L-ascorbic acid and its degradation at high temperature. The neutron scattering study allows, through the behavior of quasi-elastic neutron scattering (QENS) spectra, to characterize the diffusive dynamics of L-ascorbic acid in water mixtures. Ascorbic acid undergoes degradation process at high temperature, but the presence of trehalose in solution markedly avoids ascorbic acid loss enhancing its t{sub 1/2} (half life time), as determined by high performance liquid chromatography (HPLC)

  13. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    Science.gov (United States)

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  14. PEG-based degradable networks for drug delivery applications

    Science.gov (United States)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  15. Unified Photo Enhancement by Discovering Aesthetic Communities From Flickr.

    Science.gov (United States)

    Hong, Richang; Zhang, Luming; Tao, Dacheng

    2016-03-01

    Photo enhancement refers to the process of increasing the aesthetic appeal of a photo, such as changing the photo aspect ratio and spatial recomposition. It is a widely used technique in the printing industry, graphic design, and cinematography. In this paper, we propose a unified and socially aware photo enhancement framework which can leverage the experience of photographers with various aesthetic topics (e.g., portrait and landscape). We focus on photos from the image hosting site Flickr, which has 87 million users and to which more than 3.5 million photos are uploaded daily. First, a tagwise regularized topic model is proposed to describe the aesthetic topic of each Flickr user, and coherent and interpretable topics are discovered by leveraging both the visual features and tags of photos. Next, a graph is constructed to describe the similarities in aesthetic topics between the users. Noticeably, densely connected users have similar aesthetic topics, which are categorized into different communities by a dense subgraph mining algorithm. Finally, a probabilistic model is exploited to enhance the aesthetic attractiveness of a test photo by leveraging the photographic experiences of Flickr users from the corresponding communities of that photo. Paired-comparison-based user studies show that our method performs competitively on photo retargeting and recomposition. Moreover, our approach accurately detects aesthetic communities in a photo set crawled from nearly 100000 Flickr users.

  16. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  17. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany); Tanwar, M.; Veetil, S.K.; Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Stierl, M.; Hegemann, P. [Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2013-09-23

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction.

  18. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    International Nuclear Information System (INIS)

    Penzkofer, A.; Tanwar, M.; Veetil, S.K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-01-01

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction

  19. Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay.

    Science.gov (United States)

    Rodríguez-Gil, José L; Catalá, Myriam; Alonso, Silvia González; Maroto, Raúl Romo; Valcárcel, Yolanda; Segura, Yolanda; Molina, Raúl; Melero, Juan A; Martínez, Fernando

    2010-06-01

    Fifty-six pharmaceuticals of various chemical groups, such as anti-inflammatory, antibacterial and cardiovascular drugs, were detected in four selected river waters receiving sewage effluents in the Community of Madrid (Spain). A promising approach for the degradation of those residues is the application of a photo-Fenton treatment. Several new bioassays using fern spores were employed for the evaluation of acute and chronic toxicity based on mitochondrial activity, DNA and chlorophyll quantifications of as-received river water and photo-Fenton-treated samples. photo-Fenton treatment provided a high degree of total organic carbon mineralization with up to 70% reduction for river water samples. In addition, the elimination of most of the studied pharmaceutical compounds was confirmed. A few compounds, however (salicylic acid, ofloxacin, caffeine, cotinine and nicotine), seemed more resistant, with after-treatment concentrations between 4 and 44ngL(-1). Nicotine showed the most refractory behaviour with concentrations ranging from 29 to 224ngL(-1) for treated samples. Photo-Fenton treatment yielded a significant decrease in acute and chronic toxicity, even though some residual toxicity remained after treatment. This fact seemed to be related to the presence of toxicants in the water matrix, probably of inorganic nature, rather than the toxic effect of the studied pharmaceutical compounds, as revealed by the effective removal of these compounds and high TOC mineralization of photo-Fenton treatments.

  20. Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process.

    Science.gov (United States)

    Benzaquén, T B; Benzzo, M T; Isla, M A; Alfano, O M

    2013-01-01

    In recent years, the use of agrochemicals has increased because they are essential for profitable agricultural production. Herbicides are heavily demanded compounds and among these, the most marketed are 2,4-D, atrazine and acetochlor. They have characteristics that can cause problems to humans and the environment. Therefore, it is necessary to design systems that can reduce these compounds to harmless molecules. This work aims at evaluating the possibility of incorporating these herbicides into degradable effluents in a biological treatment system, without reducing its efficiency. For this purpose, studies of organic matter degradability in the presence of these agrochemicals were performed. A synthetic effluent based on glucose and mineral salts was inoculated with microorganisms. Glucose consumption and biomass concentration were assessed. Subsequently, preliminary studies were performed to test the viability of degradation of the most harmful compound with an advanced oxidation process (AOP). The results showed that the incorporation of these herbicides into degradable effluents in a biological treatment system has a negative impact on microorganisms. Therefore, the application of an AOP, such as the Fenton or photo-Fenton processes, prior to a biological treatment was found to degrade these substances to simpler and less toxic molecules.

  1. Occurrence, degradation, and effect of polymer-based materials in the environment.

    Science.gov (United States)

    Lambert, Scott; Sinclair, Chris; Boxall, Alistair

    2014-01-01

    There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of

  2. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  3. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  4. Problems of photo-radiative action

    International Nuclear Information System (INIS)

    Milinchuk, V.K.

    1985-01-01

    The most interesting photo-radiation effects observed in the last few years are discussed, in particular, considerable reduction ip material radiation resistance under the combined effect of ionizing and visible radiation. Intermediate active particles are shown to absorb the light according to the mechanism of ''direct'' absorption and as a result of photo-sensibilization reactions as well. Channels of absorbed light energy dissipation depend on the nature and structure of the intermediate active particles, temperature, light radiation frequency and other parameters. Problems are considered which solution promotes further development of photo-radiation chemistry and that are important for such branches of modern physical chemistry as kinetics and mechanism of elementary processes in organic solids, radiation resistance and ageing of organic polymers

  5. NEFSC Photo Gallery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of fish, marine mammals, turtles, ships, and other related subjects for use by students, educators, scientists, media, etc.

  6. Content-aware photo collage using circle packing.

    Science.gov (United States)

    Yu, Zongqiao; Lu, Lin; Guo, Yanwen; Fan, Rongfei; Liu, Mingming; Wang, Wenping

    2014-02-01

    In this paper, we present a novel approach for automatically creating the photo collage that assembles the interest regions of a given group of images naturally. Previous methods on photo collage are generally built upon a well-defined optimization framework, which computes all the geometric parameters and layer indices for input photos on the given canvas by optimizing a unified objective function. The complex nonlinear form of optimization function limits their scalability and efficiency. From the geometric point of view, we recast the generation of collage as a region partition problem such that each image is displayed in its corresponding region partitioned from the canvas. The core of this is an efficient power-diagram-based circle packing algorithm that arranges a series of circles assigned to input photos compactly in the given canvas. To favor important photos, the circles are associated with image importances determined by an image ranking process. A heuristic search process is developed to ensure that salient information of each photo is displayed in the polygonal area resulting from circle packing. With our new formulation, each factor influencing the state of a photo is optimized in an independent stage, and computation of the optimal states for neighboring photos are completely decoupled. This improves the scalability of collage results and ensures their diversity. We also devise a saliency-based image fusion scheme to generate seamless compositive collage. Our approach can generate the collages on nonrectangular canvases and supports interactive collage that allows the user to refine collage results according to his/her personal preferences. We conduct extensive experiments and show the superiority of our algorithm by comparing against previous methods.

  7. Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-05-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in

  8. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  9. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity

    Science.gov (United States)

    Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo

    2017-11-01

    Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.

  10. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  11. Degradation of non-biodegradable pesticides in water by coupling photo catalysis and bio treatment; Eliminacion de plaguicidas no biodegrabables en aguas mediante acoplamiento de fotocatalisis solar y oxidacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Martin, M. M.; Sanchez Perez, J. A.; Malato Rodriguez, S.

    2008-07-01

    The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing different pure and commercial pesticides (dimethoate, oxydemeton-methyl, carbaryl, oxamyl, methomyl, imidacloprid, dimethoate and pyrimethanil). Different initial concentrations were assayed. Variation in biodegradability with photo catalytic treatment intensity was tested using Pseudomonas putida. Biodegradation efficiencies after the photoreaction were found to be lower for the pesticide solution with the higher concentration, showing that to achieve sufficient biodegradability, the photo-Fenton treatment time must be increased with pesticide concentration. Bio treatment was carried out in different reactor including sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source (wastewater containing an easily biodegradable substrate, such as urban wastewater) before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a pesticide solutions up to of 500 mg/L of DOC. (Author)

  12. In vitro degradation of the 32kDa PS II reaction centre protein

    International Nuclear Information System (INIS)

    Eckenswiller, L.C.; Greenberg, B.M.

    1989-01-01

    The 32kDa thylakoid membrane protein is an integral component of the PS II reaction centre. The protein, although stable in the dark, undergoes light dependent turnover. Light from the UV, visible and far-red spectral regions induce 32kDa protein degradation. To better understand 32kDa protein metabolism, an in vitro degradation system is being developed. It consists of isolated thylakoid membranes than contain radiolabelled protein. The 32kDa protein is actively and specifically degraded when the thylakoid preparation is exposed to UV or visible radiation. The protein is stable in the dark. The herbicides (atrazine and DCMU) inhibit degradation in the in vitro system as they do in vivo. Additionally, several methods of isolating thylakoids are being compared to optimize the 32kDa protein degradation reaction. The preparations will be evaluated based on their ability to permit light dependent degradation of the 32kDa protein without affecting the other membrane components

  13. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Yi [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  14. Nanocrystalline sol-gel TiO{sub 2}-SnO{sub 2} coatings: Preparation, characterization and photo-catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} additive enhanced significantly photo-catalytic properties of TiO{sub 2} based thin film for remove of organic compounds. Black-Right-Pointing-Pointer Structural and optical properties are dependent on dopant concentration. Black-Right-Pointing-Pointer TiO{sub 2}-SnO{sub 2} nanocrystalline thin film is promising for photocatalytic properties in visible light. -- Abstract: In this study, preparation of SnO{sub 2} (0-30 mol% SnO{sub 2})-TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of SnO{sub 2} on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO{sub 2} content. The prepared Sn doped TiO{sub 2} photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO{sub 2} thin films was measured in the TiO{sub 2}-15 mol% SnO{sub 2} sample by the Sn{sup 4+} dopants presented substitution Ti{sup 4+} into the lattice of TiO{sub 2} increasing the surface oxygen vacancies and the surface hydroxyl groups.

  15. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  16. Avaliação da degradação térmica e fotooxidativa do ABS Automotivo Thermal degradation and Photo-oxidation of the ABS used for automotive applications

    Directory of Open Access Journals (Sweden)

    Elisabete M. S. Sanchez

    1999-12-01

    Full Text Available A degradação do ABS foi avaliada após envelhecimento térmico (ASTM D794 e fotooxidativo (ASTM G53 e G24. Essas condições foram escolhidas na tentativa de simular as condições a que esse polímero é submetido durante seu ciclo de vida como componente automobilístico. As mudanças ocorridas no ABS envelhecido pelos três métodos, em diferentes tempos, foram caracterizadas por ensaios mecânicos de tração e impacto, pelo índice de fluidez, pelo índice de carbonilas (FT-IR, pelo índice de amarelecimento e por fotografias ampliadas das fraturas de impacto. Os resultados mostraram que cada técnica utilizada fornece uma resposta característica em função do método de envelhecimento utilizado. A aplicação de técnicas de análise multivariada aos resultados permitiu uma visualização da degradação do material em função das técnicas de envelhecimento.The ABS degradation was investigated after thermal- (80°C and photo-oxidative ageing (ASTM G53 and G24. These conditions were selected to simulate a car interior and the ABS lifetime weatherability. ABS changes were characterised by mechanical properties, melt flow index, carbonyl index (FT-IR, yellowing index and macro-photography of impact fracture. The results showed that each technique gives a characteristically answer for the ageing method. The multivariate analysis provided the degradation view as a function of the ageing method.

  17. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  19. Kinetic study of photo-grafting and photo-cross-linking of a cis-poly butadiene onto cellulose from asymmetric membranes

    International Nuclear Information System (INIS)

    Zeni, M.; Riveros, R.; Schildt, R.

    1991-01-01

    Photochemical grafting onto cellulose and successive photo cross-linking of 2,00-12,00 mg.cm -2 of a cys-poly butadiene, containing 80% cis groups, were investigated kinetically at 30 0 C in the presence of 1,2-diphenyl-2,2-dimethoxy ethanone as a photo initiator to polymer varied between 0,070 and 1,115. Irradiations were carried out poly chromatically, in air or under a stream of nitrogen, with incident radiation of flux I of 2,1.10 -8 einstein.s -1 .cm -2 . In light of this information, the mechanism of photo-grafting and photo-cross linking of cis-poly-butadiene on cellulose surface is discussed. (author)

  20. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  1. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  2. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    Science.gov (United States)

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  3. Deuteron photo-disintegration at large energies

    International Nuclear Information System (INIS)

    Potterveld, D.H.

    1994-01-01

    Current proposals at CEBAF include the measurement of cross sections and polarization observables of exclusive photo-reactions such as deuteron photo-disintegration and pion photo-production from nucleons. At issue is the applicability of traditional meson-exchange models versus quark models of these reactions at photon energies of several GeV. Beam energies above 4 GeV at CEBAF could make possible the measurement of these reactions over a kinematic range sufficiently broad to distinguish between the models. Estimates of counting rates for a Hall-C experiment to measure the γd → pn cross section are presented

  4. Elongational viscosity of photo-oxidated LDPE

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2014-05-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  5. Radio catalysis application in degradation of complex organic samples

    International Nuclear Information System (INIS)

    Moreno L, A.

    2014-01-01

    The generation of wastewater is a consequence of human activities, industries to be the generators of a large part of these discharges. These contaminated waters can be processed for their remediation; however the recalcitrant organic compounds are hardly removed through conventional treatments applied, so that new technologies have been developed for disposal such as the advanced oxidation technologies or processes. With the aim of the study is to apply ionizing radiation as a method of remediation in wastewater, in this work were carried out experiments of radiolysis and radio catalysis, which are techniques considered advanced oxidation technologies, that consist in irradiate with 60 Co gamma radiation solutions of 4- chloro phenol and methylene blue, applied at different concentrations and using as process control measurements of the compound not degraded by UV-vis spectrophotometry at 507 and 664 nm for 4-chloro phenol and methylene blue respectively. At doses greater than 2.5 kGy were near-zero degradation. Degradation experiments were also conducted by photo catalysis by irradiation with a UV lamp of 354 nm wavelength. For 4-chloro phenol results showed that degradation is efficient (39%). With those previous results, these techniques were applied to degrade complex mixtures of organic compounds from samples of wastewater from a sewage treatment plant, where was considered as process control measurement of the dissolved organic carbon obtained by a spectrophotometric analysis at 254 nm, and a maximum of 26% degradation was obtained by applying 80 kGy. On the other hand, a series of experiments fractionating the irradiations at intervals of 20 kGy to obtain a cumulative dose of 80 kGy, which was 2.8 times greater with respect to degradation by radio catalysis with continuous irradiation. (Author)

  6. UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment.

    Science.gov (United States)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R; Silva, Adrián M T; Ksibi, Mohamed

    2016-03-05

    Direct photolysis and TiO2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pHinitial 6.5) was 83% after 3h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (kapp) for NPX degradation by photolysis ranged from 0.0050 min(-1) at pH 3.5 to 0.0095 min(-1) at pH 6.5, while it was estimated to be 0.0063 min(-1) under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mini Review - Phenolics for skin photo-aging.

    Science.gov (United States)

    Ali, Atif

    2017-07-01

    Photo-aging is one of the foremost problems caused by generation of reactive oxygen species when skin is exposed on UV irradiation. In view of that, generation of reactive oxygen species intermingle with proteins, DNA, saccharides and fatty acids triggering oxidative mutilation and effects are in the appearance of distressed cell metabolism, morphological and ultra-structural changes, mistreat on the routes and revisions in the demarcation, propagation and skin apoptosis living cells which leads to photo-aging. Plant phenolics are universally found in both edible and inedible plants and have extended substantial interest as photo-protective for human skin due to their antioxidant activities. The objective of this review is to highlight the use of plant phenolics for their antioxidant activities against photo-aging.

  8. Etude Experimentale du Photo-Injecteur de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Jean-Paul [Orsay

    2001-01-01

    TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of an $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $A{\\emptyset}$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($C_{s_2}$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$\\mu$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is

  9. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    Science.gov (United States)

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, palbumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic

  10. Effect of anionic surfactants on the process of Fenton degradation of methyl orange.

    Science.gov (United States)

    Yang, C W; Wang, D

    2009-01-01

    Fenton process has been shown to be very successful to remove dyes from water. However, the influence of other constituents in dyeing industry wastewater, such as Sodium Dodecyl Sulphate (SDS) surfactants, has not been investigated. In this study, the effect of SDS surfactant on the kinetics of Methyl Orange degradation undergoing Fenton process was investigated. Results show that Methyl Orange degradation rate decreased as SDS concentration increased, which was attributed to the consumption of hydroxyl radicals (OH) by surfactants and the formation of Methyl Orange-SDS complex. No evidence was found that the Methyl Orange degradation pathway was affected by the presence of SDS. The kinetics modelling indicates the reaction was the first-order reaction to Methyl Orange.

  11. The use of UAVs for monitoring land degradation

    Science.gov (United States)

    Themistocleous, Kyriacos

    2017-10-01

    Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.

  12. Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S,8R,13S,16R)-(-)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting.

    Science.gov (United States)

    Aliferis, Konstantinos A; Chrysayi-Tokousbalides, Maria

    2006-03-08

    The biochemical mode of action of (5S,8R,13S,16R)-(-)-pyrenophorol isolated from a Drechslera avenae pathotype was investigated by using metabolic fingerprinting. (1)H NMR spectra of crude leaf extracts from untreated Avena sterilis seedlings and A. sterilis seedlings treated with pyrenophorol were compared with those obtained from treatments with the herbicides diuron, glyphosate, mesotrione, norflurazon, oxadiazon, and paraquat. Multivariate analysis was carried out to group treatments according to the mode of action of the phytotoxic substances applied. Analysis results revealed that none of the herbicide treatments fitted the pyrenophorol model and indicate that the effect of the phytotoxin on A. sterilis differs than those caused by glyphosate, mesotrione, norflurazon, oxadiazon, paraquat, and diuron, which inhibit 5-enolpyruvylshikimate-3-phosphate synthase, 4-hydroxyphenyl-pyruvate-dioxygenase, phytoene desaturase, protoporphyrinogen oxidase, photosystem I, and photosystem II, respectively. The method applied, combined with appropriate data preprocessing and analysis, was found to be rapid for the screening of phytotoxic substances for metabolic effects.

  13. Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Norrman, Kion; Krebs, Frederik C

    2011-01-01

    The work focuses on the degradation of performance induced by both water and oxygen in an inverted geometry organic photovoltaic device with emphasis on the accumulated barrier effect of the layers comprising the layer stack. By studying the exchange of oxygen in the zinc oxide (ZnO) layer...... in the humid atmosphere, correlating well with a long observed lifetime in the same atmosphere.© 2011 Society of Photo-Optical Instrumentation Engineers....

  14. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH

    Science.gov (United States)

    Xu, Jingjing; Wu, Miaomiao; Yang, Jingwen; Wang, Zhengmei; Chen, Mindong; Teng, Fei

    2017-09-01

    In this work, we prepared a new wide band gap semiconductor, p-block metal oxyhydroxide InOOH, which exhibits efficient activity for perfluorooctanoic acid (PFOA) degradation under mild conditions and UV light irradiation. The apparent rate constant for PFOA degradation by InOOH is 27.6 times higher than that for P25 titania. Results show that ionized PFOA (C7F15COO-) can be adsorbed much more efficiently on the surface of InOOH than P25. Then, the adsorbed C7F15COO- can be decomposed directly by photo-generated holes to form C7F15COOrad radicals. This process is the key step for the photocalytic degradation of PFOA. Major degradation intermediates, fluoride ions and perfluorinated carboxylic acids (PFCAs) with shorter chain lengths were detected during PFOA degradation. A possible pathway for photocatalytic degradation of PFOA is proposed based on the experimental results. Therefore, this studies indicates a potential new material and method for the efficient treatment of PFCA pollutants under mild conditions.

  15. Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation

    International Nuclear Information System (INIS)

    Ahad, Jason M.E.; Slater, Greg F.

    2008-01-01

    Hydrogen peroxide (H 2 O 2 )-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H 2 O 2 -mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H 2 O 2 -mediated subsurface oxygenation. Despite substantial decreases (> 68%) in groundwater toluene concentrations carbon isotope signatures of toluene (δ 13 C tol ) showed no significant variation (mean = - 27.5 ±0.3 per mille, n = 13) over a range of concentrations from 11.1 to 669.0 mg L -1 . Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation

  16. SUMOylation of Blimp-1 promotes its proteasomal degradation.

    Science.gov (United States)

    Shimshon, Livnat; Michaeli, Avital; Hadar, Rivka; Nutt, Stephen L; David, Yael; Navon, Ami; Waisman, Ari; Tirosh, Boaz

    2011-08-04

    B lymphocyte induced maturation protein-1 (Blimp-1) is a transcription repressor of the Krueppel-like family. Blimp-1 plays important roles in developmental processes, such as of germ cells and hair follicle stem cells. In B lymphocytes Blimp-1 orchestrates the terminal differentiation into plasma cells. We discovered that Blimp-1 undergoes SUMOylation by SUMO-1. This SUMOylation is modulated by the SUMO protease SENP1. While Blimp-1 is relatively stable in 293T cells, a fusion with SUMO1 rendered it to rapid proteasomal degradation. Increase in SENP1 activity stabilized Blimp-1, while a decrease promoted its degradation. Our data indicate that SUMOylation of Blimp-1 regulates its intracellular stability. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Photos and Videos

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observers are required to take photos and/or videos of all incidentally caught sea turtles, marine mammals, seabirds and unusual or rare fish. On the first 3...

  18. Partnering with Families through Photo Collages

    Science.gov (United States)

    Bacigalupa, Chiara

    2016-01-01

    This article describes the implementation and benefits of a photo-based family communication method called Daily Explorations. Daily Explorations are one- to two-page photo collages that are annotated with meaningful explanations of children's play and e-mailed to parents every day. The process, described in more detail in this article, is a…

  19. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Li, Jinliang; Liu, Junying [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Zhang, Jing; Li, Ping; Chen, Chen [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-11-15

    Graphical abstract: F-doped TiO2 is synthesized using a modified sol–gel method for visible photocatalytic degradation of MB with a high degradation rate of 91%. - Highlights: • F-doped TiO{sub 2} are synthesized using a modified sol–gel method. • The photocatalytic degradation of methylene blue by F-doped TiO{sub 2} is investigated. • A high methylene blue degradation rate of 91% is achieved under visible light irradiation. - Abstract: F-doped TiO{sub 2} (F-TiO{sub 2}) were successfully synthesized using a modified sol–gel method. The morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, and electrochemical impedance spectra, respectively. The results show that F-TiO{sub 2} exhibits an enhanced photocatalytic performance in the degradation of MB with a maximum degradation rate of 91% under visible light irradiation as compared with pure TiO{sub 2} (32%). The excellent photocatalytic activity is due to the contribution from the increased visible light absorption, promoted separation of photo-generated electrons and holes as well as enhanced photocatalytic oxidizing species with the doping of F in TiO{sub 2}.

  20. Strategies for the photo-control of endogenous protein activity.

    Science.gov (United States)

    Brechun, Katherine E; Arndt, Katja M; Woolley, G Andrew

    2017-08-01

    Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships.

    Science.gov (United States)

    Sanabria-DeLong, Naomi; Crosby, Alfred J; Tew, Gregory N

    2008-10-01

    Poly(lactide)-block-poly(ethylene oxide)-block-poly(lactide) (PLA-PEO-PLA) triblock copolymers are known to form physical hydrogels in water as a result of the polymer's amphiphilicity. Their mechanical properties, biocompatibility, and biodegradability have made them attractive for use as soft tissue scaffolds. However, the network junction points are not covalently cross-linked, and in a highly aqueous environment these hydrogels adsorb more water, transform from gel to sol, and lose the designed mechanical properties. In this article, a hydrogel was formed by the use of a novel two-step approach. In the first step, the end-functionalized PLA-PEO-PLA triblock was self-assembled into a physical hydrogel through hydrophobic micelle network junctions, and in the second step, this self-assembled physical network structure was locked into place by photo-cross-linking the terminal acrylate groups. In contrast with physical hydrogels, the photo-cross-linked gels remained intact in phosphate-buffered solution at body temperature. The swelling, degradation, and mechanical properties were characterized, and they demonstrated an extended degradation time (approximately 65 days), an exponential decrease in modulus with degradation time, and a tunable shear modulus (1.6-133 kPa). We also discuss the various constitutive relationships (Hookean, neo-Hookean, and Mooney-Rivlin) that can be used to describe the stress-strain behavior of these hydrogels. The chosen model and assumptions used for data fitting influenced the obtained modulus values by as much as a factor of 3.5, which demonstrates the importance of clearly stating one's data fitting parameters so that accurate comparisons can be made within the literature.

  2. A way to the Photo Master Expert

    Science.gov (United States)

    Inagaki, Toshihiko

    After the author presided over the photographer's group for 15 years or more, the author met with the Photo Master certificate examination. And the author took the certificate examination, and was authorized as a Photo Master Expert in 2005. In this report, the outline how photographic technology has been mastered in order to adapt the photographer's group to the great change of photography from film to digital and how the contents of the activity of a photographer's group have changed is described. And the progress which took the Photo Master certificate examination as a good opportunity to prove the achievement level of those activities is described. And as a photographic activity after Photo Master Expert authorization, the shooting method of mural painting in the royal tomb of Amenophis III is described.

  3. New insights into the by-product fatigue mechanism of the photo-induced ring-opening in diarylethenes.

    Science.gov (United States)

    Mendive-Tapia, David; Perrier, Aurélie; Bearpark, Michael J; Robb, Michael A; Lasorne, Benjamin; Jacquemin, Denis

    2014-09-14

    The photochromic properties of diarylethenes, some of the most studied class of molecular switches, are known to be controlled by non-adiabatic decay at a conical intersection seam. Nevertheless, as their fatigue-reaction mechanism - leading to non-photochromic products - is yet to be understood, we investigate the photo-chemical formation of the so-called by-product isomer using three complementary computational methods (MMVB, CASSCF and CASPT2) on three model systems of increasing complexity. We show that for the ring-opening reaction a transition state on S1(2A) involving bond breaking of the penta-ring leads to a low energy S1(2A)/S0(1A) conical intersection seam, which lies above one of the transition states leading to the by-product isomer on the ground state. Therefore, radiationless decay and subsequent side-product formation can take place explaining the photo-degradation responsible for the by-product generation in diarylethene-type molecules. The effect of dynamic electron correlation and the possible role of inter-system crossing along the penta-ring opening coordinate are discussed as well.

  4. Photo-Modeling and Cloud Computing. Applications in the Survey of Late Gothic Architectural Elements

    Science.gov (United States)

    Casu, P.; Pisu, C.

    2013-02-01

    This work proposes the application of the latest methods of photo-modeling to the study of Gothic architecture in Sardinia. The aim is to consider the versatility and ease of use of such documentation tools in order to study architecture and its ornamental details. The paper illustrates a procedure of integrated survey and restitution, with the purpose to obtain an accurate 3D model of some gothic portals. We combined the contact survey and the photographic survey oriented to the photo-modelling. The software used is 123D Catch by Autodesk an Image Based Modelling (IBM) system available free. It is a web-based application that requires a few simple steps to produce a mesh from a set of not oriented photos. We tested the application on four portals, working at different scale of detail: at first the whole portal and then the different architectural elements that composed it. We were able to model all the elements and to quickly extrapolate simple sections, in order to make a comparison between the moldings, highlighting similarities and differences. Working in different sites at different scale of detail, have allowed us to test the procedure under different conditions of exposure, sunshine, accessibility, degradation of surface, type of material, and with different equipment and operators, showing if the final result could be affected by these factors. We tested a procedure, articulated in a few repeatable steps, that can be applied, with the right corrections and adaptations, to similar cases and/or larger or smaller elements.

  5. Effect of Ti content in the photo catalytic behavior of Fe/TiO2-SiO2 systems

    International Nuclear Information System (INIS)

    Leon C, A.; Portillo V, N.; Hernandez P, I.; May L, M.; Gonzalez R, L.; Luna P, R.; Suarez P, R.

    2013-01-01

    In this work we report the synthesis of Fe/TiO 2 -SiO 2 systems with different concentrations of TiO 2 in order to determine the influence of titanium content on the structural, textural, optical properties and their photo catalytic behavior. The materials were synthesized by the sol-gel method and their modification was carried out by incipient impregnation. All samples were characterized be means of X-ray diffraction, N 2 physisorption (Bet method), Dr-UV-Vis and Raman spectroscopy. The modifications of the structural and optical properties are discussed on the basis of long-range order reduction, suggesting the formation of highly dispersed TiO 2 species. On the other hand, it was observed that the energy of the optical band gap decreases by introducing Fe. On the basis of these phenomena, the photo catalytic activity was measured, employing the degradation of orange II azo dye as a model reaction. (Author)

  6. [Sequential degradation of p-cresol by photochemical and biological methods].

    Science.gov (United States)

    Karetnikova, E A; Chaĭkovskaia, O N; Sokolova, I V; Nikitina, L I

    2008-01-01

    Sequential photo- and biodegradation of p-cresol was studied using a mercury lamp, as well as KrCl and XeCl excilamps. Preirradiation of p-cresol at a concentration of 10(-4) M did not affect the rate of its subsequent biodegradation. An increase in the concentration of p-cresol to 10(-3) M and in the duration preliminary UV irradiation inhibited subsequent biodegradation. Biodegradation of p-cresol was accompanied by the formation of a product with a fluorescence maximum at 365 nm (lambdaex 280 nm), and photodegradation yielded a compound fluorescing at 400 nm (lambdaex 330 nm). Sequential UV and biodegradation led to the appearance of bands in the fluorescence spectra that were ascribed to p-cresol and its photolysis products. It was shown that sequential use of biological and photochemical degradation results in degradation of not only the initial toxicant but also the metabolites formed during its biodegradation.

  7. Today’s Mumbai as Photo-Textuality

    Directory of Open Access Journals (Sweden)

    Carmen Concilio

    2015-06-01

    Full Text Available The aim of this essay is to enquire into representations of the city of Mumbai whose urban development has produced images of heaven and hell, sometimes within enclosed boundaries. What is interesting to tackle here is its aestheticisation in a photo-book which presents itself as ‘image-text’ (Mitchel, Stafford, Bombay/Mumbai. Immersions (2013. Not differently from what happens in other cities, such as Cape Town, for instance, here considered only very briefly as counterpoint, the Indian megalopolis’s development has produced disconnected images of urban heaven and hell. The photo-text here discussed presents itself as a composite narrative of words and photos, as the product of the cooperation between an Indian woman poet, Priya Sarukkai Chabria, and an English photographer now based in France, Christopher Taylor. Last but certainly not least in a long sequence of urban photo-texts, this new project requires the reader’s attention in order to try and clarify its role, its meaning, its function, its ethical/aesthetic responsibilities.

  8. Photo-medical valley. 'Photo medical research center'

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Daido, Hiroyuki; Tajima, Toshiki

    2008-01-01

    To develop a much more compact cancer diagnosis and therapeutic instrument using high intensity laser technology, Japan Atomic Energy Agency (JAEA) has successfully proposed this novel effort to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program as the creation of a 'photo-medical industrial valley' base in 2007 fiscal year. In this report, a new laser techniques to drive controlled ion beams is described. It is very important approach to realize a laser-driven ion accelerator. (author)

  9. Degradation of pharmaceuticals in UV (LP)/H₂O₂ reactors simulated by means of kinetic modeling and computational fluid dynamics (CFD).

    Science.gov (United States)

    Wols, B A; Harmsen, D J H; Wanders-Dijk, J; Beerendonk, E F; Hofman-Caris, C H M

    2015-05-15

    UV/H2O2 treatment is a well-established technique to degrade organic micropollutants. A CFD model in combination with an advanced kinetic model is presented to predict the degradation of organic micropollutants in UV (LP)/H2O2 reactors, accounting for the hydraulics, fluence rate, complex (photo)chemical reactions in the water matrix and the interactions between these processes. The model incorporates compound degradation by means of direct UV photolysis, OH radical and carbonate radical reactions. Measurements of pharmaceutical degradations in pilot-scale UV/H2O2 reactors are presented under different operating conditions. A comparison between measured and modeled degradation for a group of 35 pharmaceuticals resulted in good model predictions for most of the compounds. The research also shows that the degradation of organic micropollutants can be dependent on temperature, which is relevant for full-scale installations that are operated at different temperatures over the year. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity

    Science.gov (United States)

    Bharathi, Devaraj; Vasantharaj, Seerangaraj; Bhuvaneshwari, V.

    2018-05-01

    The present study describes the antibacterial, anti-biofilm and photo catalytic activity of silver nanoparticles synthesized using Cordia dichotoma fruits (Cd-AgNPs) for the first time. The phyto-synthesized Cd-AgNPs were characterized by UV-Visible spectroscopy, Field emission-scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). FE-SEM and TEM observation showed that the average size of 2–60 nm with spherical shape of Cd-AgNPs and the presence of phyto-compounds which are responsible for capping and reduction were studied by FT-IR. XRD studies revealed the face-centered cubic structure of Cd-AgNPs. The synthesized Cd-AgNPs showed significant antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, assayed using agar well diffusion method. Phyto-synthesized Cd-AgNPs exhibited more than 90% inhibition of biofilm activity formed by S. aureus and E. coli. Furthermore, photocatalytic degradation of crystal violet (CV) under UV light irradiation using Cd-AgNPs was performed. Synthesized Cd-AgNPs exhibited ∼85% degradation activity for CV. Collectively, our findings suggest that C.dichotoma is a green source for the eco-friendly synthesis of Cd-AgNPs, which further can be used as a novel biocidal agent against bacterial pathogens and a potent photo catalytic agent.

  11. Enhanced solid-phase photocatalytic degradation of polyethylene by TiO{sub 2}–MWCNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    An, Yang [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832003 (China); Hou, Juan [College of Sciences, Shihezi University, Xinjiang 832003 (China); Liu, Zhiyong [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832003 (China); Peng, Banghua, E-mail: banghuapeng@hotmail.com [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832003 (China)

    2014-11-14

    In this work, a novel acid vapor method was introduced to prepare the water soluble multi-walled carbon nanotubes (MWCNTs) and the titanium dioxide (TiO{sub 2})–MWCNTs nanocomposites photocatalyst were successfully synthesized by sol–gel solvothermal method. Products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), which revealed that the anatase TiO{sub 2} particles were uniform deposited on MWCNTs surface. UV–vis diffuse reflectance spectroscopy (UV–vis) showed that composite photocatalyst had an obviously absorption band which covered the whole range of UV–vis region and exhibited a significant enhancement of optical absorption property. Based on above properties, we used the TiO{sub 2}–MWCNTs composites as photocatalysts to degrade the polyethylene (PE) plastic. Solid-phase PE film photocatalytic degradation experiments were investigated through monitoring TiO{sub 2}–MWCNTs–PE composite film's weight loss under mercury lamp irradiation. Results showed that the degradation efficiency could be tuned by changing the concentration of MWCNTs in photocatalyst. The photo-induced degradation of composite film was significantly higher than that of the pure PE film and the Degussa P25-PE film under the same UV irradiation. The weight loss of TiO{sub 2}–MWCNTs (20 wt%)–PE sample reached 35% under 180 h UV-light irradiation. Our work could be extended to synthesize other MWCNTs based composite with the purpose of enhancing TiO{sub 2}'s activity and inspiring for the practical environmental pollution, especially for degradation of plastics. - Highlights: • A novel acid vapor method was used to functionalize the MWCNTs. • Anatase nano-particles of TiO{sub 2} were uniform deposited on MWCNTs surface. • The composite photo-catalyst’s visible-light absorption capability was improved. • Polyethylene film's photodegradation efficiency was obviously enhanced

  12. Actively learning human gaze shifting paths for semantics-aware photo cropping.

    Science.gov (United States)

    Zhang, Luming; Gao, Yue; Ji, Rongrong; Xia, Yingjie; Dai, Qionghai; Li, Xuelong

    2014-05-01

    Photo cropping is a widely used tool in printing industry, photography, and cinematography. Conventional cropping models suffer from the following three challenges. First, the deemphasized role of semantic contents that are many times more important than low-level features in photo aesthetics. Second, the absence of a sequential ordering in the existing models. In contrast, humans look at semantically important regions sequentially when viewing a photo. Third, the difficulty of leveraging inputs from multiple users. Experience from multiple users is particularly critical in cropping as photo assessment is quite a subjective task. To address these challenges, this paper proposes semantics-aware photo cropping, which crops a photo by simulating the process of humans sequentially perceiving semantically important regions of a photo. We first project the local features (graphlets in this paper) onto the semantic space, which is constructed based on the category information of the training photos. An efficient learning algorithm is then derived to sequentially select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path, which simulates humans actively perceiving semantics in a photo. Furthermore, we learn a prior distribution of such active graphlet paths from training photos that are marked as aesthetically pleasing by multiple users. The learned priors enforce the corresponding active graphlet path of a test photo to be maximally similar to those from the training photos. Experimental results show that: 1) the active graphlet path accurately predicts human gaze shifting, and thus is more indicative for photo aesthetics than conventional saliency maps and 2) the cropped photos produced by our approach outperform its competitors in both qualitative and quantitative comparisons.

  13. Benthic Photo Survey: Software for Geotagging, Depth-tagging, and Classifying Photos from Survey Data and Producing Shapefiles for Habitat Mapping in GIS

    Directory of Open Access Journals (Sweden)

    Jared Kibele

    2016-03-01

    Full Text Available Photo survey techniques are common for resource management, ecological research, and ground truthing for remote sensing but current data processing methods are cumbersome and inefficient. The Benthic Photo Survey (BPS software described here was created to simplify the data processing and management tasks associated with photo surveys of underwater habitats. BPS is free and open source software written in Python with a QT graphical user interface. BPS takes a GPS log and jpeg images acquired by a diver or drop camera and assigns the GPS position to each photo based on time-stamps (i.e. geotagging. Depth and temperature can be assigned in a similar fashion (i.e. depth-tagging using log files from an inexpensive consumer grade depth / temperature logger that can be attached to the camera. BPS provides the user with a simple interface to assign quantitative habitat and substrate classifications to each photo. Location, depth, temperature, habitat, and substrate data are all stored with the jpeg metadata in Exchangeable image file format (Exif. BPS can then export all of these data in a spatially explicit point shapefile format for use in GIS. BPS greatly reduces the time and skill required to turn photos into usable data thereby making photo survey methods more efficient and cost effective. BPS can also be used, as is, for other photo sampling techniques in terrestrial and aquatic environments and the open source code base offers numerous opportunities for expansion and customization.

  14. Preparation for the HEC 1999 Test Beam (photos obtained from TRIUMF)

    CERN Multimedia

    1999-01-01

    Photo1 - Three mated modules after rotation are ready to go in the cryostat. Photo2 - The mated modules on the rotator (at 45 degrees). Photo3 - The HEC-2 modules with all the outer connecting bars in place. Photo4 - The HEC-2 modules with two connecting bars still missing. Photo5 - the happy assembly team with three mated HEC - 1 modules. Photo6 - the inner tie-bars assembled on the HEC2 modules.

  15. Optimization of photo-Fenton process for the treatment of prednisolone.

    Science.gov (United States)

    Díez, Aida María; Ribeiro, Ana Sofia; Sanromán, Maria Angeles; Pazos, Marta

    2018-03-29

    Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to μg/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H 2 O 2 ), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H 2 O 2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H 2 O 2 and Fe 2+ . The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8 h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.

  16. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    International Nuclear Information System (INIS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-01-01

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O_2−CF_4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO_2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  17. Nature and numbers a mathematical photo shooting

    CERN Document Server

    Glaeser, Georg

    2014-01-01

    The book offers 180 pages of spectacular photos and unusual views and insights. Learn to see the world with different eyes and be prepared for many surprises and new facts. The photos give rise to questions that are carefully explained with mathematics.

  18. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    Science.gov (United States)

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Sulphonated hypocrellin B sensitized photo damage to ascetic hepatoma cells

    International Nuclear Information System (INIS)

    Yue Jiachang; Wang Tiandun; Pang Suzhen; An Jingyi; Jiang Lijing

    1994-01-01

    The cellular uptake of sulphonated hypocrellin (S-HB), as well as photo damage on cellular viability, lipid peroxidation and intrinsic fluorescence quenching of membrane protein was studied. It was found that S-HB suitable dissolved in aqueous solution, its cellular uptake is slower than HB. The photo damage on cellular viability both photo sensitizers was close to each other, however the photo sensitizers were different in physical and chemical properties. The HB photo damage target of cells was membrane, but the sulphonated HB photo damage target of cells may be part of organelles, besides the membrane. the experiments showed the sulphonated HB would be suggested as a potential advantage for photodynamic therapy of tumor in clinical application

  20. UV and solar photo-degradation of naproxen: TiO_2 catalyst effect, reaction kinetics, products identification and toxicity assessment

    International Nuclear Information System (INIS)

    Jallouli, Nabil; Elghniji, Kais; Hentati, Olfa; Ribeiro, Ana R.; Silva, Adrián M.T.; Ksibi, Mohamed

    2016-01-01

    Highlights: • Degradation kinetics and mineralization rate of naproxen (NPX) were studied. • Direct photolysis and TiO_2/UV approaches were evaluated. • The formation of by-products was followed by UHPLC-DAD-MS. • Ecological risk assessment of NPX-treated solutions was assessed using E. andrei. - Abstract: Direct photolysis and TiO_2-photocatalytic degradation of naproxen (NPX) in aqueous solution were studied using a UV lamp and solar irradiation. The degradation of NPX was found to be in accordance with pseudo-first order kinetics, the photocatalytic process being more efficient than photolysis. The NPX removal by photolysis (pH_i_n_i_t_i_a_l 6.5) was 83% after 3 h, with 11% of chemical oxygen demand (COD) reduction, whereas the TiO_2-UV process led to higher removals of both NPX (98%) and COD (25%). The apparent pseudo-first-order rate constant (k_a_p_p) for NPX degradation by photolysis ranged from 0.0050 min"−"1 at pH 3.5 to 0.0095 min"−"1 at pH 6.5, while it was estimated to be 0.0063 min"−"1 under acidic conditions in photocatalysis, increasing by 4-fold at pH 6.5. Ultra High Performance Liquid chromatography (UHPLC) coupled with a triple quadrupole detector and also a hybrid mass spectrometer which combines the linear ion trap triple quadrupole (LTQ) and OrbiTrap mass analyser, were used to identify NPX degradation products. The main intermediates detected were 1-(6-methoxynaphtalene-2-yl) ethylhydroperoxide, 2-ethyl-6-methoxynaphthalene, 1-(6-methoxynaphtalen-2-yl) ethanol, 1-(6-methoxynaphtalen-2-yl) ethanone and malic acid. Solar photocatalysis of NPX showed COD removals of 33% and 65% after 3 and 4 h of treatment, respectively, and some reduction of acute toxicity, evaluated by the exposure of Eisenia andrei to OECD soils spiked with NPX-treated solutions.

  1. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  2. Pathogen toxin-indiced electrolyte leakage and phytoalexin accumulation as indices of red-rot (Colletotrichum falcatum Went resistance in sugarcane

    Directory of Open Access Journals (Sweden)

    D. Mohanraj

    2003-08-01

    Full Text Available A phytotoxin produced by the sugarcane red-rot fungus Colletotrichum falcatum Went was partially purified. The phytotoxin caused increased electrolyte leakage in susceptible sugarcane varieties and higher levels of phytoalexins (3-deoxyanthocyanidins in resistant sugarcane varieties. This relationship between phytotoxin induced changes and disease reaction could possibly be used as an additional index to rapidly identify red-rot resistant varieties.

  3. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  4. Preparation and Characterization of Cu loaded TiO2 Nano tube Arrays and their Photo catalytic Activity

    International Nuclear Information System (INIS)

    Syazwani Mohd Zaki; Sreekantan, Srimala

    2011-01-01

    This paper described the preparation of Cu loaded TiO 2 nano tube arrays. Firstly, TiO 2 nano tube arrays were formed by anodization. Afterwards, the formed nano tube arrays were incorporated with Cu by wet impregnation method. The soaking time and concentration were varied to obtain an optimum set of parameter for Cu incorporation in TiO 2 nano tubes. After anodization, all samples were annealed at 400 degree Celsius for 4 hours to obtain anatase phase. The nano tube arrays were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and x-ray photoelectron spectra (XPS). An average diameter 63.02 nm and length 12.15 μm were obtained for TiO 2 nano tubes. The photo catalytic activity of these nano tubes were investigated with methyl orange (MO) and the TiO 2 nano tube prepared in 0.01 M of Cu (NO 3 ) 2 solution within 3 hours demonstrates the highest photo catalytic activity with 83.6 % degradation of methyl orange. (author)

  5. Detection of Tampering Inconsistencies on Mobile Photos

    Science.gov (United States)

    Cao, Hong; Kot, Alex C.

    Fast proliferation of mobile cameras and the deteriorating trust on digital images have created needs in determining the integrity of photos captured by mobile devices. As tampering often creates some inconsistencies, we propose in this paper a novel framework to statistically detect the image tampering inconsistency using accurately detected demosaicing weights features. By first cropping four non-overlapping blocks, each from one of the four quadrants in the mobile photo, we extract a set of demosaicing weights features from each block based on a partial derivative correlation model. Through regularizing the eigenspectrum of the within-photo covariance matrix and performing eigenfeature transformation, we further derive a compact set of eigen demosaicing weights features, which are sensitive to image signal mixing from different photo sources. A metric is then proposed to quantify the inconsistency based on the eigen weights features among the blocks cropped from different regions of the mobile photo. Through comparison, we show our eigen weights features perform better than the eigen features extracted from several other conventional sets of statistical forensics features in detecting the presence of tampering. Experimentally, our method shows a good confidence in tampering detection especially when one of the four cropped blocks is from a different camera model or brand with different demosaicing process.

  6. THE USE OF TIO2-ZEOLIT AS A CATALYST ON THE DEGRADATION PROCESS OF ERIONIL RED DYE

    Directory of Open Access Journals (Sweden)

    Agustin Sumartono

    2010-06-01

    Full Text Available Degradation of erionil red dye using photo catalytic processes with TiO2-zeolit as a catalyst was carried out. Degradation of the dye was observed in 10 L volume, and erionil red dye was used as a model of organic pollutant. The parameters examinated were  intensity of the spectrum, the decrease of pH, percentage of degradation, and the efectifity TiO2-zeolit  as a catalyst. The use of UV lamp and TiO2-zeolit as a catalyst showed a good results because the dye could be degraded. This could be seen from the decreasing of the intensity of the spectrum  24 h after illumination. The pH of erionil red increased from around 4 into 5.5 which is still acidic. Effectivity of TiO2 composit as a catalyst could be used only two times. The compound resulted from degradation that could be detected using HPLC was oxalic acid.   Keywords: dye, erionil red, photocatalytic, TiO2

  7. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites

    International Nuclear Information System (INIS)

    Bogardt, A.H.; Hemmingsen, B.B.

    1992-01-01

    Bacteria that are capable of degrading polycyclic aromatic hydrocarbons were enumerated by incorporating soil and water dilutions together with fine particles of phenanthrene, a polycyclic aromatic hydrocarbon, into an agarose overlayer and pouring the mixture over a mineral salts underlayer. The phenanthrene-degrading bacteria embedded in the overlayer were recognized by a halo of clearing in the opaque phenanthrene layer. Diesel fuel- or creosote-contaminated soil and water that were undergoing bioremediation contained 6 x 10 6 to 100 x 10 6 phenanthrene-degrading bacteria per g and ca. 5 x 10 5 phenanthrene-degrading bacteria per ml, respectively, whereas samples from untreated polluted sites contained substantially lower numbers. Unpolluted soil and water contained no detectable phenanthrene degraders or only very modest numbers of these organisms

  8. Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron

    Science.gov (United States)

    Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.

    2017-11-01

    The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.

  9. Photos from MPI: Module installation at CERN for 1999 Test Beam

    CERN Multimedia

    1999-01-01

    Photo1 - Three HEC-1 modules after mating in the clean room. Photo2 - Close-up of three HEC-1 modules in the clean room when mounting the PSB boards. Photo3 - Three HEC-2 modules being inserted into the test-beam cryostat. Photo4 - Three HEC-2 modules in the test-beam cryostat. Photo5 - Three HEC-1 and three HEC-2 modules in the test-beam cryostat. Photo6 - Three HEC-1 and three HEC-2 modules in the test-beam cryostat.

  10. The hybrid methylene blue-zeolite system: a higher efficient photo catalyst for photo inactivation of pathogenic microorganisms

    International Nuclear Information System (INIS)

    Smolinska, M.; Cik, G.; Sersen, F.; Caplovicova, M.; Takacova, A.; Kopani, M.

    2015-01-01

    The composite system can be prepared by incorporation of methylene blue into the channels of zeolite and by adsorption on the surface of the crystals. The composite photo sensitizer effectively absorbs the red light (kmax = 648 nm) and upon illumination with light-emitting diode at a fluence rate of 1.02 mW cm-2 generates effectively reactive singlet oxygen in aqueous solution, which was proved by EPR spectroscopy. To test efficiency for inactivation of pathogenic microorganisms, we measured photo killing of bacteria Escherichia coli and Staphylococcus aureus and yeasts Candida albicans. We found out that after the microorganisms have been adsorbed at the surface of such modified zeolite, the photo generated singlet oxygen quickly penetrates their cell walls, bringing about their effective photo inactivation. The growth inhibition reached almost 50 % at 200 and 400 mg modified zeolite in 1 ml of medium in E. coli and C. albicans, respectively. On the other hand, the growth inhibition of S. aureus reached 50 % at far smaller amount of photo catalyst (30 lg per 1 ml of medium). These results demonstrate differences in sensitivities of bacteria and yeast growth. The comparison revealed that concentration required for IC50 was in case of C. albicans several orders of magnitude lower for a zeolite-immobilized dye than it was for a freely dissolved dye. In S. aureus, this concentration was even lower by four orders of magnitude. Thus, our work suggested a new possibility to exploitation of zeolite and methylene blue in the protection of biologically contaminated environment, and in photodynamic therapy.

  11. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  12. Photo-reactive charge trapping memory based on lanthanide complex

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  13. AL-USRCRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of Alabama USRCRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD)....

  14. Using Participatory Photo Novels to Teach Marketing

    Science.gov (United States)

    Das, Kallol

    2012-01-01

    Teaching the restless young generation business students of today is not easy. Furthermore, the traditional lecture method has failed miserably to engage the business students and deliver significant learning. The author presents a discussion on the photo novel as an attractive communication medium and the participatory photo novel as an…

  15. Looking at the Family Photo Album

    DEFF Research Database (Denmark)

    Sandbye, Mette

    2014-01-01

    Having been the most widespread practice of photography since the late 19th century, it is only in the recent few decades that family photography has come into focus of academic attention. Scholars working with family albums have mainly come from anthropology, whereas scholars from the aesthetical......, and affective qualities that reach further than the individual owner and that should be put forward, also within the fields of aesthetics and humanities. Family photo albums are about social and emotional communication, they can be interpreted as ways of understanding and coming to terms with life...... fields, art history, photography studies, and cultural studies have been more hesitant about how to approach such a material. Using three family photo albums from the late 1960s and onwards as examples, the goal of this paper is to underline that family photos contain emotional, psychological...

  16. Preliminary Study of Natural Pigments Photochemical Properties of Curcuma longa L. and Lawsonia inermis L. as TiO_2 Photo electrode Sensitizer

    International Nuclear Information System (INIS)

    Nur Ezyanie Safie; Norasikin Ahmad Ludin; Mohd Sukor Suait; Norul Hisham Hamid; Suhaila Sepeai; Mohd Adib Ibrahim; Mohd Asri Mat Teridi

    2015-01-01

    Curcumin and lawsone dyes extracted from turmeric (Curcuma longa L.) and henna (Lawsonia inermis L.) are used to investigate their possibility as photosensitizers on a TiO_2 photo electrode, respectively. The natural dyes undergo simple cold extraction techniques without further purification. The photochemical properties are studied by FT-IR spectroscopy and UV-Vis spectrophotometer. The FTIR spectra revealed that the presence of hydroxyl and carbonyl functional groups in both dyes indicated the presence of important characteristics in a sensitizer to graft on to TiO_2 photo electrode. The broad range of absorption peak wavelength obtained in this work shows that curcumin and lawsone are promising candidates for efficient sensitizers in dye-sensitized solar cells (DSSC). The maximum absorption peak attributed for curcumin and lawsone are 425 nm and 673 nm. The optical band gaps calculated are 2.48 eV and 1.77 eV, respectively. The findings indicated the potential of naturally obtained dyes to act as photosensitizers in DSSC. (author)

  17. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  18. Effect of Ti content in the photo catalytic behavior of Fe/TiO{sub 2}-SiO{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    Leon C, A.; Portillo V, N.; Hernandez P, I.; May L, M.; Gonzalez R, L.; Luna P, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Ciencias Basicas, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Suarez P, R., E-mail: ihp@correo.azc.uam.mx [UNAM, Centro de Investigacion en Energia, 62580 Temixco, Morelos (Mexico)

    2013-10-01

    In this work we report the synthesis of Fe/TiO{sub 2}-SiO{sub 2} systems with different concentrations of TiO{sub 2} in order to determine the influence of titanium content on the structural, textural, optical properties and their photo catalytic behavior. The materials were synthesized by the sol-gel method and their modification was carried out by incipient impregnation. All samples were characterized be means of X-ray diffraction, N{sub 2} physisorption (Bet method), Dr-UV-Vis and Raman spectroscopy. The modifications of the structural and optical properties are discussed on the basis of long-range order reduction, suggesting the formation of highly dispersed TiO{sub 2} species. On the other hand, it was observed that the energy of the optical band gap decreases by introducing Fe. On the basis of these phenomena, the photo catalytic activity was measured, employing the degradation of orange II azo dye as a model reaction. (Author)

  19. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  20. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.