WorldWideScience

Sample records for phytophthora citricola isolates

  1. Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola.

    Science.gov (United States)

    Schlink, Katja

    2009-05-01

    Phytophthora species are major plant pathogens infecting herbaceous and woody plants including European beech, the dominant or co-dominant tree in temperate Europe and an economically important species. For the analysis of the interaction of Phytophthora citricola with Fagus sylvatica suppression subtractive hybridization was used to isolate transcripts induced during infection and 1,149 sequences were generated. Hybridizations with driver and tester populations demonstrated differential expression in infected roots as compared to controls and verify efficient enrichment of these cDNAs during subtraction. Up regulation of selected genes during pathogenesis demonstrated using RT-PCR is consistent with these results. Pathogenesis-related proteins formed the largest group among functionally categorized transcripts. Cell wall proteins and protein kinases were also frequently found. Several transcription factors were isolated that are reactive to pathogens or wounding in other plants. The library contained a number of jasmonic acid, salicylic acid and ethylene responsive genes as well as genes directly involved in signaling pathways. Besides a mechanistic interconnection among signaling pathways another factor explaining the activation of different pathways could be the hemibiotrophic life style of Phytophthora triggering different signals in both stages.

  2. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization.

    Science.gov (United States)

    Fleischmann, F; Raidl, S; Osswald, W F

    2010-04-01

    The growth-differentiation balance hypothesis (GDBH) predicts changes in susceptibility of plants against herbivores with changing resource availability. In the presented study we tested the validity of the GDBH for trees infected with a root pathogen. For this purpose Fagus sylvatica seedlings grown under different atmospheric CO(2)- and soil nitrogen regimes were infected with the root pathogen Phytophthora citricola. High nitrogen supply increased total biomass of beech regardless of the CO(2)-treatment, whereas elevated CO(2) enhanced biomass only in the high nitrogen treatment. The responses of beech under the different growing regimes to the Phytophthora root infection were not in line with the predictions of the GDBH. Enhanced susceptibility of beech against P. citricola was found in seedlings grown under elevated CO(2) and low nitrogen supply. Fifteen months after inoculation these plants were characterized by enhanced water use efficiency, by altered root-shoot ratios, and by enhanced specific root tip densities.

  3. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO{sub 2} and nitrogen fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, F., E-mail: fleischmann@wzw.tum.d [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Raidl, S. [Department Biology I and GeoBioCenterLMU, Systematic Mycology, Ludwig Maximilians Universitaet Muenchen, Menzinger Strasse 67, 80638 Muenchen (Germany); Osswald, W.F. [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2010-04-15

    The growth-differentiation balance hypothesis (GDBH) predicts changes in susceptibility of plants against herbivores with changing resource availability. In the presented study we tested the validity of the GDBH for trees infected with a root pathogen. For this purpose Fagus sylvatica seedlings grown under different atmospheric CO{sub 2}- and soil nitrogen regimes were infected with the root pathogen Phytophthora citricola. High nitrogen supply increased total biomass of beech regardless of the CO{sub 2}-treatment, whereas elevated CO{sub 2} enhanced biomass only in the high nitrogen treatment. The responses of beech under the different growing regimes to the Phytophthora root infection were not in line with the predictions of the GDBH. Enhanced susceptibility of beech against P. citricola was found in seedlings grown under elevated CO{sub 2} and low nitrogen supply. Fifteen months after inoculation these plants were characterized by enhanced water use efficiency, by altered root-shoot ratios, and by enhanced specific root tip densities. - Susceptibility of Fagus sylvatica to the root pathogen Phytophthora citricola increased under elevated CO{sub 2}

  4. Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola.

    Science.gov (United States)

    Schlink, Katja

    2010-05-01

    Phytophthora citricola is a wide spread and highly aggressive pathogen of Fagus sylvatica. The hemibiotrophic oomycete infects the roots and establishes a compatible interaction with F. sylvatica. To investigate the transcriptional changes associated with P. citricola infection, 68 custom oligo-microarray measurements were conducted. Hierarchical as well as non-hierarchical clustering was carried out to analyze the expression profiles. Experimental setup includes a time scale covering the biotrophic and necrotrophic stages of interaction as well as comparative analyses of the local and systemic responses. The local reaction of F. sylvatica is characterized by a striking lack of defense gene induction leading to the conclusion that P. citricola escapes the main recognition systems and/or suppresses the host's response. The analysis of the systemic reaction revealed a massive shift in gene expression patterns during the biotrophic phase that is interpreted as evidence of resource allocation into the roots to support the increased sink caused by pathogen growth. Defense genes known to be responsive to salicylic acid (effective against biotrophs), jasmonic acid, and ethylene (effective against necrotrophs and herbivores) are represented on the arrays. All significant changes in gene expression measured for salicylic acid responsive genes were down-regulations in roots and leaves while some jasmonic acid responsive genes showed a very late up-regulation only in leaves, probably caused by the desiccation shortly before plant death. Together, these expression changes could explain the success of the pathogen.

  5. Phytophthora taxa associated with cultivated Agathosma, with emphasis on the P. citricola complex and P. capensis sp. nov.

    NARCIS (Netherlands)

    Bezuidenhout, C.M.; Denman, S.; Kirk, S.A.; Botha, W.J.; Mostert, L.; McLeod, A.

    2010-01-01

    Agathosma species, which are indigenous to South Africa, are also cultivated for commercial use. Recently growers experienced severe plant loss, and symptoms shown by affected plants suggested that a soilborne disease could be the cause of death. A number of Phytophthora taxa were isolated from dise

  6. Pathogenicity of Phytophthora isolates originating from several woody hosts in Bulgaria and Poland

    Directory of Open Access Journals (Sweden)

    Lyubenova Aneta B.

    2016-09-01

    Full Text Available Our aim was to examine the virulence of eight Phytophthora isolates belonging to three species (Phytophthora cryptogea, Phytophthora plurivora and Phytophthora quercina obtained from diverse European ecosystems (in Bulgaria, Poland and Germany towards three forest tree hosts – English oak (Quercus robur L., Turkey oak (Quercus cerris L. and European beech (Fagus sylvatica L..

  7. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast.

  8. Phenotypic and genotypic characterization of Italian Phytophthora infestans isolates

    Directory of Open Access Journals (Sweden)

    Federica SAVAZZINI

    2015-12-01

    Full Text Available Phytophthora infestans (Mont. de Bary causes late blight of potato. After the 1970s, several changes have occurred in the European P. infestans population, frequently associated with an increased virulence. While the genotypic and phenotypic diversity of P. infestans has been studied in-depth in northern and central Europe, only a few reports are available regarding Italian isolates, mainly based on phenotypic traits. We report data of phenotypic and genotypic characteristics of isolates collected from infected potato and tomato plants in different Italian regions in 2006‒2008. A prevalence of the A1 mating type and a majority of metalaxyl-resistant isolates were found. Tomato-derived isolates showed fungicide sensitivity, confirming previous reports. One of the isolates showed the rare IIb mitochondrial DNA haplotype. Genetic analyses of the single-sequence repeats (SSRs and of the internal transcribed spacers gave similar results, although SSRs gave the best discrimination of genotypes.

  9. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry

    NARCIS (Netherlands)

    Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.J.M.; Stensvand, A.; Tronsmo, A.M.

    2004-01-01

    Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan, Australia

  10. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry

    NARCIS (Netherlands)

    Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.J.M.; Stensvand, A.; Tronsmo, A.M.

    2004-01-01

    Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan, Australia

  11. Morphological and Molecular Description of Phytophthora insolita Isolated from Citrus Orchard in India

    Directory of Open Access Journals (Sweden)

    Swapnil Bawage

    2013-01-01

    Full Text Available Citrus, an important cash crop in India, is adversely affected by Phytophthora nicotianae, P. palmivora, and P. citrophthora. Phytophthora insolita is known to be associated with citrus and reported for the first time in India. It is a rare and poorly characterized Phytophthora species, as its natural host and pathogenic impact are unclear. Previously, it was reported only in Taiwan and China; so to confirm our suspected isolate is P. insolita, regions of internal transcribed spacer, elongation factor, beta-tubulin, and cytochrome oxidase genes were sequenced. This study provides description of the lone Indian P. insolita isolate with respect to molecular identity, morphology, mating behaviour, and pathogenicity.

  12. Phytophthora gemini sp. nov., a new species isolated from the halophilic plant Zostera marina in the Netherlands.

    Science.gov (United States)

    Man in 't Veld, Willem A; Rosendahl, Karin C H M; Brouwer, Henk; de Cock, Arthur W A M

    2011-08-01

    Eight strains belonging to the Oomycete genus Phytophthora were isolated from Zostera marina (seagrass) in The Netherlands over the past 25 y. Based on morphology, isozymes, temperature-growth relationships and ITS sequences, these strains were found to belong to two different Phytophthora species. Five strains, four of them isolated from rotting seeds and one isolated from decaying plants, could not be assigned to a known species and hence belong to a new species for which we propose the name Phytophthora gemini sp. nov. Three strains were isolated from decaying plants and were identified as Phytophthora inundata, thereby expanding the known habitat range of this species from fresh to brackish-saline areas. The possible role of both Phytophthora species in the decline of Z. marina in The Netherlands and the evolutionary significance of the presence of Phytophthora species in marine environments are discussed.

  13. Effects of Phytophthora cinnamomi isolate, inoculum delivery method, flood, and drought on vigor, disease severity and mortality of blueberry plants

    Science.gov (United States)

    Four studies evaluated the effect of Phytophthora cinnamomi isolates, inoculum delivery methods, and flood and drought conditions on vigor, disease severity scores, and survival of blueberry plants grown in pots in the greenhouse. Phytophthora cinnamomi isolates were obtained from blueberry plants ...

  14. [Environmental fitness of metalaxyl-resistant isolate of Phytophthora capsici].

    Science.gov (United States)

    Wang, Guangfei; Ma, Yan

    2015-05-04

    The environmental fitness of metalaxyl-resistant isolate of Phytophthora capsici was studied for assessing the risk of metalaxyl-resistant P. capsici. We studied the main biological characteristics, competitive ability on plate, pathogenicity on pepper plant and adaptability in soil of the laboratory-induced metalaxyl-resistant isolate of P. capsici (Pc2-3 strain), with the metalaxyl-sensitive isolate (Pc2 strain, the wild-type) as the control. The zoosporangia production, releasing rate of zoosporangia and germination rate of zoospores of Pc2-3 were less than that of Pc2. The temperature range, optimum temperature range and initial pH range for mycelia growth of Pc2-3 were consistent with that of Pc2, but mycelia growth rate of Pc2-3 was lower than that of Pc2. Pc2-3 exhibited significantly weak competitive ability compared with Pc2 on carrots plate. Disease incidence of pepper inoculated with Pc2-3 (14.3%) was significantly lower than that of Pc2 (88. 6% ). When pepper plant was inoculated by mixtures of zoospore suspension of Pc2-3 and Pc2 at same ratio, the disease incidence, closing to that by Pc2 strain, was 75.7% . And all the strains isolated from diseased plants in the treatment were metalaxyl-sensitive. The density of P. capsis Pc2-3 was 0.28 times of Pc2 after the soil inoculated with Pc2-3 and Pc2 respectively at same zoospores density was incubated for 20 days. Otherwise, the ratio of Pc2-3 to Pc2 was 0.42 if the metalaxyl concentration in the soil was 300 mg/kg dry soil. No matter the soil temperature and humidity were beneficial to survival of P. capsici or not, Pc2-3 showed lower soil adaptability than Pc2. The environmental fitness of metalaxyl-resistant P. capsis Pc2-3 was weaker than the metalaxyl- sensitive strain Pc2 (the wild-type).

  15. The Phytophthora species assemblage and diversity in riparian alder ecosystems of western Oregon, USA.

    Science.gov (United States)

    Sims, Laura Lee; Sutton, Wendy; Reeser, Paul; Hansen, Everett M

    2015-01-01

    Phytophthora species were systematically sampled, isolated, identified and compared for presence in streams, soil and roots of alder (Alnus species) dominated riparian ecosystems in western Oregon. We describe the species assemblage and evaluate Phytophthora diversity associated with alder. We recovered 1250 isolates of 20 Phytophthora species. Only three species were recovered from all substrates (streams, soil, alder roots): P. gonapodyides, the informally described "P. taxon Pgchlamydo", and P. siskiyouensis. P. alni ssp. uniformis along with five other species not previously recovered in Oregon forests are included in the assemblage: P.citricola s.l., P. gregata, P. gallica, P. nicotianae and P. parsiana. Phytophthora species diversity was greatest in downstream riparian locations. There was no significant difference in species diversity comparing soil and unwashed roots (the rhizosphere) to stream water. There was a difference between the predominating species from the rhizosphere compared to stream water. The most numerous species was the informally described "P. taxon Oaksoil", which was mainly recovered from, and most predominant in, stream water. The most common species from riparian forest soils and alder root systems was P. gonapodyides.

  16. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam

    Science.gov (United States)

    Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with ‘King’ mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch’s postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on ‘Carrizo’ citrange (C. sinensis ‘Washington Navel’ x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity. PMID:28208159

  17. Draft genome sequences of seven isolates of Phytophthora ramorum EU2 from Northern Ireland

    Directory of Open Access Journals (Sweden)

    Lourdes de la Mata Saez

    2015-12-01

    Full Text Available Here we present draft-quality genome sequence assemblies for the oomycete Phytophthora ramorum genetic lineage EU2. We sequenced genomes of seven isolates collected in Northern Ireland between 2010 and 2012. Multiple genome sequences from P. ramorum EU2 will be valuable for identifying genetic variation within the clonal lineage that can be useful for tracking its spread.

  18. THE INFLUENCE OF NATURAL ESSENTIAL OILS ON THE GROWTH OF PHYTOPHTHORA SPP. ISOLATED FROM PELARGONIUM CUTTINGS

    Directory of Open Access Journals (Sweden)

    Marcelina Machura

    2017-10-01

    Full Text Available Ornamental plants play an important role in human life. Plants positively influence the psyche and improve the well-being of people around them. They produce oxygen, provide a barrier to dust and noise, lower the temperature and increase air humidity, thereby positively impacting the microclimate. The unmatched appeal of pelargonium, ease of cultivation and care, abundance of flowering from spring to late autumn and its decorative qualities make it a universal application. The aim of the study was to isolate the microorganisms that inhabit the cuttings of pelargonium, identify fungal isolates, investigate the pathogenicity of selected isolates and evaluate the influence of certain essential oils (Carum carvi L. essential oils, Citrus limon L. essential oils, Citrus reticulatae aetheroleum essential oils, essential oil of tea tree in in vitro circumstances on the linear growth of the mycelium: Phytophthora cryptogea, Phytophthora nicotianae var. nicotianae. Previcur Energy 840 SL was used as a standard chemical protection. The most numerous isolated fungi were: Phytophthora, Botrytis, Cylindrocladium, Alternaria and Cylindrocarpon. The highest efficiency in relation to Phytophthora cryptogea characterized the Citrus limon L. essential oils (concentration 0.1% and 1% and Carum carvi L. essential oil (concentration 1%.

  19. The in vitro culture of Phytophthora infestans isolates occurring on the tomato - their pathogenicity and usefulness for artificial inoculations

    Directory of Open Access Journals (Sweden)

    Elżbieta Horodecka

    2013-12-01

    Full Text Available In investigations on the fungus, Phytophthora infestans, isolated from open air, field-grown tomatoes, particular attention was paid to the pathogenicity of 32 isolates and the suitability of 10 kinds of natural media. It is concluded that Phytophthora races in Poland have highly varied pathogenicities and that they belong to race 0 or 1. The races were divided into subgroups of various aggressiveness. It was found that the best medium to obtain an inoculum was the agar-oat medium without vitamin B1. Vitamin B1 as well as tomatine added to agar media stimulated growth, but inhibited sporulation of Phytophthora infestans.

  20. Studies on the occurrence and colonisation of plants by Phytophthora ramorum in Poland

    Directory of Open Access Journals (Sweden)

    Leszek Orlikowski

    2014-08-01

    Full Text Available Occurrence of Phytophthora ramorum on Rhododendron, Vaccinium, Viburnum and Quercus species in ornamental nurseris and fores stands in 2001-2002 and necrosis spead on plant parts and seedlings wewe studied. Only P. citricola was isolated from Rhododendron spp. and V.vitis-idaea. Shoot necrosis and dieback symptoms were not observed on Viburnum species in surveyed nurseries. From diseased Quercus trunks among others Armillaria spp. and Fusarium spp. were isolated. Inoculation of leaves and stem parts of Rhododendron cultivars and other ericaceous plants with P. ramorum resulted in the development of leaf and stem rot. The species caused stem necrosis of Fagus sylvatica, Q. rubra and Pseudotsuga menziesii but symptoms developed slowly.

  1. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity.

    Science.gov (United States)

    Shimelash, Daniel; Hussien, Temam; Fininsa, Chemeda; Forbes, Greg; Yuen, Jonathan

    2016-08-01

    Mitochondrial DNA (mtDNA) haplotypes were determined using restriction fragment length polymorphism (RFLP) for P. infestans sampled from 513 foliar lesions of late blight found on potato and tomato in different regions of Ethiopia. Among the four reported mitochondrial haplotypes of Phytophthora infestans, Ia, Ib and IIb were detected in 93 % of the samples analyzed but the vast majority of these were Ia. The remaining 7 % represented a previously unreported haplotype. DNA sequencing of this new haplotype also confirmed a single base nucleotide substitution that resulted in loss of EcoRI restriction site and gain of two additional MspI sites in cox1 and atp1 genes, respectively. There were 28 polymorphic sites among all nucleotide sequences including five reference isolates. Sites with alignment gaps were observed in P4 with one nucleotide deletion in 11 Ethiopian isolates. None of the reference sequence produced frame-shifts, with the exception of the 3-nucleotide deletion in the P4 region by Phytophthora andina, a feature that can be used to distinguish the new Ethiopian isolates from P. andina. While a distinguishing molecular data presented here clearly separated them from P. infestans, 7 % of the isolates that share this feature formed an important component of the late blight pathogen causing disease on Solanum tuberosum in Ethiopia. Thus, these Ethiopian isolates could represent a novel Phytophthora species reported for the first time here.

  2. Draft genome sequences of Phytophthora kernoviae and Phytophthora ramorum lineage EU2 from Scotland

    OpenAIRE

    Christine Sambles; Alexandra Schlenzig; Paul O'Neill; Murray Grant; Studholme, David J.

    2015-01-01

    Newly discovered Phytophthora species include invasive pathogens that threaten trees and shrubs. We present draft genome assemblies for three isolates of Phytophthora kernoviae and one isolate of the EU2 lineage of Phytophthora ramorum, collected from outbreak sites in Scotland.

  3. In vitro testing of biological control agents on A1 and A2 isolates of Phytophthora ramorum

    Science.gov (United States)

    Marianne Elliott; Simon Shamoun

    2008-01-01

    Biological control products were tested in vitro with six isolates of Phytophthora ramorum. These isolates were geographically diverse and were selected based on their pathogenicity to detached Rhododendron leaves. In addition to five commercially available biocontrol products, nine species of Trichoderma were tested. The in vitro...

  4. Phytophthora ramorum is a generalist plant pathogen with differences in virulence between isolates from infectious and dead-end hosts

    Science.gov (United States)

    D. Huberli; M. Garbelotto

    2011-01-01

    Variation in virulence was examined among isolates of Phytophthora ramorum from epidemiologically important or infectious (non-oak) and transmissive dead-end (oak) hosts from North America. Twelve isolates representative of the genetic, geographic and host range of P. ramorum in the western United States were inoculated on...

  5. Phytophthora infestans field isolates from Gansu Province, China are genetically highly diverse and show a high frequency of self fertility

    NARCIS (Netherlands)

    Han, M.; Liu, G.; Li, J.P.; Govers, F.; Zhu, X.Q.; Shen, C.Y.; Guo, L.Y.

    2013-01-01

    The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self-fertile (SF). The mitochondrial DNA haplotypes revealed

  6. Mating Types of Phytophthora infestans Isolates and Their Responses to Metalaxyl and Dimethomorph in Korea

    Directory of Open Access Journals (Sweden)

    Jeom-Soon Kim

    2014-03-01

    Full Text Available Phytophthora infestans was isolated from potato leaves collected from main potato producing areas in Korea during 2009-2011. In 2009, 99 isolates tested were all A1 mating type. Two of 64 isolates in 2010 and two of 78 isolates in 2011 were A2 mating type and they were found only in Miryang area. Among 99 isolates examined in 2009, 13.1% was resistant to metalaxyl, 3.1% was intermediate resistant and 83.8% was sensitive. In 2010, 19.4% of 62 isolates was resistant, 4.8% was intermediate and 75.8% was sensitive. Metalaxyl resistant, intermediate and sensitive isolates collected in 2011 were 23.1%, 9.0% and 67.9%, respectively. Metalaxyl resistant isolates increased mainly in winter cropping areas and seed potato producing areas where fungicides were sprayed more often. Frequencies of isolates showing minimum inhibition concentration of dimethomorph at 1.0-5.0 mg/ml were 17.2% in 2009, 19.0% in 2010 and 15.4% in 2011. However, there was no evidence for occurrence of resistant isolate to dimethomorph because no isolate was able to grow at 5.0 mg/ml.

  7. Redescription of Takahashia citricola Kuwana, 1909, and its transfer to the genus Pulvinaria Targioni Tozzetti (Coccoidea: Coccidae

    Directory of Open Access Journals (Sweden)

    Hirotaka Tanaka

    2012-08-01

    Full Text Available The Japanese soft scale Takahashia citricola Kuwana, 1909 is redescribed and transferred to the genus Pulvinaria Targioni Tozzetti as Pulvinaria citricola (Kuwana, 1909, comb. n. (Coccoidea: Coccidae. Pulvinaria gamazumii Kanda, 1960 is synonymized with P. citricola comb. n. and Pulvinaria nipponica Lindinger, 1933, is resurrected as the replacement name for Pulvinaria citricola Kuwana, 1914 (nec Kuwana, 1909. The adult female of P. citricola (Kuwana, 1909 is redescribed and illustrated.

  8. Spatial variation in effects of temperature on Phenotypic characteristics of Phytophthora ramorum isolates from eastern Sonoma county

    Science.gov (United States)

    Valerie Sherron; Nathan E. Rank; Michael Cohen; Brian L. Anacker; Ross K. Meentemeyer

    2008-01-01

    Quantifying the growth rates of plant pathogens in the laboratory can be useful for predicting rates of disease spread and impact in nature. The purpose of this study was to examine phenotypic variation among isolates of Phytophthora ramorum collected from a foliar host plant species, Umbellularia californica (California bay laurel...

  9. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato

    NARCIS (Netherlands)

    Champouret, N.; Bouwmeester, K.; Rietman, H.; Lee, van der T.; Maliepaard, C.A.; Heupink, A.; Vondervoort, van de P.J.I.; Jacobsen, E.; Visser, R.G.F.; Vossen, van der E.A.G.; Govers, F.; Vleeshouwers, V.G.A.A.

    2009-01-01

    A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In contr

  10. Toxicity of metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb to Phytophthora infestans isolates from Serbia.

    Science.gov (United States)

    Rekanović, Emil; Potočnik, Ivana; Milijašević-Marčić, Svetlana; Stepanović, Miloš; Todorović, Biljana; Mihajlović, Milica

    2012-01-01

    A study of the in vitro sensitivity of 12 isolates of Phytophthora infestans to metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb, was conducted. The isolates derived from infected potato leaves collected at eight different localities in Serbia during 2005-2007. The widest range of EC(50) values for mycelial growth of the isolates was recorded for metalaxyl. They varied from 0.3 to 3.9 μg mL(-1) and were higher than those expected in a susceptible population of P. infestans. The EC(50) values of the isolates were 0.16-0.30 μg mL(-1) for dimethomorph, 0.27-0.57 μg mL(-1) for cymoxanil, 0.0026-0.0049 μg mL(-1) for zoxamide and 2.9-5.0 μg mL(-1) for mancozeb. The results indicated that according to effective concentration (EC(50)) the 12 isolates of P. infestans were sensitive to azoxystrobin (0.019-0.074 μg mL(-1)), and intermediate resistant to metalaxyl, dimethomorph and cymoxanil. According to resistance factor, all P. infestans isolates were sensitive to dimethomorph, cymoxanil, mancozeb and zoxamide, 58.3% of isolates were sensitive to azoxystrobin and 50% to metalaxyl. Gout's scale indicated that 41.7% isolates were moderately sensitive to azoxystrobin and 50% to metalaxyl.

  11. Phylogenetic history of Phytophthora cryptogea and P. drechsleri isolates from floriculture crops in North Carolina greenhouses.

    Science.gov (United States)

    Olson, H A; Carbone, I; Benson, D M

    2011-11-01

    The evolutionary history of Phytophthora cryptogea and P. drechsleri isolates previously collected from floriculture crops in North Carolina commercial greenhouses was explored with coalescent- and parsimony-based analyses. Initially, 68 isolates representing 13 location-host groups were sequenced at multiple loci. Sequences of all isolates within a group were identical. A subset of isolates were selected, cloned to resolve heterozygous sites, and analyzed with SNAP Workbench. The internal transcribed spacer (ITS) region of the ribosomal DNA and cytochrome oxidase II gene genealogies were congruent and indicated that P. cryptogea and P. drechsleri are sister species diverged from a common ancestor with no evidence of gene flow. In contrast, genealogies inferred from β-tubulin (β-tub) and translation elongation factor 1α (EF-1α) genes were in conflict with these loci. Coalescent analysis based on a nonrecombining partition in β-tub and EF-1α showed an initial (older) split between P. cryptogea and P. drechsleri, with a later (recent) event separating the remaining P. cryptogea haplotypes from P. drechsleri. A parsimony-based minimal ancestral recombination graph inferred recombination between P. cryptogea and P. drechsleri isolates in the ITS region and β-tub, suggesting genetic exchange between species. Also, putative recombination between A1 and A2 mating types of P. cryptogea suggests that sexual reproduction has occurred in the history of these P. cryptogea isolates.

  12. Genetic relationships among Chinese and American isolates of Phytophthora sojae assessed by RAPD markers

    Institute of Scientific and Technical Information of China (English)

    WANG Ziying; WANG Yuanchao; ZHANG Zhengguang; ZHENG Xiaobuo

    2006-01-01

    The genetic diversity of three geographic populations of Phytophthora sojae from China and the United States was determined using random amplified polymorphic DNA (RAPD). The purpose was to explore genetic relationships among Chinese and American isolates of the organism. 21 random primers were selected among 200 random primers screened. A total of 223 reproducible RAPD fragments were scored among 111 individuals, of which 199 (89.23%) were polymorphic. Analysis of genetic variation showed that there existed higher genetic variation in the United States population in comparison to the Chinese populations. Nei's genetic identity and principal component analysis indicated that the populations of Fujian and United States are closer to each other than to Heilongjiang populations. Shannon-Wiener diversity index revealed that the United States populations have a higher genetic diversity than that of Chinese populations. These data are in support of the hypothesis that P. Sojae in the United States might not have been introduced from China.

  13. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  14. Antagonistic in vitro activity of Trichoderma spp. isolates to the fungi Phytophthora citrophthora / Atividade antagônica in vitro de isolados de Trichoderma spp. ao fungo Phytophthora citrophthora

    Directory of Open Access Journals (Sweden)

    Cleiton Gredson Sabin Benett

    2008-07-01

    Full Text Available Gummosis is among the main fungal diseases of the citrus. It is caused by Phytophthora sp. and usually shows up in the lap of the plant, provoking rottenness and gum exudation, and expands causing the plant death for constrictions in the cambium or phloem which interrupts the descending fow of sap. The objective of this work was to evaluate the antagonistic in vitro activity of Trichoderma spp. to the fungi Phytophthora citrophthora. Phytophthora citrophthora was exposed to fve environments of antagonism (without antagonist and with four strains of Trichoderma viride, T. virens, T. harzianu and T. stromaticum. The in vitro essay was accomplished through the method of paired cultures. A completely randomized desing was used with fve treatments and three replications, and each plot was represented by three petri dishes. The isolates of Trichoderma demonstrated signifcant effect in the inhibition of the mycelial growth of the fungi Phytophthora citrophthora, and the fungi Trichoderma stromaticum presented larger antagonism to the fungi P. citrophthora while the T. harzianum presented antagonism smaller.A citricultura nacional apresenta inúmeras pragas e doenças que limitam sua produção dentre as principais doenças fúngicas da cultura dos citros pode se destacar a gomose. A gomose causada por Phytophthora sp. geralmente se manifesta no colo da planta, provocando podridão e exsudação de goma, podendo expandir-se ocasionando a morte da planta por estrangulamento devido ao ataque do cambio ou foema, o que interrompe o fuxo descendente de seiva. Este trabalho foi realizado com o objetivo de se avaliar a atividade antagônica in vitro, de isolados de Trichoderma spp. ao fungo Phytophthora citrophthora. O fator em estudo foi um patógeno (Phytophthora citrophthora em cinco ambientes de antagonismo (sem antagonista e com os isolados de Trichoderma viride, T. virens, T. harzianu e T. stromaticum. O ensaio in vitro foi realizado por meio do m

  15. Draft genome sequences of Phytophthora kernoviae and Phytophthora ramorum lineage EU2 from Scotland

    Directory of Open Access Journals (Sweden)

    Christine Sambles

    2015-12-01

    Full Text Available Newly discovered Phytophthora species include invasive pathogens that threaten trees and shrubs. We present draft genome assemblies for three isolates of Phytophthora kernoviae and one isolate of the EU2 lineage of Phytophthora ramorum, collected from outbreak sites in Scotland.

  16. Sensitivity to four systemic fungicides of Colombian isolates of Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Hibert Giovani García

    2008-04-01

    Full Text Available Potato late blight caused by Phytophthora infestans is the most restrictive disease of this crop in Colombia , where environmental conditions are optimal conditions for its epidemic development. This situation leads to an excessive use of fungicides by farmers, which besides representing near 10% of production costs, causes a serious damage of environment and public health. This research pretends to support IPM programs by monitoring the sensitivity levels of 15 isolates of P. infestans obtained from crops in Antioquia, Cundinamarca and Boyacá, to fungicides Ridomil® Gold, Curzate® M-8, Previcur® N SL and Mildex® 711 WG as a tool of the risk analysis that permit to offer to the farmers the technical recommendations based on the generation of sensitivity lines. Evaluations of sensitivity were carried out using the immersion of leaf discs methodology with seven doses of each commercial product. Results show that the studied population presents high levels of sensitivity to these fungicides. In the case of Curzate® M-8, the average EC50 value was 0.28 mg·L-1, while the EC50 for Previcur® N SL reached 0.71 mg·L- . Intests with fungicides Ridomil® Gold and Mildex® 711 WG, these values were 0.62 and 0.54 mg·L-1, respectively. Finally, sporangia production decreased from an average of 41,181 sporangia/mL in control treatment to less than 500 sporangia/mL when the maximum doses of four fungicides were evaluated.

  17. Differentiating Phytophthora ramorum and P. kernoviae from other species isolated from foliage of rhododendrons

    Science.gov (United States)

    Phytophthora species are among plant pathogens that are the most threatening to agriculture. After the discovery of P. ramorum, surveys have identified new species and new reports on Rhododendrons. Based upon propagule production and characteristics and colony growth, a dichotomous key was produce...

  18. Phytophthora infestans avirulence genes: mapping, cloning and diversity in field isolates

    NARCIS (Netherlands)

    Guo, J.

    2008-01-01

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary, is the most disastrous disease on potato worldwide and also the greatest threat to potato production in China. Loss of yield and quality, and the costs of chemical control of potato late blight account for

  19. Reaction of Phytophthora fruit rot resistant germplasm lines to a broad range of Phytophthora capsici isolates from across the United States of America

    Science.gov (United States)

    Phytophthora fruit rot limits watermelon production in most states in the Southeastern US (FL, GA, SC, NC and VA). It has also become a serious problem in recent years in northern states (IN, MD, DE). About 50% of the US watermelons are grown in the southeastern states where environmental conditions...

  20. Genetic Diversity and Phylogeny of Antagonistic Bacteria against Phytophthora nicotianae Isolated from Tobacco Rhizosphere

    OpenAIRE

    Jin, Fengli; Ding, Yanqin; Ding, Wei; Reddy, M. S.; Fernando, W. G. Dilantha; Du,Binghai

    2011-01-01

    The genetic diversity of antagonistic bacteria from the tobacco rhizosphere was examined by BOXAIR-PCR, 16S-RFLP, 16S rRNA sequence homology and phylogenetic analysis methods. These studies revealed that 4.01% of the 6652 tested had some inhibitory activity against Phytophthora nicotianae. BOXAIR-PCR analysis revealed 35 distinct amplimers aligning at a 91% similarity level, reflecting a high degree of genotypic diversity among the antagonistic bacteria. A total of 25 16S-RFLP patterns were i...

  1. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato.

    Science.gov (United States)

    Champouret, Nicolas; Bouwmeester, Klaas; Rietman, Hendrik; van der Lee, Theo; Maliepaard, Chris; Heupink, Anika; van de Vondervoort, Peter J I; Jacobsen, Evert; Visser, Richard G F; van der Vossen, Edwin A G; Govers, Francine; Vleeshouwers, Vivianne G A A

    2009-12-01

    A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In contrast, the Rpi-blb1 gene originating from Solanum bulbocastanum has performed as an exclusive broad-spectrum R gene for many years. Recently, the RXLR effector family ipiO was identified to contain Avr-blb1. Monitoring the genetic diversity of the ipiO family in a large set of isolates of P. infestans and related species resulted in 16 ipiO variants in three distinct classes. Class I and class II but not class III ipiO variants induce cell death when coinfiltrated with Rpi-blb1 in Nicotiana benthamiana. Class I is highly diverse and is represented in all analyzed P. infestans isolates except two Mexican P. infestans isolates, and these were found virulent on Rpi-blb1 plants. In its C-terminal domain, IPI-O contains a W motif that is essential for triggering Rpi-blb1-mediated cell death and is under positive selection. This study shows that profiling the variation of Avr-blb1 within a P. infestans population is instrumental for predicting the effectiveness of Rpi-blb1-mediated resistance in potato.

  2. Genetic diversity of Phytophthora sojae isolates in Heilongjiang Province in China assessed by RAPD and EST-SSR

    Science.gov (United States)

    Wu, J. J.; Xu, P. F.; Liu, L. J.; Wang, J. S.; Lin, W. G.; Zhang, S. Z.; Wei, L.

    Random-amplified polymorphic DNA (RAPD) and EST-SSR markers were used to estimate the genetic relationship among thirty-nine P.sojae isolates from three locations in Heilongjiang Province, and nine isolates from Ohio in America were made as reference strains. 10 of 50 RAPD primers and 5 of 33 EST-SSR were polymorphic across 48 P.sojae isolates. Similarity values among P.sojae isolates were from 49% to 82% based on the RAPD data. The similarities based on EST-SSR markers ranged from 47% to 85%. The genetic diversity revealed by EST-SSR marker analysis was higher than that obtained from RAPD. The similarity matrices for the SSR data and the RAPD data were moderately correlated (r = 0.47). Genetic similarity coefficients were also relatively lower, which demonstrated complicated genetic background within each location. The high similarity values range revealed the ability of RAPD/EST-SSR markers to distinguish even among morphological similar phytophthora.

  3. 泰国榴莲上棕榈疫霉的分离和鉴定%Isolation and Identification of Phytophthora palmivora from Imported Thailand Durian

    Institute of Scientific and Technical Information of China (English)

    赵旭东; 张慧丽

    2013-01-01

    The pathogenic fungus was isolated from imported Thialand Durian, which could infect Durian fruit and made the fruit black and rot. According to the morphological characteristics and the neighbor-joining tree based on ITS sequence analysis, the isolated strain was finally identified as Phytophthora palmivora.%在对来自泰国的榴莲检验中分离到1株引起榴莲果皮和果肉变色、软腐的病原真菌。通过形态鉴定和核糖体ITS区DNA序列测定以及系统发育分析,最终将该病菌鉴定为棕榈疫霉(Phytophthora palmivora)。

  4. Phytophthora viruses.

    Science.gov (United States)

    Cai, Guohong; Hillman, Bradley I

    2013-01-01

    Phytophthora sp. is a genus in the oomycetes, which are similar to filamentous fungi in morphology and habitat, but phylogenetically more closely related to brown algae and diatoms and fall in the kingdom Stramenopila. In the past few years, several viruses have been characterized in Phytophthora species, including four viruses from Phytophthora infestans, the late blight pathogen, and an endornavirus from an unnamed Phytophthora species from Douglas fir. Studies on Phytophthora viruses have revealed several interesting systems. Phytophthora infestans RNA virus 1 (PiRV-1) and PiRV-2 are likely the first members of two new virus families; studies on PiRV-3 support the establishment of a new virus genus that is not affiliated with established virus families; PiRV-4 is a member of Narnaviridae, most likely in the genus Narnavirus; and Phytophthora endornavirus 1 (PEV1) was the first nonplant endornavirus at the time of reporting. Viral capsids have not been found in any of the above-mentioned viruses. PiRV-1 demonstrated a unique genome organization that requires further examination, and PiRV-2 may have played a role in late blight resurgence in 1980s-1990s.

  5. Screening Phytophthora rubi for fungicide resistance

    Science.gov (United States)

    Preliminary results from the survey for fungicide resistance in Phytophthora were reported at the 2016 Washington Small Fruit Conference. Phytophthora was isolated from diseased plants in 28 red raspberry fields and tested against mefenoxam, the active ingredient of Ridomil. Most isolates were ident...

  6. Pathogenicity, fungicide resistance, and genetic variability of Phytophthora rubi isolates from raspberry (Rubus idaeus) in the Western United States

    Science.gov (United States)

    Root rot of raspberry (Rubus idaeus), thought to be primarily caused by Phytophthora rubi, is an economically important disease in the western United States. The objectives of this study were to determine which Phytophthora species are involved in root rot, examine the efficacy of different isolatio...

  7. Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor from yeast extract. [Glycine max, Phytophthora megasperma

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.G.; Albersheim, P.

    1978-01-01

    An elicitor of glyceollin accumulation in soybeans (Glycine max L.) has been isolated from a commercially available extract of brewers' yeast. Yeast is not a known pathogen of plants. The elicitor was isolated by precipitation in 80% (v/v) ethanol followed by column chromatography on DEAE-cellulose, sulfopropyl-Sephadex, and concanavalin A-Sepharose. Compositional and structural analysis showed the elicitor to be a glucan containing terminal, 3-, 6-, and 3,6-linked glucosyl residues. The yeast elicitor stimulates the accumulation of glyceollin in the cotyledons and hypocotyls of soybeans when as little as 15 nanograms or 100 nanograms of the elicitor is applied to the respective tissues. The yeast elicitor is very similar in both structure and absolute elicitor activity to an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, a pathogen of soybeans. These and other results of this laboratory suggest that plants are able to respond to the presence of a wide range of fungi by recognizing, as foreign to the plant, structural polysaccharides of the mycelial walls of the fungi.

  8. Development of new polymorphic microsatellite markers for three closely related plant-pathogenic Phytophthora species using 454-pyrosequencing and their potential applications.

    Science.gov (United States)

    Schoebel, Corine N; Jung, Esther; Prospero, Simone

    2013-10-01

    Phytophthora spp. (oomycetes) are causal agents of devastating diseases on a high number of crops, ornamentals, and native plants worldwide. Neutral molecular markers are increasingly being used to investigate the genetic population structure and possible pathways of spread of different plant pathogens, including Phytophthora spp. In this study, polymorphic microsatellite markers were developed for three species of the former Phytophthora citricola species complex-namely, P. multivora, P. plurivora, and P. pini (P. citricola I)-using the 454-pyrosequencing technique. In total, 35 polymorphic microsatellite loci were found and further characterized: 11 for P. plurivora, 16 for P. multivora, and 8 for P. pini. Microsatellites with dinucleotide motifs repeated 6 to 10 times were the most common for all three species. On average, 65 alleles per species and 5.3 alleles per locus were detected. Most loci were characterized by a low observed heterozygosity, which might be due to the homothallic mating system of the three Phytophthora spp. targeted. Cross amplification of the newly developed markers was tested on 17 Phytophthora spp. belonging to five different internal transcribed spacer clades. Transferability success was generally low and decreased with increasing genetic distance from the species to the three target species. A set of four loci was selected to easily discriminate P. plurivora, P. multivora, and P. pini on the basis of presence or absence of a polymerase chain reaction amplicon on an agarose gel.

  9. Phytophthora lateralis.

    Science.gov (United States)

    E.M. Hansen

    2011-01-01

    Phytophthora lateralis was named by Tucker and Milbrath in 1942. There are no known synonyms. P. lateralis was classified in morphological group V by Stamps et al. (1990); the group includes homothallic species with paragynous antheridia and nonpapillate, proliferating sporangia.

  10. Alteration of secondary metabolites' profiles in potato leaves in response to weakly and highly aggressive isolates of Phytophthora infestans.

    Science.gov (United States)

    Henriquez, Maria A; Adam, Lorne R; Daayf, Fouad

    2012-08-01

    Phytophthora infestans is the cause of late blight, a devastating disease in potato and tomato. Many of the mechanisms underlying P. infestans pathogenesis and defense responses in potato are still unclear. We investigated the effects of P. infestans on the changes in the accumulation of secondary metabolites in potato cultivars using whole plants. Four preformed flavonoids and one terpenoid compound produced in potato tissues were differentially affected by the P. infestans inoculation. In Russet Burbank, the accumulation of catechin and rutin was suppressed by both P. infestans isolates US-11 and US-8, while the flavanone P3 was associated with susceptibility to this pathogen. On the other hand, catechin, flavonol-glycoside P2, and an unidentified terpenoid (T1), may be involved in the defense of cultivar Defender to both tested P. infestans isolates, providing new evidence that different preformed flavonoids and terpenoids in potato may play important roles in its defense or susceptibility to P. infestans. These results add to the pool of data showing the involvement of other phenolics and terpenes in potato resistance to microbial pathogens.

  11. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae.

    Science.gov (United States)

    Schwenkbier, Lydia; Pollok, Sibyll; Rudloff, Anne; Sailer, Sebastian; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2015-10-07

    A rapid and simple instrument-free detection system was developed for the identification of the plant pathogen Phytophthora kernoviae (P. kernoviae). The on-site operable analysis steps include magnetic particle based DNA isolation, helicase-dependent amplification (HDA) and chip-based DNA hybridization. The isothermal approach enabled the convenient amplification of the yeast GTP-binding protein (Ypt1) target gene in a miniaturized HDA-zeolite-heater (HZH) by an exothermic reaction. The amplicon detection on the chip was performed under room temperature conditions – either by successive hybridization and enzyme binding or by a combined step. A positive signal is displayed by enzymatically generated silver nanoparticle deposits, which serve as robust endpoint signals allowing an immediate visual readout. The hybridization assay enabled the reliable detection of 10 pg μL(-1) target DNA. This is the first report of an entirely electricity-free, field applicable detection approach for devastating Phytophthora species, exemplarily shown for P. kernoviae.

  12. First record of Cyrtophora citricola (Forskål in Brazil (Araneae, Araneidae

    Directory of Open Access Journals (Sweden)

    Éder Sandro Soares Álvares

    2004-03-01

    Full Text Available Cyrtophora Simon, 1864 comprises 36 species that occur in the Old World and Australia. Cyrtophora citricola (Forskål, 1775 is widespread and has been introduced in the Neotropical region, in Colombia and Hispaniola. Here is presented the first record of this species in Brazil, in the municipalities of Belo Horizonte and Prudente de Morais, State of Minas Gerais. The specimens studied show variations in coloration and in the abdomen's format, but the genital structure is the same as observed in specimens of C. citricola.Cyrtophora Simon, 1864 compreende 36 espécies que ocorrem no Velho Mundo e Austrália. Cyrtophora citricola (Forskål, 1775 é uma espécie de ampla distribuição e que foi introduzida na região Neotropical, na Colombia e em Hispaniola. Aqui é apresentada a primeira ocorrência desta espécie no Brasil, nas cidades de Belo Horizonte e Prudente de Morais, Minas Gerais. Os espécimes estudados apresentam variações na coloração e no formato do abdome, mas a estrutura genital é a mesma observada em espécimes de C. citricola.

  13. Metabarcoding Analysis of Phytophthora Diversity Using Genus-Specific Primers and 454 Pyrosequencing.

    Science.gov (United States)

    Prigigallo, Maria I; Abdelfattah, Ahmed; Cacciola, Santa O; Faedda, Roberto; Sanzani, Simona M; Cooke, David E L; Schena, L

    2016-03-01

    A metabarcoding method based on genus-specific primers and 454 pyrosequencing was utilized to investigate the genetic diversity of Phytophthora spp. in soil and root samples of potted plants, from eight nurseries. Pyrosequencing enabled the detection of 25 Phytophthora phylotypes distributed in seven different clades and provided a much higher resolution than a corresponding cloning/Sanger sequencing approach. Eleven of these phylotypes, including P. cactorum, P. citricola s.str., P. palmivora, P. palmivora-like, P. megasperma or P. gonapodyides, P. ramorum, and five putative new Phytophthora species phylogenetically related to clades 1, 2, 4, 6, and 7 were detected only with the 454 pyrosequencing approach. We also found an additional 18 novel records of a phylotype in a particular nursery that were not detected with cloning/Sanger sequencing. Several aspects confirmed the reliability of the method: (i) many identical sequence types were identified independently in different nurseries, (ii) most sequence types identified with 454 pyrosequencing were identical to those from the cloning/Sanger sequencing approach and/or perfectly matched GenBank deposited sequences, and (iii) the divergence noted between sequence types of putative new Phytophthora species and all other detected sequences was sufficient to rule out sequencing errors. The proposed method represents a powerful tool to study Phytophthora diversity providing that particular attention is paid to the analysis of 454 pyrosequencing raw read sequences and to the identification of sequence types.

  14. Phytophthora sojae Races in Northeast of China and Virulence Evaluation of the Isolates

    Institute of Scientific and Technical Information of China (English)

    XU Xiu-hong; LU Hui-ying; QU Juan-juan; YANG Qing-kai

    2003-01-01

    42 isolates of P.sojae were obtained from diseased soybean plants in 9 counties of Heilongjiang Province and 1 county of Jilin Province in Northeast of China.11 isolates were classified into 3 races;the rest that could not be classified due to intermediate reactions were classified into 12 virulence types,suggesting virulence diversity of P.sojae in China.Isolates represented race 1,3 and 8.Race 1 was the most prevalent one,and races 3 and 8 were the first report in China.Our results suggest P.sojae is aboriginal in China.

  15. VARIABILIDAD GENÉTICA DE AISLAMIENTOS COLOMBIANOS DE Phytophthora infestans (Mont de Bary EN SOLANÁCEAS CULTIVADAS EN COLOMBIA GENETIC VARIABILITY OF ISOLATES OF Phytophthora infestans (Mont. de Bary IN SOLANACEOUS CROPS FROM COLOMBIA

    Directory of Open Access Journals (Sweden)

    Natalia Raigosa Gómez

    2009-06-01

    Full Text Available Se estudio el nivel de variabilidad genética de una población de 35 aislamientos de Phytophthora infestans obtenidos en diferentes hospedantes y regiones geográficas de Colombia, mediante las técnicas de haplotipos mitocondriales y RAPD. Los resultados encontrados sugieren la existencia en el país de los haplotipos mitocondriales Ia en los aislamientos que afectan tomate de árbol (Solanum betaceum y IIa en cultivos de papa; dichos haplotipos están asociados a los linajes genéticos EC-3 y EC-1, respectivamente. Sin embargo, tres aislamientos obtenidos en tomate de mesa (S. lycopersicum, pimentón (Capsicum sp. y pepino de agua (S. muricatum requieren de un análisis posterior, debido a la falta de correlación entre los perfiles de restricción generados con los cuatro pares de cebadores utilizados en esta prueba y los haplotipos mitocondriales mencionados en la literatura. De otra parte, mediante cuatro cebadores RAPD, fue posible encontrar variabilidad al interior de los dos linajes genéticos, siendo interesante el hecho que los aislamientos obtenidos en tomate de árbol (EC-3 fueron divididos en dos grupos, relacionados con una distancia genética de 0,17. Estos hallazgos indican que es importante contemplar las fuentes de variación asexual en el análisis de la estructura poblacional de este oomycete y por tanto en el diseño de las estrategias de control de las enfermedades que causa P. infestans en cultivos de solanáceas de importancia económica.The level of genetic variability of 35 isolates of Phytophthora infestans obtained from different hosts and geographical regions of Colombia was studied through mitochondrial haplotypes and RAPD techniques. Results suggested the existence of mitochondrial haplotypes Ia affecting tree tomato (Solanum betaceum and IIa in potato, which are associated with genetic lineages EC-3 and EC-1, respectively. However, three isolates obtained from tomato (S. lycopersicum, capsicum (Capsicum sp. and

  16. Genome sequences of 12 isolates of the EU1 lineage of Phytophthora ramorum, a fungus-like pathogen that causes extensive damage and mortality to a wide range of trees and other plants.

    Science.gov (United States)

    Turner, Judith; O'Neill, Paul; Grant, Murray; Mumford, Rick A; Thwaites, Richard; Studholme, David J

    2017-06-01

    Here we present genome sequences for twelve isolates of the invasive pathogen Phytophthora ramorum EU1. The assembled genome sequences and raw sequence data are available via BioProject accession number PRJNA177509. These data will be useful in developing molecular tools for specific detection and identification of this pathogen.

  17. Mating type, mefenoxam sensitivity, and pathotype diversity in Phytophthora infestans isolates from tomato in Brazil Grupo de compatibilidade, sensibilidade ao mefenoxam e diversidade de patótipos de isolados de Phytophthora infestans de tomate no Brasil

    Directory of Open Access Journals (Sweden)

    Bruno Eduardo Cardozo de Miranda

    2010-07-01

    Full Text Available The objective of this work was to characterize 79 Phytophthora infestans isolates collected in tomato (Solanum lycopersicum fields, as to mating type, mefenoxam sensitivity, and pathotype composition. The isolates were sampled in 2006 and 2007 in seven Brazilian states as well as in the Distrito Federal. They were characterised as to mating type (n=79, sensitivity to fungicide mefenoxam (n=79, and virulence to three major resistance genes Ph-1, Ph-2, and Ph-3/Ph-4 (n=62. All isolates were of the mating type A1. Resistant isolates were detected in all sampled states, and its average frequency was superior to 50%. No difference was detected in pathotype diversity, neither between subpopulations collected in 2006 and 2007 nor between isolates grouped as resistant or intermediately sensitive to mefenoxam. All major resistance genes were overcome at different frequencies: Ph-1, 88.7%; Ph-2, 64.5%; and Ph-3/Ph-4, 25.8%. Isolates with virulence genes able to overcome all major resistance genes were detected at low frequencies. Tomato breeding programs in Brazil must avoid the development of cultivars with resistance based exclusively on major genes.O objetivo deste trabalho foi caracterizar 79 isolados de Phytophthora infestans, coletados em campos de tomate (Solanum lycopersicum, quanto ao grupo de compatibilidade, à sensibilidade ao mefenoxan, e à diversidade de patótipos. Os isolados foram obtidos em coletas realizadas nos anos de 2006 e 2007, em sete Estados do Brasil e no Distrito Federal. Os isolados foram usados para determinação do grupo de compatibilidade sexual (n=79, resistência ao fungicida mefenoxam (n=79 e espectro de virulência aos genes de efeito principal Ph-1, Ph-2 e Ph-3/Ph-4 (n=62. Todos os isolados foram classificados no grupo de compatibilidade A1. Isolados insensíveis ao fungicida mefenoxam foram detectados em todos os Estados amostrados, e apresentaram frequência média superior a 50%. Não houve diferença de

  18. 烟草疫霉分离及生长培养基的选择%Selection of Isolating and Culturing Medium for Phytophthora nicotianae

    Institute of Scientific and Technical Information of China (English)

    苏凯; 桑维钧; 张新强; 王慧

    2013-01-01

    Different base medium adding different combination of antibiotics were applied for isolation and culture of Phytophthora nicotianae.The results showed that selective medium with Vs base medium (100mL/L V8juice+0.02 g/L CaCO3+2 g/Lagar) adding 10 mg/mL ampicillin +5 mg/mL nysfungin+5 mg/mL carbendazim had the best isolation effect as the successful isolation rate was 100%,and the hypha grew well on this medium.After separation,the hypha could be cultured in Vs base medium as the hypha was white,tight and strong with big bacteria clone and strong growth potential.%采用不同的基本培养基添加抗生素组合对烟草疫霉(Phytophthora nicotianae)进行分离培养.结果表明,以V8培养基(100 mL/L Vs汁+0.02 g/L CaCO3+2 g/L洋菜)为基本培养基附加10 mg/mL氨苄青霉素+5 mg/mL制霉素+5 mg/mL多菌灵的选择培养基分离烟草疫霉的效果较好,分离成功率达100%,菌丝的生长状态也较好.菌丝分离后在V8基本培养基中培养,菌丝紧密、浓白、粗壮,菌落大、长势旺.

  19. Dicty_cDB: Contig-U13873-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available EU080273_1( EU080273 |pid:none) Phytophthora sansomea isolate PD_0... 203 e-101 EU079931_1( EU079931 |pid:none) Phytophthora hiberna..._1( EU079516 |pid:none) Phytophthora hibernalis isolate PD... 198 e-100 AB195824_1( AB195824 |pid:none) Kare...9528 |pid:none) Phytophthora citricola isolate PD_... 201 e-100 EU080712_1( EU080712 |pid:none) Phytophthora hibernal

  20. Aspectos biológicos de Coccidophilus citricola (Coleoptera, Coccinellidae sobre Aspidiotus nerii e Chrysomphalus aonidum (Homoptera, Diaspididae Biological studies of Coccidophilus citricola (Coleoptera, Coccinellidae on Aspidiotus nerii and Chrysomphalus aonidum (Homoptera, Diaspididae

    Directory of Open Access Journals (Sweden)

    Antonio Cesar dos Santos

    2005-02-01

    Full Text Available Aspectos biológicos de Coccidophilus citricola Brèthes (Coleoptera, Coccinellidae foram estudados sobre Chrysomphalus aonidum Linnaeus e Aspidiotus nerii Bouchè (Homoptera, Diaspididae criadas sobre abóbora. Observou-se a duraç��o (dias do período de ovo, dos quatro ínstares, pré-pupa, pupa, longevidade de adultos e a proporção machos: fêmeas de C. citricola. Determinou-se também verificar a eficiência de predação de adultos de C. citricola sobre A. nerii. C. aonidum e A. nerii são presas adequadas para C. citricola, com desenvolvimento semelhante do coccinelídeo sobre essas cochonilhas; o período de incubação do ovo foi de 7,9 e 8,1 dias com A. nerii e C. aonidum; a duração (dias de cada ínstar larval de C. citricola sobre A. nerii e C. aonidum foram respectivamente de: (I 2,7 e 2,9; (II 3,1 e 3,3; (III 3,0 e 3,3 e (IV 3,2 e 3,1 dias. A duração das fases de pré-pupa e pupa foi de 2,5 e 4,5 dias sobre A. nerii e 2,8 e 4,8 dias sobre C. aonidum e a viabilidade de ovo a adulto foi de 63,2% e 62,7% respectivamente para indivíduos criados sobre essas presas. A longevidade de adultos de C. citricola foi de 57,0 dias com A. nerii e de 62,0 dias com C. aonidum. A proporção macho: fêmea foi de 0,82:1,00. O consumo diário de C. citricola foi de 1,15 adultos ou 2,35 ninfas de 2o ínstar ou 3,16 ninfas de 1o ínstar de A. nerii por dia.Laboratory trials were carried out to study biological aspects of Coccidophilus citricola Brèthes (Coleoptera: Coccinellidae on Chrysomphalus aonidum Linnaeus and Aspidiotus nerii Bouché (Homoptera: Diaspididae. The scales were reared on squashes and then served as food source to the predator. The period of egg, larvae (four ínstars, pre-pupae, pupae, adults’ longevity and male: female ratio was observed. Predatory efficacy of C. citricola on A. nerii was also determined. The period of egg was 7.9 and 8.1 days on A. nerii and C. aonidum. The development (days of different stages of C

  1. Host and habitat index for Phytophthora species in Oregon

    Science.gov (United States)

    Everett Hansen; Paul Reeser; Wendy Sutton; Laura. Sims

    2012-01-01

    In this contribution we compile existing records from available sources of reliably identified Phytophthora species from forests and forest trees in Oregon, USA. A searchable version of this information may be found in the Forest Phytophthoras of the World Disease Finder (select USA-Oregon). We have included isolations from soil and streams in...

  2. Forest Phytophthora diseases in the Americas: 2007 - 2010

    Science.gov (United States)

    S. J. Frankel; E. M. Hansen

    2011-01-01

    Recent findings, policy, regulation, and management relating to tree disease caused by Phytophthora species in wildlands and nurseries of North and South America are reviewed. These include the isolation of Phytophthora alni uniformis Brasier & S.A.Kirk in Alaska, and detection of population shifts in NA1, NA2 and EU1...

  3. Specific detection and quantification of virulent/avirulent Phytophthora infestans isolates using a real-time PCR assay that targets polymorphisms of the Avr3a gene.

    Science.gov (United States)

    Clément, J A J; Baldwin, T K; Magalon, H; Glais, I; Gracianne, C; Andrivon, D; Jacquot, E

    2013-05-01

    Molecular tools that allow intraspecific quantification and discrimination of pathogen isolates are useful to assess fitness of competitors during mixed infections. However, methods that were developed for quantifying Phytophthora infestans are only specific at the species level. Here, we reported a TaqMan-based real-time PCR assay allowing, according to the specificity of the used probes, an accurate quantification of different proportions of two genetically distinct clones of P. infestans in mixed fractions. Indeed, in addition to a primer specific to P. infestans, two primers and two TaqMan(®) probes that target single-nucleotide polymorphisms located in the Avr3a/avr3a virulence gene sequence were designed. The reliability of the method was tested on serially diluted fractions containing plasmid DNA with either the Avr3a or the avr3a sequences at concentrations ranging from 10(2) to 10(8)  copies per μl. Based on its specificity, sensitivity and repeatability, the proposed assay allowed a quantification of the targeted DNA sequence in fractions with a Avr3a/avr3a ratio in the range 1/99 to 99/1. The reliability of the test was also checked for counting zoospores. Applications for future research in P. infestans/host quantitative interactions were also discussed.

  4. NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans.

    Science.gov (United States)

    Pieterse, C M; van't Klooster, J; van den Berg-Velthuis, G C; Govers, F

    1995-03-01

    The nitrate reductase (NR) gene niaA of the oomycete Phytophthora infestans was selected from a gene library by heterologous hybridization. NiaA occurs as a single-copy gene ant its expression is regulated by the nitrogen source. The nucleotide sequence of niaA was determined and comparison of the deduced amino-acid sequence of 902 residues with NRs of higher fungi and plants revealed a significant homology, particularly within the three cofactor-binding domains for molybdenum, heme and FAD. The P. infestans niaA gene was used as a model gene to test whether oomycete genes are functional in the ascomycete Aspergillus nidulans, a fungus which is highly accessible for molecular genetic studies. The complete niaA gene was stably integrated into the genome of a nia- deletion mutant of A. nidulans. However, transformants containing one or more copies of the niaA gene were not able to complement the nia- mutant. This suggests that there is no functional expression of the introduced niaA gene in A. nidulans. In addition, the activity of two other oomycete gene promoters was analyzed in a transient expression assay. Plasmids containing chimaeric genes with the promoter of the P. infestans ubiquitin gene ubi3R, or the Bremia lactucae ham34 gene, fused to the coding sequence of the Escherichia coli beta-glucuronidase (GUS) reporter gene, were transferred to A. nidulans protoplasts. No significant GUS activity was detectable indicating that the ubi3R and ham34 promoters are not active in A. nidulans. Apparently, the regulatory sequences which are sufficient for gene activation in oomycetes are not functional in the ascomycete A. nidulans.

  5. Phytophthora borealis and Phytophthora riparia, new species in Phytophthora ITS Clade 6.

    Science.gov (United States)

    Hansen, Everett M; Reeser, Paul W; Sutton, Wendy

    2012-01-01

    Phytophthora borealis and Phytophthora riparia, identified in recent Phytophthora surveys of forest streams in Oregon, California and Alaska, are described as new species in Phytophthora ITS Clade 6. They are similar in growth form and morphology to P. gonapodyides and are predominantly sterile. They present unique DNA sequences, however, and differ in temperature/growth relations and geographic distribution.

  6. Tomato late blight (Phytophthora infestans) in Uganda

    NARCIS (Netherlands)

    Tumwine, J.; Frinking, H.D.; Jeger, M.J.

    2002-01-01

    A survey on the tomato late blight situation and current practices for disease management was carried out in Uganda using an informal structured questionnaire approach. Ten districts from different agroclimatic zones were selected for the survey. Phytophthora infestans isolates from tomatoes were ob

  7. Mortality of container-grown blueberry plants inoculated with Phytophthora cinnamomi Rands

    Science.gov (United States)

    We conducted four studies to evaluate the effect of Phytophthora cinnamomi isolates and inoculum delivery methods on root rot development and mortality of container-grown blueberry plants. Phytophthora cinnamomi isolates were obtained from the root zone of symptomatic blueberry plants and identifie...

  8. Isolation and identification of Phytophthora capsici in Guangdong Province and measurement of their pathogenicity and physiological race differentiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhijun; LONG Weiping; ZHENG Jinrong; LEI Jianjun

    2007-01-01

    Five isolates collected from different peppercropping regions in Guangdong Province,China were determined.Based on their morphological characteristics and symptoms after being re-inoculated to pepper,these isolates were identified as Phytophythora capsici Leonian.The sporangia induced on carrot medium (CA) were morphologically similar and most of their shapes were ovate or elliptic,and obviously papillate.The mean size of the sporangium was 40.8-45.9 (l) μm×23.2-30.9 (b) μm,with l/b ratio 1.4-1.8.There were evident differences in mycelial growth rate,productivity of sporangia and pathogenicity to pepper among the isolates.A test of physiological characteristics showed that one isolate was determined as Race 1,and the other four isolates belonged to Race 3.It is concluded that Race 3 is most likely to be the predominent race in Guangdong Province,China.

  9. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species

    Energy Technology Data Exchange (ETDEWEB)

    Haque, M. M.; Diez, J. J.

    2012-11-01

    Phytophthora alni is a highly destructive host specific pathogen to alders (Alnus spp.) spreading all over Europe. Recently this pathogen has been reported to cause diseases in common alder (Alnus glutinosa) in Spain. Seeds and seedlings of A. glutinosa were tested in vitro for their susceptibility to alder Phytophthora and other Phytophthora species. Isolates of P. alni ssp. alni, P. cinnamomi, P. citrophthora, P. nicotianae and P. palmivora were used in the experiments. Seeds and seedlings were inoculated with a zoospore suspension and uniform mycelial blocks of agar of the Phytophthora species. Susceptibility was calculated in terms of pathogen virulence on seed germination and seedling mortality 42 and 67 days after inoculation respectively. Seed germination and seedling mortality rates varied differently among the isolates used. Results implied that common alder and its seeds and seedlings are at risk to be infected by P. alni. In addition, other Phytophthora species are able to infect this kind of material showing their relative host non-specificity. This is one important finding concerning alder regeneration in infected areas, and the possibility of disease spread on this plant material. (Author) 42 refs.

  10. Influence of spray equipment and water volume on coverage of citrus and control of citricola scale, Coccus pseudomagnoliarum (Hemiptera: Coccidae) with mineral oil.

    Science.gov (United States)

    Chueca, P; Grafton-Cardwell, E E; Moltó, E

    2009-02-01

    A trial was conducted in a commercial Citrus sinensis L. variety 'Washington' navel orange orchard to compare the coverage and efficacy against citricola scale Coccus pseudomagnoliarum (Kuwana) (Hemiptera: Coccidae) of 45.5 liters/ha of an nC24 agricultural mineral oil treatment applied by two different methods: a conventional air blast sprayer and a rotary atomizer. Three water volumes (2,340, 4,680, and 7,020 liters/ha) were applied with the air blast sprayer to determine the optimal spray volume for that equipment. A single volume (2,340 liters/ha) was applied with the rotary atomizer to compare its effectiveness with that of the air blast sprayer at this same volume. Results demonstrated that all treatments reduced citricola scale densities. Moreover, all treatments conducted with the air blast sprayer provided significantly greater coverage and significantly reduced citricola scale densities compared with the treatment made with the rotary atomizer. Larger water volume applications with the air blast sprayer did not significantly reduce citricola scale densities, although significantly better coverage was attained in the interior of the tree when spraying with 4,680 and 7,020 liters/ha. As a consequence, this study demonstrated that the increased coverage obtained by applying higher water volume with the air blast sprayer was not required for an optimal treatment in August, when the citricola scale population consisted of nymphs inhabiting the outside leaves of the tree.

  11. The Effect of Potassium Nitrate on the Reduction of Phytophthora Stem Rot Disease of Soybeans, the Growth Rate and Zoospore Release of Phytophthora Sojae

    Science.gov (United States)

    The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...

  12. Two novel species representing a new clade and cluster of Phytophthora.

    Science.gov (United States)

    Yang, Xiao; Copes, Warren E; Hong, Chuanxue

    2014-01-01

    Phytophthora stricta sp. nov. and Phytophthora macilentosa sp. nov. are described based on morphological, physiological and molecular characters in this study. Phytophthora stricta represents a previously unknown clade in the rRNA internal transcribed spacer (ITS)-based phylogeny. Phytophthora macilentosa, along with nine other species, consistently forms a high temperature-tolerant cluster within ITS clade 9. These observations are supported by the sequence analysis of the mitochondrial cytochrome c oxidase 1 gene. Both species are heterothallic and all examined isolates are A1 mating type. Phytophthora stricta produces nonpapillate and slightly caducous sporangia. This species is named after its characteristic constrictions on sporangiophores. Phytophthora macilentosa produces nonpapillate and noncaducous sporangia, which are mostly elongated obpyriform with a high length to breadth ratio. Both species were recovered from irrigation water of an ornamental plant nursery in Mississippi, USA and P. stricta was also recovered from stream water in Virginia, USA.

  13. Phytophthora x pelgrandis, a new natural hybrid pathogenic to Pelargonium grandiflorum hort.

    Science.gov (United States)

    Nirenberg, Helgard I; Gerlach, Wolfram F; Gräfenhan, Tom

    2009-01-01

    A new Phytophthora hybrid of Ph. cactorum (Leb. & Cohn) Schroet. and Ph. nicotianaevan Breda de Haan pathogenic to cultivars of Pelargonium grandiflorum hort. is described as Phytophthora X pelgrandis and its morphological features are documented. Morphological, physiological (e.g., temperature requirements) and molecular data (DNA sequencing, random amplified polymorphic DNA-PCR) are presented for isolates of the Phytophthora hybrid. Pathogenicity was tested on cultivars of P. grandiflorum and Nicotiana tabacum. For comparison cultures of the parental species and additional Phytophthora taxa also were examined.

  14. Phylogenetic Analysis of Phytophthora Species Based on Mitochondrial and Nuclear DNA Sequences

    NARCIS (Netherlands)

    Kroon, L.P.N.M.; Bakker, F.T.; Bosch, van den G.B.M.; Bonants, P.J.M.; Flier, W.G.

    2004-01-01

    A molecular phylogenetic analysis of the genus Phytophthora was performed, 113 isolates from 48 Phytophthora species were included in this analysis. Phylogenetic analyses were performed on regions of mitochondrial (cytochrome c oxidase subunit 1; NADH dehydrogenase subunit 1) and nuclear gene sequen

  15. Invasion of xylem of mature tree stems by Phytophthora ramorum and P. kernoviae

    Science.gov (United States)

    Anna Brown; Clive Brasier

    2008-01-01

    The aetiology and frequency of Phytophthoras in discoloured xylem tissue beneath phloem lesions was investigated in a range of broadleaved trees infected with P. ramorum, P. kernoviae and several other Phytophthoras. Isolation was attempted from the inner surface of 81, 6 x 4 cm sterilised...

  16. Phytophthora beyond agriculture.

    Science.gov (United States)

    Hansen, Everett M; Reeser, Paul W; Sutton, Wendy

    2012-01-01

    Little is known about indigenous Phytophthora species in natural ecosystems. Increasing evidence, however, suggests that a diverse, trophically complex Phytophthora community is important in many forests. The number of described species has steadily increased, with a dramatic spike in recent years as new species have been split from old and new species have been discovered through exploration of new habitats. Forest soil, streams, and the upper canopies of trees are now being explored for Phytophthora diversity, and a new appreciation for the ecological amplitude of the genus is emerging. Ten to twenty species are regularly identified in temperate forest surveys. Half or more of this Phytophthora diversity comes from species described since 2000. Taxa in internal transcribed spacer (ITS) Clade 6 are especially numerous in forest streams and may be saprophytic in this habitat. Three ecological assemblages of forest Phytophthora species are hypothesized: aquatic opportunists, foliar pathogens, and soilborne fine-root and canker pathogens. Aggressive invasive species are associated with all three groups.

  17. 马拉巴栗疫病病原的分离与鉴定%Isolation and Identification of the Pathogen Causing Phytophthora Blight of Pachira macrocarpa

    Institute of Scientific and Technical Information of China (English)

    李琳; 陈鸿宇; 柳凤; 何红; 余莎

    2011-01-01

    The diseased plants of Pachira macrocarpa showing symptoms of phytophthora blight were collected from Zhanjiang,Guangdong Province from 2008 to 2009.This study proved that the pathogen was a kind of fungus by test of Koch’s postulates.The pathogenic fungus was identified as Phytophthora palmivora based on pathogenicity and morphology,host range and sequence analysis of rDNA-ITS.%2008—2009年,从广东省湛江等地采集疑似疫病的马拉巴栗病株,经病原菌分离及柯赫氏法则验证,证明其病原菌是疫霉菌。通过致病性、寄主范围测定,菌体形态,培养特性及rDNA-ITS序列分析等,将该病原菌初步鉴定为棕榈疫霉(Phytophthora palmivora)。

  18. A universal microarray detection method for identification of multiple Phytophthora spp. using padlock probes.

    Science.gov (United States)

    Sikora, Katarzyna; Verstappen, Els; Mendes, Odette; Schoen, Cor; Ristaino, Jean; Bonants, Peter

    2012-06-01

    The genus Phytophthora consists of many species that cause important diseases in ornamental, agronomic, and forest ecosystems worldwide. Molecular methods have been developed for detection and identification of one or several species of Phytophthora in single or multiplex reactions. In this article, we describe a padlock probe (PLP)-based multiplex method of detection and identification for many Phytophthora spp. simultaneously. A generic TaqMan polymerase chain reaction assay, which detects all known Phytophthora spp., is conducted first, followed by a species-specific PLP ligation. A 96-well-based microarray platform with colorimetric readout is used to detect and identify the different Phytophthora spp. PLPs are long oligonucleotides containing target complementary sequence regions at both their 5' and 3' ends which can be ligated on the target into a circular molecule. The ligation is point mutation specific; therefore, closely related sequences can be differentiated. This circular molecule can then be detected on a microarray. We developed 23 PLPs to economically important Phytophthora spp. based upon internal transcribed spacer-1 sequence differences between individual Phytophthora spp. Tests on genomic DNA of many Phytophthora isolates and DNA from environmental samples showed the specificity and utility of PLPs for Phytophthora diagnostics.

  19. Coy Males and Seductive Females in the Sexually Cannibalistic Colonial Spider, Cyrtophora citricola.

    Science.gov (United States)

    Yip, Eric C; Berner-Aharon, Na'ama; Smith, Deborah R; Lubin, Yael

    2016-01-01

    The abundance of sperm relative to eggs selects for males that maximize their number of mates and for females that choose high quality males. However, in many species, males exercise mate choice, even when they invest little in their offspring. Sexual cannibalism may promote male choosiness by limiting the number of females a male can inseminate and by biasing the sex ratio toward females because, while females can reenter the mating pool, cannibalized males cannot. These effects may be insufficient for male choosiness to evolve, however, if males face low sequential encounter rates with females. We hypothesized that sexual cannibalism should facilitate the evolution of male choosiness in group living species because a male is likely to encounter multiple receptive females simultaneously. We tested this hypothesis in a colonial orb-weaving spider, Cyrtophora citricola, with a high rate of sexual cannibalism. We tested whether mated females would mate with multiple males, and thereby shift the operational sex ratio toward females. We also investigated whether either sex chooses mates based on nutritional state and age, and whether males choose females based on reproductive state. We found that females are readily polyandrous and exhibit no mate choice related to male feeding or age. Males courted more often when the male was older and the female was younger, and males copulated more often with well-fed females. The data show that males are choosier than females for the traits we measured, supporting our hypothesis that group living and sexual cannibalism may together promote the evolution of male mate choice.

  20. Fighting phytophthora in blueberries

    Science.gov (United States)

    Phytophthora cinnamomi Rands is a ubiquitous soilborne pathogen associated with root rot in many woody perennial plant species, including highbush blueberry (Vaccinium sp.). To identify genotypes with resistance to the pathogen, cultivars and advanced selections of highbush blueberry were grown in a...

  1. The genus Phytophthora anno 2012.

    Science.gov (United States)

    Kroon, Laurens P N M; Brouwer, Henk; de Cock, Arthur W A M; Govers, Francine

    2012-04-01

    Plant diseases caused by Phytophthora species will remain an ever increasing threat to agriculture and natural ecosystems. Phytophthora literally means plant destroyer, a name coined in the 19th century by Anton de Bary when he investigated the potato disease that set the stage for the Great Irish Famine. Phytophthora infestans, the causal agent of potato late blight, was the first species in a genus that at present has over 100 recognized members. In the last decade, the number of recognized Phytophthora species has nearly doubled and new species are added almost on a monthly basis. Here we present an overview of the 10 clades that are currently distinguished within the genus Phytophthora with special emphasis on new species that have been described since 1996 when Erwin and Ribeiro published the valuable monograph 'Phytophthora diseases worldwide' (35).

  2. Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range.

    Science.gov (United States)

    Giannakopoulou, Artemis; Schornack, Sebastian; Bozkurt, Tolga O; Haart, Dave; Ro, Dae-Kyun; Faraldos, Juan A; Kamoun, Sophien; O'Maille, Paul E

    2014-01-01

    Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.

  3. Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range.

    Directory of Open Access Journals (Sweden)

    Artemis Giannakopoulou

    Full Text Available Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.

  4. Variation in Capsidiol Sensitivity between Phytophthora infestans and Phytophthora capsici Is Consistent with Their Host Range

    Science.gov (United States)

    Giannakopoulou, Artemis; Schornack, Sebastian; Bozkurt, Tolga O.; Haart, Dave; Ro, Dae-Kyun; Faraldos, Juan A.; Kamoun, Sophien; O’Maille, Paul E.

    2014-01-01

    Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins. PMID:25203155

  5. Vroegtijdig Phytophthora opsporen met biosensor

    NARCIS (Netherlands)

    Jansen, R.M.C.

    2003-01-01

    Phytophthora kan vroegtijdig worden opgespoord met biosensoren. Bij de Leerstoelgroep Agrarische Bedrijfstechnologie van Wageningen Universiteit wordt verder gekeken naar praktische toepassingen van deze techniek

  6. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops.

    Science.gov (United States)

    Bertier, L; Brouwer, H; de Cock, A W A M; Cooke, D E L; Olsson, C H B; Höfte, M

    2013-12-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula spp., respectively. However, over the past few decades, several other clade 8b-like Phytophthoras have been found on a variety of different host plants that were all grown at low temperatures in winter seasons. In this study, a collection of 30 of these isolates was subjected to a phylogenetic study using two loci (the rDNA ITS region and the mitochondrial cox1 gene). This analysis revealed a clear clustering of isolates according to their host plants. To verify whether these isolates belong to separate species, a detailed morphological study was conducted. On the basis of genetic and morphological differences and host specificity, we now present the official description of three new species in clade 8b: Phytophthora cichorii sp. nov., P. dauci sp. nov. and P. lactucae sp. nov. Two other groups of isolates (Phytophthora taxon castitis and Phytophthora taxon parsley) might also represent new species but the data available at this time are insufficient for an official description. This brings Phytophthora clade 8b to a group of six species that are all host-specific, slow-growing and specifically infect herbaceous crops at low temperatures.

  7. Examination of some morphologically unusual cultures of Phytophthora species using a mitochondrial DNA miniprep technique and a standardised sporangium caducity assessment.

    Science.gov (United States)

    Hall, G S

    Using the mitochondrial DNA miniprep technique, the identity of sixteen morphologically unusual cultures allocated to Phytophthora nicotianae, Phytophthora mexicana or Phytophthora porri was determined by comparison with a library of mtDNA band patterns obtained from reference cultures. Seven cultures were identified as Phytophthora nicotianae (including those assigned to Phytophthora mexicana and Phytophthora porri), six as strains of Phytophthora palmivora with small, ovoid, weakly caducous sporangia, and one as Phytophthora citrophthora. Some cultures of P. nicotianae had a low percentage of caducous sporangia. Percentage sporangium caducity, but not sporangium L:B ratio, is considered a useful taxonomic criterion for separating species morphologically similar to Phytophthora nicotianae. One culture from tobacco in New Zealand had a highly unusual morphology and a unique DNA band pattern, but was not identifiable. One culture from Acacia mearnsii in South Africa had a unique DNA band pattern which was identical to that of an isolate from Annona squamosa from Australia previously identified as Phytophthora palmivora, the precise identity of which is still unclear. The identity of most isolates from diseased durian was found to be Phytophthora palmivora, confirming its role as the main pathogen, but P. nicotianae was also identified from this host.

  8. Stability of partial resistance in potato cultivars exposed to aggressive strains of Phytophthora infestans

    NARCIS (Netherlands)

    Flier, W.G.; Bosch, van den G.B.M.; Turkensteen, L.J.

    2003-01-01

    Potato cultivars were evaluated for their resistance responses to aggressive strains of Phytophthora infestans in field and laboratory experiments. Analysis of variance revealed differential cultivar-by-isolate interactions for both foliar and tuber blight resistance. Differential responses occur as

  9. Biological characteristics and mating type distribution of Phytophthora capsici from China.

    Science.gov (United States)

    Du, Y; Gong, Z-H; Liu, G-Z; Chai, G-X; Li, C

    2014-01-21

    Phytophthora capsici from seven provinces of China were investigated for their mating type, hyphal growth, zoospore production, and virulence. All of the morphological characteristics and the results of polymerase chain reaction confirmed that these isolates were indeed Phytophthora capsici. The test of mating type showed that the mating types of 19 representative isolates from China varied. The hyphal growth and the amount of zoospores produced from these isolates differed and there was no evident relationship between them, which indicated the existence of genetic diversity among the isolates in China. Also, the isolates that were more virulent on the pepper cultivars that we checked produced more zoospores than other isolates.

  10. Four different Phytophthora species that are able to infect Scots pine seedlings in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2016-09-01

    Full Text Available To investigate susceptibility of young Scots pine seedlings to four Phytophthora species: Phytophthora cactorum, Phytophthora cambivora, Phytophthora plurivora and Phytophthora pini; seven-day-old seedlings of Scots pine (15 seedlings per experiment were infected using agar plugs of the respective species. Control group also consisted of 15 seedlings and was inoculated with sterile agar plugs. Results unambiguously show that after 4.5 days, all seedlings show clear signs of infection and display severe symptoms of tissue damage and necrosis. Moreover, three and two seedlings in the P. cactorum and P. cambivora infected seedlings groups, respectively, collapsed. The length of largest necrosis measured 13.4±3.90 mm and was caused by P. cactorum. To rule out any putative contamination or infection by secondary pathogens, re-isolations of pathogens from infection sites were performed and were positive in 100% of plated pieces of infected seedlings. All re-isolations were, however, negative in the case of the control group. Detailed microscopic analyses of infected tissues of young seedlings confirmed the presence of numerous Phytophthora species inside and on the surface of infected seedlings. Therefore, our results suggest Phytophthora spp. and mainly P. cactorum and P. cambivora as aggressive pathogens of Scots pine seedlings and highlight a putative involvement of these species in the damping off of young Scots pine seedlings frequently observed in forest nurseries.

  11. Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees.

    Science.gov (United States)

    Jankowiak, R; Stępniewska, H; Bilański, P; Kolařík, M

    2014-11-01

    Phytophthora plurivora and other Phytophthora species are known to be serious pathogens of forest trees. Little is known, however, about the presence of P. plurivora in Polish oak forests and their role in oak decline. The aims of this study were to identify P. plurivora in healthy and declining Quercus robur stands in southern Poland and to demonstrate the relationship between different site factors and the occurrence of P. plurivora. In addition, the virulence of P. plurivora and other Phytophthora species was evaluated through inoculations using 2-year-old oak seedlings. Rhizosphere soil was investigated from 39 oak stands representing different healthy tree statuses. The morphology and DNA sequences of the internal transcribed spacer regions (ITS) of the ribosomal DNA and the mitochondrial cox1 gene were used for identifications. P. plurivora, an oak fine root pathogen, was isolated from rhizosphere soil samples in 6 out of 39 stands. Additionally, Phytophthora cambivora, Phytophthora polonica and Phytophthora rosacearum-like were also obtained from several stands. The results showed a significant association between the presence of P. plurivora and the health status of oak trees. Similar relationships were also observed for all identified Phytophthora species. In addition, there was evidence for a connection between the presence of all identified Phytophthora species and some site conditions. Phytophthora spp. occurred more frequently in declining stands and in silt loam and sandy loam soils with pH ≥ 3.66. P. plurivora and P. cambivora were the only species capable of killing whole plants, producing extensive necrosis on seedling stems.

  12. Chemical Compositions of Ligusticum chuanxiong Oil and Lemongrass Oil and Their Joint Action against Aphis citricola Van Der Goot (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available In order to develop novel botanical insecticides, the joint action of Ligusticum chuanxiong oil (LCO and lemongrass oil (LO against Aphis citricola van der Goot was determined systematically indoors and outdoors. The chemical profiles of LCO and LO as determined by gas chromatography–mass spectrometry (GC-MS analysis revealed that the main compounds from LCO were (Z-ligustilide (44.58% and senkyunolide A (26.92%, and that of LO were geranial (42.16% and neral (32.58%, respectively. The mixture of LCO and LO showed significant synergy against A. citricola, with a common-toxicity coefficient (CTC value of 221.46 at the optimal ratio of LCO to LO (4:1, w:w. Based on the results of solvents and emulsifiers screening, L. chuanxiong oil·Lemongrass oil 20% emulsifiable concentrate (20% LCO·LO EC was developed, and its stability was confirmed with tests of cold and thermal storage. Field trials indicated that the insecticidal activity of the diluted 20% LCO·LO EC (1000 fold dilution was comparable to conventional pesticide (20% imidacloprid EC on A. citricola seven days after application. Thus, the mixture of LCO and LO has the potential to be further developed as a botanical pesticide.

  13. Efecto Antagónico in vitro de Actinomicetos Aislados de Purines de Chipaca (Bidens pilosa L. Frente a Phytophthora infestans (Mont de Bary In vitro Antagonistic Effect of Actinomycetes Isolated from Chipaca (Bidens pilosa L. Purins Against Phytophthora infestans (Mont de Bary

    Directory of Open Access Journals (Sweden)

    Yudy Astrid Fonseca Ardila

    2011-12-01

    Full Text Available Se estudió el efecto inhibidor de los actinomicetos presentes en purines o extractos fermentados de plantas de chipaca (Bidens pilosa L., sobre el crecimiento de Phytophthora infestans (Mont de Bary, causante del tizón tardío de la papa. Se elaboraron cuatro purines de flores, raíces, hojas-tallos y su mezcla. De estos purines se obtuvieron 25 aislamientos de actinomicetos, cada uno de los cuales se enfrentó con P. infestans en placas de medio de cultivo, utilizando la técnica de anillos de Gauze y estableciendo las concentraciones iniciales de esporas mediante conteos microscópicos en cámara de Neubauer. Los actinomicetos no crecieron en el purin de flores debido, posiblemente, a que en él no se utiliza suelo rizosférico o porque su pH (9 es mayor que el rango normal de crecimiento de estos microorganismos ( pH 6 -; 8. Se evidenció inhibición del crecimiento del oomycete por parte de 8 aislamientos de actinomicetos con porcentajes de inhibición entre 33,3 - 77,8%, provenientes de los purines de raíces, tallos-hojas y mezcla de partes de la planta. La mayor inhibición se obtuvo en los aislamientos AC001, AC010, AC011 y AC025 con conteos de 0,4, 6,0, 3,0, y 3,6 x10(5 esporas mL-1.Purins or liquid fermented extracts of chipaca (Bidens pilosa L. were prepared to establish the inhibitory effect of the actinomycetes found in such biopharmaceutical preparations on the growth of Phytophthora infestans (Mont de Bary, the causative of potato late blight disease. Four purins made from flowers, roots, leaf-steams and a mixture of them were prepared; 25 actinomycete isolates were obtained from these purins and their ability to resist challenge by P. infestans was ascertained in medium plates using the ring Gauze technique and establishing initial concentrations of spores by microscopic counting in Neubauer chamber. Actinomycetes did not grow in flower purin as rhizosphere soil was not used in its preparation or because this particular pH (9

  14. Fluctuación poblacional del minador de la hoja de los cítricos y su parasitoide exótico Ageniaspis citricola en la provincia de Tucumán, Argentina Population fluctuation of the citrus leafminer and its imported parasitoid, Ageniaspis citricola, in the province of Tucumán, Argentina

    Directory of Open Access Journals (Sweden)

    Lucía Goane

    2007-12-01

    Full Text Available La presencia del minador de los cítricos Phyllocnistis citrella Stainton en la provincia de Tucumán, Argentina, planteó nuevos problemas para el manejo fitosanitario de las quintas cítricas en producción. Actualmente una de las principales herramientas de control de esta plaga es el parasitoide específico Ageniaspis citricola Logvinovskaya, introducido desde Perú en 1998. Con el propósito de definir estrategias de manejo adecuadas para esta plaga, se evaluó la fluctuación poblacional del minador de los cítricos y el parasitismo producido por A. citricola en diferentes puntos de la provincia. Para ello, se realizaron muestreos quincenales entre los meses de noviembre y abril durante cuatro campañas cítricas consecutivas en plantaciones de limonero ubicadas en la zona norte y sur de Tucumán. La infestación del minador se calculó a partir de la observación de brotes con hojas tiernas susceptibles al ataque, y el parasitismo se evaluó analizando cámaras pupales del minador tomadas de hojas maduras. En la zona norte de la provincia la infestación del minador alcanzó valores más elevados comparados con la zona sur. Las mayores tasas de parasitismo de A. citricola registradas en la zona sur, resultaron en una disminución anticipada de la infestación del minador, la cual tuvo lugar a mediados del verano. En esta última, los niveles de parasitismo de A. citricola fueron superiores. La temperatura media fue el factor meteorológico que mejor correlacionó con la fluctuación del minador, y la humedad relativa, con el parasitismo de A. citricola.Presence of citrus leafminer Phyllocnistis citrella Stainton in Tucumán province, Argentina, raised new problems for the phytosanitary management of citrus producing orchards. At present, one of the main tools used to control this pest is the specialized parasitoid Ageniaspis citricola Logvinovskaya, imported from Perú in 1998. With the aim to define adequate management strategies to

  15. Assessment of inoculation methods for screening black alder resistance to Phytophthora ×alni

    OpenAIRE

    Husson, Claude; Druart, P.; Marcais, Benoit

    2015-01-01

    Identification of resistance to Phytophthora xalni could provide the basis for a management strategy against alder decline in riparian ecosystems in Europe.[br/] This study aimed to test methods to evaluate the resistance of riparian alders to the disease, and to screen alder genotypes for resistance.[br/] Phytophthora xalni isolates were compared for their aggressiveness (lesion length on stem) and sporulation capacity (sporangia). While no difference in lesion lengths was found bet...

  16. 云南省马铃薯晚疫病菌交配型及生物学特性研究(英文)%MATING TYPE AND BIOLOGICAL CHARACTERISTICS OF Phytophthora infestans ISOLATES FROM YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    国立耘; 杨艳丽; 罗文富

    2002-01-01

    作者对1998~2000年间采自云南省13个县、23个地点的马铃薯晚疫病菌的交配型、菌落形态、燕麦培养基上生长情况、生长速度和产孢量进行了测定.结果显示,采自云南13个县、23个地点的共157个菌株全部为A1交配型,表明云南马铃薯主产区的晚疫病菌以A1交配型为主,同时,被测的代表菌株在生长速度和产孢量上存在显著差异,表明这一地区的晚疫病菌种群内存在丰富的遗传多样性.此外,结果还显示,晚疫病菌菌株在燕麦培养基上的生长情况与其菌落形态和交配型不相关.%Phytophthora infestans from potatoes collected from Yunnan Province during 1998 to 2000 were investigated for their mating type, colony growth pattern, ability to grow on oatmeal agar, linear growth rate and amount of sporangia produced. A total of 157 isolates from 23 locations in 13 counties in Yunnan were all A1 mating type. Representative isolates showed significant variation in growth rate and amount of sporangia produced, which indicate the existence of genetic diversity among the population of P. infestans in Yunnan. Results also show that colony growth pattern and the growth on oatmeal agar did not relate to the mating type of the isolate.

  17. Occurrence and characterization of a Phytophthora sp. pathogenic to asparagus (Asparagus officinalis) in Michigan.

    Science.gov (United States)

    Saude, C; Hurtado-Gonzales, O P; Lamour, K H; Hausbeck, M K

    2008-10-01

    A homothallic Phytophthora sp. was recovered from asparagus (Asparagus officinalis) spears, storage roots, crowns, and stems in northwest and central Michigan in 2004 and 2005. Isolates (n = 131) produced ovoid, nonpapillate, noncaducous sporangia 45 microm long x 26 microm wide and amphigynous oospores of 25 to 30 microm diameter. Mycelial growth was optimum at 25 degrees C with no growth at 5 and 30 degrees C. All isolates were sensitive to 100 ppm mefenoxam. Pathogenicity studies confirmed the ability of the isolates to infect asparagus as well as cucurbits. Amplified fragment length polymorphism analysis of 99 isolates revealed identical fingerprints, with 12 clearly resolved fragments present and no clearly resolved polymorphic fragments, suggesting a single clonal lineage. The internal transcribed spacer regions of representative isolates were homologous with a Phytophthora sp. isolated from diseased asparagus in France and a Phytophthora sp. from agave in Australia. Phylogenetic analysis supports the conclusion that the Phytophthora sp. isolated from asparagus in Michigan is a distinct species, and has been named Phytophthora asparagi.

  18. Phytophthora sojae: Diversity among and within Populations

    Science.gov (United States)

    Soybean production is increasing around the world and, to no surprise, so are the reports of soybean diseases caused by Phytophthora sojae, including Phytophthora seed, root, and stem rot. Phytophthora sojae is a diploid oomycete, which is homothallic and is limited to primarily one host: the soybe...

  19. Variability in virulence and the race concept in Phytophthora infestans (Mont. de Bary

    Directory of Open Access Journals (Sweden)

    Ludwik S. Sujkowski

    2014-08-01

    Full Text Available Variability in virulence and aggressiveness was studied in 102 single zoospore isolates originating from 4 field isolates of Phytophthora infestans. Field isolates appeared to be mixtures of a wide spectrum of phenotypes differing in both characters as mentioned above. Race concept in P. infestans has been discussed.

  20. Large subclonal variation in Phytophthora infestans populations associated with Ecuadorian potato landraces

    NARCIS (Netherlands)

    Delgado, R.A.; Monteros-Altamiro, A.R.; Li, Y.; Visser, R.G.F.; Lee, van der T.A.J.; Vosman, B.

    2013-01-01

    The population of Phytophthora infestans on potato landraces in three provinces (Carchi, Chimborazo and Loja) of Ecuador was analysed. All isolates (n = 66) were of the A1 mating type. Simple sequence repeats (SSR) were used to assess the genetic diversity of the isolates. The P. infestans isolates

  1. Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans.

    Science.gov (United States)

    Chen, Ai-Lin; Liu, Chu-Yin; Chen, Chien-Hua; Wang, Jaw-Fen; Liao, Yu-Chen; Chang, Chia-Hui; Tsai, Mong-Hsun; Hwu, Kae-Kang; Chen, Kai-Yi

    2014-01-01

    Tomato late blight caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary is a major threat to tomato production in cool and wet environments. Intensified outbreaks of late blight have been observed globally from the 1980s, and are associated with migration of new and more aggressive populations of P. infestans in the field. The objective of this study was to reassess late blight resistance in the wild tomato accession L3708 (Solanum pimpinellifolium L.) against pathogens of different aggressiveness. An F2:3 genetic mapping population was developed using L3708 as the paternal parent. Two isolates of P. infestans, Pi39A and Pi733, were used for inoculation. Pi733 is a highly aggressive genotype that defeats three known late blight resistance genes, Ph-1, Ph-2, and Ph-5t in tomato. In contrast, Pi39A is a less aggressive genotype that defeats only Ph-1. Restriction site Associated DNA Sequencing (RAD-Seq) technology was used to massively sequence 90 bp nucleotides adjacent to both sides of PstI restriction enzyme cutting sites in the genome for all individuals in the genetic mapping population. The RAD-seq data were used to construct a genetic linkage map containing 440 single nucleotide polymorphism markers. Quantitative trait locus (QTL) analysis identified a new disease-resistant QTL specific to Pi733 on chromosome 2. The Ph-3 gene located on chromosome 9 could be detected whichever isolates were used. This study demonstrated the feasibility and efficiency of RAD-Seq technology for conducting a QTL mapping experiment using an F2:3 mapping population, which allowed the identification of a new late blight resistant QTL in tomato.

  2. Reassessment of QTLs for Late Blight Resistance in the Tomato Accession L3708 Using a Restriction Site Associated DNA (RAD) Linkage Map and Highly Aggressive Isolates of Phytophthora infestans

    Science.gov (United States)

    Chen, Ai-Lin; Liu, Chu-Yin; Chen, Chien-Hua; Wang, Jaw-Fen; Liao, Yu-Chen; Chang, Chia-Hui; Tsai, Mong-Hsun; Hwu, Kae-Kang; Chen, Kai-Yi

    2014-01-01

    Tomato late blight caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary is a major threat to tomato production in cool and wet environments. Intensified outbreaks of late blight have been observed globally from the 1980s, and are associated with migration of new and more aggressive populations of P. infestans in the field. The objective of this study was to reassess late blight resistance in the wild tomato accession L3708 (Solanum pimpinellifolium L.) against pathogens of different aggressiveness. An F2:3 genetic mapping population was developed using L3708 as the paternal parent. Two isolates of P. infestans, Pi39A and Pi733, were used for inoculation. Pi733 is a highly aggressive genotype that defeats three known late blight resistance genes, Ph-1, Ph-2, and Ph-5t in tomato. In contrast, Pi39A is a less aggressive genotype that defeats only Ph-1. Restriction site Associated DNA Sequencing (RAD-Seq) technology was used to massively sequence 90 bp nucleotides adjacent to both sides of PstI restriction enzyme cutting sites in the genome for all individuals in the genetic mapping population. The RAD-seq data were used to construct a genetic linkage map containing 440 single nucleotide polymorphism markers. Quantitative trait locus (QTL) analysis identified a new disease-resistant QTL specific to Pi733 on chromosome 2. The Ph-3 gene located on chromosome 9 could be detected whichever isolates were used. This study demonstrated the feasibility and efficiency of RAD-Seq technology for conducting a QTL mapping experiment using an F2:3 mapping population, which allowed the identification of a new late blight resistant QTL in tomato. PMID:24788810

  3. Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD linkage map and highly aggressive isolates of Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Ai-Lin Chen

    Full Text Available Tomato late blight caused by the oomycete pathogen Phytophthora infestans (Mont. de Bary is a major threat to tomato production in cool and wet environments. Intensified outbreaks of late blight have been observed globally from the 1980s, and are associated with migration of new and more aggressive populations of P. infestans in the field. The objective of this study was to reassess late blight resistance in the wild tomato accession L3708 (Solanum pimpinellifolium L. against pathogens of different aggressiveness. An F2:3 genetic mapping population was developed using L3708 as the paternal parent. Two isolates of P. infestans, Pi39A and Pi733, were used for inoculation. Pi733 is a highly aggressive genotype that defeats three known late blight resistance genes, Ph-1, Ph-2, and Ph-5t in tomato. In contrast, Pi39A is a less aggressive genotype that defeats only Ph-1. Restriction site Associated DNA Sequencing (RAD-Seq technology was used to massively sequence 90 bp nucleotides adjacent to both sides of PstI restriction enzyme cutting sites in the genome for all individuals in the genetic mapping population. The RAD-seq data were used to construct a genetic linkage map containing 440 single nucleotide polymorphism markers. Quantitative trait locus (QTL analysis identified a new disease-resistant QTL specific to Pi733 on chromosome 2. The Ph-3 gene located on chromosome 9 could be detected whichever isolates were used. This study demonstrated the feasibility and efficiency of RAD-Seq technology for conducting a QTL mapping experiment using an F2:3 mapping population, which allowed the identification of a new late blight resistant QTL in tomato.

  4. Morfologia dos imaturos e do adulto de Coccidophilus citricola Brèthes (Coleoptera, Coccinellidae, Sticholotidinae, predador de cochonilhas-de-carapaça (Hemiptera, Diaspididae de citros Morphology of immatures and adult of Coccidophilus citricola Brèthes (Coleoptera, Coccinellidae, Sticholotidinae, predator of citrus armored scales (Hemiptera, Diaspididae

    Directory of Open Access Journals (Sweden)

    Ricardo Adaime da Silva

    2005-03-01

    Full Text Available Imaturos e adultos de Coccidophilus citricola Brèthes, 1905 são descritos e ilustrados com auxílio de microscopia eletrônica de varredura. A larva é comparada com as de Microweisea Cockerel e outras espécies de Coccinellidae, e o adulto com duas espécies norte-americanas de Coccidophilus Brèthes.Immatures and adults of Coccidophilus citricola Brèthes, 1905 are described and illustrated, using scanning electron microscopy. The larva is compared to those of Microweisea Cockerel and other species of Coccinellidae, and the adults with two North American species of the Genus Coccidophilus Brèthes.

  5. Efecto de las aplicaciones aéreas de abamectin sobre Ageniaspis citricola (Hymenoptera: Encyrtidae, parasitoide del minador de la hoja de los cítricos, en la provincia de Tucumán Effect of abamectin airplane applications on Ageniaspis citricola (Hymenoptera: Encyrtidae, parasitoid of citrus leafminer, in Tucumán province

    Directory of Open Access Journals (Sweden)

    Augusto S. Casmuz

    2007-12-01

    Full Text Available Una de las herramientas biológicas más importantes para controlar al minador en las principales zonas productoras de cítricos de la Argentina es el parasitoide exótico Ageniaspis citricola. Sin embargo, el control químico sigue siendo la alternativa más utilizada por el productor. En nuestra provincia, en los últimos años se generalizó el uso de pulverizaciones aéreas de abamectin combinado con aceite mineral para controlar las poblaciones del minador de los cítricos, en un esquema de manejo que incluye muestreos periódicos para monitorear la fluctuación de Phyllocnistis citrella, A. citricola y la brotación del cultivo. El objetivo del presente trabajo fue evaluar el efecto de las pulverizaciones aéreas de abamectin sobre el parasitismo producido por A. citricola en las poblaciones del minador de la hoja de los cítricos. Para ello se analizaron cámaras pupales del minador y se comparó el porcentaje de parasitismo en quintas cítricas tratadas con abamectin y aquellas sin tratamiento para control del minador, ubicadas en la zona norte y sur de la provincia respectivamente. Los resultados de muestreos quincenales durante cuatro campañas cítricas indican que el parasitismo de A. citricola sobre P. citrella fue inferior en las quintas mantenidas bajo el esquema de aplicaciones aéreas de abamectin. Sin embargo, las diferencias significativas observadas en algunos casos no siempre podrían ser atribuidas a las aplicaciones de abamectin realizadas, tanto en la zona norte como sur de la provincia.The foreign parasitoid Ageniaspis citricola is one of the most important biological tools used to control citrus leafminer in the main citrus producing areas of Argentina. However, chemical control is still the alternative most widely used by growers. In our province, airplane sprays of abamectin mixed with mineral oil have become generalized in recent years to control citrus leafminer populations as part of a management program which

  6. Distribution and Virulence Diversity of Phytophthora sojae in China

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhen-dong; WANG Hua-bo; WANG Xiao-ming; CHANG Ru-zhen; WU Xiao-fei

    2004-01-01

    By investigating occurrence of Phytophthora root rot in fields and isolating P. sojae from diseased plants and soils, the distribution of P. sojae in China was surveyed. In addition to northeast region, P. sojae existed in Huanghe-Huaihe basin and Yangtze basin too. Eighty- three isolates of P. sojae isolated from different areas were identified on virulence using 13differential soybean cultivars, abundant virulence diversity was found in P. sojae. The greater diversity in virulence of P. sojae was in isolates from soil than from plants. And the greatest virulence diversity of P.sojae was found in Yangtze basin.

  7. Phytophthora community structure analyses in Oregon nurseries inform systems approaches to disease management.

    Science.gov (United States)

    Parke, Jennifer L; Knaus, Brian J; Fieland, Valerie J; Lewis, Carrie; Grünwald, Niklaus J

    2014-10-01

    Nursery plants are important vectors for plant pathogens. Understanding what pathogens occur in nurseries in different production stages can be useful to the development of integrated systems approaches. Four horticultural nurseries in Oregon were sampled every 2 months for 4 years to determine the identity and community structure of Phytophthora spp. associated with different sources and stages in the nursery production cycle. Plants, potting media, used containers, water, greenhouse soil, and container yard substrates were systematically sampled from propagation to the field. From 674 Phytophthora isolates recovered, 28 different species or taxa were identified. The most commonly isolated species from plants were Phytophthora plurivora (33%), P. cinnamomi (26%), P. syringae (19%), and P. citrophthora (11%). From soil and gravel substrates, P. plurivora accounted for 25% of the isolates, with P. taxon Pgchlamydo, P. cryptogea, and P. cinnamomi accounting for 18, 17, and 15%, respectively. Five species (P. plurivora, P. syringae, P. taxon Pgchlamydo, P. gonapodyides, and P. cryptogea) were found in all nurseries. The greatest diversity of taxa occurred in irrigation water reservoirs (20 taxa), with the majority of isolates belonging to internal transcribed spacer clade 6, typically including aquatic opportunists. Nurseries differed in composition of Phytophthora communities across years, seasons, and source within the nursery. These findings suggest likely contamination hazards and target critical control points for management of Phytophthora disease using a systems approach.

  8. Parasitic fitness of Phytophthora infestans isolated from southern regions of Ningxia%宁夏南部山区马铃薯晚疫病菌寄生适合度测定

    Institute of Scientific and Technical Information of China (English)

    郭成瑾; 张丽荣; 沈瑞清

    2012-01-01

    为了解宁夏南部山区马铃薯主栽品种对马铃薯晚疫病菌的抗病性情况,明确不同菌株的寄生适合度,采用离体叶片接种法,用4个马铃薯品种对采自宁夏南部山区的5个马铃薯晚疫病菌分离株进行了侵染率、病斑面积、产孢能力的测定和寄生适合度的计算.结果表明,‘克新18号’对供试的晚疫病菌分离株具有较高的抗病性,其次为‘中薯3号’和‘克新1号’,‘费乌瑞它’的抗病性最差;来源于固原原州区的分离株(GL2和GL7)寄生适合度较高,来源于泾源县的分离株(JZ)寄生适合度较弱.采自宁夏不同地区的晚疫病菌分离株对同一马铃薯品种的寄生适合度有较大差异,同一晚疫病菌株在不同马铃薯品种上的寄生适合度也有一定的差异,表明宁夏南部山区马铃薯晚疫病菌分离株存在一定的致病性分化.%In order to understand the main potato cultivars resistance to Phytophthora infestans and the parasitic fitness of different causal fungal isolates, the infection frequency, lesion size, and sporulation capacity of five P. infestans isolates from potato in the southern regions of Ningxia were tested using four potato cultivars on the detached leaflets. The results showed that the cultivar 'Kexin 18' had the strongest resistance to the tested isolates, and 'Zhongshu 3' and 'Kexin 1' took the second place, while 'Favorita' was the susceptible cultivar to the tested isolates. The result of calculated parasitic fitness revealed that the isolate GL2 and GL7 from Yuanzhou District of Guyuan City had the highest parasitic fitness, and the isolate JZ from Jingyuan County had the lowest fitness. In summary, the tested P. infestans isolates from southern regions of Ningxia had different parasitic fitness on the same cultivar, and the single isolate has different parasitic fitness on the same cultivar, indicating that the pathogenic differentiation exists to some degree among P. infestans

  9. Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests.

    Science.gov (United States)

    Vannini, Andrea; Bruni, Natalia; Tomassini, Alessia; Franceschini, Selma; Vettraino, Anna Maria

    2013-09-01

    Pyrosequencing analysis was performed on soils from Italian chestnut groves to evaluate the diversity of the resident Phytophthora community. Sequences analysed with a custom database discriminated 15 pathogenic Phytophthoras including species common to chestnut soils, while a total of nine species were detected with baiting. The two sites studied differed in Phytophthora diversity and the presence of specific taxa responded to specific ecological traits of the sites. Furthermore, some species not previously recorded were represented by a discrete number of reads; among these species, Phytophthora ramorum was detected at both sites. Pyrosequencing was demonstrated to be a very sensitive technique to describe the Phytophthora community in soil and was able to detect species not easy to be isolated from soil with standard baiting techniques. In particular, pyrosequencing is an highly efficient tool for investigating the colonization of new environments by alien species, and for ecological and adaptive studies coupled with biological detection methods. This study represents the first application of pyrosequencing for describing Phytophthoras in environmental soil samples.

  10. FIRST REPORT OF Phytophthora nicotianae CAUSING ROOT ROT OF SOURSOP IN NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    JAQUELINE FIGUEREDO DE OLIVEIRA COSTA

    Full Text Available ABSTRACT In 2013, soursop trees showing symptoms of root rot were observed in a field in Maceió, state of Alagoas, Brazil. It was isolated Phytophthora sp. which pathogenicity was confirmed in the host seedlings. Morphological and physiological characteristics in carrot-agar modified medium were consistent with Phytophthora nicotianae description. The PCR sequences products obtained with ITS1/ITS4 primers were compared to sequences of ribosomal DNA of Phytophthora species from the GenBank database observing high identity with other P. nicotianae isolates. A phylogenetic tree was performed to compare the isolate with other sequences of P. nicotianae, which clustering has been verified with 99% of bootstrap, confirming the morphophysiological studies. This is the first report of this pathogen on annonaceous plants in the Northeastern Brazil.

  11. Identification and validation of polymorphic microsatellite loci for the analysis of Phytophthora nicotianae populations

    Science.gov (United States)

    A large number of SSR loci were screened in the genomic assemblies of 14 different isolates of Phytophthora nicotianae and primers were developed for amplification of 17 markers distributed among different contigs. These loci were highly polymorphic and amplified from genetically distant isolates of...

  12. Aggressiveness of Phytophthora infestans on detached potato leaflets in four Nordic countries

    DEFF Research Database (Denmark)

    Lehtinen, A; Andersson, B; Le, V H;

    2009-01-01

    Potato fields in Denmark, Finland, Norway and Sweden were sampled for single-lesion isolates of Phytophthora infestans. The aggressiveness of the isolates was determined on detached leaflets of potato cvs Bintje (susceptible) and Matilda (moderately resistant). The aggressiveness tests were carried...

  13. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes

    Science.gov (United States)

    Sahoo, Dipak K.; Abeysekara, Nilwala S.; Cianzio, Silvia R.; Robertson, Alison E.

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance. PMID:28081566

  14. Phytophthora Root and Crown Rot on Apples in Bulgaria

    Directory of Open Access Journals (Sweden)

    Mariana Nakova

    2010-01-01

    Full Text Available Phytophthora is a genus of Oomycota responsible for some of the most serious diseases with great economic impact (Judelson and Blanco, 2005. While 54 species were found in the 20th century (Erwin and Ribeiro, 1996 another 51-54 new species have been identified(Brasier, 2008 since the year 2000. They are spread worldwide and have broad range of host plants – fruit trees, citrus, forest and park species. Phytophthora can cause serious damages in orchards and nurseries of apples, cherries, etc. In Bulgaria they have been found first on young apples and cherries (1998-1999 in Plovdiv region (Nakova, 2003. Surveys have been done for discovering disease symptoms in Plovdiv and Kjustendil regions. Isolates have been obtained from infected plant material (roots and stem bases applying baiting bioassay (green apples, variety Granny Smith and/or PARP 10 selective media. Phytophthora strains were identified based on standard morphology methods – types of colonies on PDA, CMA, V 8, type and size of sporangia, oogonia and antheridia, andoospores. Cardial temperatures for their growth were tested on CMA and PDA.For molecular studies, DNA was extracted from mycelium using the DNA extraction kit.DNA was amplified using universal primers ITS 6 and ITS 4. Amplification products concentrations were estimated by comparison with the standard DNA. Sequencing was done at the Scottish Crop Research Institute (SCRI, Dundee, Scotland. Phytophthora root and crown rot symptoms first appear in early spring. Infected trees show bud break delay, have small chlorotic leaves, and branches die all of a sudden. Later symptoms are found in August-September. Leaves of the infected trees show reddish discoloration and drop down. Both symptoms are connected with lesions (wet, necrotic in appearance at stem bases of the trees.Disease spread was 2-3% in most gardens, only in an apple orchard in Bjaga (Plovdiv region it was up to 8-10%. Morphologically, the isolates acquired from

  15. Phytophthora infestans, een dynamische ziekteverwekker

    NARCIS (Netherlands)

    Govers, F.

    2010-01-01

    Samenvatting van de inaugurele rede van Francine Govers op 11 juni 2009. Dit artikel beschrijft de stand van zaken in het onderzoek aan oömyceten en in het bijzonder aan Phytophthora infestans, de veroorzaker van de aardappelziekte. Er wordt ingegaan op ziektebestrijding en resistentieveredeling, de

  16. Repellent Activity of Extracts of Wild Rice Species against Panonychus citri and Aphis citricola in Associated with Esterase Isoenzyme in Insests

    Institute of Scientific and Technical Information of China (English)

    WAN Shu-qing; LIU Xiang-fa; FENG Guo-zhong; PAN Da-jian

    2006-01-01

    Six species of wild rice with different ecophenotypes including Oryza grandiglumis (E6-1, E6-3 / 6-4), O. minuta (E13-9,E13-13), O. officinalis (E15-8, E15-13), O. punctata (E16-1, E16-3, E1 6-13), O. granulata (E7-4), and O. latifolia (101392, E9-1, E9-10)were extracted with methnol and the repellent activity of the extracts against the two insects Aphis citricola and Panonychus citri were studied. The extracts of O. officinalis E15-8 showed higher repellent rate to the two insects than those of the other species. The repellent rates of the extracts of E15-8 to P. citriand A. citricola were 83.26% and 87.86% at 5×104 μg/mL in 24 h and 87.95% and 82.43% in 48 h, respectively. The extracts of O. officinalis E15-8 had the effect of inhibition to the esterase of the two insects.

  17. Effect of CO2 enhancement on beech (Fagus sylvatica L. seedling root rot due to Phytophthora plurivora and Phytophthora cactorum

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2014-09-01

    Full Text Available Global climate change is associated with higher concentrations of atmospheric carbon dioxide (CO2. The ongoing changes are likely to have significant, direct or indirect effects on plant diseases caused by many biotic agents such as phytopathogenic fungi. This study results showed that increased CO2 concentration did not stimulate the growth of 1-year-old beech Fagus sylvatica L seedlings but it activated pathogenic Phytophthora species (P. plurivora and P. cactorum which caused significant reduction in the total number of fine roots as well as their length and area. The results of the greenhouse experiment indicated that pathogens once introduced into soil survived in pot soil, became periodically active (in sufficient water conditions and were able to damage beech fine roots. However, the trees mortality was not observed during the first year of experiment. DNA analyses performed on soil and beech tissue proved persistence of introduced Phytophthora isolates.

  18. Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp. nov.

    Science.gov (United States)

    Scanu, Bruno; Linaldeddu, Benedetto T.; Deidda, Antonio; Jung, Thomas

    2015-01-01

    The Mediterranean basin is recognized as a global biodiversity hotspot accounting for more than 25,000 plant species that represent almost 10% of the world’s vascular flora. In particular, the maquis vegetation on Mediterranean islands and archipelagos constitutes an important resource of the Mediterranean plant diversity due to its high rate of endemism. Since 2009, a severe and widespread dieback and mortality of Quercus ilex trees and several other plant species of the Mediterranean maquis has been observed in the National Park of La Maddalena archipelago (northeast Sardinia, Italy). Infected plants showed severe decline symptoms and a significant reduction of natural regeneration. First studies revealed the involvement of the highly invasive wide-host range pathogen Phytophthora cinnamomi and several fungal pathogens. Subsequent detailed research led to a better understanding of these epidemics showing that multiple Phytophthora spp. were involved, some of them unknown to science. In total, nine Phytophthora species were isolated from rhizosphere soil samples collected from around symptomatic trees and shrubs including Asparagus albus, Cistus sp., Juniperus phoenicea, J. oxycedrus, Pistacia lentiscus and Rhamnus alaternus. Based on morphological characters, growth-temperature relations and sequence analysis of the ITS and cox1 gene regions, the isolates were identified as Phytophthora asparagi, P. bilorbang, P. cinnamomi, P. cryptogea, P. gonapodyides, P. melonis, P. syringae and two new Clade 6 taxa which are here described as P. crassamura sp. nov. and P. ornamentata sp. nov. Pathogenicity tests supported their possible involvement in the severe decline that is currently threatening the Mediterranean maquis vegetation in the La Maddalena archipelago. PMID:26649428

  19. Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp. nov.

    Directory of Open Access Journals (Sweden)

    Bruno Scanu

    Full Text Available The Mediterranean basin is recognized as a global biodiversity hotspot accounting for more than 25,000 plant species that represent almost 10% of the world's vascular flora. In particular, the maquis vegetation on Mediterranean islands and archipelagos constitutes an important resource of the Mediterranean plant diversity due to its high rate of endemism. Since 2009, a severe and widespread dieback and mortality of Quercus ilex trees and several other plant species of the Mediterranean maquis has been observed in the National Park of La Maddalena archipelago (northeast Sardinia, Italy. Infected plants showed severe decline symptoms and a significant reduction of natural regeneration. First studies revealed the involvement of the highly invasive wide-host range pathogen Phytophthora cinnamomi and several fungal pathogens. Subsequent detailed research led to a better understanding of these epidemics showing that multiple Phytophthora spp. were involved, some of them unknown to science. In total, nine Phytophthora species were isolated from rhizosphere soil samples collected from around symptomatic trees and shrubs including Asparagus albus, Cistus sp., Juniperus phoenicea, J. oxycedrus, Pistacia lentiscus and Rhamnus alaternus. Based on morphological characters, growth-temperature relations and sequence analysis of the ITS and cox1 gene regions, the isolates were identified as Phytophthora asparagi, P. bilorbang, P. cinnamomi, P. cryptogea, P. gonapodyides, P. melonis, P. syringae and two new Clade 6 taxa which are here described as P. crassamura sp. nov. and P. ornamentata sp. nov. Pathogenicity tests supported their possible involvement in the severe decline that is currently threatening the Mediterranean maquis vegetation in the La Maddalena archipelago.

  20. Phytophthora terminalis sp. nov. and Phytophthora occultans sp. nov., two invasive pathogens of ornamental plants in Europe.

    Science.gov (United States)

    Man In 't Veld, Willem A; Rosendahl, Karin C H M; van Rijswick, Patricia C J; Meffert, Johan P; Westenberg, Marcel; van de Vossenberg, Bart T L H; Denton, Geoff; van Kuik, Fons A J

    2015-01-01

    In the past decade several Phytophthora strains were isolated from diseased Pachysandra terminalis plants suffering stem base and root rot, originating from the Netherlands and Belgium. All isolates were homothallic and had a felt-like colony pattern, produced semi-papillate sporangia, globose oogonia and had a maximum growth at ~ 27 C. Several additional Phytophthora strains were isolated from diseased Buxus sempervirens plants, originating from the Netherlands and Belgium, which had sustained stem base and root rot; similar strains also were isolated from Acer palmatum, Choisya ternata and Taxus in the United Kingdom. All isolates were homothallic and had a stellate colony pattern, produced larger semi-papillate sporangia and smaller globose oogonia than the isolates from Pa. terminalis and had a maximum growth temperature of ~ 30 C. Phylogenetic analyses of both species using the internal transcribed spacer region of the nuc rDNA (ITS), mt cytochrome oxidases subunit I gene (CoxI) and nuc translation elongation factor 1-α gene (TEF1α) revealed that all sequences of each species were identical at each locus and unique to that species, forming two distinct clusters in subclade 2a. Sequence analysis of partial β-tubulin genes showed that both taxa share an identical sequence that is identical to that of Ph. himalsilva, a species originating from Asia, suggesting a common Asian origin. Pathogenicity trials demonstrated disease symptoms on their respective hosts, and re-isolation and re-identification of the inoculated pathogens confirmed Koch's postulates.

  1. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis

    NARCIS (Netherlands)

    Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Jiang, R.H.Y.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; Beynon, J.L.; Chapman, J.; Damasceno, C.M.B.; Dorrance, A.E.; Dou, D.; Dickerman, A.W.; Dubchak, I.L.; Garbelotto, M.; Gijzen, M.; Gordon, S.G.; Govers, F.; Grunwald, N.J.; Huang, W.; Ivors, K.L.; Jones, R.W.; Kamoun, S.; Krampis, K.; Lamour, K.H.; Lee, M.K.; McDonald, W.H.; Medina, M.; Meijer, H.J.G.; Nordberg, E.K.; Maclean, D.J.; Ospina-Giraldo, M.D.; Morris, P.F.; Phuntumart, V.; Putnam, N.H.; Rash, S.; Rose, J.K.C.; Sakihama, Y.; Salamov, A.A.; Savidor, A.; Scheuring, C.F.; Smith, B.M.; Sobral, B.W.S.; Terry, A.; Torto-Alalibo, T.A.; Win, J.; Xu, Z.; Zhang, H.; Grigoriev, I.V.; Rokhsar, D.S.; Boore, J.L.

    2006-01-01

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora

  2. Efecto de las aplicaciones aéreas de abamectin sobre Ageniaspis citricola (Hymenoptera: Encyrtidae), parasitoide del minador de la hoja de los cítricos, en la provincia de Tucumán Effect of abamectin airplane applications on Ageniaspis citricola (Hymenoptera: Encyrtidae), parasitoid of citrus leafminer, in Tucumán province

    OpenAIRE

    Augusto S. Casmuz; Lucía Goane; Hernán Salas; José Lazcano; Sebastián A. Zapatiel; Eduardo Willink

    2007-01-01

    Una de las herramientas biológicas más importantes para controlar al minador en las principales zonas productoras de cítricos de la Argentina es el parasitoide exótico Ageniaspis citricola. Sin embargo, el control químico sigue siendo la alternativa más utilizada por el productor. En nuestra provincia, en los últimos años se generalizó el uso de pulverizaciones aéreas de abamectin combinado con aceite mineral para controlar las poblaciones del minador de los cítricos, en un esquema de manejo ...

  3. Efficacy of fungicides against Phytophthora cactorum on Viola.

    Science.gov (United States)

    Blindeman, L; Heungens, K; Goossens, F; Gobin, B

    2009-01-01

    Phytophthora cactorum caused significant losses to pansies during the heat wave at the end of the summer of 2006. Infected plants showed foliage that appeared stunted and chlorotic, with wilting occurring even when soil moisture was adequate. When uprooted, symptomatic plants typically possess a surprisingly healthy looking and well-developed root system, but stem and root tissue at the soil interface is discoloured (purple to dark brown) and soft. Older Leaves turn yellow and when the stem base is attacked, the plant dies. Phytophthora cactorum was identified from stem and root tissue with both morphological and molecular techniques. To evaluate the efficacy of different fungicides against this pathogen, healthy plants were infected with zoospores of a Phytophthora cactorum isolate collected from commercial plants. Eleven fungicides were evaluated and compared to an untreated control. Two fungicides were applied via root drenching, 7 days before inoculation with zoospores of P. cactorum. The other fungicides were applied by spraying 24 hours after inoculation with P. cactorum. Preventive drenching with the combined formulation of fenamidone + fosethyl offered the best protection against P. cactorum, while drenching with dimethomorf also resulted in an obvious reduction in the number of infected plants. Foliar application was less successful, as only a combined formulation of mancozeb + metalaxyl-M gave sufficient protection. In conclusion, preventive drenching appears to be the best solution to prevent infection with P. cactorum, especially during warm weather periods, which are conducive to pathogen and disease development.

  4. Targeted gene mutation in Phytophthora spp.

    NARCIS (Netherlands)

    Lamour, K.H.; Finley, L.; Hurtado-Gonzales, O.; Gobena, D.; Tierney, M.; Meijer, H.J.G.

    2006-01-01

    The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the d

  5. Universality of the Phytophthora mating hormones and diversity of their production profile.

    Science.gov (United States)

    Tomura, Tomohiko; Molli, Shylaja D; Murata, Ryo; Ojika, Makoto

    2017-07-10

    Sexual reproduction of the plant pest Phytophthora is regulated by two mating hormones α1 and α2, which are acyclic oxygenated diterpenes first isolated from P. nicotianae A1 and A2 mating types, respectively. A previous report suggested the universality of these factors within this genus. To confirm this concept, we investigated 80 strains (19 species) of Phytophthora and a related genus, not only for the responsiveness to mating hormones but also for their productivity. The results indicated that among the 55 heterothallic strains, 24 (44%) responded to a mating hormone and 40 (73%) produced one or both hormones. These findings demonstrate the interspecies universality of mating hormones within the genus Phytophthora. Hormone productivity was found to be highly diverse and dependent on the strains used. Although the A2 mating type has been regarded as the α2 producer, 19 (59%) of the 32 A2-type strains produced both the hormones and two A2-type strains exclusively produced α1 in high yields. These results indicate that hormone biosynthesis in Phytophthora is universal but highly diverse and complex, and varies with culture conditions, providing us valuable information for future studies on the mechanism of mating hormone biosynthesis of Phytophthora.

  6. Multiple Phytophthora species associated with a single riparian ecosystem in South Africa.

    Science.gov (United States)

    Nagel, Jan H; Slippers, Bernard; Wingfield, Michael J; Gryzenhout, Marieka

    2015-01-01

    The diversity of Phytophthora spp. in rivers and riparian ecosystems has received considerable international attention, although little such research has been conducted in South Africa. This study determined the diversity of Phytophthora spp. within a single river in Gauteng province of South Africa. Samples were collected over 1 y including biweekly river baiting with Rhododendron indicum leaves. Phytophthora isolates were identified with phylogenetic analyses of sequences for the internal transcribed spacer (ITS) region of the ribosomal DNA and the mitochondrial cytochrome oxidase c subunit I (coxI) gene. Eight Phytophthora spp. were identified, including a new taxon, P. taxon Sisulu-river, and two hybrid species from Cooke's ITS clade 6. Of these, species from Clade 6 were the most abundant, including P. chlamydospora and P. lacustris. Species residing in Clade 2 also were encountered, including P. multivora, P. plurivora and P. citrophthora. The detection of eight species in this investigation of Phytophthora diversity in a single riparian river ecosystem in northern South Africa adds to the known diversity of this genus in South Africa and globally.

  7. Discovering the next generation of late blight resistance genes – can we battle Phytophthora infestans evolution

    Science.gov (United States)

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. RB from Solanum bulbocastanum encodes a CC-NB-LRR (CNL) protein that confers partial resistance to most P. infestans isolates through its recognition of the corresponding pathog...

  8. Root and aerial infections of Chamaecyparis lawsoniana by Phytophthora lateralis: a new threat for European countries

    Science.gov (United States)

    C. Robin; D. Piou; N. Feau; G. Douzon; N. Schenck; E. M. Hansen

    2010-01-01

    Phytophthora lateralis has been isolated from root and collar lesions in Port-Orford Cedar (POC) trees (Chamaecyparis lawsoniana) in north-western France (Brittany). These trees, planted in hedgerows, displayed symptoms similar to the typical symptoms of POC root disease. Until now, the disease has been found outside of the...

  9. Lineage, temperature, and host species have interacting effects on lesion development in Phytophthora ramorum

    Science.gov (United States)

    C. Eyre; K. Hayden; M. Kozanitas; N. Grunwald; M. Garbelotto

    2014-01-01

    There are four recognized clonal lineages of the pathogen Phytophthora ramorum. The two major lineages present in North America are NA1 and NA2. With a few exceptions, NA1 is found in natural forest ecosystems and nurseries, and NA2 is generally restricted to nurseries. Isolates from the NA1 and NA2 lineages were used to infect rhododendron,...

  10. Lineage, Temperature, and Host Species Have Interacting Effects on Lesion Development in Phytophthora Ramorum

    Science.gov (United States)

    There are four recognized clonal lineages of the pathogen Phytophthora ramorum. The two major lineages present in North America are NA1 and NA2. With a few exceptions, NA1 is found in natural forest ecosystems and nurseries, and NA2 is generally restricted to nurseries. Isolates from the NA1 and NA2...

  11. An in planta induced gene of Phytophthora infestans codes for ubiquitin

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Risseeuw, E.P.; Davidse, L.C.

    1991-01-01

    An in planta induced gene of Phytophthora infestans (the causal organism of potato late blight) was isolated from a genomic library by differential hybridization using labelled cDNA derived from poly(A)⁺ RNA of P. infestans grown in vitro and labelled cDNA made from potato-P,

  12. Population structure of Phytophthora infestans in the Toluca Valley region of Central Mexico

    NARCIS (Netherlands)

    Grünwald, N.J.; Flier, W.G.; Sturbaum, A.K.; Garay-Serrano, E.; Bosch, van den G.B.M.; Smart, C.D.; Matuszak, J.M.; Turkensteen, L.J.; Fry, W.E.

    2001-01-01

    We tested the hypothesis that the population of Phytophthora infestans in the Toluca valley region is genetically differentiated according to habitat. Isolates were sampled in three habitats from (i) wild Solanum spp. (WILD), (ii) land-race varieties in low-input production systems (RURAL), and (iii

  13. Epidemiological importance of Solanum sisymbriifolium, S. nigrum and S. dulcamara as alternative hosts for Phytophthora infestans

    NARCIS (Netherlands)

    Flier, W.G.; Bosch, van den G.B.M.; Turkensteen, L.J.

    2003-01-01

    Lesions of Phytophthora infestans were found on woody nightshade (Solanum dulcamara), black nightshade (S. nigrum) and S. sisymbriifolium during a nationwide late blight survey in the Netherlands in 1999 and 2000. Pathogenicity and spore production of P. infestans isolates collected from potato (S.

  14. Differential expression of G protein alpha and ß subunit genes during development of Phytophthora infestans

    NARCIS (Netherlands)

    Laxalt, A.M.; Latijnhouwers, M.; Hulten, van M.; Govers, F.

    2002-01-01

    A G protein subunit gene (pigpa1) and a G protein subunit gene (pigpb1) were isolated from the oomycete Phytophthora infestans, the causal agent of potato late blight. Heterotrimeric G proteins are evolutionary conserved GTP-binding proteins that are composed of ,, and subunits and participate in di

  15. Survival of Phytophthora infestans in Surface Water.

    Science.gov (United States)

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials.

  16. 烤烟品种NC297内生细菌中拮抗烟草黑胫病的生防菌筛选及种群组成分析%Isolation and phylogenetic analysis of the antagonistic endophytic bacteria against Phytophthora parasitica var.nicotianae from tobacco variety NC297

    Institute of Scientific and Technical Information of China (English)

    冯云利; 奚家勤; 马莉; 莫明和; 方敦煌; 夏振远; 雷丽萍; 杨发祥; 周峰

    2011-01-01

    从来自烤烟品种NC297的970株内生细菌中,以烟草黑胫病菌(Phytophthora parasitica var.nicoti-anae)为靶标,共筛选出165株拮抗菌,这些内生细菌对黑胫病菌的抑菌率在9.55%~55.96%之间.内生细菌的生物量在苗期、团棵期、开花期和成熟期中无显著差异,但拮抗菌数量呈上升趋势.对165株拮抗菌的16SrRNA基因序列进行RFLP分析共产生12种带型.根据RFLP带型选取41株进行16S rRNA基因序列测定和系统发育分析.结果表明这165株生防内生细菌归于3大类群%A total of 165 isolates with antagonistic effects against Phytophthora parasitica var.nicotianae were screened from 970 endophytic bacteria isolated from health leaves of tobacco variety NC297.Bioassay results in vivo showed that these antagonists exhibited different inhibitory activities to the pathogen which ranged from 9.55% to 55.96%.The biomass of endophytic bacteria varied not significantly during periods of seeding to maturity but the amount of antagonists increased in the growth process of tobacco.The 165 antagonists were characterized by RFLP analysis of the 16S rRNA sequence which were resulted 12 RFLP patterns.Thus,41 representative isolates,1—3 from each RFLP pattern,were selected for 16S rRNA sequencing.Phylogenetic analysis placed the 165 antagonists of P.parasitica var.nicotianae into three groups of Bacteria,namely Proteobacteria,Actinobacteria and Firmicutes.Members of the Bacillus genus in Firmicutes group were the dominant,in which 159 isolates represented by 6 RFLP patterns were associated with the species of Bacillus amyloliquefaciens subsp.plantarum,Bacillus methylotrophicu,Bacillus tequilensis,Bacillus aryabhattai,Bacillus cereus and Bacillus mycoide.And during all the 159 isolates two species,Bacillus amyloliquefaciens subsp.plantarum and Bacillus methylotrophicu,showed the highest isolated frequency.The remaining 6 isolates were respectively affiliated to the 6 species of Brevibacillus

  17. Morphological and molecular identification of phytophthora species from maple trees in Serbia

    Directory of Open Access Journals (Sweden)

    Milenković Ivan

    2014-01-01

    Full Text Available The paper presents the results of the study performed with aims to determine the presence and diversity of Phytophthora species on maple trees in Serbia. Due to high aggressiveness and their multicyclic nature, presence of these pathogens is posing significant threat to forestry and biodiversity. In total, 29 samples of water, soil and tissues were taken from 10 different localities, and six different maple hosts were tested. After the isolation tests, 17 samples from five different maple hosts were positive for the presence of Phytophthora spp., and 31 isolates were obtained. After the detailed morphological and physiological classification, four distinct groups of isolates were separated. DNA was extracted from selected representative isolates and molecular identification with sequencing of ITS region was performed. Used ITS4 and ITS6 primers successfully amplified the genomic DNA of chosen isolates and morphological identification of obtained isolates was confirmed after the sequencing. Four different Phytophthora species were detected, including P. cactorum, P. gonapodyides, P. plurivora and P. lacustris. The most common isolated species was homothallic, and with very variable and semipapillate sporangia, P. plurivora with 22 obtained isolates. This is the first report of P. plurivora and P. gonapodyides on A. campestre, P. plurivora and P. lacustris on Acer heldreichii and first report of P. lacustris on A. pseudoplatanus and A. tataricum in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008

  18. Genetic variation within clonal lineages of Phytophthora infestans revealed through genotyping-by-sequencing, and implications for late blight epidemiology

    Science.gov (United States)

    Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study included US-8 (n=28), US-11 (n=27), US-23 (n=166), and US-24 (n=36), with isolates originating from 23 of the U...

  19. Variation in Phytophthora infestans: sources and implications

    NARCIS (Netherlands)

    Flier, W.G.

    2002-01-01

    Uitgebreide samenvatting van de dissertatie van Wilbert G. Flier over de oömyceet Phytophthora infestans (Monst.) de Bary, de veroorzaker van 'het kwaad' ofwel de aardappelziekte in de teelt van aardappelen en tomaten

  20. Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae.

    Science.gov (United States)

    Dai, Ting-Ting; Lu, Chen-Chen; Lu, Jing; Dong, SuoMeng; Ye, WenWu; Wang, YuanChao; Zheng, XiaoBo

    2012-09-01

    Phytophthora sojae is a devastating pathogen that causes soybean Phytophthora root rot. This study reports the development of a loop-mediated isothermal amplification (LAMP) assay targeting the A3aPro element for visual detection of P. sojae. The A3aPro-LAMP assay efficiently amplified the target element in Phytophthora spp., Pythium spp., and true fungi isolates. Magnesium pyrophosphate resulting from the LAMP of P. sojae could be detected by real-time measurement of turbidity. Phytophthora sojae DNA products were visualized as a ladder-like banding pattern on 2% gel electrophoresis. A positive colour (sky blue) was only observed in the presence of P. sojae with the addition of hydroxynaphthol blue prior to amplification, whereas none of other isolates showed a colour change. The detection limit of the A3aPro-specific LAMP assay for P. sojae was 10 pg μL(-1) of genomic DNA per reaction. The assay also detected P. sojae from diseased soybean tissues and residues. These results suggest that the A3aPro-LAMP assay reported here can be used for the visual detection of P. sojae in plants and production fields.

  1. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    Science.gov (United States)

    Phytophthora stem and root rot disease, caused by Phytophthora sojae, is one of the most destructive diseases of soybean (Glycine max (L.) Merr.), and has been increasing in several soybean-producing areas around the world. This disease induces serious limitations on soybean production, with yield l...

  2. Mitochondrial genomics in the Genus Phytophthora with a focus on Phytophthora ramorum

    Science.gov (United States)

    Frank N. Martin; Paul Richardson

    2008-01-01

    The mitochondrial genomes of Phytophthora infestans, P. ramorum and P. sojae have been sequenced and comparative genomics has provided an opportunity to examine the processes involved with genome evolution in the genus Phytophthora. This approach can also be useful in assessing intraspecific...

  3. Phytophthora Database: A forensic database supporting the identification and monitoring of Phytophthora

    Science.gov (United States)

    Due to their high virulence and ability to spread rapidly, Phytophthora species represent a serious threat to agricultural production and ecological systems. Many novel Phytophthora species have been reported in recent years, indicative of our limited understanding of the ecology and diversity of Ph...

  4. Phytophthora rotråte i juletrefelt

    DEFF Research Database (Denmark)

    Talgø, Venche; Thomsen, Iben Margrete

    2015-01-01

    Phytophthora rotråte forårsaket av ulike arter av Phytophthora er et stort problem i juletreproduksjonen iUSA. I Norge er det også rapportert om flere tilfeller av skade på grunn av Phytophthora både i juletrær og klippegrønt, men så langt ikke i Danmark. I begge landene er flere arter av...... Phytophthora funnet på treaktige vekster i grøntanlegg. Vi har også sett en urovekkende spredning av Phytophthora til løvtrær i bynære skoger, vassdrag og naturområder det siste tiåret, spesielt i Norge. Både i Norge og Danmark har vi undersøkt vann i eller like ved juletreplantinger og funnet flere...... Phytophthora-arter, så dette er en skadegjører juletredyrkere må være på vakt overfor...

  5. CHARACTERIZATION OF Phytophthora infestans POPULATIONS IN ANTIOQUIA, COLOMBIA CARACTERIZACIÓN DE LAS POBLACIONES DE Phytophthora infestan EN ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Elizabeth Gilchrist Ramelli

    2009-12-01

    Full Text Available From the Phytophthora infestans collection of the Universidad Nacional de Colombia, the isolates collected in different locations in Antioquia, Colombia between 1994 and 2000 were evaluated. These isolates were obtained from late blight lessons in different hosts. In 2000, these isolates were characterized by mating type, mitochondrial haplotype and virulence races. All isolates were of the A1 mating type and two mitochondrial haplotypes were identified: IIa, present in isolates from all the hosts tested, and Ib present only in isolates from tomato and water cucumber (Solanum muricatum. The Antioquia population of P. infestans showed a large complexity of virulence factors (10 out 11, especially those isolates collected from potato, while the tomato population was less complex. The A1 mating type and the mitochondrial haplotype IIa has been associated with the EC1 population that possibly is replacing the US1 population.De la colección de Phytophthora infestans de la Universidad Nacional de Colombia, se evaluaron aquellos aislamientos provenientes de diferentes localidades de Antioquia, Colombia entre 1994 y 2000. Dichos aislamientos fueron obtenidos de lesiones de tizón tardío en diferentes hospederos. En el año 2000 se caracterizaron por el tipo de apareamiento, haplotipo mitocondrial y razas de virulencia. Todos los aislamientos correspondieron al tipo de apareamiento A1 y se presentaron dos haplotipos mitocondriales: IIa, en aislamientos de todos los hospederos evaluados, y Ib solamente en aislamientos colectados de tomate y pepino de agua (Solanum muricatum. La población antioqueña de P. infestans presenta una amplia complejidad de factores de virulencia (10 de 11, especialmente para los aislamientos colectados de papa, mientras que la población de tomate fue menos compleja. El tipo de apareamiento A1 y el haplotipo mitocondrial IIa han sido asociados a la población EC1 que posiblemente está desplazando la población US1.

  6. Analysis on Genotypic Differentiation of Phytophthora infestans by Using Random Amplified Polymorphic DNA (RAPD)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A total of 104 isolates including two Korean isolates and three Japanese isolates of Phytophthora infestans collected from Heilongjiang and Jilin Provinces from 2006 to 2008 were used to determine their mating types,metalaxyl resistance,and RAPD genotypes.All the isolates of P.infestans collected from Heilongjiang and Jilin Provinces belonged to A 1 mating type,and no A 2 mating type was detected.Frequencies of metalaxyl resistant isolates were 94.4%,47.8% and 75.0% in 2006,2007 and 2008,respectively.Accord...

  7. Race Structure and Distribution of Phytophthora infestans in the Investigated Areas of China

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie-hua; YANG Zhi-hui; SHAO Tie-mei; TIAN Shi-min; ZHANG Zhi-ming

    2003-01-01

    Ninety isolates collected from five different provinces and cities (Hebei, Yunan, Sichuan,Chongqing, Inner Mongolia ) during 1997 -1998 were tested with potato clones possessed 8 dominant mono-genes R1, R3, R4, R6, R7, R9, R10, R11 and the combination of R1-R4 of the international late blight dif-ferential host. It concluded that: (1) in the 90 isolates tested 21 different races were detected, of which the 1.3. 4. 7. 9. 10. 11 was very common with frequency of 32.2%, followed by 1. 3. 4. 6. 7. 9. 10. 11 and 3.4. 7. 9. 11 with frequency of 10.0%; (2) all tested resistant genes were compatible to the virulent gene of iso-lates of Phytophthora infestans assayed, which indicated that the virulent genes were very common in thetested population of Phytophthora infestans.

  8. Identification of cell wall-associated proteins from Phytophthora ramorum

    NARCIS (Netherlands)

    Meijer, H.J.G.; Vondervoort, van de P.J.I.; Yin, Q.Y.; Koster, de C.G.; Klis, F.M.; Govers, F.; Groot, de P.W.J.

    2006-01-01

    The oomycete genus Phytophthora comprises a large group of fungal-like plant pathogens. Two Phytophthora genomes recently have been sequenced; one of them is the genome of Phytophthora ramorum, the causal agent of sudden oak death. During plant infection, extracellular proteins, either soluble secre

  9. Identification of cell wall-associated proteins from Phytophthora ramorum

    NARCIS (Netherlands)

    Meijer, H.J.G.; Vondervoort, van de P.J.I.; Yin, Q.Y.; Koster, de C.G.; Klis, F.M.; Govers, F.; Groot, de P.W.J.

    2006-01-01

    The oomycete genus Phytophthora comprises a large group of fungal-like plant pathogens. Two Phytophthora genomes recently have been sequenced; one of them is the genome of Phytophthora ramorum, the causal agent of sudden oak death. During plant infection, extracellular proteins, either soluble

  10. Interactions of Phytophthora capsici with Resistant and Susceptible Pepper Roots and Stems.

    Science.gov (United States)

    Dunn, Amara R; Smart, Christine D

    2015-10-01

    Using host resistance is an important strategy for managing pepper root and crown rot caused by Phytophthora capsici. An isolate of P. capsici constitutively expressing a gene for green fluorescent protein was used to investigate pathogen interactions with roots, crowns, and stems of Phytophthora-susceptible bell pepper 'Red Knight', Phytophthora-resistant bell pepper 'Paladin', and Phytophthora-resistant landrace Criollos de Morelos 334 (CM-334). In this study, the same number of zoospores attached to and germinated on roots of all cultivars 30 and 120 min postinoculation (pi), respectively. At 3 days pi, significantly more secondary roots had necrotic lesions on Red Knight than on Paladin and CM-334 plants. By 4 days pi, necrotic lesions had formed on the taproot of Red Knight but not Paladin or CM-334 plants. Although hyphae were visible in the crowns and stems of all Red Knight plants observed at 4 days pi, hyphae were observed in crowns of only a few Paladin and in no CM-334 plants, and never in stems of either resistant cultivar at 4 days pi. These results improve our understanding of how P. capsici infects plants and may contribute to the use of resistant pepper cultivars for disease management and the development of new cultivars.

  11. Diagnostics of Tree Diseases Caused by Phytophthora austrocedri Species.

    Science.gov (United States)

    Mulholland, Vincent; Elliot, Matthew; Green, Sarah

    2015-01-01

    We present methods for the detection and quantification of four Phytophthora species which are pathogenic on trees; Phytophthora ramorum, Phytophthora kernoviae, Phytophthora lateralis, and Phytophthora austrocedri. Nucleic acid extraction methods are presented for phloem tissue from trees, soil, and pure cultures on agar plates. Real-time PCR methods are presented and include primer and probe sets for each species, general advice on real-time PCR setup and data analysis. A method for sequence-based identification, useful for pure cultures, is also included.

  12. Population structure of the emerging plant pathogen Phytophthora ramorum on the west coast of the United States

    Science.gov (United States)

    S. Prospero; E.M. Hansen; N.J. Grünwald; J. Britt; L.M. Winton.

    2009-01-01

    Phytophthora ramorum is a devastating pathogen in native forests in California and southwestern Oregon and in nursery crops in California, Oregon and Washington. In this study we analyzed the population structure of P. ramorum in the west coast (CA, OR, and WA) of the United States by screening 579 isolates recovered...

  13. Fungicide sensitivity of US genotypes of Phytophthora infestans (Mont.) de Bary to six oomycete-targeted compounds.

    Science.gov (United States)

    Phytophthora infestans (Mont.) de Bary causes potato late blight, an important and costly disease of potato and tomato crops. The baseline sensitivity of recent clonal lineages of P. infestans was tested for six oomycete-targeted fungicides. Forty five isolates collected between 2004 and 2012 were t...

  14. Determination of virulence contributions from Phytophthora infestans effectors IPI-O1 and IPI-O4

    Science.gov (United States)

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, in part because newly evolved pathogen isolates quickly overcome major resista...

  15. Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with mal del ciprés in Patagonia

    Science.gov (United States)

    A. G. Greslebin; E. M. Hansen

    2010-01-01

    Field observations, isolations and pathogenicity tests were performed on Austrocedrus chilensis (Cupressaceae) trees to determine the pathogenicity of Phytophthora austrocedrae and its role in the aetiology of the cypress disease mal del ciprés (MDC) in Argentina. It was found that P. austrocedrae...

  16. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia.

    Science.gov (United States)

    Nagel, Jan H; Gryzenhout, Marieka; Slippers, Bernard; Wingfield, Michael J; Hardy, Giles E St J; Stukely, Michael J C; Burgess, Treena I

    2013-05-01

    Surveys of Australian and South African rivers revealed numerous Phytophthora isolates residing in clade 6 of the genus, with internal transcribed spacer (ITS) gene regions that were either highly polymorphic or unsequenceable. These isolates were suspected to be hybrids. Three nuclear loci, the ITS region, two single copy loci (antisilencing factor (ASF) and G protein alpha subunit (GPA)), and one mitochondrial locus (cytochrome oxidase c subunit I (coxI)) were amplified and sequenced to test this hypothesis. Abundant recombination within the ITS region was observed. This, combined with phylogenetic comparisons of the other three loci, confirmed the presence of four different hybrid types involving the three described parent species Phytophthora amnicola, Phytophthora thermophila, and Phytophthora taxon PgChlamydo. In all cases, only a single coxI allele was detected, suggesting that hybrids arose from sexual recombination. All the hybrid isolates were sterile in culture and all their physiological traits tended to resemble those of the maternal parents. Nothing is known regarding their host range or pathogenicity. Nonetheless, as several isolates from Western Australia were obtained from the rhizosphere soil of dying plants, they should be regarded as potential threats to plant health. The frequent occurrence of the hybrids and their parent species in Australia strongly suggests an Australian origin and a subsequent introduction into South Africa.

  17. Formation, production and viability of oospores of Phytophthora infestans from potato and Solanum demissum in the Toluca Valley, central Mexico

    NARCIS (Netherlands)

    Flier, W.G.; Grünwald, N.J.; Fry, W.E.; Turkensteen, L.J.

    2001-01-01

    Aspects of the ecology of oospores of Phytophthora infestans were studied in the highlands of central Mexico. From an investigation of a random sample of strains, it was found that isolates differed in their average capability to form oospores when engaged in compatible pairings. Most crosses produc

  18. Competitive Interaction Between Phytophthora Infestans Effectors Leads to Increased Aggressiveness on Plants Containing Broad-spectrum Late Blight Resistance

    Science.gov (United States)

    The resistance (R) gene RB confers broad-spectrum resistance to potato late blight and belongs. The RB protein recognizes the presence of members of the Phytophthora infestans effector family IPI-O to elicit resistance. Most isolates of the pathogen contain IPI-O variants that are recognized by R...

  19. 致病疫霉拮抗芽孢杆菌的筛选及脂肽类物质分离的研究%Screening of Antagonistic Bacillus spp.Strains against Phytophthora infestans ( Mont.) de Bary and Isolation of Lipopeptide Substances

    Institute of Scientific and Technical Information of China (English)

    吴艳清; 蒋继志; 梁廷银

    2012-01-01

    [目的]筛选致病疫霉[Phytophthora infestans( Mont.) de Bary]拮抗芽孢杆菌并对其脂肽类物质进行分析.[方法]采用平板分离培养法从狗尾草[Setaria viridis(L)Beauv]根际土壤中分离产芽孢细菌,采用对峙培养法对其进行初筛和复筛,并对其中杀菌效果较好的Y-3菌株的脂肽类物质进行了HPLC分析.[结果]初筛有9株细菌对P.infestans具有一定的拮抗作用,复筛得到Y-1和Y-3菌株对P.infestans的生长具有明显的抑制作用,抑菌率选80%以上;Y-3菌株产生的脂肽粗提物对P.infestans具有较好的拮抗作用,抑制率达90%以上,HPLC分析显示其脂肽粗提物主要包括8种组分.[结论]Y-3菌株产生的脂肽类物质抑菌效果显著,在生物防治马铃薯晚疫病方面具有潜在的应用价值.%[ Objective] The paper was to screen the antagonistic Bacillus spp. strains against Phytophthora infestans (Mont. ) de Bary and analyze its lipopeptide substances. [ Method] Using flat isolation and culture method,the bacteria that could produce Bacillus were isolated from rhizosphere soil,and carried out primary and secondary screening by confrontation culture. The lipopeplide substances of Y-3 strain with better antifungal effect were carried out HPLC analysis. [ Result] Nine strains of bacteria had certain antagonistic effects against P. infesians in primary screening, Y-1 and Y-3 strains had significant inhibition effect against the growth of P. infestans in secondary screening,with inhibition rale higher than 80% ; the crude extract of lipopeplide produced by Y-3 strain had better antagonistic effect against P. infestans ,with inhibition rate higher than 90%. HPLC analysis showed that the crude extract of lipopeptide mainly contained 8 components. [ Conclusion ] The lipnpeptide substances produced by Y-3 strain had significant inhibition effect, which had potential application value for biological control of potato late blight.

  20. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Science.gov (United States)

    Goss, Erica M; Cardenas, Martha E; Myers, Kevin; Forbes, Gregory A; Fry, William E; Restrepo, Silvia; Grünwald, Niklaus J

    2011-01-01

    Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  1. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Directory of Open Access Journals (Sweden)

    Erica M Goss

    Full Text Available Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  2. 75 FR 44936 - Notice of Request for Extension of Approval of an Information Collection; Phytophthora Ramorum...

    Science.gov (United States)

    2010-07-30

    ...; Phytophthora Ramorum; Quarantine and Regulations AGENCY: Animal and Plant Health Inspection Service, USDA... regulations for the interstate movement of regulated articles to prevent the spread of Phytophthora ramorum... of Phytophthora ramorum, contact Mr. Prakash Hebbar, Program Manager, Emergency and Domestic...

  3. [Field resistance of Phytophthora melonis to metalaxyl in South China].

    Science.gov (United States)

    Wu, Yongguan; Lu, Shaofeng; Huang, Siliang; Fu, Gang; Chen, Liang; Xie, Dasen; Li, Qiqin; Cen, Zhenlu

    2011-08-01

    Phytophthora melonis is the casual agent of wax gourd and cucumber Phytophthora blight which becomes a constraint for sustainable production of the related crops. Metalaxyl is one of the principal fungicides for controlling the disease now. The objectives of the present study were: (1) to investigate the baseline sensitivity and field resistance of P. melonis to metalaxyl in South China; (2) to test the occurrence of metalaxyl-resistant mutants from metalaxyl-sensitive wild type strains exposed to the fungicide; and (3) to monitor the development of metalaxyl resistance in P. melonis population. Over 400 samples of wax gourd and cucumber Phytophthora blight were collected from Guangxi Zhuang Autonomous Region and Guangdong province during 2007-2010, and 193 strains of P. melonis were isolated and purified. The sensitivity of the isolated strains to metalaxyl was tested using mycelial growth rate method in vitro and floating-leaf-disk method in vivo, respectively. The metalaxyl-sensitive strains were induced on PDA plates containing 10 microg/mL metalaxyl. The sensitive, moderately resistant and resistant strains were recorded as 29.0% , 18.1% and 52.8%, respectively, among 193 tested strains. The frequency and level of resistance of P. melonis from Guangdong were higher than that from Guangxi. The strains from cucumber was generally more resistant to metalaxyl than those from wax gourd. The metalaxyl-resistant strains were frequently detected as predominant populations in most of the sampling sites and the highest resistance index (4226.9) was confirmed. Metalaxyl-resistant (M1r) mutants could be isolated from approximately 60% of the sensitive wild-type strains. The resistance level of the M mutants was 189-407 times higher than that of their sensitive parental strains. The EC50 values of 9 sensitive strains from a sampling site without a record of phenylamide fungicide application ranged from 0.0429 to 0.5461 microg/mL. Their mean EC50 value (0.3200 +/- 0

  4. 致病疫霉对苯酰胺类杀菌剂抗性研究概述%Review of Resistance to Phenylamide Fungicide in Phytophthora infestans Isolates

    Institute of Scientific and Technical Information of China (English)

    杨宇红; 冯兰香; 谢丙炎; 冯东昕

    2002-01-01

    @@ 致病疫霉(Phytophthora infestans)引起的马铃薯和番茄晚疫病是一种世界性的重要病害,该病造成的损失及用于防治的费用使晚疫病成为世界上耗资最大的病害之一[1].1995年,美国哥伦比亚盆地和俄勒冈州,因马铃薯晚疫病造成的损失及用于防治的费用高达3 000万美元;1998年,通过改进栽培管理,其经济损失和防治费用有所降低,但仍达2 230万美元,其中杀菌剂费用占去1 980万美元[2].由此可见杀菌剂在晚疫病的防治中依然起着不可替代的作用.

  5. The population structure of Phytophthora infestans from the Toluca Valley of Central Mexico suggests genetic differentiation between populations from cultivated potato and wild Solanum spp.

    NARCIS (Netherlands)

    Flier, W.G.; Grünwald, N.J.; Kroon, L.P.N.M.; Sturbaum, A.K.; Bosch, van den G.B.M.; Garay-Serrano, E.; Lozoya-Saldaña, H.; Fry, W.E.; Turkensteen, L.J.

    2003-01-01

    The Population structure of Phytophthora infestans in the Toluca Valley of central Mexico was assessed using 170 isolates collected front cultivated potatoes and the native wild Solanum spp., S. demissum and S. xedinense. All isolates were analyzed for mitochondrial DNA (mtDNA) haplotype and amplifi

  6. Isolation and phylogenetic analysis of the antagonistic endophytic bacteria against Phytophthora parasitica var. nicotianae from tobacco variety NC297%灯盏花总黄酮和抗光氧化能力对外源茉莉酸的响应

    Institute of Scientific and Technical Information of China (English)

    姜维; 苏文华; 敖金成; 崔凤涛

    2011-01-01

    研究用不同浓度的外源茉莉酸处理灯盏花叶片,测定叶片黄酮和叶绿素含量及抗光氧化能力的变化.结果显示:茉莉酸处理后的3 d内黄酮含量变化不大,第6天则显著升高;0.5,1.0,1.5 mmol/L 3个浓度的茉莉酸处理组黄酮含量均高于对照,且1.5 mmol/L处理组黄酮含量明显比0.5和1.0 mmol/L处理组低.茉莉酸未对灯盏花光合作用造成损伤,但叶绿素b含量下降;类胡萝卜素含量都有所增加;叶绿素a在茉莉酸浓度为0.5 mmol/L时增加,而浓度为1.0和1.5 mmol/L时下降.0.5 mmol/L%A total of 165 isolates with antagonistic effects against Phytophthora parasitica var. nicotianae were screened from 970 endophytic bacteria isolated from health leaves of tobacco variety NC297. Bioassay results in vivo showed that these antagonists exhibited different inhibitory activities to the pathogen which ranged from 9.55% to 55.96%. The biomass of endophytic bacteria varied not significantly during periods of seeding to matu- rity but the amount of antagonists increased in the growth process of tobacco. The 165 antagonists were character- ized by RFLP analysis of the 16S rRNA sequence which were resulted 12 RFLP patterns. Thus,41 representative isolates ,1--3 from each RFLP pattern,were selected for 16S rRNA sequencing. Phylogenetic analysis placed the 165 antagonists of P. parasitica var. nicotianae into three groups of Bacteria, namely Proteobacteria,Actinobacte- ria and Firmicutes. Members of the Bacillus genus in Firmicutes group were the dominant, in which 159 isolates represented by 6 RFLP patterns were associated with the species of Bacillus amyloliquefaciens subsp, plantarum, Bacillus methylotrophicu ,Bacillus tequilensis ,Bacillus aryabhattai ,Bacillus cereus and Bacillus mycoide. And dur- ing all the 159 isolates two species, Bac.iUus amyloliquefaciens subsp, plantarum and Bacillus methylotrophicu, showed the highest isolated frequency. The remaining 6 isolates were respectively

  7. Phytophthora porri in leek: epidemiology and resistance.

    NARCIS (Netherlands)

    Smilde, W.D.

    1996-01-01

    In winter, Phytophthora porri is an important pathogen of leek ( Allium porrum L.) in the Netherlands. The fungus survives the crop-free period in summer by oospores in soil, and infects the leaves in autumn. Field studies indicated that dispersal by rain splash is crucial for initiation of an epid

  8. The nature of biotrophy in Phytophthora infestans

    NARCIS (Netherlands)

    Scheepens, P.C.

    1978-01-01

    Phytophthora infestans, being an intermediate type between the facultative and obligate parasites among the Peronosporales (class Oomycetes ), was used to study the factors which are responsible for the inability of

  9. Hot spots of Phytophthora in commercial nurseries

    Science.gov (United States)

    Corina Junker; Patrick Goff; Stefan Wagner; Sabine Werres

    2017-01-01

    Studies have shown that nurseries are an important source for the spread of Phytophthora. Most surveys and studies focusing on the epidemiology of these pathogens in nurseries are based on sampling of symptomatic plants or on samples like water of different sources used for irrigation. There is little knowledge, however, on the survival and...

  10. Phytophthora speelt verstoppertje bij NFT aardbei

    NARCIS (Netherlands)

    Evenhuis, B.; Verhoeven, J.T.W.

    2011-01-01

    Aardbeitelers worden 'blij' gemaakt met Phytophthora cactorum in hun gewas, terwijl ze daar niet op zitten te wachten. Onderzoekers worden teleurgesteld omdat infectie uitblijft terwijl ze er alles aan doen om aantasting te krijgen. Dat hindert ze bij het uitvinden wat het ontsmettingseffect is van

  11. Variation in Phytophthora infestans : sources and implications

    NARCIS (Netherlands)

    Flier, W.

    2001-01-01

    The oomycete pseudofungus Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is considered to be one of the most devastating pathogens affecting potatoes and tomatoes worldwide. In Europe, the pathogen caused severe epidemics on potatoes after its introduction in 1845. Late

  12. 防治烟草黑胫病的根际细菌分离与筛选%Isolation of tobacco rhizobacteria and their antagonism to Phytophthora parasitica. Var.nicotiana

    Institute of Scientific and Technical Information of China (English)

    顾金刚; 方敦煌; 李天飞; 刘杏忠

    2001-01-01

    从云南昆明、玉溪、曲靖、楚雄、大理等地13份烟田根际土样中,经分离纯化得到753株根际细菌.通过对黑胫病病原(Phytophthora parasitica.var.nicotiana)的平板拮抗筛选,共得到有抑制病原菌生长的根际细菌97株,用细菌悬液浸泡烟草种子,通过测定烟草种子发芽率和对烟草苗期的促生作用,选出有较好促生作用的细菌19株,再进行温室盆栽测定,选出对烟草黑胫病有防病促生作用的根际细菌6株,分别编号为RB-1、R4、RB-42、RB-59、RB-78、RB-89.在研究过程中发现,从明胶、几丁质培养基和从根表上分离到的细菌,其防病促生作用的机率较高.在防治苗期黑胫病的温室试验中,RB-42和RB-89菌株的相对防治效果分别达到42.22%和37.78%.通过形态学与生理生化初步的鉴定,RB-42、RB-78、RB-89鉴定为假单胞杆菌(Pseudomonas spp.),R4鉴定为芽孢杆菌(Bacillus sp.).

  13. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL; Savidor, Alon [ORNL

    2006-01-01

    Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

  14. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm.

    Directory of Open Access Journals (Sweden)

    Rachel P Naegele

    Full Text Available Eggplant (Solanum melongena L. is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo, landraces and heirloom cultivars from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784 was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs. The polymorphism information content (PIC for the population was moderate (0.49 in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.

  15. Evaluation of Soybean Germplasm from Provinces in Northeast China for Resistance to Phytophthora sojae

    Institute of Scientific and Technical Information of China (English)

    XU Xiu-hong; PAN Jun-bo; QU Juan-juan; YANG Qing-kai

    2004-01-01

    Soybean Phytophthora root rot (Phytophthora sojae) is a severe disease all over the world. Soybean germplasm from central and southern China for resistance has been evaluated by American researchers on a large scale. P. sojae has been found frequently in northeast of China in recent years, but not systematic evaluation of soybean germplasm for resistance has occurred there. By means of hypocotyl inoculation, 922 cultivars/lines from northeast of China were screened and evaluated for their response to race 1, and 25 of P. sojae. Generally resistance was less frequent in northeast of China than in central and southern China. Five cultivars/lines were identified that confer resistant responses to race 1, 3, 8, 25 and four additional isolates of P. sojae. These cultivars/lines may provide valuable sources of resistance for future breeding programs.

  16. Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen

    Directory of Open Access Journals (Sweden)

    Franck PANABIERES

    2016-05-01

    Full Text Available Phytophthora nicotianae was first isolated from tobacco at the end of the 19th century. This organism is now considered as one of the most devastating oomycete plant pathogens, with a recognized host range of more than 255 species over five continents and a wide diversity of climates. The economic losses caused by P. nicotianae are difficult to estimate, because of the diversity of its hosts and ecological niches. For these reasons, this pathogen represents a continuous challenge to plant disease management programmes, which frequently rely solely on the use of chemicals. Phytophthora nicotianae is better adapted than its competitors to abiotic stresses, especially to climate warming. As a result, its importance is increasing. This review illustrates, with some examples, how P. nicotianae currently impacts plant economies worldwide, and how it may constitute more severe threats to agriculture and natural ecosystems in the context of global climate change.

  17. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Brett M.; Tripathy, Sucheta; Zhang, Xuemin; Dehal, Paramvir; Jiang, Rays H. Y.; Aerts, Andrea; Arredondo, Felipe D.; Baxter, Laura; Bensasson, Douda; Beynon, JIm L.; Chapman, Jarrod; Damasceno, Cynthia M. B.; Dorrance, Anne E.; Dou, Daolong; Dickerman, Allan W.; Dubchak, Inna L.; Garbelotto, Matteo; Gijzen, Mark; Gordon, Stuart G.; Govers, Francine; Grunwald, NIklaus J.; Huang, Wayne; Ivors, Kelly L.; Jones, Richard W.; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt H.; Lee, Mi-Kyung; McDonald, W. Hayes; Medina, Monica; Meijer, Harold J. G.; Nordberg, Erik K.; Maclean, Donald J.; Ospina-Giraldo, Manuel D.; Morris, Paul F.; Phuntumart, Vipaporn; Putnam, Nicholas J.; Rash, Sam; Rose, Jocelyn K. C.; Sakihama, Yasuko; Salamov, Asaf A.; Savidor, Alon; Scheuring, Chantel F.; Smith, Brian M.; Sobral, Bruno W. S.; Terry, Astrid; Torto-Alalibo, Trudy A.; Win, Joe; Xu, Zhanyou; Zhang, Hongbin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Boore, Jeffrey L.

    2006-04-17

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.

  18. Sensitivities of Phytophthora infestans to Metalaxyl, Cymoxanil, and Dimethomorph

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-ning; HUANG Fu-xin; FENG Lan-xiang; QIN Bi-xia; YANG Yu-hong; CHEN Yong-hui; LU Xiu-hong

    2008-01-01

    The isolates of Phytophthora infestans on tomato in the Guangxi Zhuang Autonomous Region, China, were determined for the sensitivities to metalaxyl, cymoxanil and dimethomorph to give the basic information for integrating disease management. Sensitivities were tested by measuring the radial growth on agar medium amended with fungicide, compared with the floating-leaf-disk method. 239 isolates were collected from eight tomato growing areas during 2000-2006. The testing results indicated that the frequencies of sensitive, intermediate, and resistant isolates to metalaxyl were 42.26, 35.98, and 23.53%, respectively. Variations in sensitivities amongst isolates from different areas or different years were very high for metalaxyl. All isolates from Tianlin and Wuxuan were sensitive to metalaxyl, but the metalaxyl-resistant isolates predominated in Tianyang, with the frequency of 51.35%. The EC50 values of certain isolates from Tianyang were higher than 500 μg mL-1 and their resistance levels were over 100000 folds. Cymoxanil has been used for nearly 10 years in Guangxi, and dimethomorph has been used for 5-6 years. However, there was no decrease in sensitivity of P. infestans populations and the sensitivities of the pathogen were nearly normally distributed. Hence, their mean EC50 value [cymoxanil (0.1647±0.0255) μg mL-1, dimethomorph (0.0970±0.0052) μg mL-1] could be used as the baseline sensitivities for monitoring the field resistance development. The comparison with the floating-leaf-disk method indicates that both the techniques provided equivalent results. These studies suggested that metalaxyl can be continuously applied in Tianlin, Wuxuan, and Nanning due to the resistant isolates that have not been found, while for those areas with resistant isolate, the use of metalaxyl should be reduced or alternated, and cymoxanil or dimethomorph was recommended for controlling late blight disease of tomato.

  19. Production of gametangia by Phytophthora ramorum in vitro.

    Science.gov (United States)

    Brasier, Clive; Kirk, Susan

    2004-07-01

    Until now gametangia have not been obtained between paired European A1 and American A2 isolates of Phytopthora ramorum in vitro. Their production in artificial culture relies on interspecific pairings. Using P. drechsleri and P. cambivora testers, 51 of 110 P. ramorum isolates from across Europe were all shown to be A1s; while 32 of 38 American isolates from across California and southwest Oregon were shown to be A2s. However, these interspecific pairings are complex, unusually slow and unpredictable. A range of culture media and conditions are described that were tested, unsuccessfully, with a view to enhancing the efficiency of the interspecific pairings. In further tests, gametangia were obtained between A1 and A2 isolates of P. ramorum when juvenile, pre-chlamydospore producing mycelia were mixed together on carrot agar. The gametangia formed in 3-10 d, sparsely to frequently, initially only within the boundaries of the mixed inocula but subsequently in the extended mycelial growth. Chlamydospores were also produced. This inoculum-mixing method, though again sometimes unpredictable, should enhance efficiency of testing for compatibility types and facilitate further studies on whether the sexual outcrossing system of P. ramorum is functional. Differences between sexual reproduction of P. ramorum and that of other heterothallic Phytophthora species are discussed.

  20. Isolation, Screening and Phylogenetic Analysis of Antagonistic Endophytic Bacteria Against Phytophthora Parasitica var.Nicotianae from Flue-cured Tobacco Variety K326%烤烟品种K326内生细菌分离、抗黑胫病菌株筛选及种群组成分析

    Institute of Scientific and Technical Information of China (English)

    奚家勤; 冯云利; 薛超群; 尹启生; 莫明和; 方敦煌; 王广山; 郭建华

    2013-01-01

    从烤烟品种K326的不同生长时期分离内生细菌1000株,以烟草黑胫病菌(Phytophthora parasitica var.nicotianae)为靶标,共筛选出168株拮抗菌,这些内生细菌对黑胫病菌的抑菌率在12.54%~50.14%之间.苗期和团棵期的内生菌含量较高,但在开花和成熟期时降低了一个数量级,而拮抗菌数量呈上升趋势.对168株拮抗菌的16SrRNA基因序列进行RFLP分析,共产生10种带型.根据RFLP带型选取39株进行16S rRNA基因序列测定和系统发育分析.结果表明,这168株生防内生细菌归于2大类群:Firmicutes和Actinobacteria.Firmicutes类群中的芽孢杆菌属(Bacillus)是优势属,共6种RFLP带型,150个菌株,包括Bacillus amyloliquefaciens subsp,plantarum,Bacillus tequilensis,Bacillus methylotrophicus,Bacillus cereus,Bacillus thuringiensis和Bacillus aryabhattai. Bacillus amyloliquefaciens subsp,plantarum和Bacillus methylotrophicus的出现频率最高,共126株,占该属总菌株数的78.75%.其余18个菌株分属于4个种:即Brevibacillus formosus,Brevibacillus parabrevis,Pseudomonas umsongensis和Pseudomonas aeruginosa.%A total of 168 isolates with antagonistic effects against Phytophthora parasitica var. nicotianae (P. parasitica var.) were screened from 1000 endophytic bacteria isolated from flue-cured tobacco variety K326 at different growing stages, and bioassay results indicated that the inhibitory activities of these antagonists ranged from 12.54% to 50.14%. The biomass of endophytic bacteria was higher during the stages of seedling and rosette, which reduced by one order of magnitude during the stages of flowering and maturity; however, the number of antagonists kept an increasing trend. The RFLP analysis of 16S rRNA sequence on the 168 antagonists produced 10 RFLP patterns. Based on their RFLP patterns, 39 isolates were selected for 16S rRNA sequencing and phylogenetic analysis. The results showed that the 168 antagonists belonged to two groups of bacteria

  1. New record of Phytophthora root and stem rot of Lavandula angustifolia

    Directory of Open Access Journals (Sweden)

    Leszek B. Orlikowski

    2013-12-01

    Full Text Available Phytophthora cinnamomi was isolated from rotted root and stem parts of lavender as well as from soil taken from containers with diseased plants. Additionally Botrytis cinerea, Fusarium spp. and Sclerotinia sclerotiorum were often isolated from diseased tissues. P. cinnamomi colonised leaves and stem parts of 4 lavender species in laboratory trials and caused stem rot of plants in greenhouse experiments. Cardinal temperature for in vitro growth were about 7,5 and 32°C with optimum 25-27,5°C. The species colonised stem tissues at temperature ranged from 10° to 32°C.

  2. Phytophthora root and stem rot – new disease of Ilex aquifolium "Myrtifolia” in Poland

    Directory of Open Access Journals (Sweden)

    Leszek B. Orlikowski

    2014-08-01

    Full Text Available Phytophthora cinnamomi was often isolated from rotted roots and stems of English holly "Myrtifolia" together with Alternaria alternata, Cylindrocarpon destructanss, Fusarium avenaceum and other fungal species. Inoculation of leaf blades and stem parts of 4 species and 12 holly cultivars with P. cinnamomi showed the spread of rot symptoms on the most of them. On Ilex crenata tissues necrosis did not develop or spread slowly. Isolation of P. cinnamomi only from one holly cultivar in surveyed nursery indicate on transmission of the pathogen with imported young plants.

  3. Phytophthora cactorum and Colletotrichum acutatum: Survival and Detection

    Directory of Open Access Journals (Sweden)

    Arja T. Lilja

    2006-12-01

    Full Text Available Phytophthora cactorum and Colletotrichum acutatum are pathogens which are transported with plant material as latent infections and can also survive in soil and plant debris. Since the beginning of 1990’s P. cactorum caused losses in strawberries in Finland and increased culling of silver birch seedlings in forest nurseries because of stem lesions. In this study primers specific for the pathogen were designed, and in a simple PCR they gave an amplification product from pure cultures only when P. cactorum was used as a template. No cross reactions were found with other Phytophthoras in group I or other microbes. Inoculated strawberry plants gave also a clear band in PCR-analyses when the template concentration was diluted. However, amplification was not always reproducible with birch seedlings. With soil samples the best result was gained by a combination of baiting and isolation. C. acutatum is a quarantine pathogen on strawberry in the European Union and thus the infected plants are destroyed in Finland to avoid further spread of the pathogen. The pathogen has earlier been found to survive over one winter in infected plant debris and soil. In the survival test (2003-2005 done in this study, specific amplification products were obtained from test plants inoculated with artificially infected plant residues after 20 months of storage outdoors on soil surface. More positive results were achieved from bait plants grown in soil collected from the field where infected plants had been destroyed two years before, than from samples collected a year after the plant destruction.

  4. Infection of Phytophthora palmivora from Soil in Cocoa Plantation

    Directory of Open Access Journals (Sweden)

    Agus Purwantara

    2008-12-01

    Full Text Available Phytophthora palmivora causes serious losses on cocoa in Indonesia and world-wide. The research aimed to assess the potential of soil as source of inocula for Phytophthora diseases in cocoa. Soil samples were baited using a healthy cocoa pod tissue, and the pathogen was isolated for morphological and molecular identification. Baiting technique was successfully used to detect the presence of P. palmivora in soil samples, and this was confirmed by morphological and molecular identification. P. palmivora can be detected in soil in all year around in wet areas indicating that soil is a massive and consistent source of inocula. Surveys conducted on the soil of Amazonian, Amelonado and Trinitario blocks of various ages showed that P. palmivora can be found in old and young cocoa blocks, even as young as 3 or 4 years. P. palmivora infection from soil to the pods appears to be mainly through contact or rain splash. Baiting with whole healthy pods exposed at different heights above undisturbed litter and above bare soil showed that the infection still occurred at 100 cm above the soil, even though it decreased gradually with the height. Infection from litter was not different to that from bare soil, indicating that the litter layer is not acting physically as a shield preventing rain from splashing the inocula up from wet soil to the pods. However, in tests for the possibility of P. palmivora carried through air convection, no pod was found to be infected, suggesting that the pathogen was not carried through convective accend of aerosol droplets from soil surface up to pods in the canopy.Key words : Theobroma cacao, pod rot, stem canker, baiting.

  5. Phylogenetic analysis of the sequences of rDNA internal transcribed spacer (ITS) of Phytophthora sojae.

    Science.gov (United States)

    Xu, Pengfei; Han, Yingpeng; Wu, Junjiang; Lv, Huiying; Qiu, Lijuan; Chang, Ruzhen; Jin, Limei; Wang, Jinsheng; Yu, Anliang; Chen, Chen; Nan, Haiyang; Xu, Xiuhong; Wang, Ping; Zhang, Dayong; Zhang, Shuzhen; Li, Wenbin; Chen, Weiyuan

    2007-02-01

    The internal transcribed spacer (ITS) region (ITS1, ITS2 and 5.8S rDNA) of the nuclear ribosomal DNA (nrDNA) was amplified via the PCR method in seventeen different isolates of Phytophthora sojae using the common primers of the ITS of fungi. Around 800 bp-1,000 bp fragments were obtained based on the DL2000 marker and the sequences of the PCR products were tested. Taking isolate USA as outgroup, the phylogenetic tree was constructed by means of maximum parsimony analysis, and the genetic evolution among isolates was analyzed. The results showed that there is a great difference between the base constitution of ITS1 and ITS2 among various isolates. The seventeen isolates are classified into three groups, and the isolates from the same region belong to the same group, which shows the variation in geography.

  6. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-06-01

    Full Text Available Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici.

  7. Phytophthora root rot resistance in soybean E00003

    Science.gov (United States)

    Phytophthora root rot (PRR), caused by the oomycete Phytophthora sojae, is a devastating disease in soybean production. Using resistant cultivars has been suggested as the best solution for disease management. Michigan elite soybean E00003 is resistant to P. sojae and has been used as a PRR resist...

  8. The aspartic proteinase family of three Phytophthora species

    NARCIS (Netherlands)

    Kay, J.; Meijer, H.J.G.; Have, ten A.; Kan, van J.A.L.

    2011-01-01

    Background - Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to

  9. Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy.

    Science.gov (United States)

    Pomerantz, A; Cohen, Y; Shufan, E; Ben-Naim, Y; Mordechai, S; Salman, A; Huleihel, M

    2014-12-01

    Phytophthora infestans (P. infestans) is the causal agent of late blight in potato and tomato. This pathogen devastated the potato crops in Ireland more than a century years ago and is still causing great losses worldwide. Although fungicides controlling P. infestans have been used successfully for almost 100 years, some isolates have developed resistance to most common fungicides. Identification and characterization of these resistant isolates is required for better control of the disease. Current methods that are based on microbiological and molecular techniques are both expensive and time consuming. Fourier Transform Infra-Red spectroscopy (FTIR) is an inexpensive and reagent-free technique that provides accurate results in only a few minutes. In this study the infrared absorption spectra of the sporangia of P. infestans were measured to evaluate the potential of FTIR spectroscopy in tandem with multivariate analysis in order to classify those sporangia into those that were resistant and those that were non-resistant to the phenylamide fungicide mefenoxam. Based on individual measurements, our results show that FTIR spectroscopy enables classification of P. infestans isolates into mefenoxam resistant and mefenoxam non-resistant types with specificity of 81.9% and sensitivity of 75.5%. Using average spectra per leaf, it was possible to improve the classification results to 88% sensitivity and 95% specificity.

  10. Detection, Diversity, and Population Dynamics of Waterborne Phytophthora ramorum Populations.

    Science.gov (United States)

    Eyre, C A; Garbelotto, M

    2015-01-01

    Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed routinely; however, little is known about the nature of water-borne P. ramorum populations. Two drainages in an infested California forest were monitored intensively using stream-baiting for 2 years between 2009 and 2011. Pathogen presence was determined both by isolation and polymerase chain reaction (PCR) from symptomatic bait leaves. Isolates were analyzed using simple sequence repeats to study population dynamics and genetic structure through time. Isolation was successful primarily only during spring conditions, while PCR extended the period of pathogen detection to most of the year. Water populations were extremely diverse, and changed between seasons and years. A few abundant genotypes dominated the water during conditions considered optimal for aerial populations, and matched those dominant in aerial populations. Temporal patterns of genotypic diversification and evenness were identical among aerial, soil, and water populations, indicating that all three substrates are part of the same epidemiological cycle, strongly influenced by rainfall and sporulation on leaves. However, there was structuring between substrates, likely arising due to reduced selection pressure in the water. Additionally, water populations showed wholesale mixing of genotypes without the evident spatial autocorrelation present in leaf and soil populations.

  11. Identification of Phytophthora Species Parasiting on Pricklyash%花椒疫霉病菌种的鉴定

    Institute of Scientific and Technical Information of China (English)

    谢宁; 曹支敏; 梁超琼; 苗颖; 王楠

    2013-01-01

    依据菌落特征、无性与有性繁殖体形态、rDNA-ITS系统发育及病菌的致病性,将分离自陕西、甘肃花椒树干基部腐烂病斑上的疫霉菌(Phytophthora spp.)6个菌系鉴定为3个种:采自甘肃陇南菌系Pwm、Pwb和陕西凤县菌系Pfs2均属于多寄主疫霉(P.multivoraP.M.Scott & T.Jung),陕西凤县菌系PfP和甘肃秦安菌系Pqy为柑橘褐腐疫霉(Phytophthora citrophthora R.E.Sm.& E.H.Sm.),采自陕西凤县的疫霉菌菌系Pfs1为苎麻疫霉(Phytophthora boehmeriae Sawada).各疫霉菌系的形态学鉴定及致病性测定结果与其rDNN-ITS系统发育分析基本一致.%Based on colonial characteristics,asexual and sexual morphology,rDND-ITS phylogeny and path-ogenicity,6 isolates of Phythophthora collected from pricklyash in Shaanxi and Gansu provinces were identified as three species: Phytophthora multivora P. M. Scott & T. Jung included isolates Pwm,Pwb and P fs 2,collected from Wudu, Wenxian in Gansu and Fengxian in Shaanxi respectively,P. Citrophthora R. E. Sm. & E. H. Sm comprised isolates P f p from Fengxian in Shaanxi and Pqy from Qinan in Gansu,and isolate P fs 1 from Fengxian in Shaanxi identified as P. Boehmeriae Sawada. The morphologic classification of these Phythophthora isolates basically was in accordance with their molecular phylogeny cluste.

  12. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge

    Science.gov (United States)

    Glycine max (L.) Merr. cv. Waseshiroge is considered to be strongly resistant to several races of Phytophthora sojae in Japan. In order to characterize the inheritance of Waseshiroge resistance to P. sojae isolates, 42 F2 progeny plants and 94 F7:8 families were produced from crosses between the sus...

  13. Molecular mapping and construction of SCAR markers of the strawberry Rpf 1 resistance gene to Phytophthora fragariae and their use in breeding programs

    NARCIS (Netherlands)

    Haymes, K.M.; Weg, van de W.E.; Arens, P.; Vosman, B.; Nijs, den A.P.M.

    1997-01-01

    The commercial strawberry (Fragaria x ananassa) resistance gene Rpfl conferring resistance to various isolates of Phytophthora fragariae, was mapped using 7 RAPD markers. A DNA fragment representing a RAPD marker linked to susceptibility was cloned, sequenced and converted into a sequence characteri

  14. Molecular mapping and construction of SCAR markers of the strawberry Rpf1 resistance gene to Phytophthora fragariae and their use in breeding programmes

    NARCIS (Netherlands)

    Haymes, K.M.; Weg, van de W.E.; Arens, P.; Vosman, B.; den Nijs, A.P.M.

    1998-01-01

    The commercial strawberry (Fragaria x ananassa) resistance gene Rpfl conferring resistance to various isolates of Phytophthora fragariae, was mapped using 7 RAPD markers. A DNA fragment representing a RAPD marker linked to susceptibility was cloned, sequenced and converted into a sequence characteri

  15. Phytophthora-ID.org: A sequence-based Phytophthora identification tool

    Science.gov (United States)

    N.J. Grünwald; F.N. Martin; M.M. Larsen; C.M. Sullivan; C.M. Press; M.D. Coffey; E.M. Hansen; J.L. Parke

    2010-01-01

    Contemporary species identification relies strongly on sequence-based identification, yet resources for identification of many fungal and oomycete pathogens are rare. We developed two web-based, searchable databases for rapid identification of Phytophthora spp. based on sequencing of the internal transcribed spacer (ITS) or the cytochrome oxidase...

  16. Phytophthora tropicalis on Hedera helix and Epipremnum aureum in Polish greenhouses.

    Science.gov (United States)

    Orlikowski, L B; Trzewik, A; Wiejacha, K

    2006-01-01

    Phytophthora tropicalis was isolated from Hedera helix and Epipremnum aureum showing discoloration of leaves, necrosis of shoot base, spread upwards and on roots. The species was detected from 7/8 plants of Hedera and 3/4 of Epipremnum. Additionally Botrytis cinerea, Fusarium avenaceum and Rhizoctonia solani were recovered from some of diseased plants. P. tropicalis caused leaf necrosis of 13 plant species and tomato seedlings. The quickest spread of necrosis was observed on leaves of Peperomia magnoliaefolia, Pelargonium zonale and Phalaenopsis x hybridum. The disease developed at temperature ranged from 10 degrees to 32.5 degrees C with optimum 30 degrees C.

  17. Gene flow analysis demonstrates that Phytophthora fragariae var. rubi constitutes a distinct species, Phytophthora rubi comb. nov.

    Science.gov (United States)

    Man in 't Veld, Willem A

    2007-01-01

    Isozyme analysis and cytochrome oxidase sequences were used to examine whether differentiation of P. fragariae var. fragariae and P. fragariae var. rubi at the variety level is justified. In isozyme studies six strains of both P. fragariae varieties were analyzed with malate dehydrogenase (MDH), glucose phosphate isomerase (GPI), aconitase (ACO), isocitrate dehydrogenase (IDH) and phosphogluconate dehydrogenase (PGD), comprising altogether seven putative loci. Five unique alleles (Mdh-1(A), Mdh-2(B), Gpi(A), Aco(B) and Idh-1(B)) were found in strains of P. fragariae var. fragariae, whereas five unique alleles (Mdh-1(B), Mdh-2(A), Gpi(B), Aco(A) and Idh-1(A)) were present in strains of P. fragariae var. rubi. It was inferred from these data that there is no gene flow between the two P. fragariae varieties. Cytochrome oxidase I (Cox I) sequences showed consistent differences at 15 positions between strains of Fragaria and Rubus respectively. Based on isozyme data, cytochrome oxidase I sequences, and previously published differences in restyriction enzyme patterns of mitochondrial DNA, sequences of nuclear and mitochondrial genes, AFLP patterns and pathogenicity, it was concluded that both specific pathogenic varieties of P. fragariae are reproductively isolated and constitute a distinct species. Consequently strains isolated from Rubus idaeus are assigned to Phytophthora rubi comb. nov.

  18. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  19. Biological and epidemiological aspects of the quarantine pathogen Phytophthora ramorum

    Directory of Open Access Journals (Sweden)

    Beatrice Ginetti

    2015-12-01

    Full Text Available Phytophthora ramorum is a quarantine pathogen that causes leaf blight and shoot dieback of the crown, bark cankers and death on a number of both ornamental and forest trees, especially in North America and northern Europe, where it has produced severe outbreaks.In Italy it was first reported in 2002, on Rhodondendron yakushimanum in a Piedmont nursery; after that it seemed to have disappeared, only to re-emerge in 2013 when numerous isolates were detected on batches of Viburnum tinus plants growing in some nurseries in the Pistoia area (Tuscany, which is an important district in the trade of nursery plants world-wide. This work reports on a number of laboratory tests that were carried out on isolates from infected plant samples. The micromorphological and macromorphological characteristics of the pathogen growing on carrot agar (CA, corn meal agar (CMA, malt extract agar (MEA potato dextrose agar, and V8 agar with added PARPNH (see text were determined, as was the growth rate at 10º, 15º, 20º, 25°, 30º, 32º and 35ºC. Molecular analysis was employed to identify the isolates more precisely. Inoculation trials under the bark were also carried out to ascertain the isolate virulence and the Koch’s Postulates.The Plant Protection Service of the Tuscan Region (SFR, Servizio Fitosanitario Regionale was alerted as soon as the pathogen infection was detected and it took the prescribed steps to eradicate the infection in the field and prevent the recurrence of an epidemic.

  20. Genetic transformation of the plant pathogens Phytophthora capsici and Phytophthora parasitica.

    Science.gov (United States)

    Bailey, A M; Mena, G L; Herrera-Estrella, L

    1991-08-11

    Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively.

  1. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis.

    Science.gov (United States)

    Brasier, Clive M; Franceschini, Selma; Vettraino, Anna Maria; Hansen, Everett M; Green, Sarah; Robin, Cecile; Webber, Joan F; Vannini, Andrea

    2012-12-01

    Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest (PNW). Since the 1990s however disease outbreaks have occurred increasingly on ornamental C. lawsoniana in Europe; and in 2007 the pathogen was discovered in soil around old growth Chamaecyparis obtusa in Taiwan, where it may be endemic. When the phenotypes of over 150 isolates of P. lateralis from Taiwan, across the PNW (British Columbia to California) and from France, the Netherlands and the UK were compared three growth rate groups were resolved: one slow growing from Taiwan, one fast growing from the PNW and Europe, and one of intermediate growth from a small area of the UK. Within these growth groups distinct subtypes were identified based on colony patterns and spore metrics and further discriminated in a multivariate analysis. The assumption that the three main growth groups represented phylogenetic units was tested by comparative sequencing of two mitochondrial and three nuclear genes. This assumption was confirmed. In addition two phenotype clusters within the Taiwan growth group were also shown to be phylogenetically distinct. These four phenotypically and genotypically unique populations are informally designated as the PNW lineage, the UK lineage, the Taiwan J lineage, and the Taiwan K lineage. Their characteristics and distribution are described and their evolution, taxonomic, and plant health significance is discussed.

  2. Genetic transformation of the plant pathogens Phytophthora capsici and Phytophthora parasitica.

    OpenAIRE

    Bailey, A. M.; Mena, G L; Herrera-Estrella, L

    1991-01-01

    Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per ...

  3. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  4. De rol van heterotrimere G-eiwitten in de ontwikkeling en virulentie van Phytophthora infestans

    NARCIS (Netherlands)

    Latijnhouwers, M.

    2003-01-01

    Onderzoek naar de ziekteverwekker Phytophthora infestans die de aardappelziekte veroorzaakt. Samenvatting van het proefschrift van Maita J.M. Latijnhouwers getiteld: 'The role of heterotrimeric G-proteins in development and virulence of Phytophthora infestans'

  5. Voetsporen van evolutie: de dynamiek van effectorgenen in het Phytophthora-genoom

    NARCIS (Netherlands)

    Jiang, R.H.Y.

    2007-01-01

    Het geslacht Phytophthora omvat meer dan 65 verwoestende plantenpathogene soorten die ernstige schade toebrengen aan landbouwgewassen en aan planten, struiken en bomen in de natuur. Economisch belangrijke pathogenen zijn onder andere Phytophthora infestans, de veroorzaker van de aardappelziekte, Phy

  6. Evaluation of Watermelon Germplasm for Resistance to Phytophthora Blight Caused by Phytophthora capsici

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kim

    2013-03-01

    Full Text Available This study was conducted to determine the Phytophthora rot resistance of 514 accessions of watermelon germplasm, Citrullus lanatus var lanatus. About 46% of the 514 accessions tested were collections from Uzbekistan, Turkey, China, U.S.A., and Ukraine. Phytophthora capsici was inoculated to 45-day-old watermelon seedlings by drenching with 5 ml of sporangial suspension (10⁶ sporangia/ml. At 7 days after inoculation, 21 accessions showed no disease symptoms while 291 accessions of susceptible watermelon germplasm showed more than 60.1% disease severity. A total of 510 accessions of watermelon germplasm showed significant disease symptoms and were rated as susceptible to highly susceptible 35 days after inoculation. The highly susceptible watermelon germplasm exhibited white fungal hyphae on the lesion or damping off with water-soaked and browning symptoms. One accession (IT032840 showed moderate resistance and two accessions (IT185446 and IT187904 were resistant to P. capsici. Results suggest that these two resistant germplasm can be used as a rootstock and as a source of resistance in breeding resistant watermelon varieties against Phytophthora.

  7. Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

    Directory of Open Access Journals (Sweden)

    Mee Kyung Sang

    2013-06-01

    Full Text Available We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107 among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05 reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05 reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

  8. Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

    Science.gov (United States)

    Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok

    2013-01-01

    We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit. PMID:25288942

  9. High genotypic diversity found among population of Phytophthora infestans collected in Estonia.

    Science.gov (United States)

    Runno-Paurson, Eve; Kiiker, Riinu; Joutsjoki, Tiina; Hannukkala, Asko

    2016-03-01

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most important diseases of potato worldwide. This is the first study characterising Estonian P. infestans population using the SSR marker genotyping method. 70 P. infestans isolates collected during the growing season in 2004 from eight potato fields in three different regions of Estonia were characterised with nine polymorphic SSR markers. A1 and A2 mating type isolates were detected from every studied field indicating the high potential for sexual reproduction, which raises the genotypic diversity in P. infestans population. Results revealed highly diverse P. infestans population in Estonia resembling the Northern European populations. Most of the multilocus genotypes were detected only once among the collected isolates. Subpopulations collected from different geographical regions of Estonia showed no differentiation from each other but instead formed one highly diverse group.

  10. Genetic analysis of Phytophthora infestans populations in the Nordic European countries reveals high genetic variability

    DEFF Research Database (Denmark)

    Brurberg, May Bente; Elameen, Abdelhameed; Le, Ving Hong

    2011-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). The pathogen is highly adaptable and to get an overview of the genetic variation in the Nordic countries, Denmark, Finland, Norway and Sweden we have analyzed 200 isolates from...... different fields using nine simple-sequence repeat (SSR) markers. Forty-nine alleles were detected among the nine SSR loci and isolates from all four Nordic countries shared the most common alleles across the loci. In total 169 multilocus genotypes (based on seven loci) were identified among 191 isolates....... The genotypic diversities, quantified by a normalized Shannon’s diversity index (Hs), were 0.95 for the four Nordic countries. The low FST value of 0.04 indicates that the majority of variation is found within the four Nordic countries. The large number of genotypes and the frequency distribution of mating...

  11. Genomic Characterization of a South American Phytophthora Hybrid Mandates Reassessment of the Geographic Origins of Phytophthora infestans.

    Science.gov (United States)

    Martin, Michael D; Vieira, Filipe G; Ho, Simon Y W; Wales, Nathan; Schubert, Mikkel; Seguin-Orlando, Andaine; Ristaino, Jean B; Gilbert, M Thomas P

    2016-02-01

    As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19th-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen's origins using a genomic data set encompassing 71 globally sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina's phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on Solanum tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.

  12. Comparison of Isolating and Culturing Phytophthora infestans and P.nicotianae Among Several Selective Media%几种选择性培养基对致病疫霉和烟草疫霉分离及培养比较研究

    Institute of Scientific and Technical Information of China (English)

    朱桂宁; 黄福新

    2002-01-01

    @@ 致病疫霉(Phytophthora infestans)是疫霉属真菌中一个重要的种,引起马铃薯、番茄的晚疫病,造成马铃薯、番茄生产的严重损失.近年来,晚疫病对作物的为害日益严重,引起了广大植病工作者的重视.

  13. Phytophthora capsici Epidemic Dispersion on Commercial Pepper Fields in Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    Adrián Zapata-Vázquez

    2012-01-01

    Full Text Available Chili pepper blight observed on pepper farms from north Aguascalientes was monitored for the presence of Phytophthora capsici during 2008–2010. Initially, ELISA tests were directed to plant samples from greenhouses and rustic nurseries, showing an 86% of positive samples. Later, samples of wilted plants from the farms during the first survey were tested with ELISA. The subsequent survey on soil samples included mycelia isolation and PCR amplification of a 560 bp fragment of ITS-specific DNA sequence of P. capsici. Data was analyzed according to four geographical areas defined by coordinates to ease the dispersal assessment. In general, one-third of the samples from surveyed fields contained P. capsici, inferring that this may be the pathogen responsible of the observed wilt. Nevertheless, only five sites from a total of 92 were consistently negative to P. capsici. The presence of this pathogen was detected through ELISA and confirmed through PCR. The other two-thirds of the negative samples may be attributable to Fusarium and Rhizoctonia, both isolated instead of Phytophthora in these areas. Due to these striking results, this information would be of interest for local plant protection committees and farmers to avoid further dispersal of pathogens to new lands.

  14. Phytophthora capsici epidemic dispersion on commercial pepper fields in Aguascalientes, Mexico.

    Science.gov (United States)

    Zapata-Vázquez, Adrián; Sánchez-Sánchez, Mario; del-Río-Robledo, Alicia; Silos-Espino, Héctor; Perales-Segovia, Catarino; Flores-Benítez, Silvia; González-Chavira, Mario Martín; Valera-Montero, Luis Lorenzo

    2012-01-01

    Chili pepper blight observed on pepper farms from north Aguascalientes was monitored for the presence of Phytophthora capsici during 2008-2010. Initially, ELISA tests were directed to plant samples from greenhouses and rustic nurseries, showing an 86% of positive samples. Later, samples of wilted plants from the farms during the first survey were tested with ELISA. The subsequent survey on soil samples included mycelia isolation and PCR amplification of a 560 bp fragment of ITS-specific DNA sequence of P. capsici. Data was analyzed according to four geographical areas defined by coordinates to ease the dispersal assessment. In general, one-third of the samples from surveyed fields contained P. capsici, inferring that this may be the pathogen responsible of the observed wilt. Nevertheless, only five sites from a total of 92 were consistently negative to P. capsici. The presence of this pathogen was detected through ELISA and confirmed through PCR. The other two-thirds of the negative samples may be attributable to Fusarium and Rhizoctonia, both isolated instead of Phytophthora in these areas. Due to these striking results, this information would be of interest for local plant protection committees and farmers to avoid further dispersal of pathogens to new lands.

  15. Resistance to Phytophthora infestans EC-1 clonal lineage in Solanum tuberosum by introducing the RB gene

    Directory of Open Access Journals (Sweden)

    María Lupe Román

    2015-04-01

    Full Text Available One of the most efficient options for the control of late blight disease in potato (Solanum tuberosum is the development of resistant varieties to Phytophthora infestans mediated by the direct transfer of resistance (R genes through genetic engineering. In the present work, we used Solanum bulbocastanum RB gene to confers broad spectrum resistance to P. infestans races. To that end, Agrobacterium - mediated genetic transformation was used to transform a susceptible potato variety, Desiree, with the binary vector pCIP68 harboring the RB gene. As a result, 19 transformed plants containing the RB gene were obtained. kanamycin resistance test and polymerase chain reaction (PCR assays confirmed the integration of the T-DNA in the potato genome. The 19 transformed plants, also called transgenic events were subjected to infection under biosafety greenhouse conditions. Phytophthora infestans isolate POX067 of the EC-1 clonal lineage, commonly find in Peru, was used for the infection. Three of the 19 plants ([RB]54, [RB]56 and [RB]70 show high resistance levels to isolate POX067 of P. infestans.

  16. Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper

    Directory of Open Access Journals (Sweden)

    Sung Chul Yun

    2011-08-01

    Full Text Available Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen`s zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

  17. 烟草黑胫病拮抗内生细菌的分离、鉴定及防效测定%Isolation, identification and control efficacy determination of an endophytic strain against Phytophthora parasitica var.nicotianae

    Institute of Scientific and Technical Information of China (English)

    陈泽斌; 夏振远; 雷丽萍; 陈海如

    2011-01-01

    269 endophytic bacteria were isolated from healthy tobacco plant with conventional isolation method. Seven strains that obviously antagonized against growth of P. Parasitica var. Nicotianae were screened, all with above 6mm width of inhibitory zone. Antagonistic activity test showed that there existed some antagonistic substances in the culture filtrates for strain 05-4004 and 05-2501. Pathogenic test showed that strain 701-1 exhibited obvious or potential pathoge-nicity to tobacco after inoculation. Other 6 strains were tested with greenhouse experiment and results showed that strain 05-4004 and 05-2002 were the most effective strains against P. Parasitica var nicotianae with control efficacy of 46. 6% and 45. 2% . Germination rates of tobacco seeds in NB culture and untreated seeds were 84. 3% and 82. 7% , respectively, while seeds soaked in strain 05-2002 and 05-4004 culture were improved to 93. 5% and 93.1%. Plant height, leaf length, leaf width and number of leaves were effectively increased when roots were irrigated with strain 05-2002 and 05-4004 culture. Phylogentic analysis based on 16S rDNA suggested that 05-4004 shared 99% homologies with Bacillus pumilus (EU366363) and Bacillus safensis (AY030327). These sequences constituted a branch in phylogenetic tree.%采用常规分离方法从健康烟株的根、茎、叶中分离得到内生细菌269株,从中筛选出7株对烟草黑胫病病原菌具有明显拮抗作用的菌株,它们的抑菌半径达到6 mm以上.菌株05-4004、05-2501培养液滤液中存在具有明显抑菌作用的活性成分.致病性试验中,发现菌株701-1在人工接种条件下有致病能力或潜在致病性,选择余下6株拮抗细菌进行了温室盆栽试验,以05-4004、05-2002两株烟草内生细菌对烟草黑胫病的防效最好,分别为46.6%、45.2%.促生试验中,NB培养液和清水对照的种子发芽率分别为84.3%、82.7%,而经过05-2002和05-4004除菌滤液浸

  18. 78 FR 58993 - Notice of Request for Extension of Approval of an Information Collection; Phytophthora Ramorum...

    Science.gov (United States)

    2013-09-25

    ... Collection; Phytophthora Ramorum; Quarantine and Regulations AGENCY: Animal and Plant Health Inspection... Phytophthora ramorum. DATES: We will consider all comments that we receive on or before November 25, 2013... of regulated articles to prevent the spread of Phytophthora ramorum, contact Dr. Prakash K....

  19. 40 CFR 180.1057 - Phytophthora palmivora; exemption from requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phytophthora palmivora; exemption from... From Tolerances § 180.1057 Phytophthora palmivora; exemption from requirement of tolerance. Phytophthora palmivora is exempted from the requirement of a tolerance in or on the raw agricultural...

  20. Risico voor resistente rassen, Phytophthora doorbreekt resisten tiegen (interview met Geert Kessel)

    NARCIS (Netherlands)

    Engwerda, J.; Kessel, G.J.T.

    2009-01-01

    In phytophthora-resistente aardappelrassen Bionica en Toluca kan alsnog phytoph-thora ontstaan. Wageningen UR waarschuwt telers hiervoor. Bij laboratoriumexperimenten zijn drie phytophthora-isolaten gevonden die het resistentiegen Blb2 hebben doorbroken. Het is voor het eerst dat de aardappelziekte

  1. Evidence for homoploid speciation in Phytophthora alni supports taxonomic reclassification in this species complex.

    Science.gov (United States)

    Husson, C; Aguayo, J; Revellin, C; Frey, P; Ioos, R; Marçais, B

    2015-04-01

    Alder decline has been a problem along European watercourses since the early 1990s. Hybridization was identified as the main cause of this emerging disease. Indeed, the causal agent, a soil-borne pathogen named Phytophthora alni subsp. alni (Paa) is the result of interspecific hybridization between two taxa, Phytophthora alni subsp. multiformis (Pam) and Phytophthora alni subsp. uniformis (Pau), initially identified as subspecies of Paa. The aim of this work was to characterize the ploidy level within the P. alni complex that is presently poorly understood. For that, we used two complementary approaches for a set of 31 isolates of Paa, Pam and Pau: (i) quantification of allele copy number of three single-copy nuclear genes using allele-specific real-time PCR and (ii) comparison of the genome size estimated by flow cytometry. Relative quantification of alleles of the three single-copy genes showed that the copy number of a given allele in Paa was systematically half that of its parents Pau or Pam. Moreover, DNA content estimated by flow cytometry in Paa was equal to half the sum of those in Pam and Pau. Our results therefore suggest that the hybrid Paa is an allotriploid species, containing half of the genome of each of its parents Pam and Pau, which in turn are considered to be allotetraploid and diploid, respectively. Paa thus results from a homoploid speciation process. Based on published data and on results from this study, a new formal taxonomic name is proposed for the three taxa Paa, Pam and Pau which are raised to species status and renamed P. ×alni, P. ×multiformis and P. uniformis, respectively.

  2. Mapping the Progression of Phytophthora Ramorum

    Science.gov (United States)

    Banh, T.; Li, J.; El-Askary, H. M.

    2013-12-01

    There has been a plant pathogen, Phytophthora Ramorum that has been causing trouble for the plant species in the forests of California and Oregon. Phytophthora is essentially a water mold that infects oak species like California black oak, coast live oak as well as California bay laurel (Lamsal). What this project aims to accomplish is to observe any changes in NDVI values between the years of 2002 and 1994. What the project hopes to observe is a decline of NDVI values between the two years because the infection of Phytophtora Ramorum will cause stress to the plant or kill the plant, which will lower the values of NDVI. The project will utilizes satellite data to create NDVI images over the study area and two types of change detection methods to observe the differences between the NDVI values of the two years. Preliminary results for the project, data obtained from Landsat 7 ETM+ with a resolution of 240 meters, was not able to observe any significant changes. A finer resolution to differentiate the NDVI values would be needed. In addition the best way to keep the pathogen from getting out of control is with ground level management, or complete eradication of the pathogen. These eradication methods include burning the infected host plants and spreading herbicide (Alexander). With that in mind it would be ideal to have an early detection of the pathogen infestation. Therefore another goal of the project is to continue to research if remote sensing could play a role in an early detection method for the presence of Phytophtora Ramorum.

  3. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler).

    Science.gov (United States)

    Acebo-Guerrero, Y; Hernández-Rodríguez, A; Vandeputte, O; Miguélez-Sierra, Y; Heydrich-Pérez, M; Ye, L; Cornelis, P; Bertin, P; El Jaziri, M

    2015-10-01

    To isolate and characterize rhizobacteria from Theobroma cacao with antagonistic activity against Phytophthora palmivora, the causal agent of the black pod rot, which is one of the most important diseases of T. cacao. Among 127 rhizobacteria isolated from cacao rhizosphere, three isolates (CP07, CP24 and CP30) identified as Pseudomonas chlororaphis, showed in vitro antagonistic activity against P. palmivora. Direct antagonism tested in cacao detached leaves revealed that the isolated rhizobacteria were able to reduce symptom severity upon infection with P. palmivora Mab1, with Ps. chlororaphis CP07 standing out as a potential biocontrol agent. Besides, reduced symptom severity on leaves was also observed in planta where cacao root system was pretreated with the isolated rhizobacteria followed by leaf infection with P. palmivora Mab1. The production of lytic enzymes, siderophores, biosurfactants and HCN, as well as the detection of genes encoding antibiotics, the formation of biofilm, and bacterial motility were also assessed for all three rhizobacterial strains. By using a mutant impaired in viscosin production, derived from CP07, it was found that this particular biosurfactant turned out to be crucial for both motility and biofilm formation, but not for the in vitro antagonism against Phytophthora, although it may contribute to the bioprotection of T. cacao. In the rhizosphere of T. cacao, there are rhizobacteria, such as Ps. chlororaphis, able to protect plants against P. palmivora. This study provides a theoretical basis for the potential use of Ps. chlororaphis CP07 as a biocontrol agent for the protection of cacao plants from P. palmivora infection. © 2015 The Society for Applied Microbiology.

  4. Immediate Activation of Respiration in Petroselinum crispum L. in Response to the Phytophthora megasperma f. sp. Glycinea Elicitor.

    Science.gov (United States)

    Norman, E. G.; Walton, A. B.; Turpin, D. H.

    1994-12-01

    Treatment of parsley (Petroselinum crispum L.) cell cultures with the Phytophthora megasperma elicitor isolated from the fungus Phytophthora megasperma f. sp. Glycinea caused an immediate increase in the rate of respiratory CO2 evolution in the dark. The respiratory response was biphasic, showing a rapid enhancement in the first 20 min and then a slower increase until a steady rate was attained 60 min posttreatment. The enhanced rate of CO2 evolution corresponded to the activation of phosphofructokinase and glucose-6-phosphate dehydrogenase, key enzymes in the regulation of carbohydrate flow to glycolysis and the oxidative pentose phosphate (OPP) pathway, respectively. The increased rate of CO2 evolution and the activation of phosphofructokinase and glucose-6-phosphate dehydrogenase were maintained for the duration of the experiments, indicating long-term stimulation of respiration through both glycolysis and the OPP pathway. A 23% decrease in the C6:C1 ratio of 14CO2 evolution from labeled glucose 60 min after the addition of Phytophthora megasperma elicitor is consistent with an increased contribution of the OPP pathway to cellular respiration. Long-term activation of the OPP pathway following elicitation could serve to maintain the pools of substrates necessary during activation of the shikimic acid pathway, leading to the production of defensive compounds.

  5. Evaluation of a Diverse, Worldwide Collection of Wild, Cultivated, and Landrace Pepper (Capsicum annuum) for Resistance to Phytophthora Fruit Rot, Genetic Diversity, and Population Structure.

    Science.gov (United States)

    Naegele, R P; Tomlinson, A J; Hausbeck, M K

    2015-01-01

    Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.

  6. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus.

    Science.gov (United States)

    Hung, Phung Manh; Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-09-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.

  7. Biología de Cycloneda Sanguínea L. (Coleoptera: Coccinellidae Criado sobre el Afido Verde de los Cítricos (Aphís Citricola Van Der Goot

    Directory of Open Access Journals (Sweden)

    Hurtado Mejía Juan Guillermo

    1997-12-01

    Full Text Available Los estudios de laboratorio sobre la biología del escarabajo (Cycloneda sanguinea L. alimentado con el áfido verde de los cítricos (Aphis citricola Van der Goot presentó 4 ínstares larvales. La duración de huevo al adulto fue de 30,2 días. Las tasas de desarrollo para los ínstares larvales para la longitud del cuerpo, ancho de la cápsula cefálica y la longitud del profémur fueron 1,65 mm, 1,33 mm y 1,416 mm, respectivamente. El factor de Dyar hallado para los instares larvales de la longitud del cuerpo, ancho de la cápsula cefálica y longitud del profémur fueron de 1,68 mm, 1,32 mm y 1,38 mm, respectivamente. Tanto las tasas de desarrollo como el factor de Dyar mostraron variaciones entre instares y características morfológicas. Sin embargo, una de las características, ancho de la cápsula cefálica, evidenció una medida constante (1,3 mm.

  8. Molecular mapping and construction of SCAR markers of the strawberry Rpf1 resistance gene to Phytophthora fragariae and their use in breeding programmes

    OpenAIRE

    1998-01-01

    The commercial strawberry (Fragaria x ananassa) resistance gene Rpfl conferring resistance to various isolates of Phytophthora fragariae, was mapped using 7 RAPD markers. A DNA fragment representing a RAPD marker linked to susceptibility was cloned, sequenced and converted into a sequence characterized amplified region (SCAR) marker. Next, SCAR primers to the resistant allele (SCAR-R) were developed based upon a deletion region between susceptible and resistant plants. The SCAR-R primers were...

  9. Molecular mapping and construction of SCAR markers of the strawberry Rpf 1 resistance gene to Phytophthora fragariae and their use in breeding programs

    OpenAIRE

    1997-01-01

    The commercial strawberry (Fragaria x ananassa) resistance gene Rpfl conferring resistance to various isolates of Phytophthora fragariae, was mapped using 7 RAPD markers. A DNA fragment representing a RAPD marker linked to susceptibility was cloned, sequenced and converted into a sequence characterized amplified region (SCAR) marker. Next, SCAR primers to the resistant allele (SCAR-R) were developed based upon a deletion region between susceptible and resistant plants. The SCAR-R primers were...

  10. A molecular method to assess Phytophthora diversity in environmental samples.

    Science.gov (United States)

    Scibetta, Silvia; Schena, Leonardo; Chimento, Antonio; Cacciola, Santa O; Cooke, David E L

    2012-03-01

    Current molecular detection methods for the genus Phytophthora are specific to a few key species rather than the whole genus and this is a recognized weakness of protocols for ecological studies and international plant health legislation. In the present study a molecular approach was developed to detect Phytophthora species in soil and water samples using novel sets of genus-specific primers designed against the internal transcribed spacer (ITS) regions. Two different rDNA primer sets were tested: one assay amplified a long product including the ITS1, 5.8S and ITS2 regions (LP) and the other a shorter product including the ITS1 only (SP). Both assays specifically amplified products from Phytophthora species without cross-reaction with the related Pythium s. lato, however the SP assay proved the more sensitive and reliable. The method was validated using woodland soil and stream water from Invergowrie, Scotland. On-site use of a knapsack sprayer and in-line water filters proved more rapid and effective than centrifugation at sampling Phytophthora propagules. A total of 15 different Phytophthora phylotypes were identified which clustered within the reported ITS-clades 1, 2, 3, 6, 7 and 8. The range and type of the sequences detected varied from sample to sample and up to three and five different Phytophthora phylotypes were detected within a single sample of soil or water, respectively. The most frequently detected sequences were related to members of ITS-clade 6 (i.e. P. gonapodyides-like). The new method proved very effective at discriminating multiple species in a given sample and can also detect as yet unknown species. The reported primers and methods will prove valuable for ecological studies, biosecurity and commercial plant, soil or water (e.g. irrigation water) testing as well as the wider metagenomic sampling of this fascinating component of microbial pathogen diversity.

  11. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    Science.gov (United States)

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.

  12. Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici.

    Science.gov (United States)

    Sang, Mee Kyung; Shrestha, Anupama; Kim, Du-Yeon; Park, Kyungseok; Pak, Chun Ho; Kim, Ki Deok

    2013-06-01

    We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

  13. Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans.

    Science.gov (United States)

    Gómez-Alpizar, Luis; Hu, Chia-Hui; Oliva, Ricardo; Forbes, Gregory; Ristaino, Jean Beagle

    2008-01-01

    Phylogenetic relationships of Phytophthora infestans sensu lato in the Andean highlands of South America were examined. Three clonal lineages (US-1, EC-1, EC-3) and one heterogeneous lineage (EC-2) were found in association with different host species in genus Solanum. The EC-2 lineage includes two mitochondrial (mtDNA) haplotypes, Ia and Ic. Isolates of P. infestans sensu lato EC-2 fit the morphological description of P. infestans but are different from any genotypes of P. infestans described to date. All isolates of P. infestans sensu lato from Ecuador were amplified by a P. infestans specific primer (PINF), and restriction fragment length patterns were identical in isolates amplified with ITS primers 4 and 5. The EC-1 clonal lineage of P. infestans sensu lato from S. andreanum, S. columbianum, S. paucijugum, S. phureja, S. regularifolium, S. tuberosum and S. tuquerense was confirmed to be P. infestans based on sequences of the cytochrome oxidase I (cox I) gene and intron 1 of ras gene. The EC-2 isolates with the Ic haplotype formed a distinct branch in the same clade with P. infestans and P. mirabilis, P. phaseoli and P. ipomoeae for both cox I and ras intron 1 phylogenies and were identified as the newly described species P. andina. Ras intron 1 sequence data suggests that P. andina might have arisen via hybridization between P. infestans and P. mirabilis.

  14. Transformation of the oomycete pathogen, Phytophthora infestans.

    Science.gov (United States)

    Judelson, H S; Tyler, B M; Michelmore, R W

    1991-01-01

    A stable transformation procedure has been developed for Phytophthora infestans, an oomycete fungus that causes the late blight diseases of potato and tomato. This is the first description of reliable methods for transformation in an oomycete pathogen. Drug-resistant transformants were obtained by using vectors that contained bacterial genes for resistance to hygromycin B or G418 fused to promoters and terminators from the Hsp70 and Ham34 genes of the oomycete, Bremia lactucae. Using polyethylene glycol and CaCl2, vector DNA was introduced into protoplasts as a complex with cationic liposomes or with carrier DNA only. Transformants were obtained at similar frequencies with each combination of promoter and selectable marker and were confirmed by DNA and RNA hybridization and phosphotransferase assays. Transformation occurred through the integration of single or tandemly repeated copies of the plasmids into genomic DNA, conferring mitotically stable drug-resistant phenotypes. The sizes of the marker gene mRNAs in each transformant and the results of transcript mapping studies were consistent with the function of the B. lactucae regulatory sequences in P. infestans. A hygromycin-resistant transformant was tested and found to maintain pathogenicity, indicating that the gene transfer procedure will be useful for the molecular analysis of genes relevant to disease.

  15. Phytophthora infestans population structure: a worldwide scale

    Directory of Open Access Journals (Sweden)

    Cárdenas Toquica Martha

    2012-08-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep (Peptidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and the mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America expanding on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  16. PHYTOPHTHORA INFESTANS POPULATION STRUCTURE: A WORLDWIDE SCALE

    Directory of Open Access Journals (Sweden)

    MARTHA CÁRDENAS

    2012-01-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of the pathogen’s population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep (Peptidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America, expanding it on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  17. Screening of novel microorganisms for biosurfactant and biocontrol activity against Phytophthora infestans.

    Science.gov (United States)

    Tomar, Sonica; Singh, B P; Lal, Mehi; Ma, Khan; Hussain, Touseef; Sharma, Sanjeev; Kaushik, S K; Kumar, Satish

    2014-09-01

    In the present study, 95 isolates of bacteria were tested for their biosurfactant as well as biocontrol activity against Phytophthora infestans. The results revealed that only 15.8% isolates showed biosurfactant activity. The emulsification index ranged from 0-68% and 24.2% isolates showed positive reaction for biosurfactant properties. In emulsification assay and oil spreading test, 18.95% and 5.26% isolates, respectively scored positive for biosurfactant production. Among all, only five isolates were found effective against P. infestans, for biocontrol properties. Pseudomonas aeruginosa-1 showed 62.22% inhibition zone after 72 hrs while P. aeruginosa-3 showed 46.42%. Forty-eight hrs old culture supernatants were highly effective in food-poisoning test, tuber slice test and detached leaf method against P. infestans. In whole potato plant test, bacterial cell based formulation, culture supernatant and bacterial cell suspension of P. aeruginosa-1 showed 10.42%, 9.94% and 17.96% diseases severity respectively, as against 53.96% in control. This isolate holds promise as biological control agent against P. infestans in field.

  18. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici.

    Science.gov (United States)

    Quesada-Ocampo, L M; Hausbeck, M K

    2010-06-01

    Phytophthora capsici causes root, crown, and fruit rot of tomato, a major vegetable crop grown worldwide. The objective of this study was to screen tomato cultivars and wild relatives of tomato for resistance to P. capsici. Four P. capsici isolates were individually used to inoculate 6-week-old seedlings (1 g of P. capsici-infested millet seed per 10 g of soilless medium) of 42 tomato cultivars and wild relatives of tomato in a greenhouse. Plants were evaluated daily for wilting and death. All P. capsici isolates tested caused disease in seedlings but some isolates were more pathogenic than others. A wild relative of cultivated tomato, Solanum habrochaites accession LA407, was resistant to all P. capsici isolates tested. Moderate resistance to all isolates was identified in the host genotypes Ha7998, Fla7600, Jolly Elf, and Talladega. P. capsici was frequently recovered from root and crown tissue of symptomatic inoculated seedlings but not from leaf tissue or asymptomatic or control plants. The phenotype of the recovered isolate matched the phenotype of the inoculum. Pathogen presence was confirmed in resistant and moderately resistant tomato genotypes by species-specific polymerase chain reaction of DNA from infected crown and root tissue. Amplified fragment length polymorphisms of tomato genotypes showed a lack of correlation between genetic clusters and susceptibility to P. capsici, indicating that resistance is distributed in several tomato lineages. The results of this study create a baseline for future development of tomato cultivars resistant to P. capsici.

  19. Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils.

    Science.gov (United States)

    Brasier, Clive M; Sanchez-Hernandez, Esperanza; Kirk, Susan A

    2003-04-01

    A Phytophthora pathogen of trees and shrubs previously designated Phytophthora sp. O-group is formally named as P. inundata sp. nov. P. inundata falls within the P. gonapodyides-P. megasperma major ITS Clade 6, its present nearest known relative being P. humicola. It has non-papillate sporangia, fairly large oogonia (average ca 40 microns) with thick walled oospores, amphigynous antheridia, a distinctive colony type, a high optimum temperature for growth of 28-30 degrees C, fast growth at the optimum, and a high upper temperature limit for growth of ca 35-37 degrees. A study of the breeding system of eight P. inundata isolates showed them to be classically heterothallic with A1 and A2 compatibility types. However some P. inundata A1 x A2 combinations failed to mate even though the same isolates mated successfully with P. drechsleri testers. Others were 'silent' A1s or A2s, unable to produce their own gametangia but able to induce gametangial formation in the opposite sexual compatibility type of another species. This indicates a partial breakdown of the sexual mechanism in the species. Two isolates (one A1 and one A2) were unpredictably and chimaerically self-fertile, suggesting A1 + A2 chromosomal heteroploidy. The association of P. inundata with ponds and rivers and with root and collar roots of trees and shrubs after flooding is discussed.

  20. Detection, diversity, and population dynamics of waterborne Phytophthora ramorum populations

    Science.gov (United States)

    Catherine Eyre; Matteo Garbelotto

    2015-01-01

    Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed...

  1. Validation of a tuber blight (Phytophthora infestans) prediction model

    Science.gov (United States)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  2. Interaction between the moss Physcomitrella patens and Phytophthora

    NARCIS (Netherlands)

    Overdijk, Elysa J.R.; Keijzer, De Jeroen; Groot, De Deborah; Schoina, Charikleia; Bouwmeester, Klaas; Ketelaar, Tijs; Govers, Francine

    2016-01-01

    Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for v

  3. Potato late blight epidemics and population structure of Phytophthora infestans.

    NARCIS (Netherlands)

    Zwankhuizen, M.J.

    1998-01-01

    Potato late blight is caused by the fungus Phytophthora infestans . To study the relative importance of oospores in the epidemiology, and to estimate the relative impact of various infection sources, late blight epidemics in Southern Flevoland (The Netherlands) were studied using epidemiological and

  4. Susceptibility of highbush blueberry cultivars to Phytophthora root rot

    Science.gov (United States)

    Phytophthora cinnamomi Rands is a ubiquitous soilborne pathogen associated with root rot in many woody perennial plant species, including highbush blueberry (Vaccinium sp.). To identify genotypes with resistance to the pathogen, cultivars and advanced selections of highbush blueberry were grown in a...

  5. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black p

  6. Correlating Phytophthora ramorum infection rate and lesion expansion in tanoak

    Science.gov (United States)

    Katherine Hayden; Heather Rickard; Matteo Garbelotto

    2008-01-01

    To date, resistance to Phytophthora ramorum in its most susceptible hosts has most commonly been quantified by lesion growth, after wounding or non-wounding inoculations via mycelia or high concentrations of zoospores. However, even highly susceptible hosts may not always become infected when they are exposed to a pathogen under ecologically...

  7. Phytophthora ramorum and P. kernoviae: regulation in the European union

    Science.gov (United States)

    Stephen Hunter

    2008-01-01

    The history of the regulation of action against Phytophthora ramorum and P. kernoviae in the EU and U.K. is briefly summarised. For the former there are EU controls on the import of host plants, and the internal regime of plant passporting has been extended to cover Rhododendron, Viburnum and...

  8. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Judelson, Howard S.

    2003-01-01

    Germinated asexual sporangia, zoospores, and mycelia of Phytophthora infestans were transformed to G418-resistance by microprojectile bombardment. After optimization, an average of 14 transformants/shot were obtained, using 10(6) germinated sporangia and gold particles coated with 1 microg...

  9. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn;

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  10. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.

  11. Phytophthora ramorum causes cryptic bole cankers in Canyon line Oak

    Science.gov (United States)

    Unusual mortality of large canyon live oaks was observed in natural stands in San Mateo, California starting in 2007. A survey of affected stands showed that symptomatic trees were spatially associated with California bay, the primary source of Phytophthora ramorum spores in this forest type. Trunk ...

  12. Production, survival and infectivity of oospores of Phytophthora infestans

    NARCIS (Netherlands)

    Turkensteen, L.J.; Flier, W.G.; Mulder, A.; Wanningen, R.

    2000-01-01

    The formation of oospores of Phytophthora infestans was studied in tomato and potato crops and volunteer plants under field conditions, and in laboratory tests with leaf discs of potato cultivars differing in their level of race-nonspecific resistance. Oospores were readily detected in

  13. The biology of Phytophthora infestans at its center of origin

    NARCIS (Netherlands)

    Grünwald, N.J.; Flier, W.G.

    2005-01-01

    The central highlands of Mexico are considered to be a center of genetic diversity for both the potato late blight pathogen and for tuber-bearing Solanum spp. Recent work conducted in Mexico and South America sheds new light on the biology and evolution of Phytophthora infestans and other related Ph

  14. Histology of Phytophthora ramorum in Notholithocarpus densiflorus bark tissues

    Science.gov (United States)

    Molly Botts Giesbrecht; Everett M. Hansen; Peter Kitin

    2011-01-01

    Colonisation of Notholithocarpus densiflorus (Hook. and Arn.) Rehder tissues by Phytophthora ramorum Werres, De Cock & Man in't Veld is not well understood. The pathogen is able to colonise nearly all tissues of this host but it is unclear how a tree is ultimately killed. In this research,

  15. Resistance to Phytophthora cinnamomi in the Genus Abies

    Science.gov (United States)

    John Frampton; Fikret Isik; Mike Benson; Jaroslav Kobliha; Jan Stjskal

    2012-01-01

    A major limiting factor for the culture of true firs as Christmas trees is their susceptibility to Oomycete species belonging to the genus Phytophthora. In North Carolina alone, the Fraser fir (Abies fraseri [Pursh] Poir.) Christmas tree industry loses 6 to 7 million dollars annually to root rot primarily caused by ...

  16. The maturation and germination of Phytophthora ramorum Chlamydospores

    Science.gov (United States)

    Aaron L. Smith; Everett M. Hansen

    2008-01-01

    Chlamydospores are a distinctive feature of Phytophthora ramorum. They are formed quickly in agar, and within colonized leaves. We followed their development and maturation in vitro and in vivo, and studied conditions affecting their germination. Cell walls of mature P. ramorum chlamydospores...

  17. Can Phytophthora ramorum be spread with contaminated irrigation water?

    Science.gov (United States)

    D. Seipp; T. Brand; K. Kaminski; S. Wagner; S. Werres

    2008-01-01

    In a two year study, the spread of Phytophthora ramorum with contaminated irrigation water and the survival of the pathogen in water reservoirs were studied (Werres and others 2007). In addition at the end of each experimental period root ball samples from asymptomatic plants were taken to look for contamination with P. ramorum....

  18. Can Epiphytes reduce disease symptoms caused by Phytophthora ramorum

    Science.gov (United States)

    Leaf infection of ornamental species by Phytophthora ramorum has a significant impact on the spread of this disease. Fungicides have had limited effects on controlling this disease. With increasing concerns that repeated fungicide applications will exasperate the potential for fungicide resistance...

  19. Multi-scale modelling of infection pressure from Phytophthora infestans

    NARCIS (Netherlands)

    Skelsey, P.; Werf, van der W.; Kessel, G.J.T.; Rossing, W.A.H.; Holtslag, A.A.M.

    2007-01-01

    Management of potato late blight could benefit from prediction of the risk posed to potato fields from external inoculum sources of Phytophthora infestans. Influx of inoculum depends on a complex interplay of population biological, atmospheric and spore survival processes, and is difficult to predic

  20. Isolation

    DEFF Research Database (Denmark)

    Agerholm, Frank Juul

    2011-01-01

    Næringsstoffet har i dette nummer sat fokus på ”velvære i vinterkulden”, ”indendørsaktiviteter” og ”fedtafgift”. I klummen vises det, at disse tre fokusområder, der for en umiddelbar betragtning måske nok synes noget uensartede, falder sammen i ét tema: Isolation!......Næringsstoffet har i dette nummer sat fokus på ”velvære i vinterkulden”, ”indendørsaktiviteter” og ”fedtafgift”. I klummen vises det, at disse tre fokusområder, der for en umiddelbar betragtning måske nok synes noget uensartede, falder sammen i ét tema: Isolation!...

  1. Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries.

    Science.gov (United States)

    Abad, Z Gloria; Abad, Jorge A; Cacciola, Santa Olga; Pane, Antonella; Faedda, Roberto; Moralejo, Eduardo; Pérez-Sierra, Ana; Abad-Campos, Paloma; Alvarez-Bernaola, Luis A; Bakonyi, József; Józsa, András; Herrero, Maria Luz; Burgess, Treena I; Cunnington, James H; Smith, Ian W; Balci, Yilmaz; Blomquist, Cheryl; Henricot, Béatrice; Denton, Geoffrey; Spies, Chris; Mcleod, Adele; Belbahri, Lassaad; Cooke, David; Kageyama, Koji; Uematsu, Seiji; Kurbetli, Ilker; Değirmenci, Kemal

    2014-01-01

    A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and β-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate. © 2014 by The Mycological Society of America.

  2. Growth Inhibition of Cocoa Pod Rot Fungus Phytophthora palmivora byPseudomonas fluorescence and Bacillus subtilis bacteria

    Directory of Open Access Journals (Sweden)

    Sakti Widyanta Pratama

    2013-08-01

    Full Text Available Black pod disease caused by Phytophthora palmivorafungus is one of the important diseases on cocoa crop. Pod rot is the most important disease because it may cause loss of cocoa pod. Until now, the fungal pathogen of cocoa black pod disease is still a crucial problem and there is no fungicide that is really effective against the disease. One alternative to control the cocoa black pod disease is by using biological agents as biofungicide, including utilizing Pseudomonas fluorescenceand Bacillus subtilis bacteria. The research was done by isolation of P. palmivora from infected pods of Kaliwining Experimental Station to obtain pure cultures of fungus and by multiplication of P. fluorescence and B. subtilis. Antagonist test was performed by inoculating P. palmivora into a petri dish in a distance of 3 cm from the edge. P. fluorescenceand B. Subtilis were inoculated into petridishes in three days after the fungal treatment. Control was inoculated with isolate of P. palmivora only. Fungal growth was measured everyday by measuring radius of fungal colonies first time 24 hours after inoculation. Growth of Phytophthora palmivora in the two treatmens were used to calculate the percentage of inhibition. The results of this study indicated that P. fluorescence and B. subtiliswere able to inhibit fungal growth of P. palmivora. Both bacterial antagonists had the same effectiveness in inhibiting the growth of P. palmivora fungus based on the percentage of inhibition and effectiveness criteria. Based on the results of translucent zones indicated that B. subtiliswas more powerfull in inhibiting growth of P. Palmivora compared to P. fluorescence. Key words: Black pod disease of cocoa, biological control, Phytophthora palmivora, Pseudomonas fluorescence, Bacillus subtilis

  3. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    Directory of Open Access Journals (Sweden)

    Govers Francine

    2009-08-01

    Full Text Available Abstract Background Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores. Results P. brassicae isolates were tested for pathogenicity on Brussels sprout plants (Brassica oleracea var. gemmifera. Microscopic examination of leaves, stems and roots infected with a GFP-tagged transformant of P. brassicae clearly demonstrated the susceptibility of the various tissues. Leaf discs were cut from infected Brussels sprout leaves, transferred to microwell plates and submerged in small amounts of water. In the leaf discs the hyphae proliferated and abundant formation of zoosporangia was observed. Upon maturation the zoosporangia released zoospores in high amounts and zoospore production continued during a period of at least four weeks. The zoospores were shown to be infectious on Brussels sprouts and Arabidopsis. Conclusion The in vitro leaf disc method established from P. brassicae infected Brussels sprout leaves facilitates convenient and high-throughput production of infectious zoospores and is thus suitable to drive small and large scale inoculation experiments. The system has the advantage that zoospores are produced continuously over a period of at least one month.

  4. Genome-wide identification of laccase gene family in three Phytophthora species.

    Science.gov (United States)

    Feng, Baozhen; Li, Peiqian

    2012-12-01

    Phytophthora spp. is a primary pathogen in oomycete, causing economically and environmentally devastating epidemics of plants. Laccases have been found in all domains of life but have not been reported in oomycte. In this paper, laccase genes of Phytophthora spp. were identified in three genomes (Phytophthora capsici, Phytophthora sojae and Phytophthora ramorum). 18 laccase genes were identified in total, including four in P. capsici genome, six in P. sojae genome and eight in P. ramorum genome. Most of the predicted gene models shared typical fungal laccase character, possessing three conserved positions with one cysteine and ten histidine residues at these positions. Phylogenetic analysis illustrated that laccases from Phytophthora clustered into four clades, while fungal laccases clustered together. The results provided the theoretical ground for new hypotheses about the roles laccases in oomycetes and may guide the future research of these enzymes.

  5. Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans.

    Science.gov (United States)

    Catal, Mursel; King, Louis; Tumbalam, Pavani; Wiriyajitsomboon, Prissana; Kirk, William W; Adams, Gerard C

    2010-08-01

    A simple and reliable method for preparation of whole nuclei of a common oomycete, Phytophthora infestans, is described for laser flow cytometry. The ease of preparation, the absence of detectable debris and aggregates, and the precision in determinations of DNA content per nucleus improve interpretation and understanding of the genetics of the organism. Phytophthora infestans is the pathogen that causes potato and tomato late blight. The genetic flexibility of P. infestans and other oomycete pathogens has complicated understanding of the mechanisms of variation contributing to shifts in race structure and virulence profiles on important agricultural crops. Significant phenotypic and genotypic changes are being reported in the apparent absence of sexual recombination in the field. Laser flow cytometry with propidium iodide is useful in investigating the nuclear condition of the somatic colony of field strains of P. infestans. The majority of the studied strains contain a single population of nuclei in nonreplicated diplophase. However, mean DNA content per nucleus varies considerably among isolates confirming the heterogeneity of the nuclear population in regard to C-value, for field isolates. Nuclear DNA content varies from 1.75x to 0.75x that of nuclei in a standard strain from central Mexico. Some strains contain two to three populations of nuclei with differing DNA contents in the mycelium and are heterokaryons. Such a range in DNA content suggests DNA-aneuploidy, but direct confirmation of aneuploidy will require microscopy of chromosomes. Heterokaryosis and populations of nuclei of differing DNA content necessarily confound standardized assays used worldwide in crop breeding programs for determination of race profiles and virulence phenotypes of this important pathogen.

  6. Phenotypic variation within a clonal lineage of Phytophthora infestans infecting both tomato and potato in Nicaragua.

    Science.gov (United States)

    Blandón-Díaz, J U; Widmark, A-K; Hannukkala, A; Andersson, B; Högberg, N; Yuen, J E

    2012-03-01

    Late blight caused by Phytophthora infestans (Mont.) de Bary is a constraint to both potato and tomato crops in Nicaragua. The hypothesis that the Nicaraguan population of P. infestans is genotypically and phenotypically diverse and potentially subdivided based on host association was tested. A collection of isolates was analyzed using genotypic markers (microsatellites and mitochondrial DNA haplotype) and phenotypic markers (mating type, virulence, and fungicide sensitivity). The genotypic analysis revealed no polymorphism in 121 of 132 isolates of P. infestans tested. Only the Ia haplotype and the A2 mating type were detected. Most of the tested isolates were resistant to metalaxyl. The virulence testing showed variation among isolates of P. infestans. No evidence was found of population differentiation among potato and tomato isolates of P. infestans based on the genotypic and phenotypic analysis. We conclude that the Nicaraguan population of P. infestans consists of a single clonal lineage (NI-1) which belongs to the A2 mating type and the Ia mitochondrial DNA haplotype. Moreover, based on the markers used, this population of P. infestans does not resemble the population in countries from which potato seed is imported to Nicaragua or the population in neighboring countries. The data presented here indicate that the NI-1 clonal lineage is the primary pathogen on both potato and tomato, and its success on both host species is unique in a South American context.

  7. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.

    Science.gov (United States)

    Roetschi, A; Si-Ammour, A; Belbahri, L; Mauch, F; Mauch-Mani, B

    2001-11-01

    Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2.

  8. Biological differences between the evolutionary lineages within Phytophthora ramorum and Phytophthora lateralis: Should the lineages be formally taxonomically designated?

    Science.gov (United States)

    Clive Brasier

    2017-01-01

    It is now generally accepted that the four evolutionary lineages of Phytophthora ramorum (informally designated NA1, NA2, EU1, and EU2) are relatively anciently divergent populations, recently introduced into Europe and North America from different, unknown geographic locations; that recombinants between them are genetically unstable and probably...

  9. Survival of Phytophthora alni, Phytophthora kernoviae, and Phytophthora ramorum in a simulated aquatic environment at different levels of pH.

    Science.gov (United States)

    Kong, Ping; Lea-Cox, John D; Moorman, Gary W; Hong, Chuanxue

    2012-07-01

    Phytophthora ramorum, Phytophthora alni, and Phytophthora kernoviae present significant threats to biosecurity. As zoosporic oomycetes, these plant pathogens may spread through natural waterways and irrigation systems. However, survival of these pathogens in aquatic systems in response to water quality is not well understood. In this study, we investigated their zoospore survival at pH 3-11 in a 10% Hoagland's solution over a 14-day period. The results showed that all three pathogens were most stable at pH 7, although the populations declined overnight irrespective of pH. Extended survival of these species depended on the tolerance of pH of their germinants. Germinants of P. alni ssp. alni and P. ramorum were more basic tolerant (pH 5-11), while those of P. kernoviae were more acidic tolerant (pH 3-9). These tolerant germinants formed compact hyphae or secondary sporangia to allow longer survival of these pathogens. Long-term survival at a broad pH range suggests that these pathogens, especially P. ramorum, are adapted to an aquatic environment and pose a threat to new production areas through water dispersal. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Sequence Analysis of the Ribosomal DNA ITS of Phytophthora Parasitica in Tobacco in Liangshan Region of Sichuan Province%四川凉山地区烟草黑胫病菌的ITS序列分析

    Institute of Scientific and Technical Information of China (English)

    张海珊; 王勇; 许大凤; 刘东阳; 周本国; 高正良; 卢军; 章东方; 严丹侃; 王芳

    2015-01-01

    The internal transcribed spacer regions (ITS) of the ribosomal RNA gene from 20 isolates of tobacco black shank were amplified with the polymerase chain reaction through the universal primers and sequence. The result showed that the total length of ITS of those 20 isolates tested were all 803bp, and the nucleotide sequence identity among those sequences was above 99.3%, and 20 strains had 99.6%-100%homologies with Phytophthora parasitica(GU111675.1) published in GenBank. But the ITS of those 20 isolates tested had some mutation sites which mainly concentrated in the ITS2 area and 468 mutation of isolates, which mainly came from Dechang and Xichang had certain regional. With the bio-software of MEGA6, Sequences from the above isolates were compared with 15 sequences published in GenBank database and phylogenitic trees were constructed based on ITS sequence data. The results showed that the isolates tested, GU111675.1, KF010303.1, AJ854295.1, KC768775.1 and L41383 were clustered into the same clade and all were Phytophthora parasitica (or Phytophthora nicotianae). They were clustered in a distant clade for different Phytophthora species and phylogenetically distinct each other. The results indicated that twenty isolates which isolated from different regions of Liangshan prefecture were Phytophthora parasitica.%本研究利用真菌核糖体基因转录间隔区(ITS)通用引物,PCR 扩增四川省凉山州不同地区的20株烟草黑胫病菌的ITS序列,并对PCR产物进行了克隆测序。结果表明,20个供试菌株的ITS1-5.8S-ITS2总长均为803 bp;各菌株之间的ITS序列同源性达到99.3%以上;与GenBank报道的寄生疫霉台湾烟草分离株Phytophthora parasitica(GU111675.1)的同源性在99.6%~100%之间;但各菌株ITS序列的个别位点存在突变,这些突变主要集中在ITS2区上,其中第468处的突变具有一定地域性,主要为德昌和西昌的菌株。利用MEGA6软件对20个

  11. A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans.

    Science.gov (United States)

    Shi, Xiaolei; Tian, Zhendong; Liu, Jun; van der Vossen, Edwin A G; Xie, Conghua

    2012-02-01

    Late blight caused by Phytophthora infestans is the most important disease of potato. Many efforts have been made to understand molecular mechanism of the durable resistance to address the challenge raised by rapid evolution of the pathogen. A pathogenesis related protein (PR) gene StPRp27 was previously isolated from the potato leaves challenged by P. infestans. The sequence analysis and expression pattern reveal that StPRp27 may be associated with resistance to P. infestans. In present research, transient expression of StPRp27 in Nicotiana benthamiana enhanced resistance to P. infestans isolates 99189 and PY23 indicating its potential contribution to the disease resistance. These findings were also confirmed by over-expression of StPRp27 in potato cv. E-potato 3, which significantly slowed down the development of the disease after inoculation with a mixture of P. infestans races. Further, silencing of StPRp27 homologous genes in N. benthamiana harboring dominant Phytophthora resistance gene Rpi-blb1 or Rpi-blb2 showed no effects on the resistance triggered by these R genes. Our results suggest that StPRp27 contributes to a race-nonspecific resistance against P. infestans by inhibiting the disease development and has a potential use in selection and breeding for durable resistance to late blight.

  12. A high-temperature tolerant species in clade 9 of the genus Phytophthora: P. hydrogena sp. nov.

    Science.gov (United States)

    Yang, Xiao; Gallegly, Mannon E; Hong, Chuanxue

    2014-01-01

    A previously unknown Phytophthora species was isolated from irrigation water in Virginia, USA. This novel species produces abundant noncaducous and nonpapillate sporangia in soil water extract solution. It sometimes produces chlamydospores and hyphal swellings in aged cultures and in Petri's solution. This species has optimum vegetative growth at 30 C and grows well at 35 C. The lowest and highest temperatures for growth are 5 and 40 C. All isolates examined in this study are compatibility type A1 and produce mostly plerotic oospores when paired with an A2 mating-type tester of P. cinnamomi. Sequence analyses of the rDNA internal transcribed spacer (ITS) regions and the mitochondrially encoded cytochrome c oxidase 1 (cox 1) gene placed this species in clade 9 of the genus Phytophthora. These characteristics support the description of this taxon as a new species for which we propose the name P. hydrogena sp. nov. Further phylogenetic and physiological investigations of clade 9 species revealed a high-temperature tolerant cluster including P. hydrogena, P. aquimorbida, P. hydropathica, P. irrigata, P. chrysanthemi, P. insolita, P. polonica and P. parsiana. These species all grow well at 35 C. The monophyly of the species in this heat-tolerant cluster except P. insolita and P. polonica is highly supported by the maximum-likelihood analyses of the ITS and cox 1 sequences.

  13. Metalaxyl Resistance in Phytophthora infestans: Assessing Role of RPA190 Gene and Diversity Within Clonal Lineages.

    Science.gov (United States)

    Matson, Michael E H; Small, Ian M; Fry, William E; Judelson, Howard S

    2015-12-01

    Prior work has shown that the inheritance of resistance to metalaxyl, an oomycete-specific fungicide, is complex and may involve multiple genes. Recent research indicated that a single nucleotide polymorphism (SNP) in the gene encoding RPA190, the largest subunit of RNA polymerase I, confers resistance to metalaxyl (or mefenoxam) in some isolates of the potato late blight pathogen Phytophthora infestans. Using both DNA sequencing and high resolution melt assays for distinguishing RPA190 alleles, we show here that the SNP is absent from certain resistant isolates of P. infestans from North America, Europe, and Mexico. The SNP is present in some members of the US-23 and US-24 clonal lineages, but these tend to be fairly sensitive to the fungicide based on artificial media and field test data. Diversity in the level of sensitivity, RPA190 genotype, and RPA190 copy number was observed in these lineages but were uncorrelated. Controlled laboratory crosses demonstrated that RPA190 did not cosegregate with metalaxyl resistance from a Mexican and British isolate. We conclude that while metalaxyl may be used to control many contemporary strains of P. infestans, an assay based on RPA190 will not be sufficient to diagnose the sensitivity levels of isolates.

  14. Population genetic structure of Phytophthora cinnamomi associated with avocado in California and the discovery of a potentially recent introduction of a new clonal lineage.

    Science.gov (United States)

    Pagliaccia, D; Pond, E; McKee, B; Douhan, G W

    2013-01-01

    Phytophthora root rot (PRR) of avocado (Persea americana), caused by Phytophthora cinnamomi, is the most serious disease of avocado worldwide. Previous studies have determined that this pathogen exhibits a primarily clonal reproductive mode but no population level studies have been conducted in the avocado-growing regions of California. Therefore, we used amplified fragment length polymorphism based on 22 polymorphic loci and mating type to investigate pathogen diversity from 138 isolates collected in 2009 to 2010 from 15 groves from the Northern and Southern avocado-growing regions. Additional isolates collected from avocado from 1966 to 2007 as well as isolates from other countries and hosts were also used for comparative purposes. Two distinct clades of A2 mating-type isolates from avocado were found based on neighbor joining analysis; one clade contained both newer and older collections from Northern and Southern California, whereas the other clade only contained isolates collected in 2009 and 2010 from Southern California. A third clade was also found that only contained A1 isolates from various hosts. Within the California population, a total of 16 genotypes were found with only one to four genotypes identified from any one location. The results indicate significant population structure in the California avocado P. cinnamomi population, low genotypic diversity consistent with asexual reproduction, potential evidence for the movement of clonal genotypes between the two growing regions, and a potential introduction of a new clonal lineage into Southern California.

  15. Escherichia coli-based expression system for the heterologous expression and purification of the elicitin β-cinnamomin from Phytophthora cinnamomi.

    Science.gov (United States)

    Hofzumahaus, Sebastian; Schallmey, Anett

    2013-08-01

    Elicitins are sterol carrier proteins from the Oomycete genera Phytophthora and Phytium and elicit a hypersensitive response in many economically important plants, in some cases causing a systemic acquired resistance. Their recombinant expression in bacteria is complicated by the presence of three disulfide bonds in the elicitin structure. In consequence, elicitins have so far only been produced in soluble form by isolation from native Phytophthora or Phytium strains or by recombinant expression in the yeast Pichia pastoris. Here, for the first time, we report the soluble expression of the elicitin β-cinnamomin from Phytophthora cinnamomi in Escherichia coli by secretion of the protein into the periplasm. β-Cinnamomin yields have been significantly improved after careful selection of the optimum secretion signal sequence. In total, 17.6 mg β-cinnamomin per liter cell culture have been obtained in shake flasks with the secretion signal sequence of the maltose-binding protein MalE from E. coli. Furthermore, by making use of a C-terminal His-tag, β-cinnamomin purification has been significantly simplified with only one step of immobilized metal ion affinity chromatography yielding protein of high purity (>90%). The established protocol has further been successfully applied to the soluble expression of another elicitin.

  16. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon

    Science.gov (United States)

    Alternative measures to chemical fungicides are needed to control Phytophthora megakarya, the main causal agent of black pod diseasein Central and West Africa. Precolonized plate and detached cacao pod assays were used to screen fungal isolates for mycoparasitismon P. megakarya. Of over 200 isolates...

  17. Identification of Phytophthora fragariae var. rubi by PCR.

    Science.gov (United States)

    Schlenzig, Alexandra

    2009-01-01

    The following chapter describes a PCR method for the identification of the raspberry root rot pathogen Phytophthora fragariae var. rubi. Furthermore, a nested PCR suitable for the detection of the pathogen in infected raspberry roots and validated against the "Duncan bait test" (EPPO Bull 35:87-91, 2005) is explained. Protocols for different DNA extraction methods are given which can be transferred to other fungal pathogens.

  18. Phytophthora Species, New Threats to the Plant Health in Korea

    OpenAIRE

    Ik-Hwa Hyun; Woobong Choi

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries ...

  19. Does infection by southern root-knot nematode influence development of Phytophthora blight in pepper?

    Science.gov (United States)

    The southern root-knot nematode, Meloidogyne incognita, and Phytophthora capsici, the causal agent of Phytophthora blight, are both important pathogens of pepper (Capsicum annuum L.) in the U.S. and worldwide. Although there is significant information in the literature about the responses of pepper...

  20. Multiplex-detectie van Phytophthora: "padlock-based Universal Multiplex detection Array" (pUMA)

    NARCIS (Netherlands)

    Gaszczyk, K.; Mendes, O.; Verstappen, E.C.P.; Bonants, P.J.M.; Schoen, C.D.

    2010-01-01

    Plant Research International heeft een diagnostische methode ontwikkeld die toe te passen is 'in planta', en ook de meest recent beschreven (quarantaine-) soorten omvat. De methode omvat de ontwikkeling van een generieke Phytophthora-methode gevolgd door een Phytophthora-identificatie.

  1. Whole Genome Sequences of the Raspberry and Strawberry Pathogens Phytophthora rubi and P. fragariae.

    Science.gov (United States)

    Tabima, Javier F; Kronmiller, Brent A; Press, Caroline M; Tyler, Brett M; Zasada, Inga A; Grünwald, Niklaus J

    2017-10-01

    Phytophthora rubi and P. fragariae are two closely related oomycete plant pathogens that exhibit strong morphological and physiological similarities but are specialized to infect different hosts of economic importance, namely, raspberry and strawberry. Here, we report the draft genome sequences of these two Phytophthora species as a first step toward understanding the genomic processes underlying plant host adaptation in these pathogens.

  2. Host resistance to phytophthora fruit rot in U.S. watermelon plant introductions

    Science.gov (United States)

    Phytophthora capsici, distributed worldwide, is an aggressive pathogen with a broad host range, infecting solanaceous, leguminaceous, and cucurbitaceous crops. Phytophthora fruit rot of watermelon (Citrullus lanatus) caused by P. capsici was first reported in the U.S. in 1940. Since then, the dise...

  3. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops

    NARCIS (Netherlands)

    Bertier, L.; Brouwer, H.; Cock, de A.W.A.M.; Cooke, D.E.L.; Olsson, C.H.B.; Höfte, M.

    2013-01-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula

  4. Survival of southern highbush blueberry cultivars in Phytophthora Root Rot Infested fields in South Mississippi

    Science.gov (United States)

    Phytophthora root rot is an important disease of commercial blueberries and is most severe when blueberries are grown in wet soils with poor drainage. Symptoms of Phytophthora root rot include small, yellow or red leaves, lack of new growth, root necrosis, and a smaller root system than healthy plan...

  5. Fruit age and development of Phytophthora fruit rot on resistant and susceptible watermelon lines

    Science.gov (United States)

    Phytophthora fruit rot caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast U.S. and has resulted in severe losses to watermelon growers especially in GA, SC, and NC. We recently released four germplasm lines (USVL203-PFR, USVL020-PFR, USVL782-PFR,...

  6. Molecular tools to unravel the role of genes from Phytophthora infestans

    NARCIS (Netherlands)

    West, van P.

    2000-01-01

    The oomycete plant pathogen Phytophthora infestans is the causal agent of potato late blight. P. infestans is undoubtedly the best known and most studied Phytophthora species today. This is mainly because it is such a

  7. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    Science.gov (United States)

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  8. Amino terminal region of Phytophthora sojae cel12 endoglucanase confers tissue collapse function in Nicotiana

    Science.gov (United States)

    Phytophthora encodes an unusually large number of glycosyl hydrolases (GH), with many large gene families resulting from duplication events. There are ten copies of GH 12 (cel12) present in Phytophthora sojae. This is the only pathogen endoglucanase family to which plants produce an inhibitory pr...

  9. Molecular tools to unravel the role of genes from Phytophthora infestans

    NARCIS (Netherlands)

    West, van P.

    2000-01-01

    The oomycete plant pathogen Phytophthora infestans is the causal agent of potato late blight. P. infestans is undoubtedly the best known and most studied Phytophthora species today. This is mainly because it is such a devastating pathogen that can cause complete destruction of a potato field in only

  10. Resistance to Phytophthora cinnamomi among seedlings from backcross families of hybrid american chestnut

    Science.gov (United States)

    Steven N. Jeffers; Inga M. Meadows; Joseph B. James; Paul H. Sisco

    2012-01-01

    American chestnut (Castanea dentata (Marsh.) Borkh.) once was a primary hardwood species in forests of the eastern United States. Sometime during the late 18th century, it is speculated that Phytophthora cinnamomi, which causes Phytophthora root rot (PRR) on many woody plant species, was introduced to the southeast region of...

  11. Phytophthora megakarya, a causal agent of black pod rot in Africa

    Science.gov (United States)

    In most parts of the world where Theobroma cacao is grown, Phytophthora palmivora is the major concern for causing black pod rot (BPR). Phytophthora megakarya, on the other hand, occurs only in Africa, but represents a major threat to cacao production, the countries of West Africa being the largest ...

  12. Influence of fruit age on Phytophthora fruit rot development on susceptible and resistant watermelon germplasm

    Science.gov (United States)

    Phytophthora fruit rot of watermelon caused by Phytophthora capsici is an emerging disease in the southeastern United States. The disease has resulted in severe losses to watermelon growers in GA, SC, and NC, and is considered a top-research priority by the National Watermelon Association. We releas...

  13. Validation of the bait test with Rhododendron leaves for Phytophthora diagnosis

    Science.gov (United States)

    Corina Junker; Sabine Werres

    2017-01-01

    Bait tests are very helpful for diagnosis of Phytophthora in for example soil, substrate, water, sediment, and rootball samples (Werres and others 2014). By attracting the motile zoospores of the Phytophthora species with the baits these pathogens can be separated from other organisms. Bait tests are simple and cost...

  14. Urban activities influence on Phytophthora species diversity in British Columbia, Canada

    Science.gov (United States)

    Angela Dale; Nicolas Feau; Julien Ponchart; Guillaume Bilodeau; Jean Berube; R.C. Hamelin

    2017-01-01

    Phytophthora de Bary, a genus of Oomycetes, is known as a plant pathogenic genus. The best-known species infect a wide range of hosts, including economically valuable angiosperm and gymnosperm tree species and important agricultural crops. Many Phytophthora are invasive and have been disseminated through nursery and...

  15. Phytophthora andina sp nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands

    NARCIS (Netherlands)

    Oliva, R.F.; Kroon, L.P.N.M.; Chacon, G.; Flier, W.G.; Ristaino, J.B.; Forbes, G.A.

    2010-01-01

    A blight disease on fruits and foliage of wild and cultivated Solanum spp. was found to be associated with a new species of Phytophthora. The proposed novel species is named Phytophthora andina Adler & Flier, sp. nov. based on morphological characteristics, pathogenicity assays, mitochondrial DN

  16. Toluca nog steeds resistent tegen phytophthora (interview met o.a. Geert Kessel)

    NARCIS (Netherlands)

    Engwerda, J.; Kessel, G.J.T.

    2009-01-01

    Het biologische aardappelras Toluca is nog steeds volledig resistent tegen phytophthora. Dat in een laboratorium drie isolaten van phytophthora de resistentie hebben omzeild, is een theoretisch gegeven, vindt commercieel directeur Jan van Hoogen van Agrico. Toluca is gekweekt door Agrico en in 2007

  17. The interplay between a Phytophthora RXLR effector and an Arabidopsis lectin receptor kinase

    NARCIS (Netherlands)

    Bouwmeester, K.

    2010-01-01

    Phytophthora infestans – the causal agent of potato late blight – secretes a plethora of effector proteins to facilitate plant infection. The central subject of this thesis is ipiO, one of the first cloned Phytophthora genes with a putative function in pathogenicity as was anticipated based on its i

  18. Sporulation of Phytophthora ramorum and P. kernoviae on asymptomatic foliage and fruit

    Science.gov (United States)

    S. Denman; E. Moralejo; S.A. Kirk; E. Orton; A. Whybrow

    2008-01-01

    Phytophthora ramorum and P. kernoviae are newly discovered invasive Phytophthoras causing leaf necrosis, shoot tip dieback (mostly on ornamental and forest understorey host species) and bleeding cankers on tree trunks of a wide range of plant species. Both pathogens are now present in south-west England....

  19. AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile.

    Science.gov (United States)

    Durán, Alvaro; Gryzenhout, Marieka; Drenth, André; Slippers, Bernard; Ahumada, Rodrigo; Wingfield, Brenda D; Wingfield, Michael J

    2010-09-01

    Phytophthora pinifolia is the causal agent of the recently discovered needle disease of Pinus radiata in Chile, referred to as "Daño Foliar del Pino" (DFP). The genetic structure of the pathogen population is unknown, which hinders our understanding of its appearance and spread in Chile since 2004. In this study, a population of 88 cultures of P. pinifolia isolated from P. radiata at several localities in Chile was evaluated for genotypic diversity using amplified fragment length polymorphisms (AFLPs). Results of the AFLP analyses showed that the P. pinifolia population in Chile consists of two near identical genotypes but with no genetic differentiation based on geography, year of isolation or the part of the tree from which the isolates were obtained. Mating experiments did not lead to the production of gametangia suggesting that the organism is sterile. The fact that a single clonal genotype dominates the population of P. pinifolia in Chile supports the hypothesis that P. pinifolia was recently introduced into this country and that its impact is due to a new and susceptible host encounter.

  20. Population Structure of Phytophthora infestans in the Toluca Valley Region of Central Mexico.

    Science.gov (United States)

    Grünwald, N J; Flier, W G; Sturbaum, A K; Garay-Serrano, E; van den Bosch, T B; Smart, C D; Matuszak, J M; Lozoya-Saldaña, H; Turkensteen, L J; Fry, W E

    2001-09-01

    ABSTRACT We tested the hypothesis that the population of Phytophthora infestans in the Toluca valley region is genetically differentiated according to habitat. Isolates were sampled in three habitats from (i) wild Solanum spp. (WILD), (ii) land-race varieties in low-input production systems (RURAL), and (iii) modern cultivars in high-input agriculture (VALLEY). Isolates were sampled in 1988-89 (n= 179) and in 1997-98 (n= 389). In both sampling periods, the greatest genetic diversity was observed in RURAL and VALLEY habitats. Based on the Glucose-6-phosphate isomerase and Peptidase allozymes, the subpopulations from the three habitats were significantly differentiated in both sampling periods. In contrast to allozyme data for 1997-98, no differences were found among the three subpopulations for sensitivity to metalaxyl. Two groups of isolates identical for allozyme and mating type were further investigated by restriction fragment length polymorphism fingerprinting; 65% of one group and 85% of another group were demonstrated to be unique. The genetic diversity data and the chronology of disease occurrence during the season are consistent with the hypothesis that populations of P. infestans on wild Solanum populations are derived from populations on cultivated potatoes in the central highlands of Mexico near Toluca.

  1. Antagonism of Serratia marcescens towards Phytophthora parasitica and its effects in promoting the growth of citrus Antagonismo de Serratia marcescens contra Phytophthora parasitica e seu efeito na promoção do crescimentos de citros

    Directory of Open Access Journals (Sweden)

    Brigida Pimentel Villar de Queiroz

    2006-12-01

    Full Text Available Phytophthora parasitica causes serious widespread, and difficult-to-control root rots in warmer regions. This oomycete is one of the most important pathogen of citrus. This paper reports the biological control of the pathogen by a strain of Serratia marcescens R-35, isolated from citrus rhizosphere. In greenhouse trials, the bacterium suppressed more than 50% of the disease and promoted the plant growth.Phytophthora parasitica é um oomiceto que causa sérios problemas fitossanitários em diferentes espécies de plantas em regiões tropicais e o controle tem sido difícil. Este patógeno é um dos mais importante à citricultura. Este trabalho relata o controle biológico do patógeno por uma linhagem de Serratia marcescens R-35, isolada da rizosfera de citros. Em condições de casa-de-vegetação, a bactéria reduziu em mais de 50% a incidência da doença, ao mesmo tempo que promoveu o crescimento de plantas.

  2. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication.

    Science.gov (United States)

    van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F

    2014-05-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny-compelling evidence for a WGD-has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.

  3. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance

    DEFF Research Database (Denmark)

    Montes, Melanie Sarah; Nielsen, B.J.; Schmidt, S.G.;

    2016-01-01

    population of P. infestans was characterized over the course of the 2013 growing season, as was the population genetic structure, using simple sequence repeat (SSR) genotypes and single nucleotide polymorphism (SNP)-based mitochondrial haplotyping of over 80 isolates. Both mating types A1 and A2 were present......Control of the potato late blight pathogen Phytophthora infestans relies heavily on chemicals. The fungicide metalaxyl-M (Mefenoxam) has played an important role in controlling the disease, but insensitivity to the fungicide in certain isolates is now of major concern. A genetic basis...... for resistance to metalaxyl suggests the possibility for linking resistance phenotypes to specific population genetic markers, but in order to do this, the population genetic structure and mode of reproduction in a population must first be well described. The dynamics of metalaxyl-M resistance in the Danish...

  4. Spatial analysis of the incidence of Phytophthora infestans (Mont. De Bary and Phytophthora nicotianae Breda de Haan on potato

    Directory of Open Access Journals (Sweden)

    Leónides Castellanos González

    2016-03-01

    Full Text Available The objective of this research was to conduct a spatial analysis of the incidence of Phytophthora nicotianae Breda de Haan and Phytophthora infestans (Mont. De Bary, during five seasons of potato in Fields Company Miscellaneous Crops in Horquita, Cienfuegos (2003-2004 to 2007-2008. Information about pathogens, collected by the Plant Protection Station of Yaguaramas, was used in order to do so. An alpha numerical database was made, oriented to a group of areas under center pivot irrigation machines (Kubans and Bayamón and its quadrants. Parallel to this, mapping of center pivot machines and quadrants was generated in MapInfo GIS 8.5. Several automatic geo codifications were made in order to relate the alphanumeric database and the mapping, and thematic maps were generated in the presence or absence of pathogens. The two study agents have presented high spatial variability during the five planting seasons. Both have influenced the same geographical area with similar appearance date. P. infestans has not expressed a defined dispersion pattern and it has spread at random from the primary source of incidence, while Phytophthora nicotianae has become an endemic agent which shows a dispersion pattern towards neighboring areas or areas connected by the road network from the primary sources, which have been associated with poor land leveling and late or intermediate planting seasons.

  5. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.

    Science.gov (United States)

    Morrison, Christopher K; Arseneault, Tanya; Novinscak, Amy; Filion, Martin

    2017-03-01

    Phytophthora infestans causes late blight of potato, one of the most devastating diseases affecting potato production. Alternative approaches for controlling late blight are being increasingly sought due to increasing environmental concerns over the use of chemical pesticides and the increasing resistance of P. infestans to fungicides. Our research group has isolated a new strain of Pseudomonas fluorescens (LBUM636) of biocontrol interest producing the antibiotic phenazine-1-carboxylic acid (PCA). Wild-type LBUM636 was shown to significantly inhibit the growth of Phytophthora infestans in in vitro confrontational assays whereas its isogenic mutant (phzC-; not producing PCA) only slightly altered the pathogen's growth. Wild-type LBUM636 but not the phzC- mutant also completely repressed disease symptom development on tubers. A pot experiment revealed that wild-type LBUM636 can significantly reduce P. infestans populations in the rhizosphere and in the roots of potato plants, as well as reduce in planta disease symptoms due to PCA production. The expression of eight common plant defense-related genes (ChtA, PR-1b, PR-2, PR-5, LOX, PIN2, PAL-2, and ERF3) was quantified in tubers, roots, and leaves by reverse-transcription quantitative polymerase chain reaction and revealed that the biocontrol observed was not associated with the induction of a plant defense response by LBUM636. Instead, a direct interaction between P. infestans and LBUM636 is required and PCA production appears to be a key factor for LBUM636's biocontrol ability.

  6. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean

    Science.gov (United States)

    Zhao, Yuanling; Chang, Xin; Qi, Dongyue; Dong, Lidong; Wang, Guangjin; Fan, Sujie; Jiang, Liangyu; Cheng, Qun; Chen, Xi; Han, Dan; Xu, Pengfei; Zhang, Shuzhen

    2017-01-01

    Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean ‘Suinong 10.’ Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar ‘Dongnong 50’ soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection. PMID:28326092

  7. Phytophthora infestans POPULATION STRUCTURE: A WORLDWIDE SCALE Estructura poblacional de Phytophthora infestans: una escala global

    Directory of Open Access Journals (Sweden)

    MARTHA CÁRDENAS

    2012-05-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of the pathogen's population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep ( Pep tidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America, expanding it on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.Phytophthora infestans, el agente causal del tizón tardío de la papa y otros miembros de la familia de las Solanáceas, es el responsable de la gran hambruna irlandesa y aún hoy sigue causando grandes pérdidas económicas alrededor del planeta. Para establecer estrategias de control adecuadas contra este patógeno se requiere comprender la estructura poblacional del mismo. Mundialmente se han utilizado como marcadores las aloenzimas, Gpi (Glucosa-6-fosfato isomerasa y Pep (Peptidasa y la sonda de fingerprinting de RFLP (Polimorfismos de la Longitud de los Fragmentos de Restricción, RG57. De igual forma, la resistencia al fungicida metalaxyl y el tipo de apareamiento, han sido

  8. Population changes in Phytophthora infestans in Taiwan associated with the appearance of resistance to metalaxyl.

    Science.gov (United States)

    Deahl, Kenneth L; Cooke, Louise R; Black, Lowell L; Wang, Tien Chen; Perez, Frances M; Moravec, Brian C; Quinn, Michele; Jones, Richard W

    2002-09-01

    In recent years, late blight, caused by Phytophthora infestans (Mont) De Bary, has increased in severity in many parts of the world, and this has been associated with migrations which have introduced new, arguably more aggressive, populations of the pathogen. In Taiwan, late blight has been endemic on outdoor tomato crops grown in the highlands since the early 1900s, but recent epidemics have been more damaging. To ascertain the present status of the Taiwanese population of P infestans, 139 isolates of the pathogen collected and maintained by the Asian Vegetable Research and Development Center (AVRDC) were characterized using mating type, metalaxyl sensitivity, allozyme genotype, mitochondrial haplotype and RFLP fingerprinting. Up to 1997, all isolates were found to belong to the old clonal lineage of P infestans (US-1 and variants), but in isolates from 1998 a new genotype appeared, and by 2000 this had apparently completely displaced the old population. This new genotype was an A1 mating type and has the dilocus allozyme genotype 100/100/111, 100/100 for the loci coding for glucose-6-phosphate isomerase and peptidase, respectively. These characters, together with RG57 fingerprinting, indicated that these isolates belonged to the US-11 clonal lineage, a minority (11%) being a previously unreported variant of US-11. Whereas metalaxyl-resistant isolates were not detected in the old population, 96% of the new genotypes proved resistant, with the remainder being intermediate in sensitivity. It may be inferred from this sudden, marked change in the characteristics of the Taiwanese P infestans that a new population of the pathogen was introduced around 1997-98 and that this may well have already been metalaxyl-resistant when it arrived, although a role for in situ selection cannot be excluded.

  9. Genotypic diversity and migration patterns of Phytophthora infestans in the Nordic countries.

    Science.gov (United States)

    Sjöholm, Lina; Andersson, Björn; Högberg, Nils; Widmark, Anna-Karin; Yuen, Jonathan

    2013-10-01

    In this study we investigated the genotypic diversity and the migration patterns of Phytophthora infestans in the Nordic countries. Isolates of P. infestans from outbreaks in 43 fields sampled in 2008 were collected using stratified sampling with country, field, and disease foci as the different strata. Microsatellites were used as markers to determine the genotypic variation in the sampled material. The results show a high genotypic variation of P. infestans in the Nordic countries with most of the genotypes found only once among the collected isolates. The major part of the genotypic variation was observed within the fields, with low differentiation between the fields. The observed low association of alleles among loci is consistent with frequent sexual reproduction of P. infestans in the Nordic countries. Coalescence analyses did not support a single common population for the four countries, thus indicating some degree of geographic differentiation. The analyses of migration patterns showed differing levels of gene flow among the Nordic countries. No correlation between migration rates and geographical distance could be seen. This could be explained by different degrees of genetic similarity between the pathogen populations in the different countries.

  10. Biocontrol of Phytophthora infestans, Fungal Pathogen of Seedling Damping Off Disease in Economic Plant Nursery

    Directory of Open Access Journals (Sweden)

    B. Loliam

    2012-01-01

    Full Text Available This research aims to control Seedling damping off disease in plants by using antagonistic actinomycetes against the causative fungi. Phytophthora infestans was isolated from the infected tomato plant seedling obtained from an economic plant nursery in Amphoe Pak Chong, Nakhon Ratchasima Province, Thailand. The chitinolytic Streptomyces rubrolavendulae S4, isolated from termite mounds at the grove of Amphoe Si-Sawat, Kanchanaburi Province, Thailand, was proven to be the most effective growth inhibition of fungal pathogens tested on potato dextrose agar. Tomato and chili seedlings that colonized with antagonistic S. rubrolavendulae S4 were grown in P. infestans artificial inoculated peat moss. Percents of noninfested seedling in fungal contaminated peat moss were compared to the controls with uninoculated peat moss. In P. infestans contaminated peat moss, the percents of survival of tomato and chili seedling were significantly increased (0.05. It was clearly demonstrated that S. rubrolavendulae S4 can prevent the tomato and chili seedling damping off disease in economic plant nurseries.

  11. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora.

    Science.gov (United States)

    Martin, Frank N; Blair, Jaime E; Coffey, Michael D

    2014-05-01

    The most recent phylogenetic analysis of the genus Phytophthora was completed in 2008 (Blair et al., 2008) and utilized 8.1 kb of sequence data from seven nuclear loci. Given the large number of species that have recently been described, this study was undertaken to broaden the available information on the phylogeny of the genus. A total of 166 isolates representing 92 recognized species and 17 provisional species were analyzed, including many of the same isolates used in the nuclear multilocus study of Blair et al. (2008). Four mitochondrial genes (cox2, nad9, rps10 and secY) were sequenced with a total of 2373 bp used in the analysis; the species relationships recovered with mitochondrial data were largely consistent with those observed previously in the nuclear analysis. Combining the new mitochondrial data with the nuclear data from Blair et al. (2008) generated a dataset of 10,828 bp representing 11 loci, however resolution of basal clade relationships was still low. We therefore implemented a modified multispecies coalescent approach with a subset of the data, and recovered increased resolution and moderate to high support for clade relationships. A more detailed analysis of species from clades 2 and 8 identified an additional seven phylogenetic lineages that warrant further investigation to determine if they represent distinct species. As has been reported in other phylogenetic studies of the genus, there was no consistent correlation between phylogenetic relatedness and morphological features or ecology.

  12. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China.

    Directory of Open Access Journals (Sweden)

    Jian Hu

    Full Text Available Phytophthora capsici causes significant loss to pepper (Capsicum annum in China and our goal was to develop single nucleotide polymorphism (SNP markers for P. capsici and characterize genetic diversity nationwide. Eighteen isolates of P. capsici from locations worldwide were re-sequenced and candidate nuclear and mitochondrial SNPs identified. From 2006 to 2012, 276 isolates of P. capsici were recovered from 136 locations in 27 provinces and genotyped using 45 nuclear and 2 mitochondrial SNPs. There were two main mitochondrial haplotypes and 95 multi-locus genotypes (MLGs identified. Genetic diversity was geographically structured with a high level of genotypic diversity in the north and on Hainan Island in the south, suggesting outcrossing contributes to diversity in these areas. The remaining areas of China are dominated by four clonal lineages that share mitochondrial haplotypes, are almost exclusively the A1 or A2 mating type and appear to exhibit extensive diversity based on loss of heterozygosity (LOH. Analysis of SNPs directly from infected peppers confirmed LOH in field populations. One clonal lineage is dominant throughout much of the country. The overall implications for long-lived genetically diverse clonal lineages amidst a widely dispersed sexual population are discussed.

  13. Cytology studies on effects of metalaxyl on a wild-type isolate and a metalaxyl-resistant mutant of Phytophthora sojae in vitro%甲霜灵对大豆疫霉野生菌株及突变菌株生长发育影响的细胞学研究

    Institute of Scientific and Technical Information of China (English)

    赵海燕; 韩青梅; 黄丽丽; 陈长卿; 左豫虎; 康振生

    2009-01-01

    本文利用电子显微镜技术研究了内吸性杀菌剂甲霜灵(Metalaxyl)对大豆疫霉Phytophthora sojae野生菌株和突变菌株的形态学及超微结构的影响.结果表明:不同浓度甲霜灵处理后可导致野生菌株和突变菌株发生一系列不同的变化.低浓度(1μg/mL)处理后,野生菌株在培养基上的生长即可受到抑制,菌丝呈现不规则的肿胀、过度分枝;菌丝细胞壁不规则加厚,菌丝细胞内液泡增加,脂肪粒累积,细胞器排列紊乱,原生质最终坏死.随浓度的升高,野生菌株立即停止生长,菌丝干瘪坏死.而突变菌株只在高浓度(10μg/mL)甲霜灵处理后顶端菌丝出现少量较小的分枝,菌丝细胞壁无增厚现象,但细胞内脂肪粒大量积累,明显高于敏感性菌株;突变菌株在高浓度甲霜灵压力下仍继续生长.

  14. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  15. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  16. A proteomics study of in vitro cyst germination and appressoria formation in ¤Phytophthora infestans¤

    DEFF Research Database (Denmark)

    Ebstrup, T.; Saalbach, G.; Egsgaard, H.

    2005-01-01

    A proteomics study using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed on Phytophthora infestans. Proteins from cysts, germinated cysts and appressoria grown in vitro were isolated and separated by 2-DE. Statistical quantitative analysis of the protein spots from...... five independent experiments of each developmental stage revealed significant up-regulation of ten spots on gels from germinated cysts compared to cysts. Five spots were significantly up-regulated on gels from appressoria compared to germinated cysts and one of these up-regulated spots...... was not detectable on gels from cysts. In addition, one spot was significantly down-regulated and another spot not detectable on the gels from appressoria. The corresponding proteins to 13 of these spots were identified with high confidence using tandem mass spectrometry and database searches. The functions...

  17. A simple method for extracting DNA from rhododendron plants infected with Phytophthora spp. for use in PCR

    Directory of Open Access Journals (Sweden)

    Trzewik Aleksandra

    2016-01-01

    Full Text Available Among the numerous protocols that describe the extraction of DNA, those relating to the isolation of DNA from infected plants, are rare. This study describes a rapid and reliable method of extracting a high quality and quantity of DNA from rhododendron leaves artificially infected with Phytophthora cactorum, P. cambivora, P. cinnamomi, P. citrophthora, and P. plurivora. The use of the modified Doyle and Doyle protocol (1987 allowed us to obtain high quantity and quality DNA (18.26 μg from 100 mg of the fresh weight of infected leaves at the ratios of A260/280 and A260/230 - 1.83 and 1.72, respectively, suitable for conventional polymerase chain reaction (PCR and real-time PCR amplifications.

  18. Macrocyclic Trichothecenes from Myrothecium roridum Strain M10 with Motility Inhibitory and Zoosporicidal Activities against Phytophthora nicotianae.

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Surovy, Musrat Zahan; Islam, M Tofazzal; Schüffler, Anja; Laatsch, Hartmut

    2015-10-14

    The cytotoxicity of the extract obtained from Myrothecium roridum M10 and a characteristic (1)H signal at δH ∼8 led to the assumption that verrucarin/roridin-type compounds were present. Upscaling on rice medium led to the isolation of four new metabolites: verrucarins Y (1) and Z (6) (macrocyclic trichothecenes), bilain D (12) (a diketopiperazine derivative), and hamavellone C (14) (an unusual cyclopropyl diketone). In addition, nine known trichothecenes [verrucarin A (3), 16-hydroxyverrucarin A (5), verrucarin B (7), 16-hydroxyverrucarin B (8), verrucarin J (2), verrucarin X (4), roridin A (9), roridin L-2 (10), and trichoverritone (11)] and a bicyclic lactone [myrotheciumone A (15)] were identified. Their structures and configurations were determined by spectroscopic methods, published data, Mosher's method, and considering biosyntheses. Some trichothecenes showed motility inhibition followed by lysis of the zoospores against devastating Phytophthora nicotianae within 5 min. Compounds 2, 3, 7, and 9 also exhibited potent activities against Candida albicans and Mucor miehei.

  19. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure.

    Science.gov (United States)

    Lee, Eric; Oki, Lorence R

    2013-09-15

    Slow sand filtration has been shown to effectively reduce Phytophthora zoospores in irrigation water. This experiment tested the reduction of Phytophthora colony forming units (CFUs) by slow sand filtration systems after switching the pathogen contaminating plant leachate from Fusarium to Phytophthora and the resilience of the system to a short period without water, as might be caused by a pump failure. The slow sand filtration system greatly reduced Phytophthora CFUs and transmission after switching the pathogens. In addition, Phytophthora reduction by the slow sand filter was equally effective before and after the simulated pump failure. Reduction of Fusarium was not seen by the SSFs, before or after the simulated pump failure. The results suggest that slow sand filters are effective at reducing larger organisms, such as Phytophthora zoospores, even after a pump failure or a change in pathogens.

  20. SNP markers identify widely distributed clonal lineages of Phytophthora colocasiae in Vietnam, Hawaii and Hainan Island, China.

    Science.gov (United States)

    Shrestha, Sandesh; Hu, Jian; Fryxell, Rebecca Trout; Mudge, Joann; Lamour, Kurt

    2014-01-01

    Taro (Colocasia esculenta) is an important food crop, and taro leaf blight caused by Phytophthora colocasiae can significantly affect production. Our objectives were to develop single nucleotide polymorphism (SNP) markers for P. colocasiae and characterize populations in Hawaii (HI), Vietnam (VN) and Hainan Island, China (HIC). In total, 379 isolates were analyzed for mating type and multilocus SNP profiles including 214 from HI, 97 from VN and 68 from HIC. A total of 1152 single nucleotide variant (SNV) sites were identified via restriction site-associated DNA (RAD) sequencing of two field isolates. Genotyping with 27 SNPs revealed 41 multilocus SNP genotypes grouped into seven clonal lineages containing 2-232 members. Three clonal lineages were shared among countries. In addition, five SNP markers had a low incidence of loss of heterozygosity (LOH) during asexual laboratory growth. For HI and VN, >95% of isolates were the A2 mating type. On HIC, isolates within single clonal lineages had A1, A2 and A0 (neuter) isolates. The implications for the wide dispersal of clonal lineages are discussed.

  1. Identification and analysis of mitochondrial haplotypes on potato Phytophthora infestans in Qinghai area%青海马铃薯晚疫病菌线粒体DNA单倍型鉴定及分析

    Institute of Scientific and Technical Information of China (English)

    连延浩; 叶广继; 王舰

    2012-01-01

    To detect the distribution of mitochondrial haplotypes of Phytophthora infestans in Qinghai Province, 70 isolates of Phytophthora infestans collected from different areas in 2006 -2007 were identified and analyzed. The results showed that the type Ua was the most important, accounting for 94.3% , and the rest 5. 7% belong to the type lib. The type lib strains were all isolated from tomato plants. The results showed that the type IIa was the major potato Phytophthora infestans strain in Qinghai, and its mitochondrial haplotype was simplistic.%为查明青海地区晚疫病菌单倍型分布情况,本研究对青海不同地区采自2006~2007年的70个晚疫病菌材料的线粒体单倍型进行了分析,结果表明:94.3%的菌株为Ⅱa型,5.7%的菌株为Ⅱb型,其中Ⅱb型均分离自番茄.这说明青海地区马铃薯晚疫病菌群体类型比较单一,主要为Ⅱa型,线粒体单倍型不存在多态性.

  2. Infection of Phytophthora capsici on pepper——Models and affecting factors

    Institute of Scientific and Technical Information of China (English)

    Xuemin LIU; Yanling ZHOU; Lijun LI

    2008-01-01

    Under controlled conditions in a growth chamber, we studied the mortality of pepper seedlings caused by Phytophthora capsici. The results showed that soil temperature and soil water content were important factors affecting their infection with P. capsici and the optimum condition for infection was found to be a soil temperature of 22℃-28℃ and a soil water content of 40%. The relationships of pepper seedling mortality caused by P. capsici along with soil temperature, soil water content and their interactions can be described by mathematical models. Field observations suggested that the Gompertz model was the best one for describing the epidemiological dynamics of the disease. The incidence of pepper phytophthora blight was significantly related to the initial incidence of pepper phytophthora blight, soil temperature, soil water content and air temperature. A forecasting model for pepper phytophthora blight in the field was developed.

  3. Disease Severity Rating of Chile Pepper Plants Inoculated with Phytophthora Capsici Collected in Taiwan

    Data.gov (United States)

    US Agency for International Development — The data are the phenotypic host reactions of a recombinant inbred line population of Capsicum annuum developed to differentiate races of Phytophthora capsici. The...

  4. Rapid isothermal detection of Phytophthora species on plant samples using recombinase polymerase amplification

    Science.gov (United States)

    Recently several isothermal amplification techniques have been developed that are extremely tolerant towards inhibitors present in many plant extracts. Recombinase polymerase amplification (RPA) assays for the genus Phytophthora have been developed which provide a simple and rapid method to macerate...

  5. Beleidsondersteunend Onderzoek Plantgezondheid BO-06 Resultaten 2009 : Phytophthora infestans (BO-06-008)

    NARCIS (Netherlands)

    Boonekamp, P.M.

    2010-01-01

    Een verzameling artikelen of rapporten over plantgezondheid. Het thema is Phytophthora infestans. Het plantgezondheidsonderzoek richt zich nog veel op het optimaliseren van bestaande methoden en technieken en korte termijnsuccesjes, vindt Piet Boonekamp. Voor een wezenlijke verduurzaming van plantge

  6. Kaliumfosfiet helpt kalanchoë tegen phytophthora (interview met Filip van Noort)

    NARCIS (Netherlands)

    Neefjes, H.; Noort, van F.R.

    2009-01-01

    Toevoegen van plantversterker kaliumfosfiet maakt kalanchoë weerbaar tegen phytophthora. Onderzoek bij WUR Glastuinbouw heeft dit aangetoond in een deel van een proef. De praktijk is voorzichtig met het middel

  7. Structural and functional profile of the carbohydrate esterase gene complement in Phytophthora infestans.

    Science.gov (United States)

    Ospina-Giraldo, Manuel D; McWalters, Jessica; Seyer, Lauren

    2010-12-01

    The plant cell cuticle is the first obstacle for penetration of the host by plant pathogens. To breach this barrier, most pathogenic fungi employ a complex assortment of cell wall-degrading enzymes including carbohydrate esterases, glycoside hydrolases, and polysaccharide lyases. We characterized the full complement of carbohydrate esterase-coding genes in three Phytophthora species and analyzed the expression of cutinase in vitro and in planta; we also determined the cutinase allele distribution in multiple isolates of P. infestans. Our investigations revealed that there are 49, 21, and 37 esterase homologs in the P. infestans, P. ramorum, and P. sojae genomes, respectively, with a considerable number predicted to be extracellular. Four cutinase gene copies were found in both the P. infestans and P. ramorum genomes, while 16 copies were found in P. sojae. Transcriptional analyses of cutinase in P. infestans revealed that its expression level during infection is significantly upregulated at all time points compared to that of the same gene in mycelium grown in vitro. Expression achieves maximum values at 15 hpi, declining at subsequent time points. These results may suggest, therefore, that cutinase most likely plays a role in P. infestans pathogenicity.

  8. Cloning of genes encoding nonhost hypersensitive response-inducing elicitors from Phytophthora boehmeriae

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHANG HaiFeng; ZHANG ZhengGuang; WANG YuanChao; ZHENG XiaoBo

    2007-01-01

    We have devised a high-throughput functional cloning method to isolate cDNAs from Phytophthora boehmeriae of which the products elicit a hypersensitive response (HR) in tobacco. The cDNAs were cloned into a binary potato virus X (PVX)-based expression vector and transformed into Agrobacterium tumefeciens (Mog101). 4100 colonies were individually toothpick-inoculated onto leaflets of Nicotiana benthamiana. 12 cDNAs were identified whose expression induced formation of a necrotic lesion around the inoculation site. 7 of these clones have different sequences. One of these clones PBC43 encodes specific elicitin. Clone PBC163 encodes a protein highly homologous to Rab; PBC241 encodes a prohibitin protein; PBN62 encodes a Heat Shock Protein 60 (HSP60). The other five cDNAs reveal no homology to known protein and are thus considered novel. These observations suggest that this functional screening method is a versatile strategy to identify cDNAs of pathogens that encode elicitors and other HR-inducing proteins.

  9. Induction and Characterization of Laboratory Mutants of Phytophthora capsici Resistant to Dimethomorph and Flumorph

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laboratory studies were conducted to evaluate the risk of Phytophthora capsici developing resistance to two morphlines, dimethomorph and flumorph. Metalaxyl, the well-known high risk of resistance fungicides, was used as reference fungicide. Resistant mutants for the three fungicides were isolated by treating mycelium with ultraviolet radiation.Metalaxyl-resistant mutants were obtained with high frequency and exhibited high level of resistance with factors more than 100 folds, while mutation frequency for dimethomorph-resistance was relatively low and the resistance factors ranged from 3.0 to 13.9 folds. Most dimethomorph-resistant mutants decreased in hyphal growth rate and the spoulation ability, which have a large impact upon the epidemic development of dimethomorph-resistant populations. These results suggested that the risk of resistant pathogen population was much lower for dimethomorph than for metalaxyl.Both the frequency of developing resistance and level of resistance (resistance factors = 1.8-14.6) to dimethomorph were similar to those of its structure analogue flumorh. Moreover, the cross-resistance were found between them,which suggested the risks of developing resistance to dimethomorph and flumorph in the pathogen were very closely related. As P. capsici can potentially develop resistance to dimethomorph and flumorph, and oomycetes usually have the high risk to develop resistance to fungicides, appropriate management against resistance development should be taken.

  10. Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum.

    Science.gov (United States)

    Chen, Xiao-Ren; Brurberg, May Bente; Elameen, Abdelhameed; Klemsdal, Sonja Sletner; Martinussen, Inger

    2016-10-01

    Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5' end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.

  11. Stromata, sporangiomata and chlamydosori of Phytophthora ramorum on inoculated Mediterranean woody plants.

    Science.gov (United States)

    Moralejo, Eduardo; Puig, Miquel; García, José A; Descals, Enrique

    2006-11-01

    Three types of multihyphal structures, stromata, sporangiomata and chlamydosori, are described for the plant pathogen Phytophthora ramorum. Their morphology, morphogenesis and position on the host organ were observed by dissecting, compound and scanning electron microscopy. Stromata were consistently formed one to two weeks after zoospore inoculation of detached leaves and fruits of an assortment of Mediterranean sclerophyll shrubs. Stroma initials appeared subcuticularly or subepidermally and developed as small hyphal aggregates by repeated branching, budding, swelling and interweaving, eventually forming a prosenchyma. They always emerged through the adaxial side of the leaf by rupture of the overlying host tissue. Occasionally sporangia and chlamydosori (packed clusters of chlamydospores) were formed on the stromata. Sporangiomata bore short sporangiophores and clusters of 20-100 sporangia and resembled sporodochia of the mitosporic fungi. The biological significance of these multihyphal structures is discussed. Some epidemiological aspects were also studied: several understorey species of the holm oak (Quercus ilex) woodland were susceptible to in vitro infection with three isolates of P. ramorum originally collected from different ornamental hosts. The risk of spread to this ecosystem is evaluated.

  12. Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species.

    Science.gov (United States)

    Chen, Wen; Djama, Zeinab Robleh; Coffey, Michael D; Martin, Frank N; Bilodeau, Guillaume J; Radmer, Lorien; Denton, Geoff; Lévesque, C André

    2013-01-01

    Most Phytophthora spp. are destructive plant pathogens; therefore, effective monitoring and accurate early detection are important means of preventing potential epidemics and outbreaks of diseases. In the current study, a membrane-based oligonucleotide array was developed that can detect Phytophthora spp. reliably using three DNA regions; namely, the internal transcribed spacer (ITS), the 5' end of cytochrome c oxidase 1 gene (cox1), and the intergenic region between cytochrome c oxidase 2 gene (cox2) and cox1 (cox2-1 spacer). Each sequence data set contained ≈250 sequences representing 98 described and 15 undescribed species of Phytophthora. The array was validated with 143 pure cultures and 35 field samples. Together, nonrejected oligonucleotides from all three markers have the ability to reliably detect 82 described and 8 undescribed Phytophthora spp., including several quarantine or regulated pathogens such as Phytophthora ramorum. Our results showed that a DNA array containing signature oligonucleotides designed from multiple genomic regions provided robustness and redundancy for the detection and differentiation of closely related taxon groups. This array has the potential to be used as a routine diagnostic tool for Phytophthora spp. from complex environmental samples without the need for extensive growth of cultures.

  13. Phytophthora aquimorbida sp. nov. and Phytophthora taxon 'aquatilis' recovered from irrigation reservoirs and a stream in Virginia, USA.

    Science.gov (United States)

    Hong, Chuanxue; Richardson, Patricia A; Hao, Wei; Ghimire, Sita R; Kong, Ping; Moorman, Gary W; Lea-Cox, John D; Ross, David S

    2012-01-01

    Two distinct subgroups (L2 and A(-2)) were recovered from irrigation reservoirs and a stream in Virginia, USA. After molecular, morphological and physiological examinations, the L2 subgroup was named Phytophthora aquimorbida and the A(-2) designated as Phytophthora taxon 'aquatilis'. Both taxa are homothallic. P. aquimorbida is characterized by its noncaducous and nonpapillate sporangia, catenulate and radiating hyphal swellings and thick-walled plerotic oospores formed in globose oogonia mostly in the absence of an antheridium. P. taxon 'aquatilis' produces plerotic oospores in globose oogonia mostly with a paragynous antheridium. It has semi-papillate, caducous sporangia with variable pedicels, but it does not have hyphal swelling. Analyses of ITS, CO1, β-tubulin and NADH1 sequences revealed that P. aquimorbida is closely related to P. hydropathica, P. irrigata and P. parsiana, and P. taxon 'aquatilis' is related to P. multivesiculata. The optimum temperature for culture growth is 30 and 20 C for P. aquimorbida and P. taxon 'aquatilis' respectively. Both taxa were pathogenic to rhododendron plants and caused root discoloration, pale leaves, wilting, tip necrosis and dieback. Their plant biosecurity risk also is discussed.

  14. General research methods on pathogen of potato late blight (Phytophthora infestans)%马铃薯晚疫病菌的常规研究方法

    Institute of Scientific and Technical Information of China (English)

    朱杰华; 张志铭; 杨志辉

    2001-01-01

    马铃薯晚疫病菌很难分离培养并得到纯菌株,本文根据作者近8年的工作经验总结出了马铃薯晚疫病菌的一般研究方法,主要内容包括马铃薯晚疫病菌的症状识别,马铃薯晚疫病标样的采集方法,马铃薯晚疫病菌的分离纯化方法,马铃薯晚疫病菌的形态鉴定,马铃薯品种对晚疫病的抗病性评价方法等.%It's known that Phytophthora infestans is very difficult to be isolated and purified. According to the working experience in the past 8 years, the general research methods of potato late blight were summerized in this paper, which includes the method of sample collection of Phytophthora infestans, the methods of isolation and purification of P. infestans, evaluation of late blight resistance in potato germplasm.

  15. Assessment of metabolic capacity of Trichoderma inhamatum Bol12 QD biocontrol on native strains of Phytophthora infestans in vitro

    Directory of Open Access Journals (Sweden)

    Puño Ramon

    2011-08-01

    Full Text Available Plant pathogen Phytophthora infestans is a cause of decreased crop yield of tomato, to control these losses, farmers use chemicals. This has consequences for the environment, human health and beneficial organisms in the ecosystem. The objective was to obtain and identify native isolates of Trichoderma spp. In soil planted with tomato Tlayacapan, Morelos (Mexico, Alternaria solani problems and Phytophthora infestans, also determine their antagonistic capacity in vitro. Trichoderma was isolated directly from soil by dilution in culture medium plate with potato dextrose agar (PDA. On the other side plate dilutions of yeast T. QD Bol12 inhamatum crops produced in batch for 30 days to compare the effectiveness of biocontrol. The filtered yeast inhibited mycelial growth kinetic of the agent in laboratory with the 1:2 dilution growth was 32.5% for the 1:4 dilution mycelial growth was 69.1% and finally to the dilution of 1:8 of the yeast biocontrol mycelium grew to 95.2%. To demonstrate the inhibitory activity on the pathogen in field crops, there were 3 L batch for four months. The application of three doses (undiluted, diluted 1:2 and 1:4 plus a control dilution water only was performed in a complete block design with four replications randomly with the tomato crop, belonging to the variety Santa Cruz Kada Gigante in the plots of the Academic Rural United Campesina Carmen Pampa. Statistical analysis by Duncan's test showed that the pure leaven reduce infection by Phytophthora infestans significantly in tomato. Appeared another tomato plant pathogen, Septoria lycopersici, in the course of fieldwork. We also evaluated the effect of the dose of yeast to this disease, and also noticed a significant reduction with all doses of yeast. These experiments demonstrated that the seeds of T. QD Bol12 inhamatum have biocontrol effect on the tomato crop. The antagonistic capacity was assessed using the cellophane and the kind of antagonism with the dual culture

  16. Development of Phytophthora fruit rot resistant watermelon germplasm lines: USVL489-PFR, USVL782-PFR, USVL203-PFR and USVL020-PFR

    Science.gov (United States)

    Phytophthora capsici, distributed worldwide, is an aggressive pathogen with a broad host range, infecting solanaceous, leguminaceous, and cucurbitaceous crops. Phytophthora fruit rot of watermelon (Citrullus lanatus) caused by Phytophthora capsici was first reported in the U.S. in 1940. Since then...

  17. The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field

    Directory of Open Access Journals (Sweden)

    Anouk eGuyer

    2015-11-01

    Full Text Available Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late Late blight, caused by the oomycete Phytophthora infestans, is the most devastating disease of potato. In organic farming, late blight is controlled by repeated applications of copper-based products, which negatively impact the environment. To find alternative solutions for late blight management, we have previously isolated a large collection of bacteria from the phyllosphere and the rhizosphere of potatoes. Here we report the antagonistic potential of these strains when co-cultivated with P. infestans as well as with other potato pathogens. We then focused on three Pseudomonas strains and compared their protective impact against late blight to that of well-known biocontrol strains in planta using a high-throughput leaf disc assay with automated picture analysis. When sprayed on the leaves of potatoes in the greenhouse, the strains were able to survive for at least 15 days. Under field conditions, populations decreased faster but all tested strains could still be retrieved after 8 days. The most active strain in vitro, P. chlororaphis R47, was also the best protectant on leaf discs from plants grown in the greenhouse experiment, but its protection potential could not be verified in the field due to unfavourable infection conditions. However, its protective effect against P. infestans in planta, its survival in the phyllosphere as well as its ability to colonise the potato rhizosphere in very high population densities, suggest a potential for field application, e.g. in the form of tuber treatment or leaf spray.

  18. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen.

    Science.gov (United States)

    Fry, W E; Birch, P R J; Judelson, H S; Grünwald, N J; Danies, G; Everts, K L; Gevens, A J; Gugino, B K; Johnson, D A; Johnson, S B; McGrath, M T; Myers, K L; Ristaino, J B; Roberts, P D; Secor, G; Smart, C D

    2015-07-01

    Phytophthora infestans has been a named pathogen for well over 150 years and yet it continues to "emerge", with thousands of articles published each year on it and the late blight disease that it causes. This review explores five attributes of this oomycete pathogen that maintain this constant attention. First, the historical tragedy associated with this disease (Irish potato famine) causes many people to be fascinated with the pathogen. Current technology now enables investigators to answer some questions of historical significance. Second, the devastation caused by the pathogen continues to appear in surprising new locations or with surprising new intensity. Third, populations of P. infestans worldwide are in flux, with changes that have major implications to disease management. Fourth, the genomics revolution has enabled investigators to make tremendous progress in terms of understanding the molecular biology (especially the pathogenicity) of P. infestans. Fifth, there remain many compelling unanswered questions.

  19. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.

    Science.gov (United States)

    Pang, Zhili; Chen, Lei; Miao, Jianqiang; Wang, Zhiwen; Bulone, Vincent; Liu, Xili

    2015-09-01

    Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorph-resistant mutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using d-[U-(14) C]glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides.

  20. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection

    Directory of Open Access Journals (Sweden)

    Martens Cindy

    2010-06-01

    Full Text Available Abstract Background Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. Results Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD. Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. Conclusions The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.

  1. SOIL MYCOFLORA OF BLACK PEPPER RHIZOSPHERE IN THE PHILIPPINES AND THEIR IN VITRO ANTAGONISM AGAINST Phytophthora capsici L.

    Directory of Open Access Journals (Sweden)

    Rita Noveriza

    2016-10-01

    Full Text Available Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001, Trichoderma (125, 170, 171, 179, 180, 181, Gliocladium (109, Cunninghamella (165, 168, Mortierella (177, and Aspergillus (106 was space competitor (competition for nutrient since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202 isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181 isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094, but the cropping pattern was negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.

  2. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    NARCIS (Netherlands)

    Bouwmeester, K.; Govers, F.

    2009-01-01

    Background - Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interac

  3. Molecular mapping and characterization of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

    Science.gov (United States)

    Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, a...

  4. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    Science.gov (United States)

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  5. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics

    Science.gov (United States)

    Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the...

  6. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea

    Science.gov (United States)

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on...

  7. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions

    NARCIS (Netherlands)

    Jiang, R.H.Y.; Tyler, B.M.; Govers, F.

    2006-01-01

    Comparative analysis of two Phytophthora genomes revealed overall colinearity in four genomic regions consisting of a 1.5-Mb sequence of Phytophthora sojae and a 0.9-Mb sequence of R ramorum. In these regions with conserved synteny, the gene order is largely similar; however, genome rearrangements a

  8. Fungicide rotation schemes for managing Phytophthora fruit rot of watermelon across Southeastern United States (NC, SC, and GA)

    Science.gov (United States)

    Phytophthora capsici has been documented as a pathogen on a wide variety of vegetable crops in the family Solanaceae, Cucurbitaceae, Fabaceae, and plants belonging to 23 other families. Phytophthora fruit rot of watermelons caused by P. capsici is particularly severe in southeastern U.S where optima...

  9. The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants

    NARCIS (Netherlands)

    Bouwmeester, K.; Han, M.; Blanco-Portales, R.; Song, W.; Weide, R.; Guo, L.Y.; Vossen, van der E.A.G.; Govers, F.

    2014-01-01

    Phytophthora species are notorious plant pathogens which cause a variety of devastating crop diseases. Phytophthora pathogens secrete a plethora of effector proteins, several of which are known to interact with receptors in the host cell thereby either activating or suppressing defense responses. Un

  10. Phytophthora ipomoeae, a new homothallic species causing leaf blight on Ipomoea longipedunculata in the Toluca Valley of central Mexico

    NARCIS (Netherlands)

    Flier, W.G.; Grunwald, N.J.; Kroon, L.P.N.M.; Bosch, van den G.B.M.; Garay-Serrano, E.; Lozoya-Saldan, H.; Bonants, P.J.M.; Turkensteen, L.J.

    2002-01-01

    A Phytophthora species was found on blighted foliage of Ipomoea longipedunculata, a morning glory native to the highlands of central Mexico. Based on host range, morphology, allozymes, mitochondrial DNA haplotype and rDNA sequences it is concluded that a new Phytophthora species, P. ipomoeae sp. nov

  11. Population Structure of the Late Blight Pathogen Phytophthora infestans in a Potato Germplasm Nursery in Two Consecutive Years.

    Science.gov (United States)

    Tian, Yuee; Yin, Junliang; Sun, Jieping; Ma, Hongmei; Ma, Yunfang; Quan, Junli; Shan, Weixing

    2015-06-01

    As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies. Here, we investigate the population genetic structure of P. infestans in a potato germplasm nursery in northwestern China. In total, 279 isolates were recovered from 63 potato varieties or lines in 2010 and 2011, and were genotyped by mitochondrial DNA haplotypes and a set of nine simple-sequence repeat markers. Selected isolates were further examined for virulence on a set of differential lines containing each resistance (R) gene (R1 to R11). The overall P. infestans population was characterized as having a low level of genetic diversity and resistance to metalaxyl, and containing a high percentage of individuals that virulent to all 11 R genes. Both A1 and A2 mating types as well as self-fertile P. infestans isolates were present but there was no evidence of sexual reproduction. The low level of genetic differentiation in P. infestans populations is probably due to the action of relatively high levels of migration as supported by analysis of molecular variance (P infestans population structure in the germplasm nursery. Therefore, it is important to ensure the production of pathogen-free potato seed tubers to aid sustainable production of potato in northwestern China.

  12. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  13. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  14. Interception of Phytophthora syringae on Citrus fruits imported from California, USA%进境美国加州脐橙中丁香疫霉Phytophthora syringae截获

    Institute of Scientific and Technical Information of China (English)

    罗加凤; 刘跃庭; 廖芳; 胡晓红; 刘鹏; 黄国明

    2012-01-01

    Several brown rot fruits have been found from Californian fresh orange sample. Three isolates similar to Phytophthora syringae were obtained from these rot fruits. The colonies grew slowly on PDA and V8 juice agar (V8A). They were stellate, tiled and thin on V8A, but on PDA, the margin was chrysanthemum petaloid; mycelia dense, milk-white-colored. Sporangia and catenulate hyphal swellings formed in sterilizing water and soil extract water in 48h. The isolates were homothallic. Oospores were produced abundantly on PDA and V8A mixed with fresh Citrus fruit tissue or leaf of rhododendron. The isolates were wounded-inoculated on fresh Citrus fruits. Typical brown rot symptoms are apparent on inoculated fruits in 7d. DNA of hyphae was amplified with ITS1/ITS4 primers. In comparision with P. Syringae from NCBIGenBank databases, the sequences had 99% identity. All the results of tests showed that the isolates were Phytophthorasyringae.%从产自美国加利福尼亚州的新鲜脐橙样品中发现多个腐烂病果,通过分离培养得到3个疑似丁香疫霉Phytophthora syringae菌株,对3个菌株进行形态学研究、致病性测定和分子序列比对分析.结果表明病菌在V8A培养基上菌落稀疏、平铺,呈星状,菌丝紧贴培养基生长或埋于基质内生长;在PDA培养基上菌落呈菊花花瓣状,菌丝致密,乳白色;游动孢子囊和菌丝膨大体在无菌水和土壤浸出液中黑暗条件下48h后产生;菌株为同宗配合,卵孢子在带有新鲜脐橙果实组织或杜鹃叶片的V8A培养基中大量产生;创伤接种脐橙果实,7d后接种脐橙出现典型的褐腐症状;通用引物ITS 1/ITS4扩增测序,Blastn分析表明序列与GenBank中P.syringae序列相似性为99%.依据上述研究结果,将分离获得的3株菌鉴定为丁香疫霉Phytophthora syringae,系国内首次截获的一种植物检疫性真菌病害.

  15. Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression.

    Science.gov (United States)

    Eschen-Lippold, Lennart; Landgraf, Ramona; Smolka, Ulrike; Schulze, Sebastian; Heilmann, Mareike; Heilmann, Ingo; Hause, Gerd; Rosahl, Sabine

    2012-03-01

    The oomycete Phytophthora infestans is the causal agent of late blight, the most devastating disease of potato. The importance of vesicle fusion processes and callose deposition for defense of potato against Phytophthora infestans was analyzed. Transgenic plants were generated, which express RNA interference constructs targeted against plasma membrane-localized SYNTAXIN-RELATED 1 (StSYR1) and SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ADAPTOR PROTEIN 33 (StSNAP33), the potato homologs of Arabidopsis AtSYP121 and AtSNAP33, respectively. Phenotypically, transgenic plants grew normally, but showed spontaneous necrosis and chlorosis formation at later stages. In response to infection with Phytophthora infestans, increased resistance of StSYR1-RNAi plants, but not StSNAP33-RNAi plants, was observed. This increased resistance correlated with the constitutive accumulation of salicylic acid and PR1 transcripts. Aberrant callose deposition in Phytophthora infestans-infected StSYR1-RNAi plants coincided with decreased papilla formation at penetration sites. Resistance against the necrotrophic fungus Botrytis cinerea was not significantly altered. Infiltration experiments with bacterial solutions of Agrobacterium tumefaciens and Escherichia coli revealed a hypersensitive phenotype of both types of RNAi lines. The enhanced defense status and the reduced growth of Phytophthora infestans on StSYR1-RNAi plants suggest an involvement of syntaxins in secretory defense responses of potato and, in particular, in the formation of callose-containing papillae.

  16. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes.

    Science.gov (United States)

    Goss, Erica M; Tabima, Javier F; Cooke, David E L; Restrepo, Silvia; Fry, William E; Forbes, Gregory A; Fieland, Valerie J; Cardenas, Martha; Grünwald, Niklaus J

    2014-06-17

    Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan's elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight.

  17. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans.

    Science.gov (United States)

    Randall, Eva; Young, Vanessa; Sierotzki, Helge; Scalliet, Gabriel; Birch, Paul R J; Cooke, David E L; Csukai, Michael; Whisson, Stephen C

    2014-09-01

    Phenylamide fungicides have been widely used for the control of oomycete-incited plant diseases for over 30 years. Insensitivity to this chemical class of fungicide was recorded early in its usage history, but the precise protein(s) conditioning insensitivity has proven difficult to determine. To determine the genetic basis of insensitivity and to inform strategies for the cloning of the gene(s) responsible, genetic crosses were established between Mefenoxam sensitive and intermediate insensitive isolates of Phytophthora infestans, the potato late blight pathogen. F1 progeny showed the expected semi-dominant phenotypes for Mefenoxam insensitivity and suggested the involvement of multiple loci, complicating the positional cloning of the gene(s) conditioning insensitivity to Mefenoxam. Instead, a candidate gene strategy was used, based on previous observations that the primary effect of phenylamide compounds is to inhibit ribosomal RNA synthesis. The subunits of RNA polymerase I (RNApolI) were sequenced from sensitive and insensitive isolates and F1 progeny. Single nucleotide polymorphisms (SNPs) specific to insensitive field isolates were identified in the gene encoding the large subunit of RNApolI. In a survey of field isolates, SNP T1145A (Y382F) showed an 86% association with Mefenoxam insensitivity. Isolates not showing this association belonged predominantly to one P. infestans genotype. The transfer of the 'insensitive' allele of RPA190 to a sensitive isolate yielded transgenic lines that were insensitive to Mefenoxam. These results demonstrate that sequence variation in RPA190 contributes to insensitivity to Mefenoxam in P. infestans.

  18. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR.

    Science.gov (United States)

    Li, Mingzhu; Inada, Minoru; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2013-01-01

    Phytophthora nicotianae and P. cactorum cause Phytophthora rot of strawberry. A duplex real-time PCR technique for simultaneous detection and quantification of the two pathogens was developed. Species-specific primers for P. nicotianae and P. cactorum were designed based on the internal transcribed spacer regions (ITS) of rDNA and the ras-related protein gene Ypt1, respectively. TaqMan probes were labeled with FAM for P. nicotianae and HEX for P. cactorum. Specificities were demonstrated using 52 isolates, including various soil-borne pathogens. Sensitivities for P. nicotianae and P. cactorum DNAs were 10 fg and 1 pg, respectively. The technique was applied to naturally infested soil and root samples; the two pathogens were detected and the target DNA concentrations were quantified. Significant correlations of DNA quantities in roots and the surrounding soils were found. The minimum soil DNA concentration predicting the development of disease symptoms was estimated as 20 pg (g soil)(-1). In three strawberry greenhouses examined, the target DNA concentrations ranged from 1 to 1,655 pg (g soil)(-1) for P. nicotianae and from 13 to 233 pg (g soil)(-1) for P. cactorum. The method proved fast and reliable, and provides a useful tool to monitor P. nicotianae and P. cactorum in plants or soils.

  19. Study on Virulence Structure of Phytophthora sojae in Xinjiang%新疆大豆疫霉菌的毒力组成研究

    Institute of Scientific and Technical Information of China (English)

    崔林开; 胡艳红

    2012-01-01

    为明确大豆疫霉菌在新疆的分布和新疆大豆疫霉菌的毒力组成,采用大豆叶碟诱捕法从新疆大豆田土壤中分离大豆疫霉菌,并采用幼苗下胚轴伤口接种法鉴定大豆疫霉菌的毒力.结果共分离到26个大豆疫霉菌株,毒力测定鉴定出20个不同的毒力型,说明新疆的大豆疫霉菌表现出丰富的毒力多样性.新疆大豆疫霉菌对抗病基因Rpsla,Rpslc和Rpslk的毒力频率均为0,因此,可应用这3个抗病基因对新疆大豆疫霉根腐病进行有效控制.%Phytophthora sojae was isolated from soil samples collected in Xinjiang by the soybean leaf-disc baiting method, and then their pathotypes were characterized using the hypocotyl slit inoculation method. A total of 26 P. sojae isolates were obtained and 20 pathotypes were identified from these isolates. The result indicated that virulence diversity of P. sojae was abundant in Xinjiang. All the isolates were avirulent to cultivars with single resistance genes Rpsla ,Rpslc, and Rpslk ,so these resistance genes had a high application value in better control of Phytophthora root and stem rot.

  20. A conceptual model for the development of Phytophthora disease in Quercus robur.

    Science.gov (United States)

    Jönsson, U

    2006-01-01

    Here, a conceptual model is presented for the development of Phytophthora disease in pedunculate oak. The model is presented using the causal loop diagram tool and gives an overview of how various abiotic and biotic factors, such as soil moisture, nutrient availability and mycorrhizal colonization, may affect the reproduction and the infective capacity of soil-borne Phytophthora species, the susceptibility of the host and subsequent disease development. It is suggested that the link between the root damage caused by Phytophthora species and overall tree vitality is in the assimilation and allocation of carbon within the plants. The potential impact of environmental factors on these processes is discussed. The model is presented with reference to scenarios related to variation in soil moisture and nutrient availability. The need for species-specific validation of the model and the implications of the model are discussed.

  1. [Effect of pentachloronitrobenzene (PCNB) on the ultrastructure of Mucor mucedo and Phytophthora cactorum].

    Science.gov (United States)

    Casperson, G; Lyr, H

    1982-01-01

    The effect of PCNB in various concentrations on the ultrastructure of Mucor mucedo and phytophthora cactorum was analyzed after an incubation period of 2 hours. The most striking effect in both fungi was a diffuse lysis of the internal structure of the mitochondria which differs markedly from the lysis induced by etridiazol (terrazol). Moreover an enlargement of the perinuclear space and an increased formation of vacuoles was observed. In Mucor mucedo, but not in Phytophthora cactorum a pathological thickening of the cell wall was observed. Although after 2 hours incubation with PCNB Phytophthora gave similar ultrastructural reactions in the mitochondria as Mucor, in growth experiments on agar dishes this species was 5-10 times less sensitive to PCNB compared to Mucor.

  2. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora infestans (Mont.) de Bary

    Science.gov (United States)

    Martin, Michael D.

    2016-01-01

    Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846–1970) and more recent isolates (1992–2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866–75 and 1906–1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946–1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico. PMID:28030580

  3. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    Directory of Open Access Journals (Sweden)

    Jaime E Blair

    Full Text Available To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  4. Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    Science.gov (United States)

    Blair, Jaime E.; Coffey, Michael D.; Martin, Frank N.

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred. PMID:22615869

  5. Effect of temperature and moisture period on infection of Rhododendron 'Cunningham's White' by Phytophthora ramorum.

    Science.gov (United States)

    Tooley, Paul W; Browning, Marsha; Kyde, Kerrie L; Berner, Dana

    2009-09-01

    We investigated the temperature and moisture conditions that allow Phytophthora ramorum to infect Rhododendron 'Cunningham's White'. Most experiments were performed with a single P. ramorum isolate from the NA1 clonal lineage. For whole plants incubated in dew chambers at 10 to 31 degrees C, the greatest proportion of diseased leaves, 77.5%, occurred at the optimum temperature of 20.5 degrees C. Disease occurred over the entire range of temperatures tested, although amounts of disease were minor at the temperature extremes. For whole plants exposed to varying dew periods at 20 degrees C and then incubated at 20 degrees C for 7 days, a dew period as short as 1 h resulted in a small amount of disease; however, at least 4 h of dew were required for >10% of the leaves to become diseased. Moisture periods of 24 and 48 h resulted in the greatest number of diseased leaves. In detached-leaf, temperature-gradient-plate experiments, incubation at 22 degrees C resulted in the greatest disease severity, followed by 18 degrees C and then 14 degrees C. In detached-leaf, moisture-tent experiments, a 1-h moisture period was sufficient to cause disease on 67 to 73% of leaves incubated for 7 days at 20 degrees C. A statistical model for disease development that combined the effects of temperature and moisture period was generated using nonlinear regression. Our results define temperature and moisture conditions which allow infection by P. ramorum on Cunningham's White rhododendron, and show that P. ramorum is able to infect this host over a wide range of temperatures and moisture levels. The results indicate that P. ramorum has the potential to become established in parts of the United States that are outside its current range.

  6. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14.

    Science.gov (United States)

    Wendt, Toni; Doohan, Fiona; Mullins, Ewen

    2012-06-01

    Based on the use of Agrobacterium tumefaciens-mediated transformation commodity crop improvement through genetic engineering is the fastest adopted crop technology in the world (James 2010). However, the complexity of the Agrobacterium patent landscape remains a challenge for non-patent holders who wish to generate novel varieties for a commercial purpose. The potential of non-Agrobacterium strains (Transbacter(™)) to modify a plant genome has previously been described. However, they are unlikely to be widely used without significant adjustments in transformation protocols in order to improve their gene transfer efficiencies. In this study we set out to identify alternative bacteria species that could (a) utilize vir genes for genetic transformation and (b) substitute for A. tumefaciens in existing transformation protocols, without a prerequisite for protocol modifications. To this end we isolated a collection (n=751) of plant-associated bacteria from the rhizosphere of commercially grown crops. Based on various screens, including plant transformation with the open-source vector pCAMBIA5105, we identified a strain of the bacterium Ensifer adhaerens with the capacity to transform both Arabidopsis thaliana (0.12%) and potato (mean transformation frequency 35.1%). Thereafter, Ensifer adhaerens was used to generate blight- (causative organism Phytophthora infestans) resistant potato using the Solanum bulbocastanum 'resistance to blight' (RB) gene. Resistant genotypes were confirmed by associated molecular analysis and resistant phenotypes demonstrated by the development of hypersensitive lesions on inoculated leaf tissue post-pathogen inoculation. These data confirm the potential of Ensifer-mediated transformation (EMT) as a novel platform for the high frequency generation of transgenic potato.

  7. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  8. Agro-transformation and evaluation of resistance to Phytophthora infestansin Solanum tuberosumL. variety Désirée

    Directory of Open Access Journals (Sweden)

    Jeanette Orbegozo

    2014-03-01

    Full Text Available The Oomycete Phytophthora infestans (Mont. de Bary, the causal agent of the disease known as late blight, is primarily responsible for the decreased in production performance and potato crops worldwide. The integration of the complete Rgenes sequences in the potato genome using Agro-transformation appears an alternative to be considered in the fight against this pathogen. The Rpi-blb2 gene (Rgene from the wild species Solanum bulbocastanumDunal shows a broad resistance to isolates ofP. infestans,making it an important candidate for plant breeding studies. This paper reports the integration of the Rpi-blb2gene into potato var. Désirée genome by Agrobacterium tumefaciens- mediated transformation system, the molecular characterization of 29 events transformed and whole plant infection with isolate POX67 of P. infestansfrom Peru. Désirée events [Rpi-blb2] 4 and Désirée [Rpi-blb2] 30, showed a substantial resistance to P. infestansinfection confirming complete transfer of the Rpi-blb2gene from a wild species to a cultivated species by genetic transformation.

  9. A simple method for diagnostic of Phytophthora infestans (Mont. de Bary from potato agricultural fields of potato

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2015-12-01

    Full Text Available A correct detection and appropriate identification of causal pathogens associated with crop plants or seeds are considered to be the most important issue in designing the proper management plans for plant diseases. This study was designed to detect Phytophthora infestans inoculum from potato grown soil. A high detection rate of P.infestans was obtained from the naturally infested soil of potato fields. Naturally soils were firstly moistened in a plastic pots and then pre-incubated at ±18°C for 3 days, baiting with potato tuber slice for 24, 48, and 72 h. The baits were then thoroughly washed, flooded with 10–15 ml of distilled water in Petri-dishes and incubated under continuous darkness in chamber ±18ºC. Sporangia started to emerge from the margins of potato tuber slice. They were easily observed under the stereomicroscope. Pure culture of the fungus was obtained by isolating from baited tubers on a Rye Agar medium. This is the first report of recovery of P. infestans from naturally infested potato growing soils using susceptible potato tuber (K. Bahar as bait in India. All isolates were determined to be A2 mating type.

  10. Limited Sexual Reproduction and Quick Turnover in the Population Genetic Structure of Phytophthora infestans in Fujian, China.

    Science.gov (United States)

    Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Qin, Chun-Fang; Shang, Li-Ping; Wang, Zong-Hua; Zhan, Jiasui

    2015-05-13

    The mating system plays an important role in the spatiotemporal dynamics of pathogen populations through both its direct and indirect impact on the generation and distribution of genetic variation. Here, we used a combination of microsatellite and phenotypic markers to investigate the spatiotemporal distribution of genetic variation in Phytophthora infestans isolates collected from Fujian, China and to determine the role of sexual reproduction in the dynamics. Although the pathogen populations in this region were dominated by self-fertile genotypes, sexual reproduction only occurred occasionally and its contributions to the population genetic structure of P. infestans and epidemics of late blight in the region were limited. Only 49 genotypes were detected among the 534 isolates assayed and the pathogen populations displayed significant heterozygosity excess. Hierarchical analysis revealed that 21.42% of genetic variation was attributed to the difference among sampling years while only 4.45% was attributed to the difference among locations, suggesting temporal factors play a more important role in the population genetic dynamics of P. infestans than spatial factors in this region. We propose that clonal reproduction, combined with founder effects and long distance dispersal of sporangia, is responsible for the observed pattern of spatiotemporal dynamics in P. infestans.

  11. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans.

    Science.gov (United States)

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-02-08

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.

  12. Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans.

    Science.gov (United States)

    Mariette, Nicolas; Androdias, Annabelle; Mabon, Romain; Corbière, Roselyne; Marquer, Bruno; Montarry, Josselin; Andrivon, Didier

    2016-09-01

    Environmental factors such as temperature strongly impact microbial communities. In the current context of global warming, it is therefore crucial to understand the effects of these factors on human, animal, or plant pathogens. Here, we used a common-garden experiment to analyze the thermal responses of three life-history traits (latent period, lesion growth, spore number) in isolates of the potato late blight pathogen Phytophthora infestans from different climatic zones. We also used a fitness index (FI) aggregating these traits into a single parameter. The experiments revealed patterns of local adaptation to temperature for several traits and for the FI, both between populations and within clonal lineages. Local adaptation to temperature could result from selection for increased survival between epidemics, when isolates are exposed to more extreme climatic conditions than during epidemics. We also showed different thermal responses among two clonal lineages sympatric in western Europe, with lower performances of lineage 13_A2 compared to 6_A1, especially at low temperatures. These data therefore stress the importance of thermal adaptation in a widespread, invasive pathogen, where adaptation is usually considered almost exclusively with respect to host plants. This must now be taken into account to explain, and possibly predict, the global distribution of specific lineages and their epidemic potential.

  13. Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi.

    Science.gov (United States)

    Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya

    2014-05-01

    A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes.

  14. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  15. Phytophthora infestans specific phosphorylation patterns and new putative control targets.

    Science.gov (United States)

    Frades, Itziar; Andreasson, Erik

    2016-04-01

    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.

  16. Identification of Phytophthora sojae genes involved in asexual sporogenesis

    Indian Academy of Sciences (India)

    Ziying Wang; Xhaoxia Wang; Jie Shen; Guangyue Wang; Xiaoxi Zhu; Hongxia Lu

    2009-08-01

    To explore the molecular mechanisms involved in asexual spore development in Phytophthora sojae, the zoospores of strain PS26 were treated with ultraviolet (UV) irradiation. After selection, a mutant progeny, termed PS26-U03, was obtained and demonstrated to exhibit no oospore production. A suppression subtractive hybridization (SSH) approach was developed to investigate differences in gene expression between PS26 and PS26-U03 during asexual sporogenesis. Of the 126 sequences chosen for examination, 39 putative unigenes were identified that exhibit high expression in PS26. These sequences are predicted to encode proteins involved in metabolism, cell cycle, protein biosynthesis, cell signalling, cell defence, and transcription regulation. Seven clones were selected for temporal expression analysis using RT-PCR based on the results of the dot-blot screens. Three of the selected genes, developmental protein DG1037 (UB88), glycoside hydrolase (UB149) and a hypothetical protein (UB145), were expressed only in PS26, whereas the transcripts of phosphatidylinositol-4-phosphate 5-kinase (UB36), FAD-dependent pyridine nucleotide-disulphide oxidoreductase (UB226) and sugar transporter (UB256) were expressed at very low levels in PS26-U03 but at high levels in PS26.

  17. Distinctive Nuclear Localization Signals in the Oomycete Phytophthora sojae.

    Science.gov (United States)

    Fang, Yufeng; Jang, Hyo Sang; Watson, Gregory W; Wellappili, Dulani P; Tyler, Brett M

    2017-01-01

    To date, nuclear localization signals (NLSs) that target proteins to nuclei in oomycetes have not been defined, but have been assumed to be the same as in higher eukaryotes. Here, we use the soybean pathogen Phytophthora sojae as a model to investigate these sequences in oomycetes. By establishing a reliable in vivo NLS assay based on confocal microscopy, we found that many canonical monopartite and bipartite classical NLSs (cNLSs) mediated nuclear import poorly in P. sojae. We found that efficient localization of P. sojae nuclear proteins by cNLSs requires additional basic amino acids at distal sites or collaboration with other NLSs. We found that several representatives of another well-characterized NLS, proline-tyrosine NLS (PY-NLS) also functioned poorly in P. sojae. To characterize PY-NLSs in P. sojae, we experimentally defined the residues required by functional PY-NLSs in three P. sojae nuclear-localized proteins. These results showed that functional P. sojae PY-NLSs include an additional cluster of basic residues for efficient nuclear import. Finally, analysis of several highly conserved P. sojae nuclear proteins including ribosomal proteins and core histones revealed that these proteins exhibit a similar but stronger set of sequence requirements for nuclear targeting compared with their orthologs in mammals or yeast.

  18. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Science.gov (United States)

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  19. Phytophthora austrocedri Elicitates Changes in Diterpene Profile of Austrocedrus chilensis.

    Science.gov (United States)

    Olate, Verónica Rachel; Vélez, María Laura; Greslebin, Alina; Schmeda-Hirschmann, Guillermo

    2015-08-18

    The populations of the Andean Cupressaceae Austrocedrus chilensis have been severely affected by a disease caused by the phytopathogenic fungus Phytophthora austrocedri. A study was undertaken to disclose changes in the resin composition of P. austrocedri-infected individuals, including naturally infected and artificially inoculated trees, compared with healthy A. chilensis trees. GC-MS and (1)H-NMR studies showed a clear differentiation among healthy and infected resins, with the diterpene isopimara-8(9),15-dien-19-ol as a relevant constituent in resins from infected trees. The effect of resin fractions from P. austrocedri infected trees on the pathogen was assessed by measuring the mycelial growth in agar plates. The most active fractions from resin obtained from infected trees inhibited fungal growth by nearly 50% at 1 mg/dish (35.37 µg/cm(2)). The main constituent in the active fractions were 18-hydroxymanool and the aldehyde torulosal. Both compounds are oxidation products of manool and can be a chemical response of the tree to the pathogen or be formed from the pathogen as a biotransformation product of manool by microbial oxidation. While the diterpene profiles from A. chilensis tree resins can easily differentiate healthy and P. austrocedri infected individuals, the possible conversion of manool to the antifungal derivatives 4 and 6 by the microorganism remains to be established.

  20. Distinctive Nuclear Localization Signals in the Oomycete Phytophthora sojae

    Science.gov (United States)

    Fang, Yufeng; Jang, Hyo Sang; Watson, Gregory W.; Wellappili, Dulani P.; Tyler, Brett M.

    2017-01-01

    To date, nuclear localization signals (NLSs) that target proteins to nuclei in oomycetes have not been defined, but have been assumed to be the same as in higher eukaryotes. Here, we use the soybean pathogen Phytophthora sojae as a model to investigate these sequences in oomycetes. By establishing a reliable in vivo NLS assay based on confocal microscopy, we found that many canonical monopartite and bipartite classical NLSs (cNLSs) mediated nuclear import poorly in P. sojae. We found that efficient localization of P. sojae nuclear proteins by cNLSs requires additional basic amino acids at distal sites or collaboration with other NLSs. We found that several representatives of another well-characterized NLS, proline-tyrosine NLS (PY-NLS) also functioned poorly in P. sojae. To characterize PY-NLSs in P. sojae, we experimentally defined the residues required by functional PY-NLSs in three P. sojae nuclear-localized proteins. These results showed that functional P. sojae PY-NLSs include an additional cluster of basic residues for efficient nuclear import. Finally, analysis of several highly conserved P. sojae nuclear proteins including ribosomal proteins and core histones revealed that these proteins exhibit a similar but stronger set of sequence requirements for nuclear targeting compared with their orthologs in mammals or yeast. PMID:28210240

  1. Phytophthora austrocedri Elicitates Changes in Diterpene Profile of Austrocedrus chilensis

    Directory of Open Access Journals (Sweden)

    Verónica Rachel Olate

    2015-08-01

    Full Text Available The populations of the Andean Cupressaceae Austrocedrus chilensis have been severely affected by a disease caused by the phytopathogenic fungus Phytophthora austrocedri. A study was undertaken to disclose changes in the resin composition of P. austrocedri-infected individuals, including naturally infected and artificially inoculated trees, compared with healthy A. chilensis trees. GC-MS and 1H-NMR studies showed a clear differentiation among healthy and infected resins, with the diterpene isopimara-8(9,15-dien-19-ol as a relevant constituent in resins from infected trees. The effect of resin fractions from P. austrocedri infected trees on the pathogen was assessed by measuring the mycelial growth in agar plates. The most active fractions from resin obtained from infected trees inhibited fungal growth by nearly 50% at 1 mg/dish (35.37 µg/cm2. The main constituent in the active fractions were 18-hydroxymanool and the aldehyde torulosal. Both compounds are oxidation products of manool and can be a chemical response of the tree to the pathogen or be formed from the pathogen as a biotransformation product of manool by microbial oxidation. While the diterpene profiles from A. chilensis tree resins can easily differentiate healthy and P. austrocedri infected individuals, the possible conversion of manool to the antifungal derivatives 4 and 6 by the microorganism remains to be established.

  2. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    Science.gov (United States)

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  3. Early-screening for resistance to Phytophthora sp.p. in wild cherry clones (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    Guerri S

    2004-01-01

    Full Text Available A new method for early selection of wild cherry clones for resistance to Phytophthora sp. is presented. Four Phytophthora species (P. cinnamomi, P. citrophthora, P. megasperma, P. alni were tested in vitro on four micropropagated cherry (Prunus avium clones, obtaining reliable and reproducible results. Variability in clones susceptibilities and in parasite virulence has been evidenced. Phytophthora citrophthora is confirmed to be a dangerous parasite, due to its capability to produce symptoms rapidly and its fitness to Mediterranean environments. On the contrary P. alni does not seem a dangerous parasite for wild cherry.

  4. Monitoring of Soft Fruit Mother Plantings Aimed at Control of Phytophthora fragariae, Causal Agent of Root Rot

    Directory of Open Access Journals (Sweden)

    Slobodan Milenković

    2006-12-01

    Full Text Available Phytophthora fragariae was first detected in the Republic of Serbia in 2002, and it has been included in A2 quarantine list of damaging organisms since 2003. The project titled ‘Monitoring of soft fruit mother plantings aimed at the control of Phytophthora fragariae, causal agent of root rot’ was realized over 2004 – 2005 aiming at determination of population rate of the pathogen and the control of raspberry planting material. Over that period, the total 388 samples were tested. Collected samples were analyzed by PCR. The presence of Phytophthora fragariae was detected in 156 samples.

  5. Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance.

    Directory of Open Access Journals (Sweden)

    Dennis A Halterman

    Full Text Available BACKGROUND: The destructive plant disease potato late blight is caused by the oomycete pathogen Phytophthora infestans (Mont. de Bary. This disease has remained particularly problematic despite intensive breeding efforts to integrate resistance into cultivated potato, largely because of the pathogen's ability to quickly evolve to overcome major resistance genes. The RB gene, identified in the wild potato species S. bulbocastanum, encodes a protein that confers broad-spectrum resistance to most P. infestans isolates through its recognition of highly conserved members of the corresponding pathogen effector family IPI-O. IpiO is a multigene family of effectors and while the majority of IPI-O proteins are recognized by RB to elicit host resistance, some variants exist that are able to elude detection (e.g. IPI-O4. METHODS AND FINDINGS: In the present study, analysis of ipiO variants among 40 different P. infestans isolates collected from Guatemala, Thailand, and the United States revealed a high degree of complexity within this gene family. Isolate aggressiveness was correlated with increased ipiO diversity and especially the presence of the ipiO4 variant. Furthermore, isolates expressing IPI-O4 overcame RB-mediated resistance in transgenic potato plants even when the resistance-eliciting IPI-O1 variant was present. In support of this finding, we observed that expression of IPI-O4 via Agrobacterium blocked recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death in Nicotiana benthamiana. CONCLUSIONS: In this study we definitively demonstrate and provide the first evidence that P. infestans can defeat an R protein through inhibition of recognition of the corresponding effector protein.

  6. 致病疫霉(Phytophthora infestans)对杀菌剂 抗药性研究进展%Advance on fungicides resistance of Phytophthora infestans

    Institute of Scientific and Technical Information of China (English)

    杨志辉; 张志铭; 朱杰华; 赵会欣

    2001-01-01

    综述了致病疫霉(Phytophthora infestans)对内吸性杀菌剂甲霜灵、霜脲氰和保护性杀菌剂代森锰锌和百菌清的抗性研究进展,总结了当前用于防治晚疫病的药剂种类并提出了抗性治理策略。对于致病疫霉抗性遗传研究和抗性治理及药剂防治都具有一定的参考价值。%Progress on the resistance of systemic fungicides (metalaxyl and cymoxanil) and protectant fungicidies ( mancozeb and chlorothalonil) to Phytophthora infestans was reviewed. Fungicides used in controlling late blight were listed and strategies on resistance management were proposed. It might be referred.on resistance inheritance research, resistance management and fungicide control.

  7. Research Progress in Physiological Race of Phytophthora Sojae%大豆疫霉菌(Phytophthora sojae)生理小种研究进展

    Institute of Scientific and Technical Information of China (English)

    王颖; 臧忠婧

    2002-01-01

    综述了大豆疫霉菌 (phytophthora sojae)的生理分化和生理小种的研究进展,包括传统的毒性分析到分子技术的应用,探讨了小种鉴定中发现的无毒菌株的成因及其特征.

  8. Bescherming van nieuwe groei tegen Phytophthora in de teelt van aardappelen

    NARCIS (Netherlands)

    Kalkdijk, J.R.; Schepers, H.T.A.M.; Evenhuis, A.

    2005-01-01

    Onderzoek naar de werking van fungiciden tijdens de teelt van poot- en consumptieaardappelen. Tijdens de periode dat het loof snel groeit zijn er delen van de plant onbeschermd tegen Phytophthora. De werking van fungiciden op de bescherming van de nieuwe groei is in biotoetsen regelmatig getoetst. E

  9. Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    NARCIS (Netherlands)

    Harutyunyan, Syuzanna R.; Zhao, Zhijian; den Hartog, Tim; Bouwmeester, Klaas; Minnaard, Adriaan J.; Feringa, Ben L.; Govers, Francine

    2008-01-01

    A Phytophthora mating hormone with an array of 11,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo-and enantioselective iterative route and obtained

  10. Incidence of Phytophthora infestans (Mont.) de Bary on potato and tomato in Maine, 2006-2010

    Science.gov (United States)

    Late blight, caused by Phytophthora infestans, is a devastating disease globally. In Maine, we recorded late blight on potato and tomato during the 2006-2010 cropping seasons. From 2006 to 2008, over 90% of diseased samples were collected in potato fields from northern and central Aroostook County i...

  11. Understanding the molecular basis of the resistance of Phytophthora infestans to fungicides by functional genomics

    Science.gov (United States)

    Development of resistance to fungicides is a major concern in managing potato late blight disease caused by Phytophthora infestans. The problem is P. infestans is capable of sexual recombination contributing to increased strain variability and high adaptability that hastens the development of resis...

  12. Tuber blight development in potato cultivars in response to different genotypes of Phytophthora infestans

    Science.gov (United States)

    Potato late blight, caused by Phytophthora infestans, is one of the most devastating diseases in potatoes, causing significant loses under disease-conducive conditions. Migrations or introduction of new genotypes to a specific region impose a different set of criteria for consideration for potato gr...

  13. Survival potential of Phytophthora infestans sporangia in relation to meteorological factors

    Science.gov (United States)

    Assessment of meteorological factors coupled with sporangia survival curves may enhance effective management of potato late blight, caused by Phytophthora infestans. We utilized a non-parametric density estimation approach to evaluate the cumulative probability of occurrence of temperature and relat...

  14. Doseringsverlaging op basis van loof- en knolresistentie tegen Phytophthora infestans in aardappel

    NARCIS (Netherlands)

    Spits, H.G.

    2007-01-01

    Een mogelijkheid om het middelengebruik omlaag te krijgen is een bestrijdingsstrategie te ontwikkelen waarbij de gevoeligheid van het ras gebruikt wordt bij de beheersing van de aardappelziekte. Bij zo’n strategie zou een ras dat weinig gevoelig is voor Phytophthora met een lagere dosering net zo go

  15. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O

    Science.gov (United States)

    The potato late blight pathogen, Phytophthora infestans, is able to rapidly evolve to overcome resistance genes. The pathogen accomplishes this by secreting an arsenal of proteins, termed effectors, that function to modify host cells. Although hundreds of candidate effectors have been identified in ...

  16. Chemical control of Phytophthora ramorum causing foliar disease in hardy nursery stock in the United Kingdom

    Science.gov (United States)

    Judith Turner; Philip Jennings; Sam McDonough; Debbie Liddell; Jackie Stonehouse

    2006-01-01

    A range of fungicides have been tested for activity against P. ramorum using both in vitro and in vivo tests. All fungicides had proven activity against Phytophthora species and either had full approval for use on hardy ornamental nursery stock in the United Kingdom, or could be used under the Revised Long Term Arrangements for Extension of Use (2002...

  17. Genetic mapping and characterization of two novel Phytophthora resistance genes from soybean landrace PI567139B

    Science.gov (United States)

    Phytophthora root and stem rot (PRR) disease, caused by P. sojae, is a widespread soybean disease resulting in an annual yield loss of $1~2 billion worldwide. To control the disease, breeders primarily employ race-specific resistant genes which are named Rps genes which have been identified to be lo...

  18. Alternative methods to control Phytophthora cactorum in strawberry cultivated in soilless growing media

    NARCIS (Netherlands)

    Evenhuis, B.; Nijhuis, E.H.; Lamers, J.G.; Verhoeven, J.T.W.; Postma, J.

    2014-01-01

    Phytophthora cactorum is an important threat in strawberry propagation and production. No reliable non-chemical control measures are available. Therefore different control strategies were tested. Spread of pathogen infection can be reduced by disinfection of the irrigation water. Slow sand

  19. The Phytophthora infestans avirulence gene PiaAvr4 and its potato counterpart R4

    NARCIS (Netherlands)

    Poppel, van P.M.J.A.

    2009-01-01

    The potato late blight disease that is caused by the oomycete pathogen Phytophthora infestans is a major threat for potato crops worldwide. In recent years research on oomycete plant pathogens was boosted by the availability of novel genomic tools and resources for several oomycete genera, such as

  20. Durable cisgenic resistance to Phytophthora infestans in potato and perspectives for applications in Africa

    NARCIS (Netherlands)

    Gheysen, G.; Heremans, B.; Droogenbroeck, van B.; Custers, R.; Vossen, J.H.; Visser, R.G.F.; Jacobsen, E.; Hutten, R.C.B.; Haverkort, A.J.

    2015-01-01

    Late blight caused by Phytophthora infestans is a major constraint in potato production. A promising strategy to combat late blight in potato is to combine different resistance genes to achieve durable resistance. Resistance genes from wild relatives can be introduced by breeding or by

  1. Correlation of isozyme profiles with genomic sequences of Phytophthora ramorum and its P. sojae orthologues

    NARCIS (Netherlands)

    Man in 't Veld, W.A.; Govers, F.; Meijer, H.J.G.

    2007-01-01

    A correct interpretation of isozyme patterns can be seriously hampered by the lack of supporting genetic data. The availability of the complete genome sequence of Phytophthora ramorum, enabled us to correlate isozyme profiles with the gene models predicted for these enzymes. Thirty-nine P. ramorum s

  2. Methods for screening Port-Orford-cedar for resistance to Phytophthora lateralis

    Science.gov (United States)

    Everett M. Hansen; Paul Reeser; Wendy Sutton; Richard A. Sniezko

    2012-01-01

    Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murray) Parl.) (POC) is an economically and ecologically valuable tree in the forests of southwest Oregon and northern California and in the horticultural trade worldwide. Phytophthora lateralis, the aggressive, invasive cause of POC root disease, was introduced to the native...

  3. Stream Monitoring for Detection of Phytophthora ramorum in Oregon Tanoak Forests

    Science.gov (United States)

    W. Sutton; E. M. Hansen; P. W. Reeser; A. Kanaskie

    2009-01-01

    Stream monitoring using leaf baits for early detection of Phytophthora ramorum has been an important part of the Oregon Sudden Oak Death (SOD) program since 2002. Sixty-four streams in and near the Oregon quarantine area in the southwest corner of the state were monitored in 2008. Leaves of rhododendron (Rhododendron macrophyllum...

  4. Phytophthora species associated with stem cankers on tanoak in southwestern Oregon

    Science.gov (United States)

    Paul Reeser; Wendy Sutton; Everett Hansen

    2008-01-01

    In effort to eradicate Phytophthora ramorum from Oregon forests, tanoak over its entire range in southwestern Oregon is surveyed intensively for stem disease. Pieces of bark from the leading edge of tanoak stem cankers were plated on cornmeal agar amended with 10 ppm natamycin, 200 ppm a-ampicillin, and 10 ppm rifamycin SV (CARP) to favor the...

  5. The effects of Phytophthora ramorum infection on hydraulic conductivity and tylosis formation in tanoak sapwood

    Science.gov (United States)

    Bradley R. Collins; Jennifer L. Parke; Barb Lachenbruch; Everett M. Hansen

    2009-01-01

    Tanoak (Lithocarpus densiflorus (Hook. and Arn.) Rehder) is highly susceptible to sudden oak death, a disease caused by the oomycete Phytophthora ramorum Werres, De Cock & Man in’t Veld. Symptoms include a dying crown, bleeding cankers, and, eventually, death of infected trees. The cause of mortality is not well understood, but recent research indicates that...

  6. Spatial relationship between Phytophthora ramorum and roads or streams in Oregon tanoak forests

    Science.gov (United States)

    Ebba Peterson; Everett Hansen; Alan Kanaskie

    2014-01-01

    The pathogen, Phytophthora ramorum, causal agent of sudden oak death (SOD) of oaks and tanoaks, continues to expand its range within Oregon despite an effort to eradicate it from native forests. With its early detection and prompt removal of infected hosts, the Oregon SOD eradication program has produced a landscape distribution of disease...

  7. Small Homologous Blocks in Phytophthora Genomes Do Not Point to an Ancient Whole-Genome Duplication

    NARCIS (Netherlands)

    Hooff, van J.J.E.; Snel, B.; Seidl, M.F.

    2014-01-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whol

  8. Small homologous blocks in phytophthora genomes do not oint to an ancient whole-genome duplication

    NARCIS (Netherlands)

    Van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F.

    2014-01-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) as well as by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presences of 2HOM blocks, have been attributed t

  9. Evaluation of watermelon varieties for tolerance to powdery mildew and Phytophthora fruit rot, 2014

    Science.gov (United States)

    This experiment was conducted at the U.S. Vegetable Laboratory farm in Charleston, SC. The soil was Yonges loamy fine sand. This study was undertaken to determine the performance of seeded and seedless commercial watermelon varieties for tolerance to powdery mildew (PM) and Phytophthora fruit rot as...

  10. Towards the development of integrated cultural control of tomato late blight (Phytophthora infestans) in Uganda

    NARCIS (Netherlands)

    Tumwine, J.

    1999-01-01

    Tomato ( Lycopersicon esculentum ) is a major vegetable crop in Uganda. Moneymaker, Marglobe, Heinz and Roma are the major commercial varieties grown in the country, the first two being the most popular. Late blight ( Phytophthora infestans ) is the most important disease of Ugandan tomatoes. Tomato

  11. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Science.gov (United States)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  12. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity

    NARCIS (Netherlands)

    Meijer, H.J.G.; Hassen, H.H.; Govers, F.

    2011-01-01

    In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, an

  13. Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA.

    Science.gov (United States)

    A new method based on the analysis of mitochondrial intergenic regions characterized by intraspecific variation in DNA sequences was developed and applied to the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes trny and rns and trnw and cox2 were identified by compa...

  14. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora

    Science.gov (United States)

    The most recent phylogenetic analysis of the genus Phytophthora was completed in 2008 (Blair et al. 2008) and utilized 8.1 kb of sequence data from seven nuclear loci. Given the large number of species that have recently been described, this study was undertaken to broaden the available information...

  15. New technologies to detect and monitor Phytophthora ramorum in plant, soil, and water samples

    Science.gov (United States)

    Paul Russell; Nathan McOwen; Robert Bohannon

    2013-01-01

    The focus of our research efforts has been to develop methods to quickly identify plants, soil, and water samples infested with Phytophthora spp., and to rapidly confirm the findings using novel isothermal DNA technologies suitable for field use. These efforts have led to the development of a rapid Immunostrip® that reliably detects...

  16. Genetical studies of resistance to Phytophthora porri in Allium porrum, using a new early screening method.

    NARCIS (Netherlands)

    Smilde, W.D.; Nes, van M.; Reinink, K.; Kik, C.

    1997-01-01

    A new screening method was developed to evaluate resistance of leek (Allium porrum) to Phytophthora porri, based on inoculation by 24 h-immersion of leek plantlets in the 3–6 leaf stage in a suspension of ca. 100 zoospores.ml-1. The immersion test was used for identifying new sources of resistance a

  17. Genes for and molecular markers linked with resistance to Phytophthora fragariae in strawberry

    NARCIS (Netherlands)

    Weg, van de W.E.; Henken, B.; Haymes, K.M.; den Nijs, A.P.M.

    1998-01-01

    A gene-for-gene model is presented which explains interactions between cultivars of strawberry and races of Phytophthora fragariae var. fragariae, the causal agent of red core (red stele) root rot. The model allows the constitution of a universal differential set of strawberry genotypes and the char

  18. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  19. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A

    Science.gov (United States)

    Improving resistance for Phytophthora root and stem rot is an important goal in soybean [Glycine max (L.) Merr.] breeding. Partial resistance can be as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of this study was to identify QTL con...

  20. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  1. Multi-Year Evaluation of Commercial Soybean Cultivars for Resistance to Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae causes damping off, root rot, and stem rot of soybean, particularly in poorly drained soils. The use of resistance has been one of the primary management tools used to control this disease, with the most commonly used genes being Rps1c and Rps1k, followed by Rps1a. The Varietal In...

  2. First results with a lab-on-a-chip system for a fast Phytophthora diagnosis.

    Science.gov (United States)

    Sonja Horatzek; Stephan König; Stefan Wagner; Sabine Werres; Lydia Schwenkbier; Karina Weber; Jörg. Weber

    2013-01-01

    For Phytophthora spp. that are quarantine or regulated organisms, highly specific and sensitive diagnostic tools are recommended for surveys and monitoring. Furthermore, these diagnostic techniques should give results within a short time and should be not be too expensive. The techniques currently used for routine diagnosis of ...

  3. The Effect of Low Oxygen Stress on Phytophthora cinnamomi Infection and Disease of Cork Oak Roots

    Science.gov (United States)

    Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello

    1997-01-01

    The incidence and severity of Phytophthora cinnamomi Rands root disease was quantified in cork oak (Quercus suber L.) roots subjected to low oxygen (hypoxia) stress. Seedling root tips were inoculated with mycelial plugs of the fungus and incubated in ≤1, 3-4, or 21 percent oxygen for 5 days. Ninety-four percent of roots...

  4. Stability of resistance to Phytophthora infestans in potato: an international evaluation

    NARCIS (Netherlands)

    Forbes, G.A.; Chacon, M.G.; Kirk, H.G.; Huarte, M.A.; Damme, van M.M.A.; Distel, S.; Mackay, G.R.; Stewart, H.E.; Lowe, R.; Duncan, J.M.; Mayton, H.S.; Fry, W.E.; Andrivon, D.; Ellisseche, D.; Pelle, R.; Platt, H.W.; MacKenzie, G.; Tarn, T.R.; Colon, L.T.; Budding, D.J.; Lozoya-Saldana, H.

    2005-01-01

    Ten institutions in nine countries joined together to test the stability of resistance of 14 potato genotypes to the oomycete pathogen Phytophthora infestans in three separate trials. Seven of the genotypes were tested in one trial involving seven locations, and all 14 were tested in two subsequent

  5. The effect of salinity on the growth, sporulation and infection of Phytophthora ramorum

    Science.gov (United States)

    Phytophthora ramorum, a threat to Eastern U.S. forests, has been found in waterways outside the boundaries of infested ornamental nurseries. Very little is known about what factors are conducive to its survival and sporulation in water. This study examined the effect of salt on growth, sporulation,...

  6. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper

    Science.gov (United States)

    Phytophthora nicotianae is the principal causal agent of root and crown rot disease of pepper plants in Extremadura (western Spain), a spring-summer crop in this region. Preplant soil treatment by anaerobic soil disinfestation (ASD) may effectively control plant pathogens in many crop production sys...

  7. Management of Phytophthora cinnamomi root rot disease of blueberry with gypsum and compost

    Science.gov (United States)

    Root rot disease of blueberry caused by Phytophthora cinnamomi is becoming more prevalent as a consequence of widespread adoption of drip irrigation. This creates higher moisture content in the root zone more conducive for the pathogen. Options for disease control under organic management are limi...

  8. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.

    Science.gov (United States)

    Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo

    2015-05-05

    A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.

  9. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangi...

  10. Photosynthetic declines are induced by Phytophthora ramorum infection and exposure to elicitins

    Science.gov (United States)

    Daniel K. Manter; Rick G. Kelsey; Joseph J. Karchesy

    2008-01-01

    Infection of compatible plants by Phytophthora spp. often leads to a decline in stomatal conductance and photosynthesis, although the mechanistic basis for such declines is not completely understood. In many cases, declines in leaf gas exchange rates have been linked to losses in water supply capacity associated with root and/or xylem. However, the...

  11. Multiplex SSR analysis of Phytophthora infestans in different countries and the importance for potato breeding

    NARCIS (Netherlands)

    Li, Y.

    2012-01-01

    Potato is the most important non-cereal crop in the world. Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease of potato. In the mid-19th century, P. infestans attacked the European potato fields and this resulted in a widespread famine in Ireland and

  12. Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    NARCIS (Netherlands)

    Harutyunyan, S.R.; Zhao, Z.; Hartog, den T.; Bouwmeester, K.; Minnaard, A.J.; Feringa, B.L.; Govers, F.

    2008-01-01

    A Phytophthora mating hormone with an array of 1,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo- and enantioselective iterative route and obtained

  13. Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    NARCIS (Netherlands)

    Harutyunyan, Syuzanna R.; Zhao, Zhijian; den Hartog, Tim; Bouwmeester, Klaas; Minnaard, Adriaan J.; Feringa, Ben L.; Govers, Francine

    2008-01-01

    A Phytophthora mating hormone with an array of 11,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo-and enantioselective iterative route and obtained

  14. Antifungal activity of extracts and select compounds in heartwood of seven western conifers toward Phytophthora ramorum

    Science.gov (United States)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western red cedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper,...

  15. Spatial and temporal aspects of tylosis formation in tanoak inoculated with Phytophthora ramorum

    Science.gov (United States)

    Brad Collins; Jennifer Parke

    2008-01-01

    Phytophthora ramorum is an oomycete pathogen that causes sudden oak death in several species of Fagaceae including tanoak (Lithocarpus densiflorus). Symptoms on tanoak include stem cankers and crown death. Stem infection was thought to be restricted to bark and cambium, but has recently been shown to include sapwood....

  16. Survival potential of Phytophthora infestans in relation to environmental factors and late blight occurrence

    Science.gov (United States)

    Potato is an important crop globally and late blight (Phytophthora infestans) often results in severe crop loss. The cost for late blight control can be in excess of $210 million in the United States. We utilized a non-parametric density distribution analysis of local temperature (Temp) and relative...

  17. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

    NARCIS (Netherlands)

    Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; Bozkurt, T.O.; Ah-Fong, A.M.V.; Alvarado, L.; Anderson, V.L.; Armstrong, M.R.; Avrova, A.; Baxter, L.; Beynon, J.; Boevink, P.C.; Bollmann, S.R.; Bos, J.I.B.; Bulone, V.; Cai, G.; Cakir, C.; Carrington, J.C.; Chawner, M.; Conti, L.; Costanzo, S.; Ewan, R.; Fahlgren, N.; Fischbach, M.A.; Fugelstad, J.; Gilroy, E.M.; Gnerre, S.; Green, P.J.; Grenville-Briggs, L.J.; Griffith, J.; Grunwald, N.J.; Horn, K.; Horner, N.R.; Hu, C.H.; Huitema, E.; Jeong, D.H.; Jones, A.M.E.; Jones, J.D.G.; Jones, R.W.; Karlsson, E.K.; Kunjeti, S.G.; Lamour, K.; Liu, Z.; Ma, L.; Maclean, D.; Chibucos, M.C.; McDonald, H.; McWalters, J.; Meijer, H.J.G.; Morgan, W.; Morris, P.F.; Munro, C.A.; O'Neill, K.; Ospina-Giraldo, M.; Pinzon, A.; Pritchard, L.; Ramsahoye, B.; Ren, Q.; Restrepo, S.; Roy, S.; Sadanandom, A.; Savidor, A.; Schornack, S.; Schwartz, D.C.; Schumann, U.D.; Schwessinger, B.; Seyer, L.; Sharpe, T.; Silvar, C.; Song, J.; Studholme, D.J.; Sykes, S.; Thines, M.; Vondervoort, van de P.J.I.; Phuntumart, V.; Wawra, S.; Weide, R.; Win, J.; Young, C.; Zhou, S.; Fry, W.; Meyers, B.C.; West, van P.; Ristaino, J.; Govers, F.; Birch, P.R.J.; Whisson, S.C.; Judelson, H.S.; Nusbaum, C.

    2009-01-01

    Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans ha

  18. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Science.gov (United States)

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  19. The Phytophthora infestans avirulence gene PiaAvr4 and its potato counterpart R4

    NARCIS (Netherlands)

    Poppel, van P.M.J.A.

    2009-01-01

    The potato late blight disease that is caused by the oomycete pathogen Phytophthora infestans is a major threat for potato crops worldwide. In recent years research on oomycete plant pathogens was boosted by the availability of novel genomic tools and resources for several oomycete genera, such as P

  20. Evaluation of fungicide rotations for management of Phytophthora fruit rot of watermelon, 2015

    Science.gov (United States)

    The experiment was conducted at the U.S. Vegetable Laboratory farm in Charleston, SC. The soil was Yonges loamy fine sand. For the past 6 years, the field has been infested with Phytophthora capsici. The experimental design was a randomized complete block with four replications. Five-week-old seedli...

  1. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus Phytophthora

    Science.gov (United States)

    Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, ...

  2. Roles of small RNAs in soybean defense against Phytophthora sojae infection.

    Science.gov (United States)

    Wong, James; Gao, Lei; Yang, Yang; Zhai, Jixian; Arikit, Siwaret; Yu, Yu; Duan, Shuyi; Chan, Vicky; Xiong, Qin; Yan, Jun; Li, Shengben; Liu, Renyi; Wang, Yuanchao; Tang, Guiliang; Meyers, Blake C; Chen, Xuemei; Ma, Wenbo

    2014-09-01

    The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat-inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding-leucine rich repeat proteins and genes encoding pentatricopeptide repeat-containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense-associated genes in soybean during Phytophthora infection.

  3. Identification of stable resistance to Phytophthora infestans in potato genotypes evaluated in field experiments in Peru

    DEFF Research Database (Denmark)

    Wulff, Ednar Gadelha; Pérez, W.; Nelson, R.J.;

    2007-01-01

    Abstract: In this study, genotype by environment (G x E) interactions and phenotypic stability of resistance to Phytophthora infestans, the cause of late blight, were analysed in Peru lot 13 potato genotypes, using additive main effects and multiplicative interaction (AMMI) analysis and Huehn's non...

  4. Recommended industry best management practices for the prevention of Phytophthora ramorum introduction in nursery operations

    Science.gov (United States)

    Karen Suslow

    2008-01-01

    The following industry recommended best management practices (BMPs), designed for growers and/or interstate shippers of host and associated host plants of Phytophthora ramorum, consists of biosecurity guidelines created by and for nursery growers in order to reduce the risks associated with P. ramorum. The control of P....

  5. An in planta induced gene of Phytophthora infestans codes for ubiquitin

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Risseeuw, E.P.; Davidse, L.C.

    1991-01-01

    An in planta induced gene of Phytophthora infestans (the causal organism of potato late blight) was selected from a genomic library by differential hybridization using labelled cDNA derived from poly(A)+ RNA of P. infestans grown in vitro and labelled cDNA made from potato-P. infestans interaction

  6. Multiplex SSR analysis of Phytophthora infestans in different countries and the importance for potato breeding

    NARCIS (Netherlands)

    Li, Y.

    2012-01-01

    Potato is the most important non-cereal crop in the world. Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease of potato. In the mid-19th century, P. infestans attacked the European potato fields and this resulted in a widespread famine in Ireland and

  7. Detection and identification of Phytophthora fragariae Hickman by the polymerase chain reaction

    NARCIS (Netherlands)

    Bonants, P.; Hagenaar-de Weerdt, M.; Gent-Pelzer, van M.; Lacourt, I.; Cooke, D.; Duncan, J.

    1997-01-01

    Phytophthora fragariae Hickman, which causes strawberry red stele and raspberry root rot, is a quarantine organism for which specific and sensitive detection methods are required to test the health of planting material. Sequences of the internal transcribed spacer regions of the ribosomal gene

  8. 'Cisgenese kan handje helpen in bestrijding phytophthora' (interview met Geert Kessel)

    NARCIS (Netherlands)

    Engwerda, J.; Kessel, G.J.T.

    2009-01-01

    Toluca en Bionica zijn prima biologische aardappelrassen. Maar WUR vindt een waarschuwing nodig omdat in het lab de resistentie tegen phytophthora omzeild kan worden. "Cisgenese kan helpen om resistentie tegen te gaan." Toluca en Bionica zijn prima rassen voor de biologische aardappelteelt. Ondanks

  9. A Rapid Diagnostic Test to Distinguish Between American and European Populations of Phytophthora ramorum

    NARCIS (Netherlands)

    Kroon, L.P.N.M.; Verstappen, E.C.P.; Kox, L.F.F.; Flier, W.G.; Bonants, P.J.M.

    2004-01-01

    A new devastating disease in the United States, commonly known as Sudden Oak Death, is caused by Phytophthora ramorum. This pathogen, which previously was described attacking species of Rhododendron and Viburnum in Germany and the Netherlands, has established itself in forests on the central coast o

  10. A systems approach for detecting sources of Phytophthora contamination in nurseries

    Science.gov (United States)

    Jennifer L. Parke; Niklaus Grünwald; Carrie Lewis; Val Fieland

    2010-01-01

    Nursery plants are also important long-distance vectors of non-indigenous pathogens such as P. ramorum and P. kernoviae. Pre-shipment inspections have not been adequate to ensure that shipped plants are free from Phytophthora, nor has this method informed growers about sources of contamination in their...

  11. Bioassay conditions for infection of Pinus radiata seedlings with Phytophthora pinifolia zoospores

    Science.gov (United States)

    Phytophthora pinifolia is known to cause a devastating disease on Monterey pines in Chile. Although this pathogen is not yet present in the U.S., there is reason for concern. The main source of Monterey pine genetic material is found in California and there is potential for other important tree sp...

  12. Resistance to Phytophthora infestans in Solanum tuberosum and wild Solanum species

    NARCIS (Netherlands)

    Colon, L.T.

    1994-01-01

    Resistance to Phytophthora infestans , the causal agent of late blight, is present in the potato, Solanum tuberosum , and in many wild relatives of this crop. The resistance of S. tuberosum is partial and, though helpful in reducing the use of fungicides, is not sufficient to fully solve the problem

  13. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans

    NARCIS (Netherlands)

    Li, Y.; Cooke, D.E.L.; Jacobsen, E.; Lee, van der T.A.J.

    2013-01-01

    Genotyping is fundamental to population analysis. To accommodate fast, accurate and cost-effective genotyping, a one-step multiplex PCR method employing twelve simple sequence repeat (SSR) markers was developed for high-throughput screening of Phytophthora infestans populations worldwide. The SSR

  14. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans

    NARCIS (Netherlands)

    Vijn, I.; Govers, F.

    2003-01-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and, more recently, has also been used to transform yeast and filamentous fungi. Here we present a protocol for Agrobacterium-mediated DNA transformation of the oomycete Phytophthora infestans, the causal agent of potato late blig

  15. Molecular evolution of an Avirulence Homolog (Avh) gene subfamily in Phytophthora ramorum

    Science.gov (United States)

    GossErica M.; Caroline M. Press; Niklaus J. Grünwald

    2008-01-01

    Pathogen effectors can serve a virulence function on behalf of the pathogen or trigger a rapid defense response in resistant hosts. Sequencing of the Phytophthora ramorum genome and subsequent analysis identified a diverse superfamily of approximately 350 genes that are homologous to the four known avirulence genes in plant pathogenic oomycetes and...

  16. Identification of potato genes involved in Phytophthora infestans resistance by transposon mutagenesis

    NARCIS (Netherlands)

    Enckevort, van L.J.G.

    2000-01-01

    The late blight disease, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a serious threat to the potato crop every growing season. This has, for example, led to the disastrous Irish famine in the middle of the 19 th century, and

  17. Response of U.S. bottle gourd (Lagenaria siceraria) Plant Introductions to Phytophthora capsici

    Science.gov (United States)

    Phytophthora capsici causes severe damage to cucurbit crops grown in open fields in southeast U.S. Most cucurbit species are susceptible to damping-off, root and crown rot, and/or fruit rot caused by P. capsici. Bottle gourd plants (Lagenaria siceraria), which are resistant to Fusarium wilt, are b...

  18. Germination of Phytophthora ramorum chlamydospores: a comparison of separation method and chlamydospore age

    Science.gov (United States)

    Justin P. Shaffer; Jennifer L. Parke

    2013-01-01

    Phytophthora ramorum characteristically produces large amounts of chlamydospores in vitro, but the role of these propagules in the disease cycle remains unclear. Germination is difficult to observe and quantify if chlamydospores are not free of mycelium, and the low frequency of germination commonly reported suggests that...

  19. Mitochondrial DNA polymorphisms in Phytophthora infestans: new haplotypes are identified and re-defined by PCR.

    Science.gov (United States)

    Yang, Zhi-Hui; Qi, Ming-Xing; Qin, Yu-Xuan; Zhu, Jie-Hua; Gui, Xiu-Mei; Tao, Bu; Xu, Xiao-Hu; Zhang, Fu-Guang

    2013-11-01

    Polymorphisms of mitochondrial DNA (mt-DNA) are particularly useful for monitoring specific pathogen populations like Phytophthora infestans. Basically type I and II of P. infestans mt-DNA were categorized by means of polymorphism lengths caused by an ~2 kb insertion, which can be detected via restriction enzyme digestion. In addition genome sequencing of haplotype Ib has been used as a simple Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method to indirectly identify type I and II alterations through EcoR I restriction enzyme DNA fragment patterns of the genomic P4 area. However, with the common method, wrong mt-DNA typing occurs due to an EcoR I recognition site mutation in the P4 genomic area. Genome sequencing of the four haplotypes (Ia, Ib, IIa, and IIb) allowed us to thoroughly examine mt-DNA polymorphisms and we indentified two hypervariable regions (HVRs) named HVRi and HVRii. The HVRi length polymorphism caused by a 2 kb insertion/deletion was utilized to identify mt-DNA types I and II, while another length polymorphism in the HVRii region is caused by a variable number of tandem repeats (n = 1, 2, or 3) of a 36 bp sized DNA stretch and was further used to determine mt-DNA sub-types, which were described as R(n = 1, 2, or 3). Finally, the P. infestans mt-DNA haplotypes were re-defined as IR(1) or IIR(2) according to PCR derived HVRi and HVRii length polymorphisms. Twenty-three isolates were chosen to verify the feasibility of our new approach for identifying mt-DNA haplotypes and a total of five haplotypes (IR(1), IR(2), IR(3), IIR(2) and IIR(3)) were identified. Additionally, we found that six isolates determined as type I by our method were mistakenly identified as type II by the PCR-RFLP technique. In conclusion, we propose a simple and rapid PCR method for identification of mt-DNA haplotypes based on sequence analyses of the mitochondrial P. infestans genome.

  20. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    Science.gov (United States)

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora.

  1. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W in PcORP1 that confers resistance

    Directory of Open Access Journals (Sweden)

    Jianqiang eMiao

    2016-04-01

    Full Text Available The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61×10-4 μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaption in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici.

  2. Genetic mapping of resistance factors to Phytophthora palmivora in cocoa.

    Science.gov (United States)

    Flament, M H; Kebe, I; Clément, D; Pieretti, I; Risterucci, A M; N'Goran, J A; Cilas, C; Despréaux, D; Lanaud, C

    2001-02-01

    Phytophthora palmivora causes pod rot, a serious disease on cocoa widespread throughout the producing regions. In order to ascertain the genetic determination of cocoa resistance to P. palmivora, a study was carried out on two progenies derived from crosses between a heterozygous, moderately resistant Forastero clone, T60/887, and two closely related and highly susceptible Forastero clones, one completely homozygous, IFC2, and one partially heterozygous, IFC5. The cumulative size of both progenies was 112 individuals. Plants were subjected to natural and artificial inoculation of P. palmivora in C te d'Ivoire. The genetic maps of T60/887 and of IFC5 were constructed using amplified fragment length polymorphism (AFLP) markers and microsatellites. The map of T60/887 comprised 198 markers assembled in 11 linkage groups and representing a total length of 793 cM. The map of IFC5 comprised 55 AFLP markers that were assembled into six linkage groups for a total length of 244 cM. Ratio of rotten over total number of fruit under natural infection was measured for each tree over two harvests. Artificial inoculations were performed on leaves and pods. These tests were weakly correlated with the pod rot rate in the field. Five quantitative trait loci (QTLs) of resistance were detected for T60/887 but none were common between the three traits measured. Stability and reliability of the experimental procedures are discussed and revealed the difficult use of these artificial tests on adult trees for a good prediction of field resistance.

  3. SNP-based differentiation of Phytophthora infestans clonal lineages using locked nucleic acid probes and high resolution melt analysis

    Science.gov (United States)

    Phytophthora infestans, the cause of the devastating late blight disease of potato and tomato, exhibits a clonal reproductive lifestyle in North America. Phenotypes such as fungicide sensitivity and host preference are conserved among individuals within clonal lineages, while substantial phenotypic ...

  4. Phytophthora capsici - Loss of Heterozygosity (LOH): A Widespread Mechanism for Rapid Adaptation ( 7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, Joanne [NCGR

    2012-06-01

    Joanne Mudge on "Phytophthora capsici - Loss of Heterozygosity (LOH): A Widespread Mechanism for Rapid Mutation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  5. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    Science.gov (United States)

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  6. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  7. NBS Proifling Identiifes Potential Novel Locus from Solanum demissum That Confers Broad-Spectrum Resistance to Phytophthora infestans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kun; XU Jian-fei; DUAN Shao-guang; PANG Wan-fu; BIAN Chun-song; LIU Jie; JIN Li-ping

    2014-01-01

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is the most serious disease of potato worldwide. The adoption of varieties with resistance genes, especially broad-spectrum resistance genes, is the most efifcient approach to control late blight. Solanum demissum is a well-known wild potato species from which 11 race-speciifc resistance genes have been identiifed, however, no broad-spectrum resistance genes like RB have been reported in this species. Here, we report a novel reisistance locus from S. demissum that potentially confer broad-spectrum resistance to late blight. A small segregating population of S. demissum were assessed for resistance to aggressive P. infestans isolates (race 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). This coupled with nucleotide binding site (NBS) proifling analyses, led to the identiifcation of three fragments that linked to the potential candidate resistance gene(s). Cloning and sequence analysis of these fragments suggested that the identiifed resistance gene locus is located in the region containing R2 resistance gene at chromosome 4. Based on the sequences of the cloned fragments, a co-segregating sequence characterized ampliifed region (SCAR) marker, RDSP, was developed. The newly identiifed marker RDSP will be useful for marker assisted breeding and further cloning of this potential resistance gene locus.

  8. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans.

    Science.gov (United States)

    Hunziker, Lukas; Bönisch, Denise; Groenhagen, Ulrike; Bailly, Aurélien; Schulz, Stefan; Weisskopf, Laure

    2015-02-01

    Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.

  9. The dihydrolipoyl acyltransferase gene BCE2 participates in basal resistance against Phytophthora infestans in potato and Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Hongyang; Sun, Chunlian; Jiang, Rui; He, Qin; Yang, Yu; Tian, Zhejuan; Tian, Zhendong; Xie, Conghua

    2014-07-01

    Dihydrolipoyl acyltransferase (EC 2.3.1.12), a branched-chain α-ketoacid dehydrogenase E2 subunit (BCE2), catalyzes the transfer of the acyl group from the lipoyl moiety to coenzyme A. However, the role of BCE2 responding to biotic stress in plant is not clear. In this study, we cloned and characterized a BCE2 gene from potato, namely StBCE2, which was previously suggested to be involved in Phytophthora infestans-potato interaction. We found that the expression of StBCE2 was strongly induced by both P. infestans isolate HB09-14-2 and salicylic acid. Besides, when the homolog of StBCE2 in Nicotiana benthamiana named NbBCE2 was silenced, plants showed increased susceptibility to P. infestans and reduced accumulation of hydrogen peroxide (H2O2). Furthermore, we found that a marker gene NbrbohB involved in the production of reactive oxygen species, was also suppressed in NbBCE2-silenced plants. However, silencing of NbBCE2 had no significant effect on the hypersensitive responses trigged by INF1, R3a-AVR3a(KI) pair or Rpi-vnt1.1-AVR-vnt1.1 pair. Our results suggest that BCE2 is associated with the basal resistance to P. infestans by regulating H2O2 production.

  10. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans.

    Science.gov (United States)

    Zhang, Chunzhi; Liu, Lei; Wang, Xiaoxuan; Vossen, Jack; Li, Guangcun; Li, Tao; Zheng, Zheng; Gao, Jianchang; Guo, Yanmei; Visser, Richard G F; Li, Junming; Bai, Yuling; Du, Yongchen

    2014-06-01

    Ph-3 is the first cloned tomato gene for resistance to late blight and encodes a CC-NBS-LRR protein. Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins).

  11. Biocontrol of Late Blight (Phytophthora capsici Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

    Directory of Open Access Journals (Sweden)

    Mao Sopheareth

    2013-03-01

    Full Text Available A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA and phenylacetic acid (PA. The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M, M plus zoospore inoculation (MP, MPC-7 cultured broth (B and B plus zoospore inoculation (BP. With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

  12. Internetprogramma geeft inzicht in eigen Phytophthora-strategie. (Internet site gives insight in effectiveness of growers personal potato late blight control strategies)

    NARCIS (Netherlands)

    Kessel, G.J.T.; Hanse, L.

    2005-01-01

    Om telers te helpen met hun bestrijdingsstrategie is het Agrobiocon programma 'Visualisatie infectie Phytophthora' ontwikkeld. Uitleg van mede ontwikkelaar Geert Kessel van Plant Research International van Wageningen UR

  13. Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics.

    Science.gov (United States)

    Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2016-07-01

    On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.

  14. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods

    Science.gov (United States)

    Ali, Shahin S.; Shao, Jonathan; Lary, David J.; Strem, Mary D.; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2017-01-01

    Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was

  15. 黑龙江省发现马铃薯晚疫病菌(Phytophthora infestans)A2交配型%Presence of A2 Mating-type of Phytophthora infestans in Heilongjiang Province is Confirmed

    Institute of Scientific and Technical Information of China (English)

    郭梅; César Vincent; 闵凡祥; 吕军; 高云飞; 杨帅; 王晓丹; Rolot Jean-louis

    2015-01-01

    A total of 133 isolates of Phytophthora infestans col ected from Harbin, Wangkui, Mohe, Tahe, Huma, Jiagedaqi, Nenjiang, Keshan, Gannan, Hegang, Zhaodong and Linkou from 2005 to 2012 were tested for mating type. Al 51 isolates col ected from 2005 to 2010 are A1 mating type, and no A2 mating type was detected. Among the 52 isolates col ected from 2011, 12 isolates (23.08%) were A2 mating type. Among the 30 isolates tested in 2012, nine isolates (30%) were A2 mating type. No report was available about the presence of A2 mating type in Heilongjian Province until 2010 when Jiehua Zhu reported the presence of A2 mating type in 2004. This is the first report after six years of Zhu's report that confirms the A2 mating type presence in Gannan, Harbin and Zhaodong in Heilongjiang Province.%对2005~2012年间采集自黑龙江省哈尔滨、望奎、漠河、塔河、呼玛、加格达奇、嫩江、克山、甘南、鹤岗、肇东、林口12个市县的133个马铃薯晚疫病菌株进行了交配型鉴定。结果表明,采集自2005~2010年间的51个菌株均为A1交配型,未发现A2交配型;采集自2011年的52个菌株中12个为A2交配型,占23.08%;2012年鉴定的30个菌株中9个为A2交配型,占30%。这是自2004年朱杰华报道发现一株A2交配型六年后,黑龙江省首次确认在甘南、哈尔滨、肇东发现马铃薯晚疫病菌A2交配型。

  16. De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (Mill.) in response to Phytophthora cinnamomi and flooding.

    Science.gov (United States)

    Reeksting, Bianca J; Coetzer, Nanette; Mahomed, Waheed; Engelbrecht, Juanita; van den Berg, Noëlani

    2014-01-01

    Avocado is a diploid angiosperm containing 24 chromosomes with a genome estimated to be around 920 Mb. It is an important fruit crop worldwide but is susceptible to a root rot caused by the ubiquitous oomycete Phytophthora cinnamomi. Phytophthora root rot (PRR) causes damage to the feeder roots of trees, causing necrosis. This leads to branch-dieback and eventual tree death, resulting in severe losses in production. Control strategies are limited and at present an integrated approach involving the use of phosphite, tolerant rootstocks, and proper nursery management has shown the best results. Disease progression of PRR is accelerated under high soil moisture or flooding conditions. In addition, avocado is highly susceptible to flooding, with even short periods of flooding causing significant losses. Despite the commercial importance of avocado, limited genomic resources are available. Next generation sequencing has provided the means to generate sequence data at a relatively low cost, making this an attractive option for non-model organisms such as avocado. The aims of this study were to generate sequence data for the avocado root transcriptome and identify stress-related genes. Tissue was isolated from avocado infected with P. cinnamomi, avocado exposed to flooding and avocado exposed to a combination of these two stresses. Three separate sequencing runs were performed on the Roche 454 platform and produced approximately 124 Mb of data. This was assembled into 7685 contigs, with 106 448 sequences remaining as singletons. Genes involved in defence pathways such as the salicylic acid and jasmonic acid pathways as well as genes associated with the response to low oxygen caused by flooding, were identified. This is the most comprehensive study of transcripts derived from root tissue of avocado to date and will provide a useful resource for future studies.

  17. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans.

    Science.gov (United States)

    Blum, Mathias; Boehler, Martine; Randall, Eva; Young, Vanessa; Csukai, Michael; Kraus, Sabrina; Moulin, Florence; Scalliet, Gabriel; Avrova, Anna O; Whisson, Stephen C; Fonne-Pfister, Raymonde

    2010-03-01

    Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic. Here, we describe how a combination of biochemical and genetic techniques has been utilized to identify the molecular target of MPD in P. infestans. Phytophthora infestans germinating cysts treated with MPD produced swelling symptoms typical of cell wall synthesis inhibitors, and these effects were reversible after washing with H(2)O. Uptake studies with (14)C-labelled MPD showed that this oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, (14)C glucose incorporation into cellulose was perturbed in the presence of MPD which, taken together, suggests that the inhibition of cellulose synthesis is the primary effect of MPD. Laboratory mutants, insensitive to MPD, were raised by ethyl methane sulphonate (EMS) mutagenesis, and gene sequence analysis of cellulose synthase genes in these mutants revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (glycine-1105) in the protein. The transformation and expression of a mutated PiCesA3 allele was carried out in a sensitive wild-type isolate to demonstrate that the mutations in PiCesA3 were responsible for the MPD insensitivity phenotype.

  18. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy.

    Science.gov (United States)

    Xu, Xiaomei; Chao, Juan; Cheng, Xueli; Wang, Rui; Sun, Baojuan; Wang, Hengming; Luo, Shaobo; Xu, Xiaowan; Wu, Tingquan; Li, Ying

    2016-01-01

    Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.

  19. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance.

    Science.gov (United States)

    Chen, Xiao-Ren; Li, Yan-Peng; Li, Qi-Yuan; Xing, Yu-Ping; Liu, Bei-Bei; Tong, Yun-Hui; Xu, Jing-You

    2016-05-01

    Peptides and small molecules produced by both the plant pathogen Phytophthora and host plants in the apoplastic space mediate the relationship between the interplaying organisms. Various Phytophthora apoplastic effectors, including small cysteine-rich (SCR) secretory proteins, have been identified, but their roles during interaction remain to be determined. Here, we identified an SCR effector encoded by scr96, one of three novel genes encoding SCR proteins in P. cactorum with similarity to the P. cactorum phytotoxic protein PcF. Together with the other two genes, scr96 was transcriptionally induced throughout the developmental and infection stages of the pathogen. These genes triggered plant cell death (PCD) in the Solanaceae, including Nicotiana benthamiana and tomato. The scr96 gene did not show single nucleotide polymorphisms in a collection of P. cactorum isolates from different countries and host plants, suggesting that its role is essential and non-redundant during infection. Homologues of SCR96 were identified only in oomycetes, but not in fungi and other organisms. A stable protoplast transformation protocol was adapted for P. cactorum using green fluorescent protein as a marker. The silencing of scr96 in P. cactorum caused gene-silenced transformants to lose their pathogenicity on host plants and these transformants were significantly more sensitive to oxidative stress. Transient expression of scr96 partially recovered the virulence of gene-silenced transformants on plants. Overall, our results indicate that the P. cactorum scr96 gene encodes an important virulence factor that not only causes PCD in host plants, but is also important for pathogenicity and oxidative stress tolerance.

  20. De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (Mill. in response to Phytophthora cinnamomi and flooding.

    Directory of Open Access Journals (Sweden)

    Bianca J Reeksting

    Full Text Available Avocado is a diploid angiosperm containing 24 chromosomes with a genome estimated to be around 920 Mb. It is an important fruit crop worldwide but is susceptible to a root rot caused by the ubiquitous oomycete Phytophthora cinnamomi. Phytophthora root rot (PRR causes damage to the feeder roots of trees, causing necrosis. This leads to branch-dieback and eventual tree death, resulting in severe losses in production. Control strategies are limited and at present an integrated approach involving the use of phosphite, tolerant rootstocks, and proper nursery management has shown the best results. Disease progression of PRR is accelerated under high soil moisture or flooding conditions. In addition, avocado is highly susceptible to flooding, with even short periods of flooding causing significant losses. Despite the commercial importance of avocado, limited genomic resources are available. Next generation sequencing has provided the means to generate sequence data at a relatively low cost, making this an attractive option for non-model organisms such as avocado. The aims of this study were to generate sequence data for the avocado root transcriptome and identify stress-related genes. Tissue was isolated from avocado infected with P. cinnamomi, avocado exposed to flooding and avocado exposed to a combination of these two stresses. Three separate sequencing runs were performed on the Roche 454 platform and produced approximately 124 Mb of data. This was assembled into 7685 contigs, with 106 448 sequences remaining as singletons. Genes involved in defence pathways such as the salicylic acid and jasmonic acid pathways as well as genes associated with the response to low oxygen caused by flooding, were identified. This is the most comprehensive study of transcripts derived from root tissue of avocado to date and will provide a useful resource for future studies.

  1. Diversity of Phytophthora sojae in soil of Heilongjiang Province%黑龙江省土壤中大豆疫霉菌(Phytophthora sojae)的多样性

    Institute of Scientific and Technical Information of China (English)

    李爽; 文景芝

    2012-01-01

    In order to understand the diversity of Phytophthora sojae in different types of soil, we used gene postulation method and amplified fragment length polymorphism (AFLP) markers to analyze the avirulent genes and genetic diversity of 176 P. sojae isolates gained from 5 different types of soil in Heilongjiang Province. Results showed that there were differences in avirulent genes, avirulent gene types, avirulent gene combinations and patho-genicity among P. sojae populations from different types of soil. The P. sojae populations from black soil, albic soil and meadow soil were relatively rich in diversity of avirulent genes, avirulent gene types and avirulent gene combinations, and were lower pathogenic. The P. sojae populations from saline soil were low in diversity of avirulent genes, avirulent gene types and avirulent gene combinations, and were highly pathogenic. No isolate was found in sandy soil. AFLP cluster analysis showed that the 176 isolates were divided into 6 groups with dissimilarity distance of 0. 76. The genetic diversities of P. sojae population in black soil and albic soil were richer than that in meadow soil and saline soil. Comprehensive analysis showed that the avirulent genes and genetic diversity of P. sojae populations in Heilongjiang Province were rich and correlated with soil types.%为探究不同类型土壤中大豆疫霉菌(Phytophthora sojae)的多样性,以分离自5种不同类型土壤的176株P.sojae为研究对象,利用基因推导法和AFLP分子标记技术进行多样性分析.结果表明,不同类型土壤中P.sojae 无毒基因型、无毒基因种类、无毒基因组合和群体致病力均表现出差异性,其中黑土、白浆土和草甸土中的P.sojae无毒基因型、无毒基因种类和无毒基因组合多样性相对丰富,群体致病力中等偏弱;盐碱土中的P.sojae无毒基因型、无毒基因种类和无毒基因组合多样性丰富度较低,群体致病力相对较强;风沙土中没有分离

  2. Chemical control trials against Phytophthora capsici (Leon on pepper cultivations in Morocco

    Directory of Open Access Journals (Sweden)

    Pussemier, L.

    1988-01-01

    Full Text Available Chemical control trials against Phytophthora capsici (Leon on pepper cultivations in Morocco. Pepper protection trials against collar and root rot have been undertaken under laboratory and culture conditions using Aliette (80 % of phosethylaluminium and Ridomil M 58 (10 % of metalaxyl associated to 48 % of maneb. It has been proved that, contrary to Ridomil M 58, Aliette does not protect the hostplant when the Phytophthora capsici (Leon zoospores are used as inoculum. But both fongicides are active when inoculating with a mycelian suspension. Trials undertaken under plastic glasshouses confirmed the laboratory results both with an artificial inoculation and with a natural one on contaminated soil. Only Ridomil M 58 provides satisfactory protection during the first weeks after the treatment. When disease propagation conditions are particularly favorable (permanent presence of an active inoculum source, the protection given by repeated Ridomil M 58 applications gradually disappears after a few weeks.

  3. E-beam irradiation for the control of Phytophthora nicotianae var. nicotianae in stonewool cubes

    Directory of Open Access Journals (Sweden)

    Ptaszek Magdalena

    2015-09-01

    Full Text Available Effectiveness of electron beam irradiation was evaluated against Phytophthora nicotianae var. nicotianae, the causal agent of stem base and root rot of tomato. In laboratory trials, irradiation of 7-day-old Phytophthora cultures growing on potato-dextrose-agar (PDA medium with 1 kGy resulted in the disintegration of the pathogen’s hyphae. Increasing the irradiation dose to 3 kGy caused decay of the hyphae. Irradiation of infested stonewool with 5 kGy caused decrease of the pathogen population about 5 times. Application of 20 kGy completely eliminated the pathogen from stonewool. Irradiation of substratum resulted in significant increase of tomato seedlings healthiness, especially when the dose 20 kGy was applied.

  4. Identification of Phytophthora Species on Phytophthora Blight of Vanilla%香草兰疫病疫霉菌种的鉴定

    Institute of Scientific and Technical Information of China (English)

    曾会才; 张开明; 李锐; 贺春萍

    2000-01-01

    从云南西双版纳的景洪、勐腊两地的热带作物园香草兰疫病果荚、茎节、叶片上分离到10个疫霉分离菌,根据孢子囊、厚垣孢子、藏卵器、雄器形态、菌落形态及主要生长温度,鉴定为烟草疫霉(寄生疫霉)Phytophthora nicotianae(P.parasitice)10个分离菌株均属于A1交配型.

  5. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

    OpenAIRE

    Haas, Brian J.; Kamoun, Sophien; Michael C Zody; Jiang, Rays H.Y.; Handsaker, Robert E.; Liliana M Cano; Grabherr, Manfred; Kodira, Chinnappa D.; Raffaele, Sylvain; Torto-Alalibo, Trudy; Bozkurt, Tolga O.; Ah-Fong, Audrey M. V.; Alvarado, Lucia; Anderson, Vicky L.; Armstrong, Miles R.

    2009-01-01

    Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the four...

  6. Levels of Polyamines and Kinetic Characterization of Their Uptake in the Soybean Pathogen Phytophthora sojae

    OpenAIRE

    Chibucos, M. Constantine; Paul F Morris

    2006-01-01

    Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no...

  7. The Phytophthora mating hormone α2 is an antagonist of the counterhormone α1.

    Science.gov (United States)

    Zhang, Li; Yajima, Arata; Ojika, Makoto

    2016-06-01

    The crop destroyer Phytophthora uses mating hormones α1 and α2 to commence its sexual reproduction. The α1-induced sexual reproduction of the A2 mating type was unexpectedly found to be interfered with by the counterhormone α2 that the A2 type itself produces to induce the sexual reproduction of the A1 type. A plausible mechanism is proposed based on structure-activity relationships.

  8. Phytophthora fruit rot-resistant watermelon germplasm lines: USVL489-PFR, USVL782-PFR, USVL203-PFR, and USVL020-PFR

    Science.gov (United States)

    USVL489-PFR, USVL782-PFR, USVL203-PFR, and USVL020-PFR are watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai) germplasm lines that exhibit high levels of resistance to Phytophthora fruit rot caused by the plant pathogen Phytophthora capsici. Resistance in these germplasm lines is ...

  9. Fine Mapping of a Phytophthora Resistance Gene RpsWY in Soybean (Glycine max L.) by High-Throughput Genome-Wide Sequencing

    Science.gov (United States)

    Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) is an effective way for breeding to prevent soybean from being harmed by this disease. Here, two soybean popu...

  10. Phytophthora megakarya and P. palmivora, closely related causal agents of cacao black pod induce similar reactions when infecting pods of a susceptible cacao genotype

    Science.gov (United States)

    Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao. Of these two clade 4 species; Pmeg is more virulent and is displacing Ppal on cacao in many cacao production areas in Africa. To understand the advantages Pmeg has over Ppal, we compared symptom...

  11. The use of genus-specific amplicon pyrosequencing to assess phytophthora species diversity using eDNA from soil and water in Northern Spain.

    Science.gov (United States)

    Català, Santiago; Pérez-Sierra, Ana; Abad-Campos, Paloma

    2015-01-01

    Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.

  12. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  13. Phytophthora parasitica transcriptome, a new concept in the understanding of the citrus gummosis

    Directory of Open Access Journals (Sweden)

    Daniel D. Rosa

    2007-01-01

    Full Text Available Due to the economic importance of gummosis disease for the citriculture, studies on P. parasitica-Citrus interaction comprise a significant part in the Brazilian Citrus genome data bank (CitEST. Among them, two cDNA libraries constructed from two different growth conditions of the P. parasitica pathogen are included which has generated the PP/CitEST database (CitEST - Center APTA Citros Sylvio Moreira/IAC- Millennium Institute. Through this genomic approach and clustering analyses the following has been observed: out of a total of 13,285 available in the Phytophthora parasitica database, a group of 4,567 clusters was formed, comprising 2,649 singlets and 1,918 contigs. Out of a total of 4,567 possible genes, only 2,651 clusters were categorized; among them, only 4.3% shared sequence similarities with pathogenicity factors and defense. Some of these possible genes (103 corresponding to 421 ESTs, were characterized by phylogenetic analysis and discussed. A comparison made with the COGEME database has shown homology which may be part of an evolutionary pathogenicity pathway present in Phytophthora and also in other fungi. Many of the genes which were identified here, which may encode proteins associated to mechanisms of citrus gummosis pathogenicity, represent only one facet of the pathogen-host Phytophthora - Citrus interaction.

  14. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity

    Science.gov (United States)

    Stam, Remco; Jupe, Julietta; Howden, Andrew J. M.; Morris, Jenny A.; Boevink, Petra C.; Hedley, Pete E.; Huitema, Edgar

    2013-01-01

    Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions. PMID:23536880

  15. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation.

    Science.gov (United States)

    Stong, Rachel A; Kolodny, Eli; Kelsey, Rick G; González-Hernández, M P; Vivanco, Jorge M; Manter, Daniel K

    2013-06-01

    Elicitin-mediated acquisition of plant sterols is required for growth and sporulation of Phytophthora spp. This study examined the interactions between elicitins, sterols, and tannins. Ground leaf tissue, sterols, and tannin-enriched extracts were obtained from three different plant species (California bay laurel, California black oak, and Oregon white oak) in order to evaluate the effect of differing sterol/tannin contents on Phytophthora ramorum growth. For all three species, high levels of foliage inhibited P. ramorum growth and sporulation, with a steeper concentration dependence for the two oak samples. Phytophthora ramorum growth and sporulation were inhibited by either phytosterols or tannin-enriched extracts. High levels of sterols diminished elicitin gene expression in P. ramorum; whereas the tannin-enriched extract decreased the amount of 'functional' or ELISA-detectable elicitin, but not gene expression. Across all treatment combinations, P. ramorum growth and sporulation correlated strongly with the amount of ELISA-detectable elicitin (R (2) = 0.791 and 0.961, respectively).

  16. Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and P. ramorum

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Land, Miriam L [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2008-08-01

    Phytophthora ramorum and Phytophthora sojae are destructive plant pathogens. Phytophthora sojae has a narrow host range whereas P. ramorum has a wide host range. A global proteomic comparison of the vegetative (mycelium) and infective (germinating-cyst) life-stages of P. sojae and P. ramorum was conducted to identify candidate proteins involved in host range, early infection and vegetative growth. Sixty-two candidates for early infection, 26 candidates for vegetative growth, and numerous proteins that may be involved in defining host specificity were identified. In addition, common life stage proteomic trends between the organisms were observed. In mycelia, proteins involved in transport and metabolism of amino acids, carbohydrates and other small molecules were up-regulated. In the germinating cysts, up-regulated proteins associated with lipid transport and metabolism, cytoskeleton and protein synthesis were observed. It appears that the germinating cyst catabolizes lipid reserves through the -oxidation pathway to drive the extensive protein synthesis necessary to produce the germ tube and initiate infection. Once inside the host, the pathogen switches to vegetative growth, where energy is derived from glycolysis and utilized for synthesis of amino acids and other molecules that assist survival in the plant tissue.

  17. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  18. Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum.

    Science.gov (United States)

    Fellbrich, G; Blume, B; Brunner, F; Hirt, H; Kroj, T; Ligterink, W; Romanski, A; Nürnberger, T

    2000-06-01

    Cultured parsley (Petroselinum crispum) cells respond to treatment with elicitors derived from different species of the genus Phytophthora with transcript accumulation of defense-associated genes and the production of furanocoumarin phytoalexins. Pep-25, an oligopeptide fragment of a Phytophthora sojae 42-kDa cell wall protein, and a cell wall elicitor preparation derived from Phytophthora parasitica (Pp-elicitor) stimulate accumulation of the same gene transcripts and formation of the same pattern of furanocoumarins. Treatment of cultured cells and protoplasts with proteinase-digested Pp-elicitor identified proteinaceous constituents as active eliciting compounds in parsley. Similar to Pep- 25, Pp-elicitor induced effluxes of K+ and Cl- and influxes of protons and Ca2+. Concomitantly, as monitored in aequorin-transgenic parsley cell lines both elicitors induced an immediate increase in the cytoplasmic Ca2+ concentration up to sustained levels of 175 nM (Pp-elicitor) or 300 nM (Pep-25), respectively. The signature of the Ca2+ response differed greatly between the two elicitors tested. Extracellular Ca2+ proved essential for activation of an oxidative burst, MAP kinase activity and phytoalexin production by either elicitor. While Pp-elicitor induced a qualitatively similar spectrum of defense responses as did Pep-25, elicitor-specific quantitative differences in response intensity and kinetics suggest activation of a conserved signaling cascade through separate ligand binding sites.

  19. Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera marina seeds used for restoration

    Science.gov (United States)

    Govers, Laura L.; van der Zee, Els M.; Meffert, Johan P.; van Rijswick, Patricia C. J.; Man in ‘t Veld, Willem A.; Heusinkveld, Jannes H. T.; van der Heide, Tjisse

    2017-01-01

    Restoration is increasingly considered an essential tool to halt and reverse the rapid decline of vital coastal ecosystems dominated by habitat-forming foundation species such as seagrasses. However, two recently discovered pathogens of marine plants, Phytophthora gemini and Halophytophthora sp. Zostera, can seriously hamper restoration efforts by dramatically reducing seed germination. Here, we report on a novel method that strongly reduces Phytophthora and Halophytophthora infection of eelgrass (Zostera marina) seeds. Seeds were stored in seawater with three different copper sulphate concentrations (0.0, 0.2, 2.0 ppm) crossed with three salinities (0.5, 10.0, 25.0 ppt). Next to reducing seed germination, infection significantly affected cotyledon colour: 90% of the germinated infected seeds displayed a brown cotyledon upon germination that did not continue development into the seedling stage, in contrast to only 13% of the germinated non-infected seeds. Copper successfully reduced infection up to 86% and the 0.2 ppm copper sulphate treatment was just as successful as the 2.0 ppm treatment. Infection was completely eliminated at low salinities, but green seed germination was also dramatically lowered by 10 times. We conclude that copper sulphate treatment is a suitable treatment for disinfecting Phytophthora or Halophytophthora infected eelgrass seeds, thereby potentially enhancing seed-based restoration success. PMID:28225072

  20. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2.

    Science.gov (United States)

    de Vries, Sophie; von Dahlen, Janina K; Uhlmann, Constanze; Schnake, Anika; Kloesges, Thorsten; Rose, Laura E

    2017-01-01

    Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, 'Phytophthora suppressor of RNA silencing 2') has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.