WorldWideScience

Sample records for phytopathogen xylella fastidiosa

  1. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants

    NARCIS (Netherlands)

    Araujo, W.L.; Marcon, J.; jr. Maccheroni, W.; Elsas, van J.D.; Vuurde, van J.W.L.; Azevedo, de J.L.

    2002-01-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as

  2. Lipopolysaccharide modulates the vector-pathogen interface of the xylem-limited phytopathogen, Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine

    Science.gov (United States)

    Xylella fastidiosa Wells et al. is a gram-negative, insect-transmitted bacterium that causes a lethal disease of grapevine called Pierce’s disease. Lipopolysaccharide (LPS) is the most dominant macromolecule displayed on the cell surface of gram-negative bacteria. Bacterial interactions with the env...

  3. Multiple, stochastic factors can determine acquisition success of the foregut-borne bacterium, Xylella fastidiosa, by a sharpshooter vector

    Science.gov (United States)

    Xylella fastidiosa is a phytopathogenic foregut-borne bacterium whose vectors are sharpshooter leafhoppers. Despite several decades of study, the mechanisms of transmission (acquisition and inoculation) of X. fastidiosa still are not fully understood. Studies of the inoculation mechanism depend upon...

  4. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants

    NARCIS (Netherlands)

    Araujo, W.L.; Marcon, J.; Maccheroni, jr. W.; Elsas, van J.D.; Vuurde, van J.W.L.; Azevedo, de J.L.

    2002-01-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independen

  5. In vitro Determination of Extracellular Proteins from Xylella fastidiosa

    Science.gov (United States)

    Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960

  6. Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants

    OpenAIRE

    Araujo, W.L.; Marcon, J; Maccheroni, jr., W.; Elsas, van, J.D.; Vuurde, van, M.; Azevedo

    2002-01-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by ...

  7. Role of cold shock proteins in Xylella fastidiosa virulence

    Science.gov (United States)

    Xylella fastidiosa (Xf), causal agent of Pierce’s Disease (PD) of grapevine, is mainly prevalent in warmer climates. Subjecting Xf-infected grapevines to cold temperatures can, in many cases, effectively eliminate the bacterial population, a phenomenon known as cold curing. However, very little is k...

  8. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination.

    Science.gov (United States)

    Jacques, Marie-Agnès; Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique

    2015-12-28

    Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.

  9. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  10. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    Science.gov (United States)

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity

    Science.gov (United States)

    Mendes, Juliano S.; Santiago, André da S.; Toledo, Marcelo A. S.; Rosselli-Murai, Luciana K.; Favaro, Marianna T. P.; Santos, Clelton A.; Horta, Maria Augusta C.; Crucello, Aline; Beloti, Lilian L.; Romero, Fabian; Tasic, Ljubica; de Souza, Alessandra A.; de Souza, Anete P.

    2015-01-01

    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem. PMID:26694028

  12. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Juliano S Mendes

    Full Text Available Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC, a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c and nonpathogenic (XfJ1a12 strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  13. Functional characterization of the role of the PilG in Xylella fastidiosa

    Science.gov (United States)

    Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in the Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motility and pathogenicity of X. fastidiosa, phenotypes of wild type, a pilG-mutant, and a complementary strain we...

  14. Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa

    NARCIS (Netherlands)

    Andreote, FD; Lacava, PT; Gai, CS; Araujo, WL; Maccheroni, W; van Overbeek, LS; van Elsas, JD; Azevedo, JL

    2006-01-01

    Over the last few years, endophytic bacterial communities associated with citrus have been studied as key components interacting with Xylella fastidiosa. In this study, we investigated the possible interaction between the citrus endophyte Methylobacterium mesophilicum SR1.6/6 and X. fastidiosa in mo

  15. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions

    Science.gov (United States)

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer and recombination, leading to diversity between strains and the categorization of X. fastidiosa into multiple subspecies. Although natural transformation is shown to occur at high rates in X. fa...

  16. Model Plants for Studying the Interaction between Methylobacterium mesophilicum and Xylella fastidiosa

    NARCIS (Netherlands)

    Andreote, F.D.; Lacava, P.T.; Araújo, W.L.; Maccheroni Jr., W.; Overbeek, van L.S.; Elsas, van J.D.; Azevedo, J.L.

    2006-01-01

    Over the last few years, endophytic bacterial communities associated with citrus have been studied as key components interacting with Xylella fastidiosa. In this study, we investigated the possible interaction between the citrus endophyte Methylobacterium mesophilicum SR1.6/6 and X. fastidiosa in mo

  17. Genome Sequence of a Xylella fastidiosa Strain Causing Sycamore Leaf Scorch Disease in Virginia.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2014-08-21

    Xylella fastidiosa causes bacterial leaf scorch in landscape trees including sycamore. We determined the draft genome of X. fastidiosa strain Sy-Va, isolated in Virginia from a sycamore tree displaying leaf scorch symptoms. The Sy-VA genome contains 2,477,829 bp, and has a G+C content of 51.64 mol%.

  18. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

    Science.gov (United States)

    Van Horn, Christopher R.

    2017-01-01

    ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence

  19. Visualization of twitching motility and characterization of the role of the PilG in Xylella fastidiosa

    Science.gov (United States)

    Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. Twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity of X. fastidiosa. Twitching ...

  20. Analysis of the biofilm proteome of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Labate Carlos A

    2011-09-01

    Full Text Available Abstract Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters. The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp. The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins

  1. Identification of a non-host plant of Xylella fastidiosa to rear healthy sharpshooter vectors

    OpenAIRE

    Rosangela Cristina Marucci; Teresinha Augusta Giustolin; Marcelo Pedreira de Miranda; Helen Miquelote; Rodrigo Piacentini Paes de Almeida; João Roberto Spotti Lopes

    2003-01-01

    Rearing leafhopper (Hemiptera: Cicadellidae) vectors free of Xylella fastidiosa is a requirement for studies of various aspects of vector-pathogen interactions. The selection of a plant that allows vector development but not bacterial multiplication is desirable to produce healthy vectors. In this study, two leafhopper hosts, Vernonia condensata ('boldo') and Aloysia virgata ('lixeira') were needle inoculated with citrus and coffee strains of X. fastidiosa to evaluate if these plants support ...

  2. Evaluation of Xylella fastidiosa genetic diversity by fAFPL markers Diversidade genética de Xylella fastidiosa avaliada por marcadores fAFPL

    Directory of Open Access Journals (Sweden)

    Luciano Takeshi Kishi

    2008-03-01

    Full Text Available The first phytopathogenic bacterium with its DNA entirely sequenced is being detected and isolated from different host plants in several geographic regions. Although it causes diseases in cultures of economic importance, such as citrus, coffee, and grapevine little is known about the genetic relationships among different strains. Actually, all strains are grouped as a single species, Xylella fastidiosa, despite colonizing different hosts, developing symptoms, and different physiological and microbiological observed conditions. The existence of genetic diversity among X. fastidiosa strains was detected by different methodological techniques, since cultural to molecular methods. However, little is know about the phylogenetic relationships developed by Brazilian strains obtained from coffee and citrus plants. In order to evaluate it, fAFLP markers were used to verify genetic diversity and phylogenetic relationships developed by Brazilian and strange strains. fAFLP is an efficient technique, with high reproducibility that is currently used for bacterial typing and classification. The obtained results showed that Brazilian strains present genetic diversity and that the strains from this study were grouped distinctly according host and geographical origin like citrus-coffee, temecula-grapevine-mulberry and plum-elm.A primeira bactéria fitopatogênica a ter seu genoma totalmente seqüenciado foi detectada e isolada em diferentes hospedeiros em diferentes regiões geográficas. Embora seja causadora de doenças em culturas economicamente importantes, como citros, cafeeiro e videira, pouco se conhece acerca das relações genéticas estabelecidas entre isolados da bactéria. Atualmente, todos os isolados são agrupados como uma única espécie, Xylella fastidiosa, apesar de colonizarem diferentes hospedeiros que desenvolvem sintomas diferenciados e possuir diferentes condições fisiológicas e microbiológicas. A existência de diversidade gen

  3. Growth and siderophore production of Xylella fastidiosa under iron-limited conditions.

    Science.gov (United States)

    Silva-Stenico, Maria Estela; Pacheco, Flávia Tereza Hansen; Rodrigues, Jorge Luiz Mazza; Carrilho, Emanuel; Tsai, Siu Mui

    2005-01-01

    In this study, the production of siderophores by Xylella fastidiosa from the citrus bacteria isolate 31b9a5c (FAPESP - ONSA, Brazil) was investigated. The preliminary evidence supporting the existence of siderophore in X. fastidiosa was found during the evaluation of sequencing data generated in our lab using the BLAST-X tool, which indicated putative open reading frames (ORFs) associated with iron-binding proteins. In an iron-limited medium siderophores were detected in the supernatant of X. fastidiosa cultures. The endophytic bacterium Methylobacterium extorquens was also evaluated. Capillary electrophoresis was used to separate putative siderophores produced by X. fastidiosa. The bacterial culture supernatants of X. fastidiosa were identified negative for hydroxamate and catechol and positive for M. extorquens that secreted hydroxamate-type siderophores.

  4. Draft Genome Sequence of 11399, a Transformable Citrus-Pathogenic Strain of Xylella fastidiosa

    OpenAIRE

    Niza, Bárbara; Merfa, Marcus V.; Alencar, Valquíria C.; Menegidio, Fabiano B.; Nunes, Luiz R.; Machado, Marcos A.; Takita,Marco A.; Souza,Alessandra A. de

    2016-01-01

    The draft genome of Xylella fastidiosa subsp. pauca strain 11399, a transformable citrus-pathogenic strain, is reported here. The 11399 genome size is 2,690,704 bp and has a G+C content of 52.7%. The draft genome of 11399 reveals the absence of four type I restriction-modification system genes.

  5. Genetic Differences between Two Strains of Xylella fastidiosa Revealed by Suppression Subtractive Hybridization†

    OpenAIRE

    Harakava,Ricardo; Gabriel, Dean W.

    2003-01-01

    Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.

  6. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Science.gov (United States)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  7. Draft Genome Sequence of 11399, a Transformable Citrus-Pathogenic Strain of Xylella fastidiosa

    Science.gov (United States)

    Niza, Bárbara; Merfa, Marcus V.; Alencar, Valquíria C.; Menegidio, Fabiano B.; Nunes, Luiz R.; Machado, Marcos A.; Takita, Marco A.

    2016-01-01

    The draft genome of Xylella fastidiosa subsp. pauca strain 11399, a transformable citrus-pathogenic strain, is reported here. The 11399 genome size is 2,690,704 bp and has a G+C content of 52.7%. The draft genome of 11399 reveals the absence of four type I restriction-modification system genes. PMID:27738038

  8. Stable plasmid vectors for complementation of Xylella fastidiosa mutants in planta

    Science.gov (United States)

    Current understanding of the mechanisms of Pierce’s Disease development has been significantly advanced by molecular genetic studies of the causal agent, Xylella fastidiosa (Xf). Plasmid vectors are an essential tool for studies of bacterial genetics and pathogenesis. However, most commonly used pla...

  9. Glassy-winged sharpshooter can use a mechanical mechanism to inoculate Xylella fastidiosa into grapevines

    Science.gov (United States)

    Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...

  10. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions.

    Science.gov (United States)

    Burbank, Lindsey P; Van Horn, Christopher R

    2017-08-14

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative Type IV secretion system are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies, and frequently differ in host ranges. Using X. fastidiosa strains M23 (subspecies fastidiosa) or Dixon (subspecies multiplex) as the donor strain and Temecula (subspecies fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad host range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains, and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts.IMPORTANCEXylella fastidiosa is an important plant pathogen world-wide, infecting a wide range of different plant species. Emergence of new diseases caused by X. fastidiosa, or host-switching of existing strains is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT and adaptation, and disease emergence in this diverse pathogen. This is a work

  11. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    Science.gov (United States)

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  12. Interactions between Grape and Sweet Orange Strains of Xylella Fastidiosa in Colonization and Symptom Production in Periwinkle Plants

    Science.gov (United States)

    Xylella fastidiosa is one of the most economically important bacterial plant pathogens, causing serious diseases including citrus variegated chlorosis in Brazil and Pierce’s disease of grape in California. The sweet orange strain of X. fastidiosa is a particular a threat to US citrus industry and it...

  13. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains

    Directory of Open Access Journals (Sweden)

    Nunes Luiz R

    2007-12-01

    Full Text Available Abstract Background The xylem-inhabiting bacterium Xylella fastidiosa (Xf is the causal agent of Pierce's disease (PD in vineyards and citrus variegated chlorosis (CVC in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains – which is particularly important for CVC-associated strains. Results This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH, identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Conclusion Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly

  14. Transmission of phage by glassy-winged sharpshooters, a vector of Xylella fastidiosa

    Science.gov (United States)

    Bhowmick, Tushar Suvra; Das, Mayukh; Heinz, Kevin M.; Krauter, Peter C.; Gonzalez, Carlos F.

    2016-01-01

    ABSTRACT Xylella fastidiosa subsp. fastidiosa (Xff) is the causal agent of Pierce's Disease (PD) of grapevines and is vectored by the glassy-winged sharpshooter (GWSS, Homalodisca vitripennis). Previously we have reported the development of a bacteriophage (phage) based biocontrol system for PD, but no information on insect transmission of phages has been reported. Here we communicate that laboratory reared GWSSs fed on cowpea plants (Vigna unguiculata subsp. unguiculata) harboring the virulent phage Paz were able to uptake of phage efficiently when the phage was present in high concentration, but were inefficient in transfer to plants. PMID:27738554

  15. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants.

    Science.gov (United States)

    Araújo, Welington L; Marcon, Joelma; Maccheroni, Walter; Van Elsas, Jan Dirk; Van Vuurde, Jim W L; Azevedo, João Lúcio

    2002-10-01

    Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.

  16. Gene Disruption by Homologous Recombination in the Xylella fastidiosa Citrus Variegated Chlorosis Strain

    Science.gov (United States)

    Gaurivaud, Patrice; Souza, Leonardo C. A.; Virgílio, Andrea C. D.; Mariano, Anelise G.; Palma, Renê R.; Monteiro, Patrícia B.

    2002-01-01

    Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for β-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to β-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant. PMID:12200328

  17. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Directory of Open Access Journals (Sweden)

    João Lúcio Azevedo

    Full Text Available Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  18. Whole genome sequencing and analyses of Xylella fastidiosa subsp. fastidiosa strain GV156 causing Pierce’s disease of grapevine in Taiwan

    Science.gov (United States)

    Xylella fastidiosa is a nutritionally fastidious Gram-negative bacterium causing Pierce’s disease (PD) of grapevines. PD was first reported in Anaheim, California in 1892 and is currently endemic in California and the southeastern U.S. PD also was found outside the U.S. but is limited to the America...

  19. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary; R. Bruce (Santa Fe, NM); Stubben, Christopher J. (Los Alamos, NM)

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  20. Avaliação da suscetibilidade à Xylella fastidiosa em diferentes espécies de cafeeiro Susceptibity valuation to Xylella fastidiosa in different coffee species

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    2005-01-01

    Full Text Available A bactéria Xylella fastidiosa Wells et al. foi detectada pela primeira vez em cafeeiro no Brasil, em 1995, entretanto acredita-se que a cultura foi infectada por essa bactéria há muitos anos, embora os sintomas fossem atribuídos a um estresse nutricional. Até o momento têm sido realizados estudos principalmente com espécies de C. arabica e C. canephora, porém, em outras espécies do gênero, somente foi detectada sua presença. Neste trabalho, objetivou-se avaliar a proporção de elementos de vaso do xilema obstruídos, total e parcialmente, pela X. fastidiosa, naturalmente infectadas, em diferentes espécies de cafeeiro do Banco de Germoplasma do IAC, visando identificar material resistente a essa bactéria para ser utilizado no programa de melhoramento genético. Os acessos estudados foram: C. canephora (progenitora da 'Guarini', C. liberica var. liberica, os quatro acessos de C. liberica var. dewevrei (Ugandae, Dibowskii, Abeokutae, Excelsa e o híbrido interespecífico Piatã (C. arabica X C. liberica var. dewevrei. Todos eles mostraram-se menos suscetíveis à X. fastidiosa. A porcentagem de obstrução dos elementos de vasos na folha não foi maior que 0,6% na maioria dos acessos, com exceção de Excelsa e do híbrido Piatã com até 2% de obstrução, sendo bem menos suscetíveis a essa bactéria do que as cultivares de C. arabica. Trata-se, portanto, de materiais genéticos importantes para serem utilizados no programa de melhoramento do cafeeiro visando à resistência ao agente dessa doença.Xylella fastidiosa Wells et al. bacteria was firstly detected in coffee plants in Brazil in 1995. However it is believed to be attacking this crop this time. Disease symptoms have been attributed mostly to nutritional unbalances. Up to date studies have comprised only the species C. arabica and C. canephora. However X. fastidiosa was also detected in other Coffea species, but without disease symptoms. Aiming to identify in the IAC

  1. Xylella fastidiosa from almond in Iran: overwinter recovery and effects of antibiotics

    Directory of Open Access Journals (Sweden)

    Naser AMANIFAR

    2017-01-01

    Full Text Available Almond leaf scorch disease (ALSD, caused by Xylella fastidiosa, has been reported from some regions of Iran. Biological traits of isolates the pathogen from almond were investigated in pot and orchard conditions. ALSD killed trees of susceptible cultivars during 3 to 4 years outdoors in pots, but overwintered in root tissues in orchards with winter temperatures below -15°C. Xylella fastidiosa was not detected by culturing or DAS-enzyme-linked immunosorbent assay (DAS-ELISA in almond leaves until early summer and peaked in early autumn. However, root samples taken in winter (January and February and early spring (April reacted positively in DAS-ELISA, culture media and polymerase chain reaction assays. This demonstrates that X. fastidiosa survives in root tissues of almond trees under orchard conditions in very cold (-28°C winters. Trunk injection of oxytetracycline into leaf scorched almond trees reduced symptoms of the disease, while penicillin applications also reduced symptoms but to a lesser degree.

  2. Efeito da Xylella fastidiosa em cafeeiros em diferentes regiões edafoclimáticas Effect of Xylella fastidiosa in coffee plants at different edaphoclimatic regions

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    2005-01-01

    Full Text Available A bactéria Xylella fastidiosa vem causando problemas para a cafeicultura, uma vez que sua presença, associada a diversos fatores de estresse, provoca um decréscimo na produção devido à diminuição no número e tamanho dos frutos e à morte de alguns ramos. Este trabalho objetiva avaliar o efeito da X. fastidiosa sobre cultivares de Coffea arabica (enxertados ou não através da quantificação da proporção de vasos do xilema obstruídos pela bactéria, nas diferentes partes da planta e entre ramos com e sem sintoma da doença, em experimentos desenvolvidos em diferentes regiões edafoclimáticas. Avaliou-se também a distribuição das classes de infecção nas diferentes partes da planta nos materiais genéticos estudados. Os experimentos foram instalados em 1986 em Mococa e Garça (SP e as amostras para o estudo anatômico, retiradas em abril de 1998 e 2000 (período de estresse hídrico, respectivamente, das plantas de cafeeiros dessas áreas. Na região de Mococa, observou-se que a nervura principal e o pecíolo foram os tecidos com proporção maior de vasos do xilema obstruídos pela X. fastidiosa; na região de Garça, foram o pecíolo e o caule. Não houve diferenças significativas na obstrução de elementos de vaso do xilema do cafeeiro ocasionado pela bactéria entre as duas regiões estudadas. Não houve tolerância à bactéria nos materiais genéticos, havendo no entanto variação dentro de cada um deles. Na região de Garça, nas plantas de café, observou-se alta proporção de vasos obstruídos nas raízes (3%, entretanto, não houve dano maior na parte aérea.The Xylella fastidiosa bacterium causes problems to coffee cultivation because of a relationship with various stress factors, leading to reduction on coffee production by decreasing fruit number and size, as well as senescence of branches. This research aimed to evaluate the effect of Xylella fastidiosa to Coffea arabica cultivars (grafted or not through the

  3. Hidden Markov models applied to a subsequence of the Xylella fastidiosa genome

    Directory of Open Access Journals (Sweden)

    Silva Cibele Q. da

    2003-01-01

    Full Text Available Dependencies in DNA sequences are frequently modeled using Markov models. However, Markov chains cannot account for heterogeneity that may be present in different regions of the same DNA sequence. Hidden Markov models are more realistic than Markov models since they allow for the identification of heterogeneous regions of a DNA sequence. In this study we present an application of hidden Markov models to a subsequence of the Xylella fastidiosa DNA data. We found that a three-state model provides a good description for the data considered.

  4. Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Alessandra A. de Souza

    2007-01-01

    Full Text Available The Citrus ESTs Sequencing Project (CitEST conducted at Centro APTA Citros Sylvio Moreira/IAC has identified and catalogued ESTs representing a set of citrus genes expressed under relevant stress responses, including diseases such as citrus variegated chlorosis (CVC, caused by Xylella fastidiosa. All sweet orange (Citrus sinensis L. Osb. varieties are susceptible to X. fastidiosa. On the other hand, mandarins (C. reticulata Blanco are considered tolerant or resistant to the disease, although the bacterium can be sporadically detected within the trees, but no disease symptoms or economic losses are observed. To study their genetic responses to the presence of X. fastidiosa, we have compared EST libraries of leaf tissue of sweet orange Pêra IAC (highly susceptible cultivar to X. fastidiosa and mandarin ‘Ponkan’ (tolerant artificially infected with the bacterium. Using an in silico differential display, 172 genes were found to be significantly differentially expressed in such conditions. Sweet orange presented an increase in expression of photosynthesis related genes that could reveal a strategy to counterbalance a possible lower photosynthetic activity resulting from early effects of the bacterial colonization in affected plants. On the other hand, mandarin showed an active multi-component defense response against the bacterium similar to the non-host resistance pattern.

  5. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    Directory of Open Access Journals (Sweden)

    Maristela Boaceff Ciraulo

    2010-01-01

    Full Text Available Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC and grapevine Pierce's disease (PD. Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW, the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  6. Production of DNA microarray and expression analysis of genes from Xylella fastidiosa in different culture media

    Directory of Open Access Journals (Sweden)

    Regiane de Fátima Travensolo

    2009-06-01

    Full Text Available DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.DNA Microarray foi desenvolvida para monitorar a expressão de muitos genes de Xylella fastidiosa, permitindo a comparação de duas situações distintas em um único experimento. Os experimentos foram feitos utilizando células de X. fastidiosa cultivada em dois meios de cultura: BCYE e XDM2. Pares de oligonucleotídeos iniciadores foram sintetizados, depositados em lâminas de vidro e o arranjo foi hibridizado contra cDNAs marcados fluorescentemente. Os sinais emitidos foram quantificados, normalizados e os dados foram estatisticamente analisados para verificar os genes diferencialmente expressos. De acordo com nossos dados, 104 genes foram diferencialmente expressos para o meio de cultura XDM2 e 30 genes para o BCYE. No presente estudo, nós demonstramos que a técnica de DNA microarrays eficientemente diferencia genes expressos sob diferentes condições de cultivo.

  7. Association of Xylella fastidiosa with Yield Loss and Altered Fruit Quality in a Naturally Infected Rabbiteye Blueberry Orchard

    Science.gov (United States)

    Xylella fastidiosa causes disease in a number of plants in the southeastern United States, including southern highbush blueberry, but little was known concerning its potential impact in rabbiteye blueberry (Vaccinium virgatum). In a naturally infected orchard in Louisiana, mean yields of X. fastidi...

  8. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    Science.gov (United States)

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  9. The distribution and biology of potential vectors of Xylella fastidiosa on coffee and citrus in Puerto Rico

    Science.gov (United States)

    Plant diseases caused by Xylella fastidiosa (Wells et al.) (Xf) surround the Caribbean Basin. Two major commodities of Puerto Rico, coffee and citrus, are highly susceptible to Xf. We surveyed potential vectors of Xf in coffee and citrus farms in western Puerto Rico over an 18 month period. Cicadel...

  10. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  11. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    Directory of Open Access Journals (Sweden)

    Shujian Zhang

    Full Text Available Xylella fastidiosa (X. fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703 and a serine protease (PD0956; two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928, and at least one relatively short, hemagglutinin-like protein (PD0986. Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3 overexpressing PD1703 exhibited a hypersensitive response (HR in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot and a PD0986 (hemagglutinin were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  12. Seasonal abundance of Draeculacephala minerva and other Xylella fastidiosa vectors in California almond orchards and vineyards.

    Science.gov (United States)

    Daane, Kent M; Wistrom, Christina M; Shapland, Elaine B; Sisterson, Mark S

    2011-04-01

    Almond leaf scorch (ALS) disease is caused by the bacterium Xylella fastidiosa and transmitted by xylem-feeding insects. Reports of increased incidence of ALS-diseased trees in California prompted surveys in three almond [Prunus dulcis (Mill.) D. A. Webb]-growing regions, from June 2003 to September 2005, to determine insect vector species composition and abundance. For comparison, sampling in and near vineyards in the San Joaquin Valley, California, also was completed. Sampling in or near almond orchards collected >42,000 Cicadomorpha of which 4.8% were xylem feeders, including 1912 grass sharpshooter, Draeculacephala minerva Ball; five Xyphon fulgida Nottingham; and a single spittlebug, Philaenus spumarius L. The most abundant vector was D. minerva. Season-long sampling indicated that D. minerva was a year-round resident in and/or near almonds in the Sacramento Valley, but not in the San Joaquin Valley. Similarly, D. minerca was rare in vineyards in the San Joaquin Valley, but was abundant in irrigated pastures near vineyards. D. minerva was most frequently collected along orchard margins, and peak densities were observed in summer, the period of time when bacterial titers are reported to increase in infected trees. Screening of D. minerva for presence of X.fastidiosa found that 1.1% of insects collected near almond orchards and 4.5% of insects collected from pastures tested positive. The X. fastidiosa subspecies and genotype detected in insects collected from orchards matched those collected from ALS-diseased almond trees in the same orchard. Of the few X. fulgida and P. spumarius collected, none tested positive for X. fastidiosa. Results are discussed with respect to X. fastidiosa vector control and detection methods.

  13. Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model

    Directory of Open Access Journals (Sweden)

    Luciano BOSSO

    2016-05-01

    Full Text Available Species distribution models may provide realistic scenarios to explain the influence of bioclimatic variables in the context of emerging plant pathogens. Xylella fastidiosa is a xylem-limited Gram-negative bacterium causing severe diseases in many plant species. We developed a maximum entropy model for X. fastidiosa in Italy. Our objectives were to carry out a preliminary analysis of the species’ potential geographical distribution and determine which eco-geographical variables may favour its presence in other Italian regions besides Apulia. The analysis of single variable contribution showed that precipitation of the driest (40.3% and wettest (30.4% months were the main factors influencing model performance. Altitude, precipitation of warmest quarter, mean temperature of coldest quarter, and land cover provided a total contribution of 19.5%. Based on the model predictions, X. fastidiosa has a high probability (> 0.8 of colonizing areas characterized by: i low altitude (0–150 m a.s.l.; ii precipitations in the driest month < 10 mm, in the wettest month ranging between 80–110 mm and during the warmest quarter < 60 mm; iii mean temperature of coldest quarter ≥ 8°C; iv agricultural areas comprising intensive agriculture, complex cultivation patterns, olive groves, annual crops associated with permanent crops, orchards and vineyards; forest (essentially oak woodland; and Mediterranean shrubland. Species distribution models showed a high probability of X. fastidiosa occurrence in the regions of Apulia, Calabria, Basilicata, Sicily, Sardinia and coastal areas of Campania, Lazio and south Tuscany. Maxent models achieved excellent levels of predictive performance according to area under curve (AUC, true skill statistic (TSS and minimum difference between training and testing AUC data (AUCdiff. Our study indicated that X. fastidiosa has the potential to overcome the current boundaries of distribution and affect areas of Italy outside Apulia.

  14. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa.

    Science.gov (United States)

    Choi, Hong-Kyu; Iandolino, Alberto; da Silva, Francisco Goes; Cook, Douglas R

    2013-06-01

    Pierce's disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grape, currently restricted to the Americas. To test the long-standing hypothesis that Pierce's disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a redirection of gene transcription involving 822 genes with a minimum twofold change (P related proteins, abscisic acid- and jasmonic acid-responsive biosynthesis, and downregulation of transcripts related to photosynthesis, growth, and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlate of the classical concept of the disease triangle in which environment impacts disease severity.

  15. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  16. Cloning and expression of cellulase XF-818 of Xylella fastidiosa in Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wulff Nelson Arno

    2003-01-01

    Full Text Available Xylella fastidiosa's genome was the first of a plant pathogen to be completely sequenced. Through comparative sequence analysis many genes were identified and, among them, several potentially involved in plant-pathogen interaction. However, the biological role of each gene should be assigned experimentally. On this regard, heterologous protein expression is a powerful tool to produce proteins from such genes, allowing their characterization. X. fastidiosa lives inside xylem vessels and eventually would degrade pit membranes from xylem cells to move radialy into the host. The identification of several putative plant cell wall degrading enzymes on X. fastidiosa genome prompted the assession of the function of such proteins. The open reading frame (ORF Xf-818 was cloned into expression vector pET20b and E. coli cells harboring such plasmid exhibited cellulase activity. Using IPTG at 0.4 mmol L-1 with a 12 h incubation at 32°C are the best conditions to produce higher amounts of heterologous protein. The enzyme degrades cellulose confirming the endoglucanase activity of Xf-818.

  17. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Directory of Open Access Journals (Sweden)

    Jordan Lee Harris

    Full Text Available Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  18. A new paradigm for vector inoculation of Xylella fastidiosa: Direct evidence of egestion and salivation supports that sharpshooters can be “flying syringes”

    Science.gov (United States)

    Despite nearly 70 years of research, the inoculation mechanism of Xylella fastidiosa by its sharpshooter vectors remains unproven. X. fastidiosa is unique among insect-transmitted plant pathogens because it is propagative but non-circulative, adhering to and multiplying on the cuticular lining of th...

  19. Efeito da poda do tipo decote no controle da xylella fastidiosa em cultivares de cafeeiro "Decote" type pruning effect upon xylella fastidiosa control in coffee cultivars

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    2007-01-01

    Full Text Available A bactéria Xylella fastidiosa causa prejuízos à cafeicultura e o emprego de produtos químicos, até o presente, não tem possibilitado o controle econômico dessa bactéria. O manejo adequado do cafezal, desde o plantio, com o uso de mudas isentas da bactéria e o controle das cigarrinhas vetoras, são medidas que atenuam a incidência da doença. A utilização de podas, que tem sido recomendada como medida de controle em citros e videiras, não tem ainda eficiência comprovada para o cafeeiro. Neste trabalho, objetivou-se estudar a eficácia do emprego da poda do tipo decote em cafeeiros arábica como controle de X. fastidiosa. Para tanto, após o emprego desse tipo de poda em cafeeiros infectados pela bactéria, quantificou-se a proporção de elementos de vaso do xilema obstruídos pela bactéria, e avaliou-se a severidade dos sintomas externos de infecção provocados pela X. fastidiosa. Oito meses após a aplicação da poda, no mês de junho de 2003 (período seco, observou-se que as plantas estavam com 4% dos elementos de vaso do pecíolo, 2% na nervura principal e 1% no caule obstruído pela X. fastidiosa. No período chuvoso, 14 meses após a poda, a proporção de obstrução dos elementos de vaso diminuiu para 2% no pecíolo, 1% no caule e na nervura principal. A prática da poda diminuiu ligeiramente a proporção de elementos de vaso obstruídos pela bactéria apenas no período seco, uma vez que foi observado antes da poda um máximo de 6% de obstrução no pecíolo. Os novos ramos que brotavam no cafeeiro, na estação chuvosa, pareciam compensar a obstrução dos ramos mais velhos, diminuindo a proporção de obstrução dos elementos de vaso na planta. Em 2003, não houve diferenças na severidade do sintoma externo entre os tratamentos nos dois períodos, seca e chuvoso. Entretanto, no período seco de 2004, as cultivares Catuaí Vermelho IAC 81 e Mundo Novo IAC 515-20, enxertadas sobre o porta-enxerto 'Apoatã IAC 2258

  20. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    Directory of Open Access Journals (Sweden)

    da Silva Neto José F

    2010-08-01

    Full Text Available Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase, was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.

  1. ASPECTOS ESTRUTURAIS DE CAFEEIRO INFECTADO COM XYLELLA FASTIDIOSA

    Directory of Open Access Journals (Sweden)

    RACHEL BENETTI QUEIROZ-VOLTAN

    1998-01-01

    Full Text Available Estudaram-se as alterações anatômicas em folhas e caules de ramos de cafeeiros infectados com X. fastidiosa visando compreender as causas dos seus distúrbios fisiológicos. Analisaram-se amostras dos cultivares comerciais de Coffea arabica L. - Catuaí Vermelho IAC H 2077-25-81 e Mundo Novo 515-20 enxertados sobre a progênie IAC 2258 de C. canephora - e de Catuaí Vermelho IAC H 2077-25-81 sem enxertia (pé franco. As amostras foram coletadas no campo, no Núcleo Experimental de Campinas, IAC, em cafezais onde foi detectada a presença da bactéria. Analisou-se também a estrutura da folha e do caule de ramos com e sem sintomas visuais da bactéria, sendo estimada a porcentagem de obstrução dos vasos do xilema do caule. Os ramos infectados apresentaram um encurtamento dos entrenós e, com o agravamento da doença, senescência foliar precoce na sua base, resultando em pequeno número de folhas no ápice. O número e a posição dos ramos por indivíduo com tais sintomas variaram entre as plantas, sendo mais freqüentes na região basal. Esses ramos também mostraram pecíolos e área foliar reduzidos e frutos menores e agrupados, em vista de um encurtamento dos pedicelos e dos entrenós, além de uma deposição de "goma" nos vasos do xilema do caule, pecíolo e folha, assim como divisões celulares anormais no xilema, floema e córtex daquelas partes. As células do mesofilo das folhas afetadas apresentaram número reduzido de cloroplastos, associado a maior concentração de cristais de oxalato de cálcio. Sugere-se que a presença da bactéria esteja induzindo a senescência foliar que se relaciona a um ou mais fatores de estresse.Leaf and stem anatomical changes were studied in coffee plants infected with X. fastidiosa looking for the causes of the observed physiological disturbances. Samples of commercial cultivars of Coffea arabica L. were analysed - Catuaí Vermelho IAC H 2077-25-81 and Mundo Novo 515-20 grafted on the progenie IAC

  2. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Directory of Open Access Journals (Sweden)

    Lígia S Muranaka

    Full Text Available Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC. The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC, a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS. The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer. HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  3. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Science.gov (United States)

    Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  4. Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts

    Directory of Open Access Journals (Sweden)

    Flávia Teresa Hansen Pacheco

    2006-01-01

    Full Text Available Bacterial production of siderophores may involve specific genes related to nonribosomal peptide and polyketide biosynthesis, which have not been fully identified in the genome of Xylella fastidiosa strain 9a5c. However, a search for siderophore-related genes in strain 9a5c indicated five membrane receptors, including siderophore, ferrichrome-iron and hemin receptors. All these biomolecules are thought to be associated with iron transport and utilization. Eighty isolates obtained from citrus orchards containing trees that developed citrus variegated chlorosis (CVC were screened for siderophore production. The results demonstrated that only 10 of the isolates did not produce siderophores. Additional strains obtained from coffee, almond, mulberry, elm, ragweed, periwinkle and grape also infected by X. fastidiosa were also shown by the chromeazurol bioassay to produce siderophores. In order to correlate siderophore production with the presence of siderophore-related genes, a polymerase chain reaction (PCR was developed using specific primers for the catechol-type ferric enterobactin receptor (pfeA and the hydroxamate-type ferrisiderophore receptor (fiuA genes of strain 9a5c. The PCR results confirmed our hypothesis by demonstrating that amplification products were detected in all strains except for those isolates that did not produce siderophores.

  5. The induction of differentially expressed proteins of Xylella fastidiosa with citrus extract Indução de proteínas de Xylella fastidiosa expressas diferencialmente com extrato de citros

    Directory of Open Access Journals (Sweden)

    Cláudia de M. Bellato

    2004-09-01

    Full Text Available An in vitro system was developed to induce and identify Xylella fastidiosa proteins that were differentially expressed in the presence of callus-derived extracts from its host, the citrus cultivar Pêra. To optimize the induction, we first developed a single culture medium for the growth of both, host and bacteria. This medium, CPXPm7, which mimics the citrus xylem sap, showed that X. fastidiosa at 72 h post-incubation had 10(8 colony forming units mL-1, while Pêra cells had the highest fresh weight content (0.79 g. After testing various methods of co-cultivation of the bacteria and host callus grown in this single medium, the best induction procedure was to grow X. fastidiosa in a solid medium amended with an extract of Pêra callus grown in CPXPm7. Analysis, by two-dimensional electrophoresis, of the X. fastidiosa proteins (120 µg of total proteins grown in the presence of Pêra callus extract revealed 414 differentially expressed protein spots when compared to the protein profile obtained in the absence of the extract. The system developed in this study improves the induction and analysis of differentially expressed proteins of X. fastidiosa, which may be involved in pathogenicity.Estudos in vitro foram desenvolvidos para obter proteínas de Xylella fastidiosa expressas diferencialmente na presença de calos do hospedeiro, citros cultivar Pêra. Para otimizar a indução, desenvolveu-se um meio de cultura comum, o qual foi baseado na seiva do xilema de citros, para cultivar a bacteria e os calos de Pêra. Dados mostraram, após 72 h de cultivo neste meio, 10(8 unidades formadoras de colônias de X. fastidiosa por mL, e 0,79 g de peso seco de células de Pêra. Após testar diferentes métodos de co-cultivo da bactéria com calos de Pêra neste meio, observou-se que a melhor taxa de indução ocorreu quando X. fastidiosa foi cultivada em meio sólido enriquecido com um extrato derivado dos calos de Pêra. Análise em gel bidimensional (2DE

  6. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    Science.gov (United States)

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect

  7. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology.

    Science.gov (United States)

    Redak, Richard A; Purcell, Alexander H; Lopes, João R S; Blua, Matthew J; Mizell, Russell F; Andersen, Peter C

    2004-01-01

    Xylophagous leafhopppers are common and abundant insects of tropical and subtropical environments and play important ecological roles in these ecosystems. The feeding biology of these insects is unique in terms of their high feeding rates and a digestive physiology that allows them to assimilate amino acids, organic acids, and sugars at approximately 99% efficiency. For those species well studied, fluctuations in plant xylem chemistry and tension appear to determine the diurnal and seasonal use of their host plants. Relatively few species of xylem fluid-feeding leafhoppers are considered important pests in commercial agriculture, as they transmit the bacterial plant pathogen Xylella fastidiosa. X. fastidiosa induces diseases of grapevines, citrus, coffee, almond, alfalfa, stone fruits, landscape ornamentals, and native hardwoods for which there is no cure. Two Xylella diseases, citrus variegated chlorosis (CVC) and Pierce's disease (PD) of grapevines, have emerged as important issues within the past decade. In Brazil, CVC became important in the early 1990s and has now expanded throughout many citrus-growing areas of South America and threatens to spread to North America. The recent establishment of the exotic glassy-winged sharpshooter (Homalodisca coagulata) in California now threatens much of the United States' wine grape, table grape, and almond production. The spread of H. coagulata throughout southern California and the spread of CVC northward from Argentina through Brazil exemplifies the biological risks from exotic species. The occurrence and epidemiology of leafhopper-vectored Xylella diseases are discussed.

  8. Analysis of expressed sequence tags from Citrus sinensis L. Osbeck infected with Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Alessandra A. de Souza

    2007-01-01

    Full Text Available In order to understand the genetic responses resulting from physiological changes that occur in plants displaying citrus variegated chlorosis (CVC symptoms, we adopted a strategy of comparing two EST libraries from sweet orange [Citrus sinensis (L. Osbeck]. One of them was prepared with plants showing typical CVC symptoms caused by Xylella fastidiosa and the other with non-inoculated plants. We obtained 15,944 ESTs by sequencing the two cDNA libraries. Using an in silico hybridization strategy, 37 genes were found to have significant variation at the transcriptional level. Within this subset, 21 were up-regulated and 16 were down-regulated in plants with CVC. The main functional categories of the down-regulated transcripts in plants with CVC were associated with metabolism, protein modification, energy and transport facilitation. The majority of the up-regulated transcripts were associated with metabolism and defense response. Some transcripts associated with adaptation to stress conditions were up-regulated in plants with CVC and could explain why plants remain alive even under severe water and nutritional stress. Others of the up-regulated transcripts are related to defense response suggesting that sweet orange plants activate their defense machinery. The genes associated with stress response might be expressed as part of a secondary response related to physiological alterations caused by the infection.

  9. Nutritional requirements of Xylella fastidiosa, which causes Pierce's disease in grapes.

    Science.gov (United States)

    Chang, C J; Donaldson, R C

    2000-03-01

    A defined medium (XF-26) containing 3 inorganic salts, 2 tricarboxylic acids, 17 amino acids, potato starch, phenol red, and agar was used as the starting point for the study. Deletions of one or more ingredients were performed to prepare various media. A medium was considered able to support growth of Xylella fastidiosa strains responsible for Pierce's disease in grapes, only after 10 serial passages had been completed. Of 3 inorganic salts, K2HPO4 and MgSO4 x 7H2O were essential, and (NH4)2HPO4 was nonessential for growth. Of the Krebs cycle intermediates, all (citrate, alpha-ketoglutarate, succinate, fumarate, malate, and oxaloacetate) but isocitrate supported growth of cultivated strains, whereas only citrate alone or citrate plus succinate supported the primary isolation of PD bacterium. Of 17 amino acids, 6 uncharged polar R groups (asparagine, cysteine, glutamine, glycine, serine, and threonine) supported growth, whereas 8 nonpolar R groups (alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine) or 3 positively charged polar groups (arginine, histidine, and lysine) did not. Starch proved to be nonessential.

  10. Comparações sazonais do efeito da Xylella fastidiosa em cultivares de cafeeiro Seasonal comparactions of Xylella fastidiosa effect in coffee cultivars

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    2004-12-01

    Full Text Available Há muitos anos, o cafeeiro vem apresentando problemas de atrofia e seca dos ramos, atribuídos a um esgotamento nutricional devido às altas taxas de produção. Entretanto, hoje sabe-se que esse problema é causado pela presença da bactéria Xylella fastidiosa Wells et al. cujos sintomas estão relacionados a fatores de estresse. Embora essa bactéria tenha sido muito estudada nos Estados Unidos, devido aos danos causados à videira, pouco se conhece sobre a relação patógeno-hospedeiro-vetor nas diferentes culturas. O objetivo deste trabalho foi o de avaliar a obstrução de elementos de vaso do xilema nas diferentes partes da planta, em ramos com e sem sintomas externos de infecção, de cultivares de cafeeiro (porta-enxertados ou pé-franco, em duas épocas do ano, a fim de verificar o efeito da bactéria na estrutura da planta e na sua nutrição. Foi utilizado um experimento instalado em 1986, em Garça (SP, sendo as amostras retiradas em 2000. Para o estudo anatômico foram obtidas amostras em dois períodos: abril/maio (estação seca e novembro/dezembro (estação chuvosa e para as análises foliar e edáfica foram retiradas amostras em abril. A proporção de obstrução de elementos de vaso do xilema devido ao efeito ocasionado pela bactéria foi maior na estação seca, no período de estresse hídrico, do que na estação chuvosa. O órgão que apresentou uma proporção maior de obstrução de elementos de vaso foi o caule, seguido do pecíolo, limbo e raiz. Não houve diferença significativa na proporção de elementos de vaso obstruídos entre os tratamentos nos dois períodos do ano; também, não houve diferença significativa na composição nutricional foliar nas condições do estudo, porém as amostras retiradas dos ramos com sintoma de infecção, de alguns tratamentos, apresentaram menores concentrações de alguns elementos químicos em relação àquelas amostras retiradas de ramos sem sintoma da presença da bact

  11. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease

    Science.gov (United States)

    Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce’s disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility. PMID:27508296

  12. Genetic characterization of Xylella fastidiosa isolated from citrus and coffee plants Caracterização genética de Xylella fastidiosa isolada de plantas de citros e café

    Directory of Open Access Journals (Sweden)

    Vicente Savonitti Miranda

    2007-10-01

    Full Text Available The Citrus Variegated Chlorosis and the Coffee Leaf Scorch are some of the many destructive diseases caused by Xylella fastidiosa, a gram-negative bacterium limited to the xylem of affected plants. As its genetic characterization is still not well established, different isolates of X. fastidiosa from citrus and coffee were evaluated through RAPD (Random Amplified Polymorphic DNA technique to characterize and classify these isolates based on similarity coefficients. Sixteen isolates of X. fastidiosa were used on this trial, obtained from citrus, coffee and almond. The genetic polymorphism evaluation was performed using six arbitrary 10-base primer pairs. It was possible to establish a dendogram in which the isolates were classified into five groups (A, B, C, D and E. A prevalence of citrus isolates in groups A and D was observed. In groups B and C, there was a prevalence of coffee isolates meanwhile the group D consisted of the almond isolate, solely.A Clorose Variegada dos Citros e a Requeima das Folhas do Cafeeiro são algumas das várias doenças destrutivas causadas pela Xylella fastidiosa, que é uma bactéria gram-negativa e limitada ao xilema de plantas afetadas. Como a sua caracterização genética ainda não está determinada, diferentes isolados da X. fastidiosa de citros e café foram avaliados pela técnica RAPD (Polimorfismo do DNA Amplificado ao Acaso para caracterizar e classificar estes isolados com base em coeficientes de similaridade. Foram utilizados 16 isolados de X. fastidiosa provenientes de citros, café e amêndoa. A avaliação do polimorfismo genético foi realizada utilizando seis iniciadores randômicos de 10 pares de base. Foi possível estabelecer um dendograma no qual os isolados foram classificados em cinco grupos (A, B, C, D e E. Nos grupos A e D existe uma forte predominância de isolados de citros. Nos grupos B e C há predominância de isolados de café enquanto no grupo E ficou apenas o isolado de amêndoa.

  13. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen, Xylella fastidiosa

    Science.gov (United States)

    Xylella fastidiosa, the causal agent of Pierce’s disease of grapevines, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate t...

  14. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa

    Science.gov (United States)

    The glassy-winged sharpshooter, Homalodisca vitripennis, is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa, the causal agent of several plant diseases in the Americas. While the role of plant water stress on the population density and dispersal of H. vitripennis has been studie...

  15. Muscle movements that control inoculation of Xylella fastidiosa are revealed by head X-rays of feeding glassy-winged sharpshooters

    Science.gov (United States)

    The mechanism of inoculation of the Pierce’s disease bacterium, Xylella fastidiosa (Xf), by vectors such as the glassy-winged sharpshooter (GWSS) is still unknown, despite nearly 70 years of study. Research in support of the egestion-salivation hypothesis for Xf inoculation is presented. Two impor...

  16. Spatial-temporal distribution of sharpshooters (Hemyptera: Cicadellidae insect vectors of Xylella fastidiosa in citrus orchards = Distribuição espaço-temporal de cigarrinhas (Hemiptera: Cicadellidae vetores da Xylella fastidiosa em pomares cítricos

    Directory of Open Access Journals (Sweden)

    Rúbia de Oliveira Molina

    2016-07-01

    Full Text Available Variegated chlorosis (CVC is a citrus disease, reported initially in the northwest of São Paulo state and in the Triângulo Mineiro region of Minas Gerais state in 1987. The CVC is caused by the xylematic bacteria Xylella fastidiosa. The bacteria is spread through contaminated bubbles or by insect vectors belonging to the Hemyptera order and Cicadellidae family. The aimed of this study was to identify the species of Xylella fastidiosa insect vector and to determine its spatial and temporal distribution in commercial orchards of sweet orange [Citrus sinensis (L. Osbeck]. The experiment was conducted in a commercial area of sweet orange, Pêra variety, grafted on Rangpur lime, located in northwest Paraná. For sampling, yellow sticky traps were used, distributed in the peripheral and central area of the orchard with four replicates per street sampled (5, 30, 55 and 80th plant, each plant was considered a sample unit. Were evaluated ten plots per street, totaling 40 traps for sampling. Every thirty days during the evaluation period, the traps were renewed in the orchard. The main species caught were Acrogonia citrine and Dilobopterus costalimai. The highest incidences occurred from winter to spring, and summer to autumn of the next year. According to the geostatistical analysis, the spatial distribution of these species concentrated in the peripheral zone of the portion where a higher incidence of these species was captured. The results show that it is necessary to adopt pest management practices for the Cicadellidae vector of X. fastidiosa differentiated in space and time. = A clorose variegada dos citros (CVC é uma doença de plantas cítricas, constatada, em 1987, inicialmente nos municípios do noroeste paulista e da região do triângulo mineiro. Ela é causada por uma bactéria de xilema, denominada Xylella fastidiosa. Sua disseminação ocorre através de borbulhas contaminadas ou por meio de insetos vetores da ordem Hemiptera e fam

  17. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    Science.gov (United States)

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine.

  18. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  19. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    Directory of Open Access Journals (Sweden)

    Wei Guan

    Full Text Available Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  20. Citrus sinensis leaf petiole and blade colonization by Xylella fastidiosa: details of xylem vessel occlusion Colonização de pecíolo e folha de Citrus sinensis por Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Eduardo Alves

    2009-04-01

    Full Text Available Citrus variegated chlorosis (CVC, caused by Xylella fastidiosa, is an important disease of citrus in Brazil. X. fastidiosa is restricted to xylem vessels of plants and knowledge regarding xylem colonization is still limited. Our goal was to verify how this bacterium colonizes and spreads within xylem vessels of sweet orange Citrus sinensis cv. Pêra. Petioles and pieces of leaf blades from naturally infected plant exhibiting characteristic symptoms were prepared for light microscopy (LM, scanning electron microscopy (SEM, transmission electron microscopy (TEM and immunogold labeling (IGL. Petioles from healthy plants were used as control. IGL results, using an antibody against wall hemicelluloses, revealed that the pit membrane of vessels was altered. Bacterial cells were observed in the pit between adjacent vessels. Results support the contention that X. fastidiosa produces cellulases to reach adjacent vessels. SEM revealed that colonization of sweet orange started with X. fastidiosa cells attaching to the xylem wall, followed by an increase in the number of bacterial cells, the production of fibrous material, and finally vessel occlusion by biofilm composed of copious amounts of amorphous material, strands and cells. Phenolic materials, hyperplasia and hypertrophy were noticed in leaves with gummy material. Xylem vessels frequently contained an unknown needle-like, crystallized matter blocking the vessel.A clorose variegada dos citrus (CVC, causada por uma bactéria restrita ao xilema (Xylella fastidiosa, é uma importante doença de citros no Brasil, entretanto, pouco se sabe sobre a colonização dos vasos do xilema pela bactéria. O objetivo deste trabalho foi estudar como X. fastidiosa invade os vasos adjacentes do xilema e algumas das alterações expressas por plantas de laranja Pêra. Foram coletadas 15 amostras de pecíolos e áreas das folhas de plantas com sintomas característicos da doença, as quais foram preparadas para

  1. [Hemipteran diversity (Cicadellidae and Clastopteridae) in three coffee production zones affected by Xylella fastidiosa (Wells et al.) in Costa Rica].

    Science.gov (United States)

    Garita-Cambronero, Jerson; Villalobos, William; Godoy, Carolina; Rivera, Carmen

    2008-01-01

    A survey was conducted during 2002, 2003 and 2004 to determine the leafhopper species composition, abundance, richness, diversity, evenness, occurrence and flight activity among three coffee production zones of Costa Rica. Yellow sticky traps were used to qualify and quantify the number of aerial leafhoppers during the sampling period. A total of 82,500 individuals, belonging to 139 species within nine leafhopper subfamilies, were trapped. San Isidro de León Cortés site presented the highest diversity from the three surveyed sites. Twenty five species were frequently trapped at least in one of the studied zones, and only Coelidiana sp.1, Osbornellus sp.1, Scaphytopius sp.1 and Empoasca sp. were trapped throughout the sampling period. The flight activity of the taxa that contain the main vectors of Xylella fastidiosa Wells et al. showed differences among the sampling zones.

  2. The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles

    Science.gov (United States)

    Santiago, André da Silva; Mendes, Juliano S.; dos Santos, Clelton A.; de Toledo, Marcelo A. S.; Beloti, Lilian L.; Crucello, Aline; Horta, Maria A. C.; Favaro, Marianna T. de Pinho; Munar, Duber M. M.; de Souza, Alessandra A.; Cotta, Mônica A.; de Souza, Anete P.

    2016-01-01

    The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible

  3. Diversidade genética de Xylella fastidiosa em regiões produtoras de citros na Bahia

    Directory of Open Access Journals (Sweden)

    Vinicius Oliveira Casais

    2014-01-01

    Full Text Available O objetivo deste trabalho foi avaliar, por meio de marcadores SSR, a diversidade genética de Xylella fastidiosa no Estado da Bahia. Foram estudadas duas das principais regiões produtoras de citros no Estado, o Litoral Norte e o Recôncavo Sul. Para fins comparativos, utilizaram-se dez amostras provenientes do Estado de São Paulo. Foram empregados os seguintes iniciadores: ASSR20, OSSR9, OSSR17, CSSR4, CSSR12 e CSSR20, dos quais os quatro últimos permitiram identificar 22 loci polimórficos. As populações de X. fastidiosa presentes em citros no Estado da Bahia apresentam elevada diversidade genética, com base nos marcadores SSR, com pools gênicos distintos e agrupamento geográfico. No Litoral Norte, as populações do isolado apresentam maior diversidade genética do que as da região do Recôncavo Sul da Bahia.

  4. Cigarrinhas dos Citros, Vetoras da Bactéria Xylella fastidiosa Wells et al.: Pragas Potenciais para a Citricultura Sergipana

    Directory of Open Access Journals (Sweden)

    Ruberval Azevedo

    2015-04-01

    Abstract. The citrus industry in Brazil plays a role of great economic, social, generating jobs, income and development. Brazil is the largest producer of citrus, the State of Sergipe stands out in 5th place in national production. Among the many pest problems faced by Brazilian citrus is Citrus Variegated Chlorosis (CVC, known as the yellowing caused by the bacterium Xylella fastidiosa Wells et al. The CVC was officially identified in Brazil in 1987, in orchards of “Triângulo Mineiro” and North and northwest of the state of São Paulo. In the Northeast Region of Brazil, was found in 1996 in the municipality of Boquim Sergipe, and Bahia in 1997, the municipalities of Rio Real and Itapicuru. The aim was to review the literature on the species of leafhoppers vectors of CVC, and verify that occur in the state of Sergipe. The first symptoms are seen in the leaves, then go for the fruits and end up affecting the entire plant, and to be perceived can take between five months and two years. The main vectors of X. fastidiosa in citrus are the sharpshooters of the family Cicadellidae. In Brazil 12 sharpshooters species have already been confirmed. For the state of Sergipe, is scarce information about the Cicadellidae vectors, the data are limited to the northern coast of Bahia, except for vague quote about four genus (Oncometropia, Acrogonia, Dilobopterus and Homolodisca and three species (Homolodisca ignorata Melichar, Acrogonia sp. and Homolodisca spottii Takiya, Cavichioli & McKamey.

  5. Spatial Genetic Structure of Coffee-Associated Xylella fastidiosa Populations Indicates that Cross Infection Does Not Occur with Sympatric Citrus Orchards.

    Science.gov (United States)

    Francisco, Carolina S; Ceresini, Paulo C; Almeida, Rodrigo P P; Coletta-Filho, Helvécio D

    2017-04-01

    Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.

  6. Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Rudiney Ringenberg

    2014-06-01

    Full Text Available Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil. Pierce's disease of grapevines, caused by Xylella fastidiosa, is a serious problem in some regions of North America, not yet reported in Brazil. In this study, a survey of potential sharpshooter (Hemiptera, Cicadellidae, Cicadellinae and spittlebug (Hemiptera, Cercopidae vectors of X. fastidiosa was conducted in vineyards at the São Francisco River Valley, a major grape growing region in Brazil. Four vineyards of Vitis vinifera L. were sampled fortnightly from June/2005 to June/2007, using yellow sticky cards, each placed at two different heights (45 cm aboveground and 45 cm above the crop canopy in 10 sampling localities. A total of 4,095 specimens of sharpshooters were collected, nearly all from 3 Proconiini species, Homalodisca spottii Takiya, Cavichioli & McKamey, 2006 (96.8% of the specimens, Tapajosa fulvopunctata (Signoret, 1854 (3.1%, and Tretogonia cribrata Melichar, 1926 (1 specimen. Hortensia similis (Walker, 1851 (2 specimens was the only Cicadellini species. Only 1 cercopid specimen, belonging to Aeneolamia colon (Germar, 1821, was trapped. Even though they are not considered potential Xylella vectors, 2 Gyponini leafhoppers were collected: Curtara samera DeLong & Freytag, 1972 (11 specimens and Curtara inflata DeLong & Freytag, 1976 (1 specimen. Homalodisca spottii was observed feeding and mating on green branches of grapevines, in addition to egg masses. Because of its prevalence on the crop canopy, occurrence throughout the year (with peaks from February to August, and ability to colonize grapevines, H. spottii could be an important vector if a X. fastidiosa strain pathogenic to grapevines becomes introduced at the São Francisco River Valley.

  7. Carbohydrate metabolism of Xylella fastidiosa: Detection of glycolytic and pentose phosphate pathway enzymes and cloning and expression of the enolase gene

    Directory of Open Access Journals (Sweden)

    Facincani Agda Paula

    2003-01-01

    Full Text Available The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor, Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

  8. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium.

  9. Specific detection and identification of mulberry-infecting strains of Xylella fastidiosa by polymerase chain reaction

    Science.gov (United States)

    X. fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular land...

  10. Xylella fastidiosa Infection and Ethylene Exposure Result in Xylem and Water Movement Disruption in Grapevine Shoots1[OA

    Science.gov (United States)

    Pérez-Donoso, Alonso G.; Greve, L. Carl; Walton, Jeffrey H.; Shackel, Ken A.; Labavitch, John M.

    2007-01-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (KS) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen. PMID:17189331

  11. Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Health (PLH

    2015-01-01

    Full Text Available The EFSA Panel on Plant Health conducted a pest risk assessment and an evaluation of risk reduction options for Xylella fastidiosa. X. fastidiosa has been detected in olive in the EU with a distribution restricted to the region of Apulia in Italy and is under official control. X. fastidiosa has a very broad host range, including many common cultivated and wild plants. All xylem fluid-feeding insects in Europe are considered to be potential vectors. Philaenus spumarius (Hemiptera: Aphrophoridae, a polyphagous spittlebug widespread in the whole risk assessment area, has been identified as a vector in Apulia. The probability of entry of X. fastidiosa from countries where X. fastidiosa is reported is very high with plants for planting and moderate with infectious insect vectors carried with plant commodities or travelling as stowaways. Establishment and spread in the EU is very likely. The consequences are considered to be major because yield losses and other damage would be high and require costly control measures. The systematic use of insecticides for vector control may create environmental impacts. With regard to risk reduction options, strategies for the prevention of introduction and for the containment of outbreaks should focus on the two main pathways (plants for planting and infectious insect vectors and combine the most effective options in an integrated approach. For plants for planting, these could be pest-free production areas, surveillance, certification, screened greenhouse production, vector control and testing for infection and, for some plant species, treatments (e.g. thermotherapy. To prevent entry of the infectious vectors, insecticide treatments and inspection of consignments and production sites are required. The Panel has also reviewed the effectiveness of risk reduction options for X. fastidiosa and its vectors listed in Directive 2000/29/EC and in the EU emergency measures. The Panel recommends the continuation and

  12. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa.

    Science.gov (United States)

    Krugner, Rodrigo; Backus, Elaine A

    2014-02-01

    ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa Wells et al., a plant-infecting bacterium that causes several plant diseases in the Americas. Although the role of plant water stress on the population density and dispersal ofH. vitripennis has been studied, nothing is known about the effects of plant water stress on the transmission of X. fastidiosa by H. vitripennis. A laboratory study was conducted to determine the influence of plant water stress on the sharpshooter stylet probing behaviors associated with the acquisition and inoculation of X. fastidiosa. Electrical penetration graph was used to monitor H. vitripennis feeding behaviors for 20-h periods on citrus [Citrus sinensis (L.) Osbeck] and almond [Prunus dulcis (Miller) D.A. Webb] plants subjected to levels of water stress. Adult H. vitripennis successfully located xylem vessels, then performed behaviors related to the evaluation of the xylem cell and fluid, and finally ingested xylem fluid from citrus and almond plants under the tested fluid tensions ranging from -5.5 to -33.0 bars and -6.0 to -24.5 bars, respectively. In general, long and frequent feeding events associated with the acquisition and inoculation of X. fastidiosa were observed only in fully irrigated plants (i.e., >-10 bars), which suggests that even low levels of plant water stress may reduce the spread of X. fastidiosa. Results provided insights to disease epidemiology and support the hypothesis that application of regulated deficit irrigation has the potential to reduce the incidence of diseases caused by X.fastidiosa by reducing the number of vectors and by decreasing pathogen transmission efficiency.

  13. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis.

    Science.gov (United States)

    Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene

    2013-01-01

    The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the

  14. Monitoramento populacional das cigarrinhas vetoras de Xylella fastidiosa, através de armadilhas adesivas amarelas em pomares comerciais de citros Population monitoring of leafhopper vectors of Xylella fastidiosa, through yellow sticky traps in commercial citrus orchards

    Directory of Open Access Journals (Sweden)

    Rúbia de Oliveira Molina

    2010-12-01

    Full Text Available A Clorose variegada dos citros (CVC é uma doença causada pela bactéria de xilema Xylella fastidiosa Wells. A disseminação ocorre por meio de insetos vetores pertencente à ordem Hemiptera, família Cicadellidae (subfamília Cicadellinae, os quais transmitem a bactéria depois de se alimentarem em plantas contaminadas. Neste trabalho, objetivou-se identificar e monitorar as espécies de cigarrinhas vetoras em um pomar comercial no município de Paranavaí, Paraná. O experimento foi realizado em um talhão comercial de laranja doce (Citrus sinensis (L. Osbeck, variedade Pera, com 1.000 plantas de dez anos de idade. A amostragem foi realizada por meio de armadilhas adesivas amarelas, distribuídas na área periférica e central do pomar, com duas repetições por rua amostrada. As etiquetas foram distribuídas entre a 5ª e 30ª plantas em 10 ruas, totalizando 20 armadilhas que foram renovadas no pomar, a cada trinta dias, durante o período de avaliação que foi entre junho de 2005 e setembro de 2006. As principais espécies de Cicadellinae capturadas foram Acrogonia citrina Marucci & Cavichioli, Dilobopterus costalimai Young e Macugonalia cavifrons Stal. Essas espécies apresentaram ocorrência constante e frequência de 3,97%, 4,2%, 13,0% respectivamente, em relação ao total de cigarrinhas coletadas.Citrus variegated chlorosis (CVC is the disease caused by the bacteria Xylella fastidiosa Wells. Dissemination occurs through insect vectors belonging to the order Hemiptera, family Cicadellidae (subfamily Cicadellinae, which transmit the bacteria after feeding on infected plants. The objective of this study was to identify the species of insect vectors in an orchard in the municipality of Paranavaí, in the State of Paraná. The experiment was conducted in a commercial stand of sweet orange (Citrus sinensis (L. Osbeck, Pêra variety with 1,000 10-year-old plants. Monitoring was performed using yellow sticky traps, distributed in the central

  15. Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by “olive quick decline syndrome” in Italy

    Directory of Open Access Journals (Sweden)

    Toufic ELBEAINO

    2015-01-01

    Full Text Available The recent finding of Xylella fastidiosa (Xf in olive trees in southern Italy, the scanty molecular information on this bacterium and its association with the olive quick decline syndrome (OQDS prompted the necessity to isolate and acquire more genetic data on the type of strain present in that region. For the first time, the bacterium was isolated from infected olive on culture media. Genetic information were obtained through genomic comparison with other subspecies or strains. The sequences of thirteen genes from its genome, comprising seven housekeeping genes (leuA, petC, lacF, cysG, holC, nuoL and gltT usually used in multilocus sequence typing (MLST systems, and six genes involved in different biochemical functions (RNA Pol sigma-70 factor, hypothetical protein HL, 16S rRNA, rfbD, nuoN, and pilU, were analyzed. The sequences of the biochemical function genes were explored  individually to study the genetic structure of this bacterium, while the MLST genes were linked together into one concatameric sequence (4161 bp long to increase the resolution of the phylogenetic analysis when compared with Xf strains previously reported. Sequence analyses of single genes showed that the Xf olive strain is distinct from the four previously defined taxons (Xf subsp. fastidiosa, Xf subsp. multiplex, Xf subsp. sandyi and Xf subsp. pauca with a dissimilarity rate that reached 4%. In particular, Xf from olive shared the greatest identity with the strain “9a5c” (subsp. pauca, but was nevertheless distinct from it. Similarly, the MLST based on concatameric sequences confirmed the genetic variance of Xf from olive by generating a novel sequence type profile (ST53. Phylogenetic tree analyses showed that Xf from olive clustered in one clade close to subspecies pauca (strains “9a5c” and “CVC0018”, but was nevertheless distinct from them. These results indicate molecular divergence of this olive bacterium with all other strains yet reported.

  16. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease.

    Science.gov (United States)

    Wallis, Christopher M; Wallingford, Anna K; Chen, Jianchi

    2013-01-01

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce's disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor.

  17. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    Directory of Open Access Journals (Sweden)

    Christopher Michael Wallis

    2013-12-01

    Full Text Available The xylem-limited bacterium Xylella fastidiosa (Xf causes Pierce’s disease (PD, an important disease of grapevine, Vitis vinifera L.. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after six months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/ RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected versus non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor.

  18. Identification of a non-host plant of Xylella fastidiosa to rear healthy sharpshooter vectors Identificação de uma planta não-hospedeira de Xylella fastidiosa para criação de insetos vetores sadios

    Directory of Open Access Journals (Sweden)

    Rosangela Cristina Marucci

    2003-12-01

    Full Text Available Rearing leafhopper (Hemiptera: Cicadellidae vectors free of Xylella fastidiosa is a requirement for studies of various aspects of vector-pathogen interactions. The selection of a plant that allows vector development but not bacterial multiplication is desirable to produce healthy vectors. In this study, two leafhopper hosts, Vernonia condensata ('boldo' and Aloysia virgata ('lixeira' were needle inoculated with citrus and coffee strains of X. fastidiosa to evaluate if these plants support pathogen colonization. The inoculated plants did not present symptoms and the pathogen was not detected by culture and PCR tests, neither soon after inoculation (7-14 days nor later, at 1, 4, 6 and 12 months after inoculation. To obtain healthy adults of the leafhopper vectors Acrogonia citrina, Bucephalogonia xanthophis, Dilobopterus costalimai, Homalodisca ignorata and Oncometopia facialis, early-instar nymphs were reared on V. condensata. X. fastidiosa was not detected in any of 175 adults obtained. V. condensata and A. virgata are nonpropagative hosts of X. fastidiosa and enable the production of healthy leafhoppers for vector studies.A obtenção de cigarrinhas (Hemiptera: Cicadellidae livres de Xylella fastidiosa é importante para estudos de interação entre essa bactéria e seus vetores, sendo desejável a seleção de uma planta que permita a criação desses insetos, mas não a multiplicação da bactéria. Neste estudo, duas plantas hospedeiras de cigarrinhas, Vernonia condensata (boldo e Aloysia virgata (lixeira, foram inoculadas por agulha com as estirpes de citros e de cafeeiro de X. fastidiosa, para avaliar a possibilidade deste patógeno colonizá-las. Não foram observados sintomas, nem se detectou a bactéria por isolamento em meio de cultura e/ou PCR em períodos curtos (7 e 14 dias ou longos (1, 4, 6 e 12 meses após a inoculação. Para obtenção de adultos sadios das cigarrinhas vetoras, Acrogonia citrina, Bucephalogonia xanthophis

  19. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    Science.gov (United States)

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    Science.gov (United States)

    Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant and complementary strain contai...

  1. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2016-05-01

    Full Text Available Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

  2. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca Detecção de sideróforos nas bactérias endofíticas Methylobacterium spp. associadas com Xylella fastidiosa subsp. pauca

    Directory of Open Access Journals (Sweden)

    Paulo Teixeira Lacava

    2008-04-01

    Full Text Available The objective of this work was to study the production of siderophores by endophytic bacteria Methylobacterium spp., which occupy the same ecological niche as Xylella fastidiosa subsp. pauca (Xfp in citrus plants. The siderophore production of Methylobacterium strains was tested according to chromeazurol agar assay test (CAS, Csáky test (hydroxamate-type and Arnow test (catechol-type. In addition, the ability of Xfp to use siderophores, in vitro, produced by endophytic bacteria as source of iron, was evaluated. All 37 strains of Methylobacterium spp. tested were CAS-positive for siderophore production. Methylobacterium spp. produced hydroxamate-type, but not catechol-type siderophores. In vitro growth of Xfp was stimulated by the presence of supernatant siderophores of endophytic Methylobacterium mesophilicum.O objetivo deste trabalho foi estudar a produção de sideróforos pelas bactérias endofíticas Methylobacterium spp., que ocupam o mesmo nicho ecológico que Xylella fastidiosa subsp. pauca (Xfp, em plantas cítricas. A produção de sideróforos, pelas linhagens de Methylobacterium, foi testada por meio do ensaio de cromoazarol-ágar (chromeazurol agar assay-CAS, teste de Csáky (tipo hidroxamato e do teste de Arnow (tipo catecol. Além disso, a habilidade de Xfp em utilizar sideróforos produzidos por bactérias endofíticas, como fonte de ferro, in vitro, foi avaliada. Todas as 37 linhagens de Methylobacterium spp. testadas foram positivas para a produção de sideróforos, pelo teste CAS-ágar. Methylobacterium spp. foram capazes de produzir sideróforos do tipo hidroxamato, mas não do tipo catecol. O crescimento in vitro de Xfp foi estimulado pela presença de sideróforos no sobrenadante de Methylobacterium mesophilicum endofítica.

  3. Host colonization differences between citrus and coffee isolates of Xylella fastidiosa in reciprocal inoculation Diferenças em colonização do hospedeiro por isolados de Xylella fastidiosa de citros e cafeeiro em inoculações recíprocas

    Directory of Open Access Journals (Sweden)

    Simone de Souza Prado

    2008-01-01

    Full Text Available Citrus variegated chlorosis (CVC and coffee stem atrophy (CSA are important diseases in Brazil associated with closely-related strains of Xylella fastidiosa, but little is know about host aoverlappingnd importance of citrus and coffee as inoculum sources of these strains. In this study, reciprocal-inoculation experiments were performed to determine if CVC and CSA isolates are biologically similar within citrus and coffee plants. These two hosts were mechanically inoculated with a CVC and a CSA isolate of X. fastidiosa at four concentrations ranging between10³ and 10(9 colony forming units CFU mL-1. At two, four and eight months after inoculation, the infection efficiency and bacterial populations of the isolates in each host were determined by culturing. The CVC isolate infected both citrus and coffee plants, but developed lower populations in coffee. The CSA isolate did not colonize citrus. Inoculation of coffee plants with the CVC isolate resulted in low rates of infection and required an inoculum concentration ten-fold higher than that necessary to obtain a similar (25% rate of infection in citrus. The relatively low infection rates and bacterial numbers of the CVC isolate in coffee plants compared with those observed in citrus suggest that coffee is not a suitable host to serve as a source of inoculum of the CVC strain for primary spread to citrus or within coffee plantations.Clorose variegada dos citros (CVC e atrofia dos ramos do cafeeiro (ARC são doenças importantes no Brasil, associadas a estirpes de Xylella fastidiosa que são geneticamente próximas. Entretanto, pouco se sabe a respeito de plantas hospedeiras em comum e da importância de citros e cafeeiro como fontes de inóculo dessas estirpes. Neste estudo, realizaram-se experimentos de inoculação recíproca para determinar se isolados de X. fastidiosa de CVC e de ARC são biologicamente semelhantes em plantas de citros e café. Estes dois hospedeiros foram mecanicamente

  4. Avaliação da resistência à Xylella fastidiosa em germoplasma de tangerina e híbridos introduzidos da Itália e Córsega

    Directory of Open Access Journals (Sweden)

    GONZÁLEZ JAIMES ELENA PAOLA

    2002-01-01

    Full Text Available A Clorose Variegada dos Citros (CVC, causada pela bactéria Xylella fastidiosa, é atualmente uma das doenças que mais afeta a citricultura brasileira, sendo as variedades de laranja-doce as mais afetadas. Ensaio instalado na Estação Experimental de Bebedouro (EECB, em condições de estufa, teve como objetivo avaliar o comportamento em relação à CVC de germoplasma de citros introduzidos pela EECB, Fundecitrus e Cenargen. Os materiais foram multiplicados sobre diversos porta-enxertos e, quando atingiram o tamanho adequado, inoculados por garfagem lateral de ramo doente. Cada variedade constou de quatro plantas, três das quais foram inoculadas, e a outra sem inocular deixada como padrão. As avaliações consistiram na observação de sintomas, teste de ELISA e PCR. Os primeiros sintomas nos materiais contaminados começaram a surgir 7 meses após a inoculação. Encontraram-se 18 variedades positivas no teste de PCR, o que indica sua suscetibilidade à bactéria Xylella fastidiosa. Entretanto, as variedades que foram detectadas pelo teste ELISA e não pelo PCR não foram contadas como suscetíveis e, sim, como falsos positivos.

  5. Populational fluctuation of vectors of Xylella fastidiosa, wells in sweet orange [Citrus sinensis (L. Osbeck] varieties of northwest Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Rúbia de Oliveira Molina

    2010-06-01

    Full Text Available The aim of the present study was to assess the population flutuation of the sharpshooters species subfamily Cicadellinae belonging to the tribes Cicadellini and Proconiini, in sweet orange [Citrus sinensis( L. Osbeck] commercial orchards of the northwest region of Paraná State , Brazil. Samplings were carried out the employing every time 24 yellow sticky cards. Identification of the species showed that the most representative were Dilobopterus costalimai of the Cicadellini tribe and Acrogonia citrina of the Proconiini tribe.A Clorose variegada dos citros (CVC é uma importante doença que ocorre nos citros, cujo agente causal é a bactéria Xylella fastidiosa, Wells. A bactéria depende, obrigatoriamente, de insetos vetores para sua disseminação, que são as cigarrinhas sugadoras do xilema (Hemiptera: Cicadellidae, Cicadellinae. No presente estudo objetivou-se avaliar a flutuação populacional de espécies de cigarrinhas nas diferentes variedades de laranja doce [Citrus sinensis (L. Osbeck], Natal, Pêra, Valência e Folha Murcha, em um pomar comercial localizado na região Noroeste do Paraná, no período de janeiro de 2000 a dezembro de 2002. Amostragens quinzenais foram realizadas com o uso de armadilhas adesivas amarelas, num total de 24 armadilhas em cada avaliação. Após a identificação das espécies observou-se, que as mais representativas foram Dilobopterus costalimai da tribo Cicadellini e Acrogonia citrina da tribo Proconiini, sendo que a variedade de laranja Pêra apresentou o maior número de espécies vetoras durante os anos avaliados.

  6. Análise espaço-temporal da clorose variegada dos citros no Noroeste do Paraná, com uso de PCR para detecção de Xylella fastidiosa = Spatio-temporal analysis of the citrus variegated chlorosis (CVC in the Northwest of Paraná, using PCR for detection of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    William Mário de Carvalho Nunes

    2006-07-01

    Full Text Available A citricultura é afetada por inúmeras doenças, como a clorose variegada do citros (CVC, causada pela bactéria Xylella fastidiosa. O objetivo deste trabalho foi determinar a distribuição espacial da doença dentro de pomares comerciais do Noroeste do Paraná com o uso de métodos moleculares. Foram selecionados pomares sintomáticos para CVC com as variedades ‘Pêra’, ‘Valência’ e ‘Folha Murcha’ (Citrus sinensis Osbeck. Foram marcadas para cada variedade, 4 plantas-referência positivas para CVC (por sintomas e análise molecular e 8 plantas ao redor de cada uma das plantas-referência foram amostradas, num total de 36 plantas por variedade. Realizou-se o teste da Reação da Polimerase em Cadeia (PCR para detecção da bactéria e na mesma época foram conduzidas avaliações visuais de sintomas de CVC. Os resultados da análise temporal, utilizando-se os modelos Monomolecular, Logístico e Gompertz, apontaram o modelo Logístico como o que melhor se ajustou para descrever o comportamento da doença no tempo, para todas as variedades estudadas. Observou-se que o comportamento espacial da doença diferiu quando a mesma área foiavaliada pelos métodos visual e molecular, resultando em uma diferença no padrão espacial das áreas avaliadas. Portanto, ambos os métodos empregados, sintomas e PCR, foram capazes de constatar asmudanças no padrão espacial apresentado, sendo que a análise molecular (PCR foi mais sensível para detectar as mudanças ocorridas.Countless diseases affect the citriculture, as the citrus variegated chlorosis (CVC which is caused by the bacteria Xylella fastidiosa.The aim of this work was to determine the space distribution of the disease inside commercial orchards in the Northwest of Paraná, using molecular methods. Symptomatic orchards were selected for CVC with the varieties 'Pêra', 'Valência' and 'Folha Murcha' (Citrus sinensis Osbeck. For each variety, 4 positive reference-plant for CVC

  7. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template [v1; ref status: indexed, http://f1000r.es/48i

    Directory of Open Access Journals (Sweden)

    Hossein Gouran

    2014-09-01

    Full Text Available Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC, implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF. In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

  8. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  9. Study the taxonomy of Xylella based on whole genome sequences

    Science.gov (United States)

    Members of the genus Xylella cause diseases on many economically important crops in the Americas, including Pierce's disease (PD) of grapevine in U.S., and citrus variegated chlorosis (CVC) disease in Brazil. In the past decade, Xylella-caused diseases from outside the Americas, such as pear leaf sc...

  10. Distribution of phytopathogenic bacteria in infested seeds

    Science.gov (United States)

    Populations of phytopathogenic bacteria representing five host-pathogen combinations were assessed to determine if there was a mathematical relationship common across seedborne bacterial diseases. Bacterial populations were estimated from naturally-infested seeds of cowpea (Vigna unguiculata), peppe...

  11. Differentiation of Phytopathogenic Agrobacterium spp.

    Directory of Open Access Journals (Sweden)

    Nemanja Kuzmanović

    2011-01-01

    Full Text Available Due to the difficulties in differentiation of phytopathogenic Agrobacterium spp. and lack of a standardized protocol, we carried out selection and evaluation of suitable methods based on the bacterial physiological, genetic and pathogenic properties. Strains of Agrobacterium tumefaciens, A. rhizogenes and A. vitis were differentiated using standard bacteriological and molecular methods. The biochemical and physiological tests confirmed authenticity of the strains. Two duplex PCR methods were conducted with four different primer pairs. In all strains, presence of plasmid virD2 and virC pathogenicity genes was detected. Chromosomal pehA gene was determined in A. vitis strain. Pathogenicity was confirmed on carrot slices and young plants of tomato and sunflower. Strains of A. tumefaciens and A. vitis were pathogenic on all test plants, while strain of A. rhizogenes induced characteristic symptoms only on carrot slices. The tests used in this study provided reliable discrimination between the three species and confirmed their identity as tumorigenic (TiAgrobacterium tumefaciens and A. vitis, and rhizogenic (Ri A. rhizogenes.

  12. Emendation of the Genus Actinokineospora Hasegawa 1988 and Transfer of Amycolatopsis fastidiosa Henssen et al. 1987 as Actinokineospora fastidiosa comb. nov

    Science.gov (United States)

    The species Amycolatopsis fastidiosa was proposed by Henssen et al. (1987), based on morphological and chemotaxonomic observations, for a strain originally described as 'Pseudonocardia fastidiosa' by Celmer et al. in a US Patent issued in 1977. In the course of a phylogenetic study of the valid tax...

  13. BIOLOGICAL CONTRAOL OF PHYTOPATHOGENS USING ANTAGONIST TRICHODERMA VIRIDE

    OpenAIRE

    D.S.R. RAJENDRA SINGH; SHAIK SAYEED; K. BRUNDA EVI; B. BHADRAIAH

    2006-01-01

    Antagonistic fungus i.e. Trichoderma viride was tested in vitro against seven phytopathogens viz., Aspergillus niger, A. fumigatus, Macrophimina phaseolina, Fusarium oxysporum, F. solani, Paecilomyces varoti and sclerotium rolfsii. Trichoderma viride exhibited the antagonistic effect against these phytopathogens. Under dual culture the hyphal growth of the phytopathogens was inhibited at the zone of contact with the hyphae of the antagonist. Microscopic examination revealed that hyphal tips o...

  14. NCBI nr-aa BLAST: CBRC-CREM-01-1342 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1342 ref|ZP_00652057.1| Auxin Efflux Carrier [Xylella fastidiosa Dixon...] ref|ZP_00682176.1| Auxin Efflux Carrier [Xylella fastidiosa Ann-1] gb|EAO13069.1| Auxin Efflux Carrier [Xylella fastidiosa... Dixon] gb|EAO32262.1| Auxin Efflux Carrier [Xylella fastidiosa Ann-1] ZP_00652057.1 7e-04 21% ...

  15. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1.

    Science.gov (United States)

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-08-13

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions.

  16. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    Science.gov (United States)

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  17. Effects of kaolin particle film and imidacloprid on glassy-winged sharpshooter (Homalodisca vitripennis) (Hemiptera: Cicadellidae)populations and the prevention of spread of Xylella fastidiosa in grape

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), was introduced into California and soon became a major pest of important agronomic, horticultural, landscape, ornamental crops and native trees in California. This pest feeds readily on grape and, in doing so, transmits X. fastidio...

  18. Sharpshooter X-wave: Correlation of an Electrical Penetration Graph (EPG) Waveform With Xylem Penetration Supports a Hypothesized Mechanism For Xylella Fastidiosa Inoculation

    Science.gov (United States)

    Electrical Penetration Graph (EPG) monitoring is the most rigorous means of observation and quantification of feeding by piercing-sucking arthropods. Previous EPG studies with aphids and leafhoppers have demonstrated that the X waveform identifies when the insect is ingesting from its preferred pla...

  19. BASIDIOMYCETE-BASED METHOD FOR BIOCONTROL OF PHYTOPATHOGENIC NEMATODES

    Directory of Open Access Journals (Sweden)

    Tiberius BALAEŞ

    2015-12-01

    Full Text Available Phytopathogenic nematodes represent one of the most important groups of pathogens in crops. The use of chemical to control the nematodes attack in crops is decreasing every year due to the concern of the toxicity and side effects of such compounds. In the course for finding alternatives to the use of chemicals, biological control of nematodes is gaining much attention. Some saprotrophic fungi are able to feed on invertebrates, thus becoming efficient agents of control. In this study, three species of basidiomycetes were analyzed for their potential to be used as control agents of phytopathogenic nematodes. Through on in vitro investigation of these potential, one strain – Gymnopilus junonius was further selected for a pot test against Meloidogyne incognita, a very important phytopathogenic species of nematodes. The fungal treatment strongly decreased the M. incognita population on the tested pots, proving the potential of G. junonius strain to be used in biocontrol.

  20. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should be ex....... However, as interactive impacts also differed among environments and parasite manipulation methods, this suggests that the ability of plants to compensate such losses may depend on environmental conditions and probably also overall infection load.......1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...

  1. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds

    Directory of Open Access Journals (Sweden)

    Márcia Maria Rosa-Magri

    2011-02-01

    Full Text Available Yeasts isolated from sugar cane and maize rhizosphere, leaves and stalks were screened against the phytopathogenic molds Colletotrichum sublineolum and Colletotrichum graminicola, both causal agents of the anthracnose disease in sorghum and maize, respectively. Strains identified as Torulaspora globosa and Candida intermedia were able to inhibit the mold growth, with the first species also exhibiting killer activity. No previous report on the application and potentiality of these yeasts as biocontrol agents were found neither the killer phenotype in Torulaspora globosa.

  2. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds

    OpenAIRE

    Márcia Maria Rosa-Magri; Sâmia Maria Tauk-Tornisielo; Sandra Regina Ceccato-Antonini

    2011-01-01

    Yeasts isolated from sugar cane and maize rhizosphere, leaves and stalks were screened against the phytopathogenic molds Colletotrichum sublineolum and Colletotrichum graminicola, both causal agents of the anthracnose disease in sorghum and maize, respectively. Strains identified as Torulaspora globosa and Candida intermedia were able to inhibit the mold growth, with the first species also exhibiting killer activity. No previous report on the application and potentiality of these yeasts as bi...

  3. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1

    OpenAIRE

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the fir...

  4. [BACILLUS STRAINS'S SCREENING--ACTIVE ANTAGONISTS OF BACTERIAL AND FUNGAL PHYTOPATHOGENS].

    Science.gov (United States)

    Grabova, A Yu; Dragovoz, I V; Kruchkova, L A; Pasichnik, L A; Avdeeva, L V

    2015-01-01

    Antagonistic activity 100 strains of Bacillus bacteria towards to museum and actual strains of phytopathogenic bacteria and fungy was defined. Relation between level of antagonistic activity to phytopathogenic bacteria and genus accessory of the last was shown. The medium level of antagonism to fungal phytopathogens at 30% of the studied strains of Bacillus bacteria was shown. 5 strains of Bacillus sp. with high and medium levels of antagonism to phytopathogens bacterial and fungy nature was selected and considered as perspective for creation of biological preparations for plant protection.

  5. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  6. Phytopathogenic micromycetes in central Poland. I. Peronosporales and Erysiphales

    Directory of Open Access Journals (Sweden)

    Małgorzata Ruszkiewicz-Michalska

    2014-08-01

    Full Text Available The present paper begins a new series of studies investigating the occurrence of phytopathogenic micromycetes in Central Poland. Fungi of the orders Peronosporales and Erysiphalas are discussed in part one. Relevant knowledge on the subject is surveyed, and a list of published records (46 taxa as well as the findings collected by the present authors (99 taxa is provided. The list comprises 2 species new for biota of Poland - Microsphaera deutziae Bunkina and Microsphaera elevata Burrill, 10 rare and many common fungal species that had not been previously re00rded in this area as well as 21 plant taxa, mostly species of deliberate or accidental anthropogenic origin, that are new hosts of the parasites formerly listed in Poland.

  7. Growth rate inhibition of phytopathogenic fungi by characterized chitosans

    Directory of Open Access Journals (Sweden)

    Enio N. Oliveira Junior

    2012-06-01

    Full Text Available The inhibitory effects of fifteen chitosans with different degrees of polymerization (DP and different degrees of acetylation (F A on the growth rates (GR of four phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer were examined using a 96-well microtiter plate and a microplate reader. The minimum inhibitory concentrations (MICs of the chitosans ranged from 100 µg × mL-1 to 1,000 µg × mL-1 depending on the fungus tested and the DP and F A of the chitosan. The antifungal activity of the chitosans increased with decreasing F A. Chitosans with low F A and high DP showed the highest inhibitory activity against all four fungi. P. expansum and B. cinerea were relatively less susceptible while A. alternata and R. stolonifer were relatively more sensitive to the chitosan polymers. Scanning electron microscopy of fungi grown on culture media amended with chitosan revealed morphological changes.

  8. Phytopathogen effectors subverting host immunity: different foes, similar battleground.

    Science.gov (United States)

    Dou, Daolong; Zhou, Jian-Min

    2012-10-18

    Phytopathogenic bacteria, fungi, and oomycetes invade and colonize their host plants through distinct routes. These pathogens secrete diverse groups of effector proteins that aid infection and establishment of different parasitic lifestyles. Despite this diversity, a comparison of different plant-pathogen systems has revealed remarkable similarities in the host immune pathways targeted by effectors from distinct pathogen groups. Immune signaling pathways mediated by pattern recognition receptors, phytohormone homeostasis or signaling, defenses associated with host secretory pathways and pathogen penetrations, and plant cell death represent some of the key processes controlling disease resistance against diverse pathogens. These immune pathways are targeted by effectors that carry a wide range of biochemical functions and are secreted by completely different pathogen groups, suggesting that these pathways are a common battleground encountered by many plant pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. NCBI nr-aa BLAST: CBRC-PTRO-21-0010 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-21-0010 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 1e-07 45% ...

  10. NCBI nr-aa BLAST: CBRC-RNOR-17-0004 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-17-0004 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 5e-22 41% ...

  11. NCBI nr-aa BLAST: CBRC-DRER-05-0036 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-05-0036 ref|NP_297473.1| hypothetical protein XF0180 [Xylella fastidiosa ...9a5c] gb|AAF82993.1|AE003872_4 hypothetical protein XF_0180 [Xylella fastidiosa 9a5c] NP_297473.1 2e-07 38% ...

  12. NCBI nr-aa BLAST: CBRC-DRER-26-0217 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0217 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 1e-29 50% ...

  13. NCBI nr-aa BLAST: CBRC-DRER-18-0003 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-18-0003 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 3e-27 51% ...

  14. NCBI nr-aa BLAST: CBRC-PMAR-01-0517 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0517 ref|NP_297916.1| hypothetical protein XF0626 [Xylella fastidiosa ...9a5c] gb|AAF83436.1|AE003908_4 hypothetical protein XF_0626 [Xylella fastidiosa 9a5c] NP_297916.1 2e-22 50% ...

  15. NCBI nr-aa BLAST: CBRC-RMAC-06-0012 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-06-0012 ref|NP_297473.1| hypothetical protein XF0180 [Xylella fastidiosa ...9a5c] gb|AAF82993.1|AE003872_4 hypothetical protein XF_0180 [Xylella fastidiosa 9a5c] NP_297473.1 2e-09 34% ...

  16. NCBI nr-aa BLAST: CBRC-LAFR-01-2065 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-2065 ref|NP_297864.1| hypothetical protein XF0574 [Xylella fastidiosa ...9a5c] gb|AAF83384.1|AE003904_5 hypothetical protein XF_0574 [Xylella fastidiosa 9a5c] NP_297864.1 0.25 37% ...

  17. NCBI nr-aa BLAST: CBRC-RNOR-04-0033 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-04-0033 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 1e-31 58% ...

  18. NCBI nr-aa BLAST: CBRC-OANA-01-2205 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-2205 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 5e-16 44% ...

  19. NCBI nr-aa BLAST: CBRC-CJAC-01-0495 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0495 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 7e-13 34% ...

  20. NCBI nr-aa BLAST: CBRC-XTRO-01-3110 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-3110 ref|ZP_00680846.1| conserved hypothetical protein [Xylella fastidiosa... Ann-1] gb|EAO33684.1| conserved hypothetical protein [Xylella fastidiosa Ann-1] ZP_00680846.1 0.027 32% ...

  1. NCBI nr-aa BLAST: CBRC-DNOV-01-2687 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2687 ref|NP_779138.1| hypothetical protein PD0922 [Xylella fastidiosa ...Temecula1] gb|AAO28787.1| hypothetical protein PD_0922 [Xylella fastidiosa Temecula1] NP_779138.1 9.0 34% ...

  2. NCBI nr-aa BLAST: CBRC-DRER-05-0036 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-05-0036 ref|ZP_00680846.1| conserved hypothetical protein [Xylella fastidiosa... Ann-1] gb|EAO33684.1| conserved hypothetical protein [Xylella fastidiosa Ann-1] ZP_00680846.1 5e-07 36% ...

  3. NCBI nr-aa BLAST: CBRC-XTRO-01-0119 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0119 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 0.039 32% ...

  4. NCBI nr-aa BLAST: CBRC-DMEL-01-0070 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-01-0070 ref|NP_780068.1| hypothetical protein PD1886 [Xylella fastidiosa ...Temecula1] gb|AAO29717.1| conserved hypothetical protein [Xylella fastidiosa Temecula1] NP_780068.1 2.3 38% ...

  5. NCBI nr-aa BLAST: CBRC-OLAT-12-0010 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-12-0010 ref|NP_298556.1| 1,4-beta-cellobiosidase [Xylella fastidiosa 9a5c...] gb|AAF84076.1|AE003960_10 1,4-beta-cellobiosidase [Xylella fastidiosa 9a5c] NP_298556.1 4e-17 52% ...

  6. NCBI nr-aa BLAST: CBRC-PMAR-01-0652 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0652 ref|NP_297916.1| hypothetical protein XF0626 [Xylella fastidiosa ...9a5c] gb|AAF83436.1|AE003908_4 hypothetical protein XF_0626 [Xylella fastidiosa 9a5c] NP_297916.1 5e-11 36% ...

  7. NCBI nr-aa BLAST: CBRC-TSYR-01-0159 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-0159 ref|ZP_00680302.1| Sec-independent periplasmic protein translocase [Xylella fastidiosa... Ann-1] gb|EAO34146.1| Sec-independent periplasmic protein translocase [Xylella fastidiosa Ann-1] ZP_00680302.1 1.0 21% ...

  8. NCBI nr-aa BLAST: CBRC-TSYR-01-0731 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-0731 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 1e-14 50% ...

  9. NCBI nr-aa BLAST: CBRC-DYAK-06-0053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-06-0053 ref|ZP_00683828.1| hypothetical protein XfasoDRAFT_0863 [Xylella fastidiosa... Ann-1] gb|EAO30628.1| hypothetical protein XfasoDRAFT_0863 [Xylella fastidiosa Ann-1] ZP_00683828.1 0.42 38% ...

  10. NCBI nr-aa BLAST: CBRC-PHAM-01-1773 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1773 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 1e-15 41% ...

  11. NCBI nr-aa BLAST: CBRC-DNOV-01-2687 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2687 ref|NP_779125.1| hypothetical protein PD0909 [Xylella fastidiosa ...Temecula1] gb|AAO28774.1| hypothetical protein PD_0909 [Xylella fastidiosa Temecula1] NP_779125.1 2.4 34% ...

  12. NCBI nr-aa BLAST: CBRC-RNOR-02-0049 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-02-0049 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 8e-21 48% ...

  13. NCBI nr-aa BLAST: CBRC-DRER-05-0036 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-05-0036 ref|NP_778392.1| hypothetical protein PD0147 [Xylella fastidiosa ...Temecula1] gb|AAO28041.1| conserved hypothetical protein [Xylella fastidiosa Temecula1] NP_778392.1 6e-07 36% ...

  14. NCBI nr-aa BLAST: CBRC-PHAM-01-1727 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1727 ref|NP_298108.1| endo-1,4-beta-glucanase [Xylella fastidiosa 9a5c...] gb|AAF83628.1|AE003921_8 endo-1,4-beta-glucanase [Xylella fastidiosa 9a5c] NP_298108.1 3e-48 68% ...

  15. NCBI nr-aa BLAST: CBRC-RNOR-05-0256 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-05-0256 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 5e-20 48% ...

  16. NCBI nr-aa BLAST: CBRC-SARA-01-0590 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-0590 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 8e-19 51% ...

  17. NCBI nr-aa BLAST: CBRC-DNOV-01-1856 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-1856 ref|NP_778392.1| hypothetical protein PD0147 [Xylella fastidiosa ...Temecula1] gb|AAO28041.1| conserved hypothetical protein [Xylella fastidiosa Temecula1] NP_778392.1 0.064 29% ...

  18. NCBI nr-aa BLAST: CBRC-TSYR-01-0159 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-0159 ref|ZP_00682742.1| Sec-independent periplasmic protein translocase [Xylella fastidiosa... Ann-1] gb|EAO31715.1| Sec-independent periplasmic protein translocase [Xylella fastidiosa Ann-1] ZP_00682742.1 0.59 21% ...

  19. NCBI nr-aa BLAST: CBRC-GGAL-01-0089 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-01-0089 ref|NP_778813.1| ABC transporter sulfate permease [Xylella fastidiosa... Temecula1] gb|AAO28462.1| ABC transporter sulfate permease [Xylella fastidiosa Temecula1] NP_778813.1 2.3 30% ...

  20. NCBI nr-aa BLAST: CBRC-FCAT-01-0356 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-0356 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 0.001 30% ...

  1. NCBI nr-aa BLAST: CBRC-PABE-17-0004 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-17-0004 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 3e-14 42% ...

  2. NCBI nr-aa BLAST: CBRC-DMEL-01-0070 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-01-0070 ref|ZP_00680396.1| conserved hypothetical protein [Xylella fastidiosa... Ann-1] gb|EAO34018.1| conserved hypothetical protein [Xylella fastidiosa Ann-1] ZP_00680396.1 2.3 38% ...

  3. NCBI nr-aa BLAST: CBRC-RMAC-20-0035 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-20-0035 ref|NP_297344.1| hypothetical protein XF0051 [Xylella fastidiosa ...9a5c] gb|AAF82864.1|AE003859_5 hypothetical protein XF_0051 [Xylella fastidiosa 9a5c] NP_297344.1 3e-20 51% ...

  4. NCBI nr-aa BLAST: CBRC-XTRO-01-1797 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-1797 ref|ZP_00651336.1| conserved hypothetical protein [Xylella fastidiosa... Dixon] gb|EAO14494.1| conserved hypothetical protein [Xylella fastidiosa Dixon] ZP_00651336.1 6.0 28% ...

  5. A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus Macrophomina phaseolina.

    OpenAIRE

    Wang, H; Jones, R W

    1995-01-01

    The deduced amino acid sequence derived from a Macrophomina phaseolina beta-1,4-endoglucanase-encoding gene revealed 48% identity (over 119 amino acids) with egl1 from the phytopathogen Pseudomonas solanacearum. Its similarity to saprophyte endoglucanases was not significant. Its minimum substrate size, unlike that of any known saprophyte endoglucanase, was cellopentaose. The unique characteristics of M. phaseolina egl1-encoded endoglucanase suggest that it is phytopathogen specific.

  6. A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus Macrophomina phaseolina.

    Science.gov (United States)

    Wang, H; Jones, R W

    1995-05-01

    The deduced amino acid sequence derived from a Macrophomina phaseolina beta-1,4-endoglucanase-encoding gene revealed 48% identity (over 119 amino acids) with egl1 from the phytopathogen Pseudomonas solanacearum. Its similarity to saprophyte endoglucanases was not significant. Its minimum substrate size, unlike that of any known saprophyte endoglucanase, was cellopentaose. The unique characteristics of M. phaseolina egl1-encoded endoglucanase suggest that it is phytopathogen specific.

  7. Temperature modulates the secretome of the phytopathogenic fungus Lasiodiplodia theobromae

    Directory of Open Access Journals (Sweden)

    Carina Félix

    2016-08-01

    Full Text Available Environmental alterations modulate host-microorganism interactions. Little is known about how climate changes can trigger pathogenic features on symbiont or mutualistic microorganisms. Current climate models predict increased environmental temperatures.The exposing of phytopathogens to these changing conditions can have particularly relevant consequences for economically important species and for humans. The impact on pathogen/host interaction and the shift on their biogeographical range can induce different levels of virulence in new hosts, allowing massive losses in agricultural and health fields.Lasiodiplodia theobromae is a phytopathogenic fungus responsible for a number of diseases in various plants. It has also been described as an opportunist pathogen in humans, causing infections with different levels of severity. Lasiodiplodia theobromae has a high capacity of adaptation to different environments, such as woody plants, moist argillaceous soils or even humans, being able to grow and infect hosts in a wide range of temperatures (9ºC-39ºC. Nonetheless, the effect of an increase of temperature, as predicted in climate change models, on L. theobromae is unknown.Here we explore the effect of temperature on two strains of L. theobromae – an environmental strain CAA019, and a clinical strain, CBS339.90.We show that both strains are cytotoxic to mammalian cells but while the environmental strain is cytotoxic mainly at 25ºC, the clinical strain is cytotoxic mainly at 30ºC and 37ºC.Extracellular gelatinolytic, xylanolytic, amylolytic and cellulolytic activities at 25ºC and 37ºC were characterized by zymography and the secretome of both strains grown at 25ºC, 30ºC and 37ºC were characterized by electrophoresis and by Orbitrap LC-MS/MS. More than 75% of the proteins were identified, mostly enzymes (glycosyl hydrolases and proteases. The strains showed different protein profiles, which were affected by growth temperature. Also, strain

  8. Polyamine Metabolism in Fungi with Emphasis on Phytopathogenic Species

    Directory of Open Access Journals (Sweden)

    Laura Valdés-Santiago

    2012-01-01

    Full Text Available Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.

  9. 基于Maxent模型的葡萄皮尔斯病在中国适生性分析%Prediction of potential distribution of Xylella fastidiosa based on Maxent model in China

    Institute of Scientific and Technical Information of China (English)

    韩阳阳; 王焱; 叶建仁; 李玉秀; 林司曦

    2015-01-01

    葡萄皮尔斯病能够引起葡萄灾难性的毁灭,是世界性检疫性有害生物.利用Maxent模型,结合地理信息系统ArcGIS,对该病在我国的适生范围进行了首次预测研究.结果表明,葡萄皮尔斯病的潜在分布区主要集中在我国的黄淮海地区和长江中下游地区.ROC评价结果表明,Maxent生态位模型预测葡萄皮尔斯病菌潜在分布的训练数据和测试数据的AUC值分别为0.996和0.927,达到了极高的精度.各环境变量重要性的刀切法检验表明,降水量和温度因素对葡萄皮尔斯病的潜在分布影响最大.

  10. Draft Genome Sequence of the Rhizobacterium Pseudomonas chlororaphis PCL1601, Displaying Biocontrol against Soilborne Phytopathogens.

    Science.gov (United States)

    Vida, Carmen; de Vicente, Antonio; Cazorla, Francisco M

    2017-04-06

    In this study, we present the draft genome sequence of the bacterial strain Pseudomonas chlororaphis PCL1601. This bacterium was isolated from the rhizosphere of healthy avocado trees and displayed antagonistic and biological control activities against different soilborne phytopathogenic fungi and oomycetes. Copyright © 2017 Vida et al.

  11. Antibacterial activities of Ligaria cuneifolia and Jodina rhombifolia leaf extracts against phytopathogenic and clinical bacteria.

    Science.gov (United States)

    Soberón, José R; Sgariglia, Melina A; Dip Maderuelo, María R; Andina, María L; Sampietro, Diego A; Vattuone, Marta A

    2014-11-01

    Six plant extracts prepared from Ligaria cuneifolia and Jodina rhombifolia were screened for their potential antimicrobial activities against phytopathogens and clinically standard reference bacterial strains. Bioautography and broth microdilution methods were used to study samples antibacterial activities against 7 bacterial strains. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of samples were attained. An antibacterial activity guided isolation and identification of active compounds was carried out for L. cuneifolia methanolic extract (LCME). Both methanolic and aqueous extracts from L. cuneifolia showed inhibitory activities against phytopathogenic bacteria, with MICs ranging from 2.5 to 156 μg mL(-1) for LCME and 5 mg mL(-1) for the aqueous extract. None of the three J. rhombifolia extracts showed significant antibacterial activities against phytopathogenic strains (MIC > 5 mg mL(-1)), except for the aqueous extracts against Pseudomonas syringae (MIC = 312 μg mL(-1)). Only LCME showed bactericidal activities against phytopathogenic strains (MBCs = 78 μg mL(-1)). The LCME exhibited significant inhibitory activity against reference clinical strains: Escherichia coli (MIC = 156 μg mL(-1)) and Staphylococcus aureus (MIC = 78 μg mL(-1), MBC = 312 μg mL(-1)). LCME active compounds were identified as flavonol mono and diglycosides, and gallic acid. The antibacterial activity of purified compounds was also evaluated. A synergistic effect against S. aureus was found between gallic acid and a quercetin glycoside. Hence, anti-phytopathogenic bacteria potential compounds isolated from L. cuneifolia could be used as an effective source against bacterial diseases in plants. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria

    National Research Council Canada - National Science Library

    Blanvillain, Servane; Meyer, Damien; Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques; Lauber, Emmanuelle; Arlat, Matthieu

    2007-01-01

    .... Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria...

  13. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  14. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-04-21

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens.

  15. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    Science.gov (United States)

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases.

  16. [Cellulase and xylanase activity of phytopathogenic and endophytic fungal strains of Alternaria alternata (Fr.) Keissler].

    Science.gov (United States)

    Kurchenko, I M; Sokolova, O V; Zhdanova, N M; Iarynchyn, A M; Iovenko, O M

    2008-01-01

    A comparative analysis of cellulase and xylanase activity of 25 fungal strains of phytopathogenic and endophytic Alternaria alternata had been realized for the first time using the qualitative reactions. The rate of their linear growth on the media with carboxymethylcellulose or xylane had been studied. The cellulase and xylanase activities clearly depended on the distinct strain. The absence of distinct dependence of cellulase and xylanase activities on the species and organs of host plants was demonstrated. The majority of investigated strains of A. alternata did not possess a cellulase activity or the latter was low, but as a whole the phytopathogenic strains were more active than endophytic ones. Xylanase activity was considerable for the fungal strains of all trophyc groups. It was shown that the level of xylanase activity cannot become a biochemical marker of the A. alternata isolate pathogenicity.

  17. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms

    OpenAIRE

    Samir Rezki; Claire Campion; Beatrice Iacomi-Vasilescu; Anne Preveaux; Youness Toualbia; Sophie Bonneau; Martial Briand; Emmanuelle Laurent; Gilles Hunault; Philippe Simoneau; Marie-Agnès Jacques; Matthieu Barret

    2016-01-01

    Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xc...

  18. Antifungal activity of essential oil isolated from Ocimum gratissimum L. (eugenol chemotype) against phytopathogenic fungi

    OpenAIRE

    Terezinha de Jesus Faria; Rafael Sottero Ferreira; Lidiane Yassumoto; José Roberto Pinto de Souza; Noemia Kazue Ishikawa; Aneli de Melo Barbosa

    2006-01-01

    An investigation of antifungal activity of the essential oil obtained by steam-distillation (1.1% w/w) of the aerial parts of Ocimum gratissimum and of an ethanolic extract from the steam-distillation residue was carried out using the agar diffusion method. The results revealed that the essential oil inhibited the growth of all fungi tested, including the phytopathogens, Botryosphaeria rhodina, Rhizoctonia sp. and two strains of Alternaria sp., while the extract from the residue was inactive....

  19. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus.

    Science.gov (United States)

    McNeely, Damian; Chanyi, Ryan M; Dooley, James S; Moore, John E; Koval, Susan F

    2017-04-01

    Bdellovibrio and like organisms are predatory bacteria that have the unusual property of using the cytoplasmic constituents of other Gram-negative bacteria as nutrients. These predators may thus provide an alternative approach to the biocontrol of human and plant pathogens. Predators were isolated on Burkholderia cenocepacia K56-2 and J2315 as prey cells, in enrichment cultures with soil and sewage. Three isolates (DM7C, DM8A, and DM11A) were identified as Bdellovibrio bacteriovorus on the basis of morphology, a periplasmic life cycle, and 16S rRNA gene sequencing. The prey range of these isolates was tested on Burkholderia cepacia complex bacteria and several phytopathogenic bacteria of agricultural importance. Of 31 strains of the Burkholderia cepacia complex tested, only 4 were resistant to predation by strain DM7C. A subset of 9 of the prey tested were also susceptible to strains DM8A and DM11A. Of 12 phytopathogens tested, 4 were resistant to strains DM7C and DM8A, and only 2 were resistant to strain DM11A. Thus, Bdellovibrio bacteriovorus strains retrieved from environmental samples on 2 Burkholderia cenocepacia isolates from cystic fibrosis patients did not distinguish in their prey range between other isolates of that pathogen or phytopathogens. Such strains hold promise as potential wide-spectrum biocontrol agents.

  20. 7 CFR 331.3 - PPQ select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ...; Sclerophthora rayssiae var. zeae; Synchytrium endobioticum; Xanthomonas oryzae; Xylella fastidiosa (citrus...; or (ii) Are in a vector or recombinant host genome and can be expressed in vivo or in vitro. (3...

  1. Report of the Working Group on Strengthening the Biosecurity of the United States

    Science.gov (United States)

    2009-10-01

    Furthermore, advances in genome synthesis and reverse genetic technologies now allow for the de novo synthesis of some viral select agents...Synchytrium endobioticum Rathayibacter toxicus Sclerophthora rayssiae var zeae Xanthomonas oryzae Xylella fastidiosa ( citrus variegated chlorosis

  2. Transcriptomic profiling of microbe-microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Glaring, Mikkel Andreas; Olsson, Stefan

    2017-01-01

    BACKGROUND: Few studies to date report the transcriptional response of biocontrol bacteria toward phytopathogens. In order to gain insights into the potential mechanism underlying the antagonism of the antimicrobial producing strain P. fluorescens In5 against the phytopathogens Rhizoctonia solani...

  3. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria

    Directory of Open Access Journals (Sweden)

    Babujee Lavanya

    2012-03-01

    Full Text Available Abstract Background Dickeya dadantii and Pectobacterium atrosepticum are phytopathogenic enterobacteria capable of facultative anaerobic growth in a wide range of O2 concentrations found in plant and natural environments. The transcriptional response to O2 remains under-explored for these and other phytopathogenic enterobacteria although it has been well characterized for animal-associated genera including Escherichia coli and Salmonella enterica. Knowledge of the extent of conservation of the transcriptional response across orthologous genes in more distantly related species is useful to identify rates and patterns of regulon evolution. Evolutionary events such as loss and acquisition of genes by lateral transfer events along each evolutionary branch results in lineage-specific genes, some of which may have been subsequently incorporated into the O2-responsive stimulon. Here we present a comparison of transcriptional profiles measured using densely tiled oligonucleotide arrays for two phytopathogens, Dickeya dadantii 3937 and Pectobacterium atrosepticum SCRI1043, grown to mid-log phase in MOPS minimal medium (0.1% glucose with and without O2. Results More than 7% of the genes of each phytopathogen are differentially expressed with greater than 3-fold changes under anaerobic conditions. In addition to anaerobic metabolism genes, the O2 responsive stimulon includes a variety of virulence and pathogenicity-genes. Few of these genes overlap with orthologous genes in the anaerobic stimulon of E. coli. We define these as the conserved core, in which the transcriptional pattern as well as genetic architecture are well preserved. This conserved core includes previously described anaerobic metabolic pathways such as fermentation. Other components of the anaerobic stimulon show variation in genetic content, genome architecture and regulation. Notably formate metabolism, nitrate/nitrite metabolism, and fermentative butanediol production, differ between E

  4. Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species

    Science.gov (United States)

    Hollensteiner, Jacqueline; Wemheuer, Franziska; Harting, Rebekka; Kolarzyk, Anna M.; Diaz Valerio, Stefani M.; Poehlein, Anja; Brzuszkiewicz, Elzbieta B.; Nesemann, Kai; Braus-Stromeyer, Susanna A.; Braus, Gerhard H.; Daniel, Rolf; Liesegang, Heiko

    2017-01-01

    Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically diverse strains according to their antagonistic activity against the two phytopathogenic fungi Verticillium dahliae and Verticillium longisporum. In addition, the 20 strains were sequenced and phylogenetically characterized by multi-locus sequence typing (MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum 43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens. These strains had a rhizoid colony morphology, which has not been described for B. weihenstephanensis strains previously. Genome analysis of all isolates revealed putative genes encoding fungicidal substances and resulted in identification of 304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide synthetases and 203 ribosomal-synthesized and post-translationally modified peptides. All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin. In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth of the phytopathogens carried one or two genes encoding putative mycolitic chitinases, which might contribute to antifungal activities

  5. A novel method for rapidly isolating microbes that suppress soil-borne phytopathogens

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Seedling establishment faces a large number of challenges related to soil physical properties as well as to fungal root diseases. It is extremely difficult to eliminate fungal pathogens from soils where their populations are established due to the persistent nature of their spores and since fumigation of resident fungi is very ineffective in clay-containing soils. Therefore it is necessary to find ways to overcome disease in areas where the soils are infected with fungal phytopathogens. The phenomenon of disease suppressive soils, where the pathogen is present but no disease observed, suggests that microbial antagonism in the soil may lead to the suppression of the growth of fungal pathogens. There are also cases in the literature where soil microorganisms were isolated that suppress the growth of phytopathogens. Antibiosis is one of the most important mechanisms responsible for fungal antagonism, with some significant antifungal compounds involved including antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Isolation of pathogen-suppressive microorganisms from the soil is time consuming and tedious. We established a simple method for direct isolation of soil microbes (bacteria and fungi) that suppress fungal phytopathogens as well as procedures for confirmation of disease suppression. We will discuss such methods, which were so far tested with the cotton fungal pathogens Thielaviopsis basicola, Verticillium dahliae and Fusarium oxysporum and Verticillium fungicola. We have isolated a diversity of T. basicola-suppressive fungi and bacteria from two vastly different soil types. Identification of the antagonistic isolates revealed that they are a diverse lot, some belong to groups known to be suppressive of a wide range of fungal pathogens, endorsing the power of this technique to rapidly and directly isolate soil-borne microbes antagonistic to a wide variety of fungal pathogens.

  6. Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species.

    Science.gov (United States)

    Hollensteiner, Jacqueline; Wemheuer, Franziska; Harting, Rebekka; Kolarzyk, Anna M; Diaz Valerio, Stefani M; Poehlein, Anja; Brzuszkiewicz, Elzbieta B; Nesemann, Kai; Braus-Stromeyer, Susanna A; Braus, Gerhard H; Daniel, Rolf; Liesegang, Heiko

    2016-01-01

    Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically diverse strains according to their antagonistic activity against the two phytopathogenic fungi Verticillium dahliae and Verticillium longisporum. In addition, the 20 strains were sequenced and phylogenetically characterized by multi-locus sequence typing (MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum 43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens. These strains had a rhizoid colony morphology, which has not been described for B. weihenstephanensis strains previously. Genome analysis of all isolates revealed putative genes encoding fungicidal substances and resulted in identification of 304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide synthetases and 203 ribosomal-synthesized and post-translationally modified peptides. All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin. In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth of the phytopathogens carried one or two genes encoding putative mycolitic chitinases, which might contribute to antifungal activities

  7. A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi.

    Science.gov (United States)

    Xu, Bo; Chen, Wei; Wu, Zhi-ming; Long, Yue; Li, Kun-tai

    2015-11-01

    Phytopathogenic fungi would induce a variety of plant diseases, resulting in a severe reduction of agricultural output. However, the current plant disease control is mainly dependent on the environmentally and healthily hazardous chemical fungicides. Thus, the present work aimed to isolate an effective antagonistic microorganism against various soilborne phytopathogenic fungi. By dual culture with Rhizoctonia solani, a novel Streptomyces specie, Streptomyces sp. N2, was screened out from a total of 167 isolated actinomycetes, which displayed a strong inhibitory effect on R. solani (26.85 ± 1.35 mm of inhibition zone diameter). By means of macroporous resin and silica gel column chromatography coupled with preparative HPLC, an antifungal metabolite (3-methyl-3,5-amino-4-vinyl-2-pyrone, C6H7O2N) was isolated and purified from Streptomyces sp. N2. The bioassay results showed that the purified antifungal metabolite could not only possess a broad-spectrum inhibitory effect on a range of plant pathogenic fungi in vitro (e.g., R. solani, Pyricularia grisea, Fusarium oxysporum f. sp. niveum, F. oxysporum f. sp. vasinfectum, Penicillium italicum, and Colletotrichum gloeosporioides), but also had a significantly effective in vivo biocontrol efficacy on grape fruits anthracnose caused by C. gloeosporioides. Microscopic observation indicated that the antifungal metabolite from Streptomyces sp. N2 would exert its antimicrobial activity by disorganizing the cytoplasmic organelles of phytopathogenic fungi. The above results suggested that Streptomyces sp. N2 was one of promising fungicide for biocontrol of fungal plant diseases, especially due to its broad-spectrum and effective antagonist on various plant pathogens.

  8. Interaction of the psychrotroph Pseudomonas fluorescens In5 with phytopathogens in cold soils

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Olsson, Stefan; Stougaard, Peter

    is disease suppressive owing to the presence of diverse antimicrobial microorganisms. Using culture-based approaches, the psychrotroph Pseudomonas fluorescens In5 was previously isolated from the soil microbiome. The aim of this study is to unravel key biocontrol traits underpinning the antagonistic activity...... of this cold-active bacterium against phytopathogens. Method: A combination of different technologies including genomics, transcriptomics and metabolomics are being used to explore the interaction of the psychrotroph P. fluorescens In5 in dual-culture with diverse plant pathogens. To date, molecular genetics...

  9. [Effect of biopreparations on dynamics of the number of bacteria and phytopathogenic fungi in potato agroecosystem].

    Science.gov (United States)

    Patyka, N V; Borodaĭ, V V; Zhitkevich, N V; Khomenko, E V; Gnatiuk, T T; Koltunov, V A; Patyka, V F

    2012-01-01

    Application of biological preparations such as Phytotsid and Planryz favoures the growth of the general number of soil's bacteria population compared with control by 13.0-36.1% in the variant of potato variety Scarbnytsya and by 4.5-24.6% of potato variety Oberig. It also decreases 1.2-1.8 times the number of soil phytopathogens--Fusarium and Alternaria. During the application of Rovral Akvaflo the Shenon's ecological index of species biodiversity was lower than during the bioprepation application. One could observe a decrease of species biodiversity and dominance of dark pigmentation in fungi--Alternaria sp., Cladosporium sp., Phoma sp., Doratomyces sp., and pigmented bacteria.

  10. Isolation and characterization of microsatellite markers from the phytopathogenic fungus Alternaria dauci.

    Science.gov (United States)

    Benichou, Soumaya; Dongo, Anita; Henni, Djamel Eddine; Peltier, Didier; Simoneau, Philippe

    2009-01-01

    Eleven polymorphic microsatellite markers were isolated from the necrotrophic phytopathogenic fungus Alternaria dauci based on enriched genomic libraries. In order to assess allelic variability, the microsatellite loci were analysed in a collection of 43 isolates. The number of detected alleles in 11 loci ranged from two to 24 (mean 10.4). Test of cross-species amplification and sequencing of the resulting amplicons showed that some of these microsatellites could be used in different species such as Alternaria solani, Alternaria bataticola and Alternaria zinniae. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  11. Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, P.K.; Kaur, J.; Saini, H.S.

    2015-07-01

    The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150), isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India). The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe grisea) in dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB) indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level. (Author)

  12. In Vitro Antifungal Activity of Sanguinarine and Chelerythrine Derivatives against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Yan-Ni Ma

    2012-11-01

    Full Text Available In order to understand the antifungal activity of some derivatives of sanguinarine (S and chelerythrine (C and their structure-activity relationships, sixteen derivatives of S and C were prepared and evaluated for in vitro antifungal activity against seven phytopathogenic fungi by the mycelial growth rate method. The results showed that S, C and their 6-alkoxy dihydro derivatives S1–S4, C1–C4 and 6-cyanodihydro derivatives S5, C5 showed significant antifungal activity at 100 µg/mL against all the tested fungi. For most tested fungi, the median effective concentrations of S, S1, C and C1 were in a range of 14–50 µg/mL. The structure-activity relationship showed that the C=N+ moiety was the determinant for the antifungal activity of S and C. S1–S5 and C1–C5 could be considered as the precursors of S and C, respectively. Thus, the present results strongly suggested that S and C or their derivatives S1–S5 and C1–C5 should be considered as good lead compounds or model molecules to develop new anti-phytopathogenic fungal agents.

  13. The DNA damage response signaling cascade regulates proliferation of the phytopathogenic fungus Ustilago maydis in planta.

    Science.gov (United States)

    de Sena-Tomás, Carmen; Fernández-Álvarez, Alfonso; Holloman, William K; Pérez-Martín, José

    2011-04-01

    In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response.

  14. Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Preet K. Kaur

    2015-06-01

    Full Text Available The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150, isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India. The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe griseain dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level.

  15. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'à la carte' menu.

    Science.gov (United States)

    Franza, Thierry; Expert, Dominique

    2013-05-01

    The interaction between pathogenic microbes and their hosts is determined by survival strategies on both sides. As a result of its redox properties, iron is vital for the growth and proliferation of nearly all organisms, including pathogenic bacteria. In bacteria-vertebrate interactions, competition for this essential metal is critical for the outcome of the infection. The role of iron in the virulence of plant pathogenic bacteria has only been explored in a few pathosystems in the past. However, in the last 5 years, intensive research has provided new insights into the mechanisms of iron homeostasis in phytopathogenic bacteria that are involved in virulence. This review, which includes important plant pathosystems, discusses the recent advances in the understanding of iron transport and homeostasis during plant pathogenesis. By summarizing the recent progress, we wish to provide an updated view clarifying the various roles played by this metal in the virulence of bacterial phytopathogens as a nutritional and regulatory element. The complex intertwining of iron metabolism and oxidative stress during infection is emphasized.

  16. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.

  17. Deep 16sRNA sequencing of anterior foregut microbiota from the blue-green sharpshooter (Graphocephala atropunctata)

    Science.gov (United States)

    Graphocephala atropunctata (Signoret) (Hemiptera: Cicadellidae) or the blue-green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine-grape growing areas of California. X. fastidiosa is the causative agent of Pierce’s disease of grapevin...

  18. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae)

    Science.gov (United States)

    Homalodisca vitripennis, one of the main vectors of Xylella fastidiosa, is associated with citrus plantings in California, USA. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce’s disease (PD). An analysis of the pattern and rate of movement ...

  19. Effect of anaerobic soil disinfestation and vermicompost on soilborne phytopathogenic agents under tree-crop nursery conditions

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) is a fumigation-independent management strategy for controlling soilborne pathogens. Walnut nurseries currently employ preplant fumigation to control soilborne phytopathogens and weeds, and may be amenable to use ASD instead. We investigated the potential of ASD a...

  20. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean.

    Science.gov (United States)

    Oliva, M de las M; Carezzano, M E; Giuliano, M; Daghero, J; Zygadlo, J; Bogino, P; Giordano, W; Demo, M

    2015-05-01

    The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re-isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml(-1) on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.

  1. Soil metagenomics to identify novel mechanisms of antagonism and antifungal activity for the improved control of phytopathogens

    NARCIS (Netherlands)

    Overbeek, van L.S.; Smalla, K.; Bailey, M.; Jansson, J.; Sjöling, S.; Vogel, T.; Nalin, R.; Elsas, van J.D.

    2008-01-01

    Objective: This project will explore & exploit the anti-phytopathogen diversity present in selected European suppressive soils representing a wide geographical spread. The untapped functional potential present in the unculturable part of the microbiota of these soils will be accessed using metag

  2. Phytopathogenic Bacteria

    NARCIS (Netherlands)

    Wolf, van der J.M.; Boer, de S.H.

    2015-01-01

    A few hundred bacterial species, belonging to the Proteobacteria, Mollecutes and Actinomycetes cause a large number of different plant diseases, some of which are devastating for agricultural crops. Symptoms of bacterial plant diseases are diverse and include necrosis, tissue maceration, wilting, an

  3. Phytopathogenic Bacteria

    NARCIS (Netherlands)

    Wolf, van der J.M.; Boer, de S.H.

    2015-01-01

    A few hundred bacterial species, belonging to the Proteobacteria, Mollecutes and Actinomycetes cause a large number of different plant diseases, some of which are devastating for agricultural crops. Symptoms of bacterial plant diseases are diverse and include necrosis, tissue maceration, wilting,

  4. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae.

    Directory of Open Access Journals (Sweden)

    Pradip Kumar Kar

    Full Text Available Exploring a green chemistry approach, this study brings to the fore, the anthelmintic efficacy of gold nanoparticles, highlighting the plausible usage of myconanotechnology. Gold nanoparticles of ∼6 to ∼18 nm diameter were synthesized by treating the mycelia-free culture filtrate of the phytopathogenic fungus with gold chloride. Their size and morphology were confirmed by UV-Vis spectroscopy, DLS data, AFM and TEM images. The XRD studies reveal a crystalline nature of the nanoparticles, which are in cubic phase. The FTIR spectroscopic studies before and after the formation of nanoparticles show the presence of possible functional groups responsible for the bio-reduction and capping of the synthesized gold nanoparticles. The latter were tested as vermifugal agents against a model cestode Raillietina sp., an intestinal parasite of domestic fowl. Further, ultrastructural and biochemical parameters were used to corroborate the efficacy study.

  5. "Light-tagged" bacteriophage as a diagnostic tool for the detection of phytopathogens.

    Science.gov (United States)

    Schofield, David; Bull, Carolee T; Rubio, Isael; Wechter, W Patrick; Westwater, Caroline; Molineux, Ian J

    2013-01-01

    Detection of the phytopathogen Pseudomonas cannabina pv alisalensis, the causal agent of bacterial blight of crucifers is essential for managing this disease. A phage-based diagnostic assay was developed that detects and identifies P. cannabina pv alisalensis from cultures and diseased plant specimens. A recombinant "light-tagged" reporter phage was generated by integrating the luxAB genes into the P. cannabina pv alisalensis phage PBSPCA1 genome. PBSPCA1::luxAB is viable, stable and detects P. cannabina pv alisalensis within minutes and with high sensitivity by conferring a bioluminescent signal. Detection is dependent on cell viability since cells treated with a bactericidal disinfectant are unable to elicit a signal. Importantly, the reporter phage detects P. cannabina pv alisalensis from diseased plant specimens indicating the potential of the diagnostic for disease identification. The reporter phage displays promise for the rapid and specific diagnostic detection of cultivated isolates, and infected plant specimens.

  6. A Survey of Phytopathogenic Fungi and Oomycetes in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Arya Widyawan

    2015-06-01

    Full Text Available A survey of phytopathogenic fungi and Oomyceteswas conducted in Riyadh, Kingdom of Saudi Arabia duringOctober 2008 – May 2009. Total of 223 samples were collectedfrom four regions; Al-Kharj, Oyaynah, Old Diriyah, and Al Amariyah. Isolation was done using Potato Dextrose Agar(PDA. Infected parts were cut then sterilized in chlorox(10%, then were put in petridish that contain PDA andincubated at 25-27 °C. A total twelve genera of fungi andsingle genera of Oomycetes were isolated from the infectedplants and identifi ed as Fusarium spp., Alternaria spp.,Helmintosphorium (Bipolaris spp., Sclerotium spp., Rhizoctoniaspp., Cladosporium spp., Mauginiella scattae, Erysiphe spp.,Leveillula spp., Macrophomina phaseolina, Ustilago spp.,Ulocladium spp., and Phytium spp.

  7. Effect of fragarin on the cytoplasmic membrane of the phytopathogen Clavibacter michiganensis.

    Science.gov (United States)

    Filippone, M P; Diaz-Ricci, J C; Castagnaro, A P; Farías, R N

    2001-07-01

    Fragarin, an antibiotic that was isolated and purified from a soluble fraction of strawberry leaves, may be a new type of preformed antimicrobial compound (phytoanticipin). Here, we report that the growth and oxygen consumption of the phytopathogenic bacterium Clavibacter michiganensis were rapidly inhibited after the addition of fragarin to cultures. Also, dissipation of the membrane potential and an increase of cell membrane permeability were observed in the presence of fragarin. The ability of fragarin to dissipate the membrane potential was confirmed with the use of small unilamellar liposomes made with lipids extracted from C. michiganensis. Our results suggest that fragarin is able to act at the membrane level, and that this action is correlated with a decrease in cell viability.

  8. BIOTRANSFORMATION OF FERULIC ACID BY THE PHYTOPATHOGENIC FUNGI Colletotrichum acutatum AND Lasiodiplodia theobromae

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Numpaque

    2016-01-01

    Full Text Available The microbial transformation of ferulic acid (FA offers a cleaner, more economical alternative for the natural production of flavorings and fragrances. In the present study, the biotransformation of FA using the filamentous phytopathogenic fungi Colletotrichum acutatum and Lasiodiplodia theobromae was researched. Initially, the toxicity of FA against both fungi was evaluated; the FA displayed a moderate toxicity (total inhibition at concentrations ≥ 2000 mg L-1 and apparently a detoxification mechanism was present. Afterwards, the microorganisms were incubated with the substrate at room conditions using a Czapek-Dox culture medium. The results demonstrated that the FA was mainly converted to 4-vinylguaiacol, reaching the highest abundance within the first 48 hours. To a lesser extent, acetovanillone, ethylguaiacol, and vanillin, among others, were produced. Interestingly, the compounds generated in the biotransformation of FA with C. acutatum and L. theobromae have been used as flavorings. Based on the identified metabolites, a possible metabolic pathway was proposed.

  9. Purification and characterization of beta-N-acetylhexosaminidase from the phytopathogenic fungus Bipolaris sorokiniana.

    Science.gov (United States)

    Geimba, M P; Riffel, A; Brandelli, A

    1998-10-01

    N-acetylhexosaminidase (HEX) from the phytopathogenic fungus Bipolaris sorokiniana was isolated and characterized. The production of HEX by B. sorokiniana was not altered by growing on different carbon sources. Enzyme purification was carried out by sequential liquid chromatography on Sephacryl S-200 HR, and p-aminobenzyl-2-acetamido-2-deoxy-beta-D-thioglucopyranoside agarose. The purification was about 70-fold, with a yield of 41%, determined with p-nitrophenyl-N-acetylglucosaminide as substrate. The enzyme had pH and temperature optima of 4.5 and 55 degrees C, respectively. The molecular weight of non-denatured enzyme was estimated as 120,000 Da by gel filtration chromatography, and about 55,000 Da by SDS-PAGE. The fungal HEX had glycosylated residues as evidenced by binding to Concanavalin-A. Bipolaris sorokiniana enzyme was also active with p-nitrophenyl-chitobioside and p-nitrophenyl-N-acetylgalactosaminide as substrates.

  10. Postharvest Survival of Porcine Sapovirus, a Human Norovirus Surrogate, on Phytopathogen-Infected Leafy Greens.

    Science.gov (United States)

    Esseili, Malak A; Chin, Ashlina; Saif, Linda; Miller, Sally A; Qu, Feng; Lewis Ivey, Melanie L; Wang, Qiuhong

    2015-08-01

    Leafy greens are increasingly being recognized as an important vehicle for human noroviruses (HuNoV), which cause recurring gastroenteritis outbreaks. Leafy greens often become infected by phytopathogens in the field, which may cause symptoms on the edible parts. Whether plant pathogen infections enhance the survival of HuNoV on leafy greens is unknown. Lettuce and spinach plants were infected with a bacterium, Xanthomonas campestris pv. vitians strain 701a, and with Cucumber mosaic virus strain Fny, respectively. The survival rate of porcine sapovirus (SaV), a HuNoV surrogate, on infected and noninfected postharvest leaves was then assessed. In addition, acibenzolar-S-methyl, a commercial chemical elicitor of plant systemic defense, was used to assess whether stimulating the plant host defense affects the postharvest survival of SaV. Leaves harvested from control and treated plants were inoculated with SaV and incubated for 7 days at 4°C. The infectivity (tissue culture infectious dose affecting 50% of the culture [TCID50]/ml) and RNA (genomic equivalent/ml) titers of SaV were assayed using immunohistochemistry staining and SaV-specific TaqMan real-time reverse transcription PCR. Our results showed that cucumber mosaic virus Fny induced mild, nonnecrotic symptoms on spinach leaves and had no effect on SaV survival. In contrast, X. campestris pv. vitians 701a induced small localized necrotic lesions and significantly enhanced SaV survival on lettuce leaves. Treatment with acibenzolar-S-methyl was effective in reducing X. campestris pv. vitians 701a-induced lesions on infected lettuce plants but had no direct effect on SaV survival when used on healthy lettuce plants. These findings indicate that phytopathogen-induced necrotic lesions may enhance the postharvest survival of HuNoV on lettuce leaves. Therefore, preventive measures aiming to maintain healthy plants and minimize preharvest biological damage are expected to improve the safety of leafy greens.

  11. In vitro photodynamic inactivation of conidia of the phytopathogenic fungus Colletotrichum graminicola with cationic porphyrins.

    Science.gov (United States)

    Vandresen, Camila Chevonica; Gonçalves, Alan Guilherme; Ducatti, Diogo Ricardo Bazan; Murakami, Fabio Seigi; Noseda, Miguel Daniel; Duarte, Maria Eugenia Rabello; Barreira, Sandra Mara Woranovicz

    2016-05-11

    Photodynamic inactivation (PDI) is an efficient approach for the elimination of a series of microorganisms; however, PDI involving phytopathogenic filamentous fungi is scarce in the literature. In the present study, we have demonstrated the photoinactivating properties of five cationic meso-(1-methyl-4-pyridinio)porphyrins on conidia of the phytopathogen Colletotrichum graminicola. For this purpose, photophysical properties (photostability and (1)O2 singlet production) of the porphyrins under study were first evaluated. PDI assays were then performed with a fluence of 30, 60, 90 and 120 J cm(-2) and varying the porphyrin concentration from 1 to 25 μmol L(-1). Considering the lowest concentration that enabled the best photoinactivation, with the respective lowest effective irradiation time, the meso-(1-methyl-4-pyridinio)porphyrins herein studied could be ranked as follows: triple-charged 4 (1 μmol L(-1) with a fluence of 30 J cm(-2)) > double-charged-trans2 (1 μmol L(-1) with 60 J cm(-2)) > tetra-charged 5 (15 μmol L(-1) with 90 J cm(-2)) > mono-charged 1 (25 μmol L(-1) with 120 J cm(-2)). Double-charged-cis-porphyrin 3 inactivated C. graminicola conidia in the absence of light. Evaluation of the porphyrin binding to the conidia and fluorescence microscopic analysis were also performed, which were in agreement with the PDI results. In conclusion, the cationic porphyrins herein studied were considered efficient photosensitizers to inactivate C. graminicola conidia. The amount and position of positive charges are related to the compounds' amphiphilicity and therefore to their photodynamic activity.

  12. Trichoderma sp Native from Chili Region of Poanas, Durango, Mexico Antagonist against Phytopathogen Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela B. Valencia

    2011-01-01

    Full Text Available Problem statement: Presence of Trichoderma spp. in agricultural soils decrease incidence of diseases by phytopathogen fungi. Sanity diagnostic require to know if exist beneficial microorganism and what agricultural practices help to their propagation. Approach: Samples (30 were taken from soils and sick plants of ten sites in four localities of Valley of Poanas. Phytophthora capsici Leo, Rhizoctonia solani Kuhn and Trichoderma sp were isolated in agar V8 and were identified by microscopy. Results: In the 30 samples analyzed the presence of Phytophthora capsici Leo and Rhizoctonia solani Kuhn was determined. Two isolations of Trichoderma sp were obtained from soil, they had antagonist activity against to P. capsici and R. solani on agar-V8 medium and showed chitinase activity. Sugar production in chitinase (10 mg.mL-1 by crude extract of Trichoderma growth in basal medium more chitin was determined. The average of sugar production from strains were 0.1175 and 0.1125 mg.mL-1 and standard deviations were 0.0567 and 0.0567 in four repetition. Interviews were applied to fifty farmers about cultivars and cultivation practices. At least seven types of chili were cultivated in the region of the Valley of Poanas, inorganic fertilization, irrigation systems by channel, gates and pumps were used. One hundred percent of farmers reported diseases of Damping off and Phytophthora root. Biocides were not used to control these diseases. Conclusion: The natural presence of Trichoderma spp was detected in Valley of Poanas, but some practices as inorganic fertilization and irrigation system can be contributing to propagation of phytopathogen fungi.

  13. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides.

    Science.gov (United States)

    Thynne, Elisha; Saur, Isabel M L; Simbaqueba, Jaime; Ogilvie, Huw A; Gonzalez-Cendales, Yvonne; Mead, Oliver; Taranto, Adam; Catanzariti, Ann-Maree; McDonald, Megan C; Schwessinger, Benjamin; Jones, David A; Rathjen, John P; Solomon, Peter S

    2016-06-13

    In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1-like sequences were observed in most cases; however, RALF27-like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27-like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen-activated protein kinase activation). Gene expression analysis confirmed that a RALF-encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant-pathogen interactions.

  14. Synthesis and biological evaluation of arylpyrazoles as fungicides against phytopathogenic fungi.

    Science.gov (United States)

    Zhang, Jin; Peng, Ju-Fang; Wang, Tao; Kang, Yang; Jing, Sisi; Zhang, Zun-Ting

    2017-05-01

    3-phenol-1H-pyrazoles (2), 4-halogeno-3-phenol-1H-pyrazoles (3) and 2-(1-phenol-1H-pyrazol-5-yl)phenols (4) were prepared by the condensation of (E)-3-(dimethylamino)-1-phenylprop-2-en-1-ones and hydrazine hydrate or phenylhydrazine in good yields. They were evaluated against five phytopathogens fungi, namely Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani and Fusarium solani in vitro. Most of the above-mentioned compounds exhibited activities. For example, 4-chloro-2-(1H-pyrazol-3-yl)phenol (3k) and 4-bromo-3-phenol-1H-pyrazole (3b) showed good and broad-spectrum antifungal properties against Cytospora sp., C. gloeosporioides, Botrytis cinerea, Alternaria solani and F. Solani with [Formula: see text] values ranging from 4.66 to 12.47 [Formula: see text]g/mL. The results showed that pyrazoles with one aryl group at 3-position (2 and 3) exhibited better antibacterial activity than those with two aryl substituents (4). In addition, the existence of an electron-withdrawing group, a substituent on the ortho-position of phenol ring or a halogen atom at the 4-position of the pyrazole enhanced the antifungal activity of pyrazoles 2 and 3. A series of arylpyrazole derivatives was facilely prepared and was evaluated against five phytopathogens fungi including Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani in vitro. Most of those compounds exhibited remarkable antifungal activities and were superior to the positive control hymexazol.

  15. Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles.

    Science.gov (United States)

    Dos Santos, Fábio Neves; Tata, Alessandra; Belaz, Kátia Roberta Anacleto; Magalhães, Dilze Maria Argôlo; Luz, Edna Dora Martins Newman; Eberlin, Marcos Nogueira

    2017-03-01

    Phytopathogens are the main disease agents that promote attack of cocoa plantations in all tropical countries. The similarity of the symptoms caused by different phytopathogens makes the reliable identification of the diverse species a challenge. Correct identification is important in the monitoring and management of these pests. Here we show that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis is able to rapidly and reliably differentiate cocoa phytopathogens, namely Moniliophthora perniciosa, Phytophthora palmivora, P. capsici, P. citrophthora, P. heveae, Ceratocystis cacaofunesta, C. paradoxa, and C. fimbriata. MALDI-MS reveals unique peptide/protein and lipid profiles which differentiate these phytopathogens at the level of genus, species, and single strain coming from different hosts or cocoa tissues collected in several plantations/places. This fast methodology based on molecular biomarkers is also shown to be sufficiently reproducible and selective and therefore seems to offer a suitable tool to guide the correct application of sanitary defense approaches for infected cocoa plantations. International trading of cocoa plants and products could also be efficiently monitored by MALDI-MS. It could, for instance, prevent the entry of new phytopathogens into a country, e.g., as in the case of Moniliophthora roreri fungus that is present in all cocoa plantations of countries bordering Brazil, but that has not yet attacked Brazilian plantations. Graphical Abstract Secure identification of phytopathogens attacking cocoa plantations has been demonstrated via typical chemical profiles provided by mass spectrometric screening.

  16. Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline

    Directory of Open Access Journals (Sweden)

    Cobos Rebeca

    2010-09-01

    Full Text Available Abstract Background The phytopathogenic fungus Diplodia seriata, whose genome remains unsequenced, produces severe infections in fruit trees (fruit blight and grapevines. In this crop is recognized as one of the most prominent pathogens involved in grapevine trunk disease (or grapevine decline. This pathology can result in the death of adult plants and therefore it produces severe economical losses all around the world. To date no genes or proteins have been characterized in D. seriata that are involved in the pathogenicity process. In an effort to help identify potential gene products associated with pathogenicity and to gain a better understanding of the biology of D. seriata, we initiated a proteome-level study of the fungal mycelia and secretome. Results Intracellular and secreted proteins from D. seriata collected from liquid cultures were separated using two-dimensional gel electrophoresis. About 550 cytoplasmic proteins were reproducibly present in 3 independent extractions, being 53 identified by peptide mass fingerprinting and tandem mass spectrometry. The secretome analysis showed 75 secreted proteins reproducibly present in 3 biological replicates, being 16 identified. Several of the proteins had been previously identified as virulence factors in other fungal strains, although their contribution to pathogenicity in D. seriata remained to be analyzed. When D. seriata was grown in a medium supplemented with carboxymethylcellulose, 3 proteins were up-regulated and 30 down-regulated. Within the up-regulated proteins, two were identified as alcohol dehydrogenase and mitochondrial peroxyrredoxin-1, suggesting that they could play a significant role in the pathogenicity process. As for the 30 down-regulated proteins, 9 were identified being several of them involved in carbohydrate metabolism. Conclusions This study is the first report on proteomics on D. seriata. The proteomic data obtained will be important to understand the pathogenicity

  17. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.

    Science.gov (United States)

    Saxena, Amrita; Raghuwanshi, Richa; Singh, Harikesh Bahadur

    2015-02-01

    Trichoderma spp. have been reported to aid in imparting biotic as well as abiotic tolerance to plants. However, there are only few reports unfolding the differential ability of separate species of Trichoderma genera generally exploited for their biocontrol potential in this framework. A study was undertaken to evaluate the biocontrol potential of different Trichoderma species namely T. harzianum, T. asperellum, T. koningiopsis, T. longibrachiatum, and T. aureoviride as identified in the group of indigenous isolates from the agricultural soils of Eastern Uttar Pradesh, India. Their biocontrol potential against three major soilborne phytopathogens, i.e., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Colletotrichum capsici was confirmed by dual culture plate technique. Efficient mycoparasitic ability was further assessed in all the isolates in relation to chitinase, β-1,3 glucanase, pectinase, lipase, amylase, and cellulase production while equally consistent results were obtained for their probable phosphate solubilization and indole acetic acid (IAA) production abilities. The selected isolates were further subjected to test their ability to promote plant growth, to reduce disease incidence and to tolerate biotic stress in terms of lignification pattern against S. rolfsii in chickpea plants. Among the identified Trichoderma species, excellent results were observed for T. harzianum and T. koningiopsis indicating better biocontrol potential of these species in the group and thus exhibiting perspective for their commercial exploitation.

  18. Efeito de herbicidas sobre agentes fitopatogênicos = Effect of herbicides on phytopathogenic agents

    Directory of Open Access Journals (Sweden)

    Daniel Dias Rosa

    2010-07-01

    Full Text Available Na agricultura moderna, diversas tecnologias auxiliam no aumento daprodutividade, sendo o herbicida uma delas, mas existem consequências atreladas ao seu uso, como os diversos efeitos sobre organismos não alvos. Neste trabalho, objetivou-se verificar esses efeitos sobre agentes fitopatogênicos, assim como avaliar o efeito do herbicida glyphosate sobre diversas doenças, em plantas de soja transgênicas.Verificou-se forte ação fungicida com o uso do herbicida glyphosate, assim como os outros avaliados “in vitro”, sobre os fungos testados, e os mesmos resultados foram observados nas plantas em condição de campo.In modern agriculture, several technologies have helped increase productivity, and herbicide is one of them. However, there are consequences linked to its use, such as the various effects on non-target organisms. The purpose of this work was to verify these effects on phytopathogenic agents, as well as assess the effect of glyphosate on diseases in transgenic soybean. There was a strong fungicide action using glyphosate herbicide as well as with the others evaluated in vitro regarding fungi tested. The same results were observed in plants in field conditions.

  19. Antimycotic activities of selected plant flora, growing wild in Lebanon, against phytopathogenic fungi.

    Science.gov (United States)

    Abou-Jawdah, Yusuf; Sobh, Hana; Salameh, Abdu

    2002-05-22

    Petroleum ether (PE) and methanolic extracts of nine wild plant species were tested in vitro for their antimycotic activity against eight phytopathogenic fungi. The efficacy of PE extracts against all pathogens tested was higher than that of methanolic extracts. Wild marjoram (Origanum syriacum) PE extract showed the highest and widest range of activity. It resulted in complete inhibition of mycelial growth of six of eight fungi tested and also gave nearly complete inhibition of spore germination of the six fungi included in the assay, namely, Botrytis cinerea, Alternaria solani, Penicillium sp., Cladosporium sp., Fusarium oxysporum f. sp. melonis, and Verticillium dahlia. The other plant extracts showed differential activities in the spore germination test, but none was highly active against mycelial growth. Inula viscosa and Mentha longifolia were highly effective (>88%) in spore germination tests against five of six fungi tested, whereas Centaurea pallescens, Cichorium intybus, Eryngium creticum, Salvia fruticosa, and Melia azedarach showed >95% inhibition of spore germination in at least two fungi. Foeniculum vulgare showed the least antimycotic activity. Fractionation followed by autobiography on TLC plates using Cladosporium sp. as a test organism showed that O. syriacum PE extracts contained three inhibition zones, and those of Inula viscosa and Cichorium intybus, two, whereas the PE extracts of the remaining plants showed each one inhibition zone. Some of the major compounds present in these inhibition zones were identified by GC-MS. The possibility for using these extracts, or their mixtures, to control plant diseases is discussed.

  20. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  1. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Samir Rezki

    2016-04-01

    Full Text Available Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences and fungal (ITS1 diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

  2. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms.

    Science.gov (United States)

    Rezki, Samir; Campion, Claire; Iacomi-Vasilescu, Beatrice; Preveaux, Anne; Toualbia, Youness; Bonneau, Sophie; Briand, Martial; Laurent, Emmanuelle; Hunault, Gilles; Simoneau, Philippe; Jacques, Marie-Agnès; Barret, Matthieu

    2016-01-01

    Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

  3. Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Kyung-Mi Lee

    Full Text Available There is increasing concern regarding the use of fungicides to control plant diseases, whereby interest has increased in the biological control of phytopathogenic fungi by the application of hypovirulent mycoviruses as a possible alternative to fungicides. Transmission of hypovirulence-associated double-stranded RNA (dsRNA viruses between mycelia, however, is prevented by the vegetative incompatibility barrier that often exists between different species or strains of filamentous fungi. We determined whether protoplast fusion could be used to transmit FgV1-DK21 virus, which is associated with hypovirulence on F. boothii (formerly F. graminearum strain DK21, to F. graminearum, F. asiaticum, F. oxysporum f. sp. lycopersici, and Cryphonectria parasitica. Relative to virus-free strains, the FgV1-DK21 recipient strains had reduced growth rates, altered pigmentation, and reduced virulence. These results indicate that protoplast fusion can be used to introduce FgV1-DK21 dsRNA into other Fusarium species and into C. parasitica and that FgV1-DK21 can be used as a hypovirulence factor and thus as a biological control agent.

  4. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends.

    Science.gov (United States)

    Kaur, Surinder; Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Vallad, Gary Edward; Chand, Ramesh; Chauhan, Vijay Bahadur

    2012-05-01

    Macrophomina phaseolina (Tassi) Goid. is an important phytopathogenic fungus, infecting a large number of plant species and surviving for up to 15 years in the soil as a saprophyte. Although considerable research related to the biology and ecology of Macrophomina has been conducted, it continues to cause huge economic losses in many crops. Research is needed to improve the identification and characterization of genetic variability within their epidemiological and pathological niches. Better understanding of the variability within the pathogen population for traits that influence fitness and soil survival will certainly lead to improved management strategies for Macrophomina. In this context, the present review discusses various biological aspects and distribution of M. phaseolina throughout the world and their importance to different plant species. Accurate identification of the fungus has been aided with the use of nucleic acid-based molecular techniques. The development of PCR-based methods for identification and detection of M. phaseolina are highly sensitive and specific. Early diagnosis and accurate detection of pathogens is an essential step in plant disease management as well as quarantine. The progress in the development of various molecular tools used for the detection, identification and characterization of Macrophomina isolates were also discussed.

  5. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  6. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Hazem S. Elshafie

    2012-12-01

    Full Text Available The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga. The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs, which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors.

  7. The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi.

    Science.gov (United States)

    Rajam, M V; Galston, A W

    1985-01-01

    We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.

  8. Propiconazole inhibits the sterol 14α-demethylase in Glomus irregulare like in phytopathogenic fungi.

    Science.gov (United States)

    Calonne, Maryline; Sahraoui, Anissa Lounès-Hadj; Campagnac, Estelle; Debiane, Djouher; Laruelle, Frédéric; Grandmougin-Ferjani, Anne; Fontaine, Joël

    2012-04-01

    The increasing concentrations impact (0.02, 0.2 and 2 mg L(-1)) of a Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, was evaluated on development and sterol metabolism of two non-target organisms: mycorrhizal or non-mycorrhizal transformed chicory roots and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare using monoxenic cultures. In this work, we provide the first evidence of a direct impact of propiconazole on the AMF by disturbing its sterol metabolism. A significant decrease in end-products sterols contents (24-methylcholesterol and in 24-ethylcholesterol) was observed concomitantly to a 24-methylenedihydrolanosterol accumulation indicating the inhibition of a key enzyme in sterol biosynthesis pathway, the sterol 14α-demethylase like in phytopathogenic fungi. A decrease in end-product sterol contents in propiconazole-treated roots was also observed suggesting a slowing down of the sterol metabolism in plant. Taken together, our findings suggest that the inhibition of the both AM symbiotic partners development by propiconazole results from their sterol metabolism alterations.

  9. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

    Directory of Open Access Journals (Sweden)

    Teresa Weise

    2012-04-01

    Full Text Available Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial–plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR–MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol, whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth with or without glucose.

  10. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10.

    Science.gov (United States)

    Weise, Teresa; Kai, Marco; Gummesson, Anja; Troeger, Armin; von Reuß, Stephan; Piepenborn, Silvia; Kosterka, Francine; Sklorz, Martin; Zimmermann, Ralf; Francke, Wittko; Piechulla, Birgit

    2012-01-01

    Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol), whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.

  11. ANTIFUNGAL EFFICACY OF AQUEOUS EXTRACTS OF NEEM CAKE, KARANJ CAKE AND VERMICOMPOST AGAINST SOME PHYTOPATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    JAIPAL SINGH CHOUDHARY

    2013-01-01

    Full Text Available Several agro-based waste and byproducts are known and cited to play an important role in the management ofplant diseases in ancient texts. They act directly or indirectly on plant pathogens to inhibit the growth andmultiplication or by inducing resistance in crop plants. In the present experiments, aqueous extracts of neemcake, karanj cake and vermicompost were tested against some important phytopathogenic fungi viz.,Helminthosporium pennisetti, Curvularia lunata and Colletotrichum gloeosporioides f. sp. mangiferae for theirantifungal activities. H. pennisetti was found to be most sensitive one followed by C. gloeosporioides f. sp.mangiferae and C. lunata against all the tested drugs. Against C. gloeosporioides f. sp. mangiferae, aqueous extractof karanj cake was most effective where GI50 was found to be 0.41% drug concentration followed by neem cake(0.46% and vermicompost (0.86%. In case of C. lunata and H. pennisetti, neem cake extract was most effectivewith GI50 value of 0.27% and 0.11% respectively. The GI50 values noted for C. lunata with extracts of karanj cake(0.70%, vermicompost (0.88% and for H. pennisetti were (0.20% and (0.22% respectively.

  12. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.

    Science.gov (United States)

    Saharan, Vinod; Mehrotra, Akanksha; Khatik, Rajesh; Rawal, Pokhar; Sharma, S S; Pal, Ajay

    2013-11-01

    The main aim of present study was to prepare chitosan, chitosan-saponin and Cu-chitosan nanoparticles to evaluate their in vitro antifungal activities. Various nanoparticles were prepared using ionic gelation method by interaction of chitosan, sodium tripolyphosphate, saponin and Cu ions. Their particle size, polydispersity index, zeta potential and structures were confirmed by DLS, FTIR, TEM and SEM. The antifungal properties of nanoparticles against phytopathogenic fungi namely Alternaria alternata, Macrophomina phaseolina and Rhizoctonia solani were investigated at various concentrations ranging from 0.001 to 0.1%. Among the various formulations of nanoparticles, Cu-chitosan nanoparticles were found most effective at 0.1% concentration and showed 89.5, 63.0 and 60.1% growth inhibition of A. alternata, M. phaseolina and R. solani, respectively in in vitro model. At the same concentration, Cu-chitosan nanoparticles also showed maximum of 87.4% inhibition rate of spore germination of A. alternata. Chitosan nanoparticles showed the maximum growth inhibitory effects (87.6%) on in vitro mycelial growth of M. phaseolina at 0.1% concentration. From our study it is evident that chitosan based nanoparticles particularly chitosan and Cu-chitosan nanoparticles have tremendous potential for further field screening towards crop protection.

  13. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi.

    Science.gov (United States)

    Velho, R V; Medina, L F C; Segalin, J; Brandelli, A

    2011-07-01

    The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants.

  14. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia solanacearum by Stabilization

    Directory of Open Access Journals (Sweden)

    Juanni Chen

    2016-01-01

    Full Text Available In this paper, the enhanced antibacterial activity of silver nanoparticles (AgNPs against the phytopathogenic bacterium Ralstonia solanacearum after stabilization using selected surfactants (SDS, SDBS, TX-100, and Tween 80 was examined, in comparison with silver ion. Tween 80 was found to be the most preferable stabilizer of AgNPs due to the beneficial synergistic effects of the AgNPs and surfactant. However, all the surfactants nearly had no effects on the antibacterial activity of Ag+. In vitro, Tween 80-stabilized AgNPs showed the highest bactericidal activity against R. solanacearum. Further measurements using TEM, fluorescence microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE revealed that though Ag+ and Tween 80-Ag+ induced high toxicity, Tween 80-stabilized AgNPs displayed most severe damage when in direct contact with cells, causing mechanistic injury to the cell membrane and strongly modifying and destructing the cellular proteins. Meanwhile, in vivo, the pot experiments data indicated that the control efficiency of Tween 80-stabilized AgNPs on tobacco bacterial wilt was 96.71%, 90.11%, and 84.21%, at 7 days, 14 days, and 21 days, respectively. Based on the results evidencing their advantageous low dosage requirements and strong antimicrobial activity, Tween 80-stabilized AgNPs are a promising antibacterial agent for use in alternative crop disease control approaches.

  15. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  16. Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora.

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  17. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Mendez, Miguel A., E-mail: maguilarme@ipn.mx; San Martin-Martinez, Eduardo; Ortega-Arroyo, Lesli [Instituto Politecnico Nacional, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (Mexico); Cobian-Portillo, Georgina [Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (Mexico); Sanchez-Espindola, Esther [Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biologicas, Prolongacion Manuel M. Carpio s/n, esq. Plan de Ayala (Mexico)

    2011-06-15

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  18. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi.

    Science.gov (United States)

    Ortega-Morales, B O; Ortega-Morales, F N; Lara-Reyna, J; De la Rosa-García, S C; Martínez-Hernández, A; Montero-M, Jorge

    2009-01-01

    We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.

  19. CEREALS ASSESSMENT TOWARDS CONTAMINATION OF PHYTOPATHOGENIC FUNGI IN FOREST-STEPPE AREA OF UKRAINE

    Directory of Open Access Journals (Sweden)

    V. B. Yekimova

    2014-11-01

    Full Text Available The usage of high-quality seed, not affected by pathogens and fungi promote the high and stable yields. The condition of seeds determines their germination, seedling damage and adult plants, which ultimately affects the yield and on their quality. The significant risk of seed infection was registered in years with high humidity in the pre-harvest and harvest period. Therefore, along with the traditional seed control it is necessary to conduct phytopahtology expertise, allowing to identify the species composition of the microflora of seeds and the degree of infection with different pathogens. Smut disease - a solid and loose smut of wheat, hard and loose smut of barley - cause crop losses are clear - in the form of the destruction of the ear, and hidden - in the form of a reduction in seed germination, reduce winter hardiness, plant growth inhibition. Pathogens root rot causing blight, Fusarium and Helminthosporium that insignificantly demand on environmental conditions and extremely plastic. They have large set of enzymes that can exist on a variety of substrates, and therefore are widely distributed in nature and cause considerable damage to crops. Especially significant losses occur if the humidity during the ripening grain observed for several seasons, which leads to accumulation of the infection naturally. The aim of research was to assess the contamination of grain of spring wheat and barley phytopathogenic fungi in one of the main grain regions of Ukraine - the southern forest. The research conducted during the summer 2014 and compared with the results of previous years. Samples were taken from different plots. Seed contamination of samples by various phytopathogenic fungi was determined by the number of infected kernels per 100 seed sample. Frequency of registered species was recorded. For every studied sample we set the percentage of species. Analysis of the grain on the fungal infection and avdelenie in pure culture was performed

  20. CEREALS ASSESSMENT TOWARDS CONTAMINATION OF PHYTOPATHOGENIC FUNGI IN FOREST-STEPPE AREA OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Yekimova V. B.

    2014-12-01

    Full Text Available The usage of high-quality seed, not affected by pathogens and fungi promote the high and stable yields. The condition of seeds determines their germination, seedling damage and adult plants, which ultimately affects the yield and on their quality. The significant risk of seed infection was registered in years with high humidity in the pre-harvest and harvest period. Therefore, along with the traditional seed control it is necessary to conduct phytopahtology expertise, allowing to identify the species composition of the microflora of seeds and the degree of infection with different pathogens. Smut disease - a solid and loose smut of wheat, hard and loose smut of barley - cause crop losses are clear - in the form of the destruction of the ear, and hidden - in the form of a reduction in seed germination, reduce winter hardiness, plant growth inhibition. Pathogens root rot causing blight, Fusarium and Helminthosporium that insignificantly demand on environmental conditions and extremely plastic. They have large set of enzymes that can exist on a variety of substrates, and therefore are widely distributed in nature and cause considerable damage to crops. Especially significant losses occur if the humidity during the ripening grain observed for several seasons, which leads to accumulation of the infection naturally. The aim of research was to assess the contamination of grain of spring wheat and barley phytopathogenic fungi in one of the main grain regions of Ukraine - the southern forest. The research conducted during the summer 2014 and compared with the results of previous years. Samples were taken from different plots. Seed contamination of samples by various phytopathogenic fungi was determined by the number of infected kernels per 100 seed sample. Frequency of registered species was recorded. For every studied sample we set the percentage of species. Analysis of the grain on the fungal infection and avdelenie in pure culture was performed

  1. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    Science.gov (United States)

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV.

  2. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    those normally found in phytopathogens.

  3. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence.

    Directory of Open Access Journals (Sweden)

    Isabel Alvarez-Tabarés

    Full Text Available BACKGROUND: Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world. METHODOLOGY/PRINCIPAL FINDINGS: Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants. CONCLUSIONS/SIGNIFICANCE: Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.

  4. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    Science.gov (United States)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  5. [Antagonistic interactions between saprotrophic fungi and geohelminths. 1. Saprotrophic fungi in the biological control of phytopathogenic geohelminths].

    Science.gov (United States)

    Mazurkiewicz-Zapałowicz, Kinga; Kołodziejczyk, Lidia

    2009-01-01

    The state of knowledge on the possible antagonism between soil saprotrophic fungi and phytopathogenic nematodes of the genera Meloidogyne, Heterodera, and Globodera is reviewed basing on the literature and our own research. Mycelial colonisation of various developmental stages of these geohelminths is the most common factor thought to reduce their populations in nature. The following parasitic fungi can be found on the cysts, eggs, as well as the larvae of the nematodes: Paecilomyces lilacinus, Verticillium chlamydosporium, Cylindrocarpon destructans, Pochonia chlamydosporia, Fusarium spp., and Penicillium spp. The fungi invade the nematodes, such as Heterodera, Globodera, or Meloidogyne, "passively" penetrating through the natural orifices of the cysts, eggs, and larvae of the host. Equally frequent, however, is a biochemical action of the fungi prior to colonisation, which is linked with production of mycotoxirls or hydrolytic enzymes. Such an active way of fungal penetration of various stages of the phytopathogenic nematodes has been observed in Pochonia chlamydosporia, Penicillium verrucosum var. cyclopium, P. frequentans, Sclerotinia rolfsii, Rhizoctonia solani, and Fusarium spp. Triacylglycerols (TAG), phenols, as well as trichothecene, T-2, have been found in the metabolites extracted from mycelia of these species. Predation by fungi is also a factor that may reduce a population of phytopathogenic nematodes. This form of antagonism is characteristic for nematicidal fungi of the genera Arthrobotrys and Dactylella. These fungi form shrinking rings and hooks in their mycelia by which the fungus entangles and paralyses a migrating form of nematode. Despite the fact that the antagonism between fungi and nematodes is a commonly occurring phenomenon observed in the soil, the nematicidal and nematotoxic properties of fungi have not a wide application in biological plant protection. Up till now, only the bionematicides based on Arthrobotrys robusta (Royal 300 and

  6. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    Science.gov (United States)

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  7. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains.

    Science.gov (United States)

    Carezzano, M E; Sotelo, J P; Primo, E; Reinoso, E B; Paletti Rovey, M F; Demo, M S; Giordano, W F; Oliva, M de Las M

    2017-07-01

    Pseudomonas syringae is a phytopathogenic bacterium that causes lesions in leaves during the colonisation process. The damage is associated with production of many virulence factors, such as biofilm and phytotoxins. The essential oils of Thymus vulgaris (thyme) and Origanum vulgare (oregano) have been demonstrated to inhibit P. syringae. The aim of this study was to investigate the effects of T. vulgaris and O. vulgare essential oils on production of virulence factors of phytopathogenic P. syringae strains, including anti-biofilm and anti-toxins activities. The broth microdilution method was used for determination of MIC and biofilm inhibition assays. Coronatine, syringomycin and tabtoxin were pheno- and genotypically evaluated. Both oils showed good inhibitory activity against P. syringae, with MIC values from 1.43 to 11.5 mg·ml(-1) for thyme and 5.8 to 11.6 mg·ml(-1) for oregano. Biofilm formation, production of coronatine, syringomycin and tabtoxin were inhibited by thyme and oregano essential oil in most strains. The results presented here are promising, demonstrating the bactericidal activity and reduction of virulence factor production after treatment with thyme and oregano oil, providing insight into how they exert their antibacterial activity. These natural products could be considered in the future for the control of diseases caused by P. syringae. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.).

    Science.gov (United States)

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.

  9. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene.

    Science.gov (United States)

    Crespi, M; Messens, E; Caplan, A B; van Montagu, M; Desomer, J

    1992-01-01

    Rhodococcus fascians is a nocardiform bacteria that induces leafy galls (fasciation) on dicotyledonous and several monocotyledonous plants. The wild-type strain D188 contained a conjugative, 200 kb linear extrachromosomal element, pFiD188. Linear plasmid-cured strains were avirulent and reintroduction of this linear element restored virulence. Pulsed field electrophoresis indicated that the chromosome might also be a linear molecule of 4 megabases. Three loci involved in phytopathogenicity have been identified by insertion mutagenesis of this Fi plasmid. Inactivation of the fas locus resulted in avirulent strains, whereas insertions in the two other loci affected the degree of virulence, yielding attenuated (att) and hypervirulent (hyp) bacteria. One of the genes within the fas locus encoded an isopentenyltranferase (IPT) with low homology to analogous proteins from Gram-negative phytopathogenic bacteria. IPT activity was detected after expression of this protein in Escherichia coli cells. In R.fascians, ipt expression could only be detected in bacteria induced with extracts from fasciated tissue. R.fascians strains without the linear plasmid but containing this fas locus alone could not provoke any phenotype on plants, indicating additional genes from the linear plasmid were also essential for virulence. These studies, the first genetic analysis of the interaction of a Gram-positive bacterium with plants, suggest that a novel mechanism for plant tumour induction has evolved in R.fascians independently from the other branches of the eubacteria. Images PMID:1547783

  10. Synthesis of pyrazolo[1,5-a]pyrimidine derivatives and their antifungal activities against phytopathogenic fungi in vitro.

    Science.gov (United States)

    Zhang, Jin; Peng, Ju-Fang; Bai, Yu-Bin; Wang, Ping; Wang, Tao; Gao, Jin-Ming; Zhang, Zun-Ting

    2016-11-01

    5,6-Diarylpyrazolo[1,5-a]pyrimidines (3) and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4) were chemoselectively synthesized by the condensation of isoflavone (1) and 3-aminopyrazole (2). 5,6-Diarylpyrazolo[1,5-a]pyrimidines (3) were obtained via microwave irradiation, and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4) were obtained via conventional heating. In addition, the pyrimidine derivatives 3 and 4 were evaluated against five phytopathogenic fungi (Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani) using the mycelium growth rate method. Some of them were effective in inhibiting the growth of the five phytopathogenic fungi. For instance, 6,7-diarylpyrazolo[1,5-a]pyrimidines (4j) inhibited the growth of A. solani with an [Formula: see text] value of 17.11 [Formula: see text], and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4h) inhibited the growth of both Cytospora sp. and F. solani with [Formula: see text] values of 27.32 and 21.04 [Formula: see text], respectively. A chemoselective synthesis of 5,6-pyrazolo[1,5-a]pyrimidines 3 derivatives in excellent yields was performed under microwave irradiation and 6,7-pyrazolo[1,5-a]pyrimidines 4 were also prepared using heating method. The antifungal properties of 3 and 4 were tested against Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani.

  11. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance

    Directory of Open Access Journals (Sweden)

    Wafaa MOKHTARI

    2017-09-01

    Full Text Available In this study, 17 Trichoderma strains were isolated from different soils (crop fields and Argan forests in Morocco. Purified monospore cultures were identified using molecular methods and tested for their potential antagonism against three phytopathogenic fungi (Fusarium oxyxporum, verticillium dahlia and rhizoctonia solani. After DNA extraction, translation elongation factor (tef1 was amplified in extracts of 17 strains, sequenced and compared with their ex-types. As a result, three species were identified among the strains, which clustered in two different subclades of Trichoderma: the species T. afroharzianum, and T. guizhouense belong to the Harzianum clade, while T. longibrachiatum belongs to the Longibrachiatum clade. Investigation of potential antagonistic effects of these strains against the soil-borne phytopathogens F. oxysporum, R. solani and V. dahliae was conducted in a dual culture plate assay, using 17 promising Trichoderma strains that have been selected based on a polymerase chain reaction (PCR screening approach. In vitro, Trichoderma isolates showed effective antagonistic performance by decreasing soil borne pathogens mycelium radial growth. Trichoderma afroharzianum showed the highest Percentage of Radial Inhibition Growth (PRIG %. The highest PRIG% = 98% was for 8A2.3 isolate against R. solani and the lowest PRIG%= 67% for T9i10 against F. oxysporum. On the other hand, T9i12, which is T. reesei species, led to a high radial inhibition of pathogens’ mycelium.

  12. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Ying Xu

    report of resistance integron in a phytopathogenic bacteria.

  13. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  14. Antifungal activity of essential oil isolated from Ocimum gratissimum L. (eugenol chemotype against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Terezinha de Jesus Faria

    2006-11-01

    Full Text Available An investigation of antifungal activity of the essential oil obtained by steam-distillation (1.1% w/w of the aerial parts of Ocimum gratissimum and of an ethanolic extract from the steam-distillation residue was carried out using the agar diffusion method. The results revealed that the essential oil inhibited the growth of all fungi tested, including the phytopathogens, Botryosphaeria rhodina, Rhizoctonia sp. and two strains of Alternaria sp., while the extract from the residue was inactive. The essential oil was subjected to TLC bioautography used to detect fungitoxic constituents. The compound that showed antifungal activity was isolated and identified as eugenol. GC/MS analysis showed that eugenol was the main constituent of the essential oil studied. The antifungal activity of eugenol was evaluated against a species of Alternaria isolated from tomato (A1 and Penicillium chrysogenum. The minimal inhibitory concentrations of eugenol were 0.16 and 0.31 mg/disc for Alternaria sp. (A1 and P. chrysogenum, respectively.O óleo essencial resultante da destilação por arraste a vapor das partes aéreas de Ocimum gratissimum e o extrato etanólico obtido do resíduo da destilação foram avaliados quanto à atividade antifúngica, utilizando-se o método de difusão em agar. O óleo essencial inibiu o crescimento de todos os fungos testados, incluindo os fitopatogênicos Botryosphaeria rhodina e duas espécies de Alternaria sp, enquanto que o extrato do resíduo da destilação não apresentou atividade. O óleo essencial foi, então, submetido ao método de bioautografia em TLC para detecção do composto ativo. O componente ativo foi isolado e identificado através da análise por cromatografia gasosa acoplada à espectrometria de massas como o eugenol, constituinte majoritário do óleo estudado. Ensaios de atividade antifúngica revelaram a atividade do eugenol contra Alternaria isolada de tomate (A1 e Penicillium chrysogenum. As concentra

  15. Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum

    Science.gov (United States)

    Kleemann, Jochen; Neumann, Ulla; van Themaat, Emiel Ver Loren; van der Does, H. Charlotte; Hacquard, Stéphane; Stüber, Kurt; Will, Isa; Schmalenbach, Wolfgang; Schmelzer, Elmon; O'Connell, Richard J.

    2012-01-01

    Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death. PMID:22496661

  16. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva).

    Science.gov (United States)

    Zhao, Xuesong; Wang, Juan; Li, Jie; Fu, Ling; Gao, Juan; Du, Xiuli; Bi, Hongtao; Zhou, Yifa; Tai, Guihua

    2009-05-01

    Fourteen phytopathogenic fungi were tested for their ability to transform the major ginsenosides to the active minor ginsenoside Rd. The transformation products were identified by TLC and HPLC, and their structures were assigned by NMR analysis. Cladosporium fulvum, a tomato pathogen, was found to transform major ginsenoside Rb(1) to Rd as the sole product. The following optimum conditions for transforming Rd by C. fulvum were determined: the time of substrate addition, 24 h; substrate concentration, 0.25 mg ml(-1); temperature, 37 degrees C; pH 5.0; and biotransformation period, 8 days. At these optimum conditions, the maximum yield was 86% (molar ratio). Further, a preparative scale transformation with C. fulvum was performed at a dose of 100 mg of Rb(1) by a yield of 80%. This fungus has potential to be applied on the preparation for Rd in pharmaceutical industry.

  17. Cloning, characterization and functional expression of an endoglucanase-encoding gene from the phytopathogenic fungus Macrophomina phaseolina.

    Science.gov (United States)

    Wang, H; Jones, R W

    1995-05-26

    An endoglucanase-encoding clone (egl2) was isolated from the phytopathogenic soilborne deuteromycete fungus Macrophomina phaseolina (Mp). Clones were obtained from a cDNA library by functional expression in Escherichia coli. The egl2 clone hybridized to a 1.3-kb mRNA. Expression is induced by carboxymethylcellulose (CMC) and repressed by glucose. The deduced amino acid (aa) sequence revealed strong similarity to the egl3 from Trichoderma reesei (Tr) (72% for identical residues and 81% with conservative substitution over a span of 324 aa). The Mp egl2 lacks the cellulose-binding domain and linker region found in the Tr egl3. Different codon usage between the two fungi resulted in a much shorter span of nucleotide homology. The Egl2 protein cleaves cellodextrins with continguous beta, 1-4 linkages of four and larger, and shows activity against CMC and birchwood xylan.

  18. Identification and Antagonism Study of a Novel Chitinase-producing Bacterium Burkholderia Sp.C3 against Phytopathogenic Fungi

    Institute of Scientific and Technical Information of China (English)

    金虹; TAO Yong

    2006-01-01

    Through a modified agar well diffusion assay, antagonism of a novel chitinase-producing strain C3 against the phytopathogenic fungi including Phoma wasabiae Yokogi,Heterostrophus, Exserohilum Turcicum, Curwularia (Walk) Boed, Thantephorus cucumris, Fusarium graminearum was tested. The data showed that the crude cxtracts of strain C3 had stable antifungal activity in the range of pH 5.0 to pH 8.0. The active components were heat labile and sensitive to proteinase K. A series of experiments supported that the compound responsible for inhibitory activity appeared to be ehitinase. The 16s rDNA analysis indicated that C3 was subject to genus Burkholderia. Pbenotypic characterization of C3 was also consisted with the result of molecular identification.

  19. [Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1].

    Science.gov (United States)

    Zakharchenko, N S; Rukavtsova, E B; Gudkov, A T; Bur'ianov, Ia I

    2005-11-01

    Plasmids with a synthetic gene of the mammalian antimicrobial peptide cecropin P1 (cecP1) controlled by the constitutive promoter 35S RNA of cauliflower mosaic virus were constructed. Agrobacterial transformation of tobacco plants was conducted using the obtained recombinant binary vector. The presence of gene cecP1 in the plant genome was confirmed by PCR. The expression of gene cecP1 in transgenic plants was shown by Northern blot analysis. The obtained transgenic plants exhibit enhanced resistance to phytopathogenic bacteria Pseudomonas syringae, P. marginata, and Erwinia carotovora. The ability of transgenic plants to express cecropin P1 was transmitted to the progeny. F1 and F2 plants had the normal phenotype (except for a changed coloration of flowers) and retained the ability to produce normal viable seeds upon self-pollination. Lines of F1 plants with Mendelian segregation of transgenic traits were selected.

  20. Development of SSR Markers for a Phytopathogenic Fungus, Blumeria graminis f.sp. tritici, Using a FIASCO Protocol

    Institute of Scientific and Technical Information of China (English)

    WANG Meng; XUE Fei; YANG Peng; DUAN Xia-yu; ZHOU Yi-lin; SHEN Chong-yao; ZHANG Guo-zhen; WANG Bao-tong

    2014-01-01

    Simple sequence repeats (SSR) have been widely used as molecular markers due to their abundance and high polymorphism. However, up to now, the SSR markers had not been developed in the obligate biotrophic phytopathogenic fungus, Blumeria graminis f.sp. tritici. From (AC)10 and (AG)10 enriched genomic libraries for Bgt, 25 primer pairs were designed using the FIASCO (fast isolation by AFLP of sequences containing repeats) protocol. Five primer pairs exhibited polymorphism with allelic diversity from two to seven alleles and produced 29 alleles in a survey of 90 isolates collected from six provinces (cities) in China, while the others displayed monomorphic. Levels of observed heterozygosity ranged from 0.000-0.044 (mean 0.025) and expected heterozygosity ranged from 0.297-0.816 (mean 0.538). These molecular markers provide a novel source to genetic diversity assays and to genetic and physical mapping of Bgt. SSR markers of Bgt need to be further explored.

  1. Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; ZUO Jin-hua; WANG Qian; NA Yang; GAO Li-pu

    2015-01-01

    The antifungal activity of chitosan on a common fungal phytopathogen, Sclerotinia sclerotiorum, and the control effect on sclerotinia rot of carrot were investigated. Mycelial growth and fungal biomass were strongly inhibited by chitosan. Using propidium iodide stain combined with lfuorescent microscopy, the plasma membrane of chitosan-treated S. sclerotiorum mycelia was observed to be markedly damaged. Concomitantly, protein leakage and lipid peroxidation was also found to be signiifcantly higher in chitosan-treated mycelia compared to the control. Chitosan provided an effective control of sclerotinia rot of carrot, with induction of activity of defense-related enzymes including polyphenoloxidase and peroxidase. These data suggest that the effects of chitosan on sclerotinia rot of carrot may be associated with the direct damage to the plasma membrane and lipid peroxidation of S. sclerotiorum, and the elicitation of defense response in carrot.

  2. Antimicrobial Activity of Bacillus sp. Natural Isolates and Their Potential Use in the Biocontrol of Phytopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Tanja Berić

    2012-01-01

    Full Text Available Screening of 203 Bacillus sp. natural isolates for antimicrobial activity against phytopathogenic bacteria showed that 127 tested strains inhibit at least one sensitive strain, which illustrates their potential use as biocontrol agents. Among them, 104 isolates showed significant antagonism against Xanthomonas oryzae pv. oryzae, and only one of these (VPS50.2 synthesizes bacteriocin. An additional screening tested whether 51 isolates contained genes involved in the biosynthesis of lipopeptides of the iturin and surfactin classes. Results show that 33 isolates harbour the operon for iturin biosynthesis, and six of them carry the sfp gene, responsible for the biosynthesis of surfactin. Lipopeptide purification from the supernatant of isolate SS12.9 (identified as B. subtilis or B. amyloliquefaciens was performed using ethyl acetate extraction, ultrafiltration and reversed phase HPLC. Mass spectrometry analysis confirmed that isolate SS12.9 produces a substance of the iturin class with potential for biocontrol of X. oryzae pv. oryzae.

  3. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens.

    Science.gov (United States)

    González-Teuber, Marcia; Pozo, María J; Muck, Alexander; Svatos, Ales; Adame-Alvarez, Rosa M; Heil, Martin

    2010-03-01

    Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii x Nicotiana sanderae) contains "nectarins," proteins producing reactive oxygen species such as hydrogen peroxide. By contrast, pathogenesis-related (PR) proteins were detected in Acacia extrafloral nectar (EFN), which is secreted in the context of defensive ant-plant mutualisms. We investigated whether these PR proteins protect EFN from phytopathogens. Five sympatric species (Acacia cornigera, A. hindsii, A. collinsii, A. farnesiana, and Prosopis juliflora) were compared that differ in their ant-plant mutualism. EFN of myrmecophytes, which are obligate ant-plants that secrete EFN constitutively to nourish specialized ant inhabitants, significantly inhibited the growth of four out of six tested phytopathogenic microorganisms. By contrast, EFN of nonmyrmecophytes, which is secreted only transiently in response to herbivory, did not exhibit a detectable inhibitory activity. Combining two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with nanoflow liquid chromatography-tandem mass spectrometry analysis confirmed that PR proteins represented over 90% of all proteins in myrmecophyte EFN. The inhibition of microbial growth was exerted by the protein fraction, but not the small metabolites of this EFN, and disappeared when nectar was heated. In-gel assays demonstrated the activity of acidic and basic chitinases in all EFNs, whereas glucanases were detected only in EFN of myrmecophytes. Our results demonstrate that PR proteins causally underlie the protection of Acacia EFN from microorganisms and that acidic and basic glucanases likely represent the most important prerequisite in this defensive function.

  4. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  5. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.

    Science.gov (United States)

    Blanvillain, Servane; Meyer, Damien; Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques; Lauber, Emmanuelle; Arlat, Matthieu

    2007-02-21

    TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent

  6. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.

    Directory of Open Access Journals (Sweden)

    Servane Blanvillain

    Full Text Available TonB-dependent receptors (TBDRs are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc, predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging

  7. Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells.

    Science.gov (United States)

    Silva, Marciele S; Ribeiro, Suzanna Ff; Taveira, Gabriel B; Rodrigues, Rosana; Fernandes, Katia Vs; Carvalho, André O; Vasconcelos, Ilka Maria; Mello, Erica Oliveira; Gomes, Valdirene M

    2017-08-01

    During the last few years, a growing number of antimicrobial peptides have been isolated from plants and particularly from seeds. Recent results from our laboratory have shown the purification of a new trypsin inhibitor, named CaTI, from chilli pepper (Capsicum annuum L.) seeds. This study aims to evaluate the antifungal activity and mechanism of action of CaTI on phytopathogenic fungi and detect the presence of protease inhibitors in other species of this genus. Our results show that CaTI can inhibit the growth of the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. CaTI can also permeabilize the membrane of all tested fungi. When testing the inhibitor on its ability to induce reactive oxygen species, an induction of reactive oxygen species (ROS) and nitric oxide (NO) particularly in Fusarium species was observed. Using CaTI coupled to fluorescein isothiocyanate (FITC), it was possible to determine the presence of the inhibitor inside the hyphae of the Fusarium oxysporum fungus. The search for protease inhibitors in other Capsicum species revealed their presence in all tested species. This paper shows the antifungal activity of protease inhibitors such as CaTI against phytopathogenic fungi. Antimicrobial peptides, among which the trypsin protease inhibitor family stands out, are present in different species of the genus Capsicum and are part of the chemical arsenal that plants use to defend themselves against pathogens. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

    Science.gov (United States)

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang

    2013-09-15

    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  9. De novo transcriptome assemblies of four xylem sap-feeding insects.

    Science.gov (United States)

    Tassone, Erica E; Cowden, Charles C; Castle, S J

    2017-02-24

    Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91,384 for Cuerna arida to 106,998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60 % for H. liturata to 82 % for C. arizonana . BUSCO analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization.

  10. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  11. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  12. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis.

    Science.gov (United States)

    Lefebvre, François; Joly, David L; Labbé, Caroline; Teichmann, Beate; Linning, Rob; Belzile, François; Bakkeren, Guus; Bélanger, Richard R

    2013-06-01

    Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ~23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles.

  13. Multimodal Generally Recognized as Safe ZnO/Nanocopper Composite: A Novel Antimicrobial Material for the Management of Citrus Phytopathogens.

    Science.gov (United States)

    Young, Mikaeel; Ozcan, Ali; Myers, Monty E; Johnson, Evan G; Graham, James H; Santra, Swadeshmukul

    2017-09-05

    Copper (Cu) bactericides/fungicides are used extensively for crop protection in agriculture. Concerns for Cu accumulation in soil, Cu leaching into the surrounding ecosystem, and development of Cu resistance in phytopathogenic bacteria are evident. While there is no suitable alternative to Cu available to date for agricultural uses, it is possible to reduce Cu per application by supplementing with Zn and improving Cu bioavailability using nanotechnology. We have prepared a non-phytotoxic composite material consisting of generally recognized as safe ZnO 800 particles and nanocopper-loaded silica gel (ZnO-nCuSi). The morphology of the ZnO-nCuSi material was characterized using scanning electron microscopy, showing ZnO particles dispersed in the silica gel matrix. ZnO-nCuSi demonstrated strong in vitro antimicrobial properties against several model plant bacterial species. Two consecutive year field efficacy results showed that agri-grade ZnO-nCuSi was effective in controlling citrus canker disease at less than half the metallic rate of the commercial cuprous oxide/zinc oxide pesticide.

  14. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Science.gov (United States)

    Betancur, Luz A; Naranjo-Gaybor, Sandra J; Vinchira-Villarraga, Diana M; Moreno-Sarmiento, Nubia C; Maldonado, Luis A; Suarez-Moreno, Zulma R; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  15. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum.

    Directory of Open Access Journals (Sweden)

    Jochen Kleemann

    Full Text Available Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death.

  16. Identification of a Polyketide Synthase Gene in the Synthesis of Phleichrome of the Phytopathogenic Fungus Cladosporium phlei.

    Science.gov (United States)

    So, Kum-Kang; Chung, Yun-Jo; Kim, Jung-Mi; Kim, Beom-Tae; Park, Seung-Moon; Kim, Dae-Hyuk

    2015-12-01

    Phleichrome, a pigment produced by the phytopathogenic fungus Cladosporium phlei, is a fungal perylenequinone whose photodynamic activity has been studied intensively. To determine the biological function of phleichrome and to engineer a strain with enhanced production of phleichrome, we identified the gene responsible for the synthesis of phleichrome. Structural comparison of phleichrome with other fungal perylenequinones suggested that phleichrome is synthesized via polyketide pathway. We recently identified four different polyketide synthase (PKS) genes encompassing three major clades of fungal PKSs that differ with respect to reducing conditions for the polyketide product. Based on in silico analysis of cloned genes, we hypothesized that the non-reducing PKS gene, Cppks1, is involved in phleichrome biosynthesis. Increased accumulation of Cppks1 transcript was observed in response to supplementation with the application of synthetic inducer cyclo-(l-Pro-l-Phe). In addition, heterologous expression of the Cppks1 gene in Cryphonectria parasitica resulted in the production of phleichrome. These results provide convincing evidence that the Cppks1 gene is responsible for the biosynthesis of phleichrome.

  17. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  18. Study of bio-fabrication of iron nanoparticles and their fungicidal property against phytopathogens of apple orchards.

    Science.gov (United States)

    Ahmad, Hilal; Rajagopal, Kalyanaraman; Shah, Ashiq Hussain; Bhat, Arif Hussain; Venugopal, Kalyanaraman

    2017-04-01

    Current research trends on iron nanoparticles (FeNPs) are extensively focused because of their unique magnetic and electrical properties mostly applicable in essential medical devices. However, their fungicidal property against plant pathogens is very less known until date. Present study demonstrates a green technique for blending of FeNPs by utilising aqueous extract of neem leaf (Azadirachta indica A. Juss.) as reducing agent. Various characterisation techniques such as ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy transmission electron microscopy, scanning electron microscopy and X-ray diffraction were performed for FeNPs. The authors' results demonstrate the more cluster formation of FeNPs with size distribution of 20-80 nm. The bio-fabricated FeNPs showed enhanced biocidal activity against economically important phytopathogens of apple such as Alternaria mali, Botryosphaeria dothidea and Diplodia seriata. From the obtained results, it can be suggested that further delve into green synthesis of FeNPs can address future biotechnology concerns to limit the synthesis of FeNPs by conventional methods. Furthermore, the field study on pathogenic fungi can be an effective step to verify their agricultural applications.

  19. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria.

    Science.gov (United States)

    Le Dang, Quang; Shin, Teak Soo; Park, Myung Soo; Choi, Yong Ho; Choi, Gyung Ja; Jang, Kyoung Soo; Kim, In Seon; Kim, Jin-Cheol

    2014-04-16

    The antagonistic fungus Simplicillium lamellicola BCP has been developed as a microbial biopesticide that effectively controls the development of various plant diseases caused by both pathogenic bacteria and pathogenic fungi. Antibacterial bioassay-directed fractionation was used to isolate mannosyl lipids from S. lamellicola BCP, and the structures of these compounds were elucidated using spectral analysis and chemical degradation. Three novel mannosyl lipids were characterized and identified as halymecins F and G and (3R,5R)-3-O-β-D-mannosyl-3,5-dihydrodecanoic acid. Massoia lactone and (3R, 5R)-3-hydroxydecan-5-olide were also isolated from S. lamellicola BCP. The three novel compounds inhibited the growth of the majority of phytopathogenic bacteria that were tested, and halymecin F displayed the strongest antibacterial activity. Agrobacterium tumefaciens was the most sensitive to the three novel compounds, with IC₅₀ values ranging from 1.58 to 24.8 μg/mL. The ethyl acetate extract of the fermentation broth from the antagonistic fungus effectively reduced the bacterial wilt caused by Ralstonia solanacearum on tomato seedlings. These results indicate that S. lamellicola BCP suppresses the development of plant bacterial diseases through the production of antibacterial metabolites.

  20. Synthesis and biological evaluation of novel fluorine-containing stilbene derivatives as fungicidal agents against phytopathogenic fungi.

    Science.gov (United States)

    Jian, Weilin; He, Daohang; Xi, Pinggen; Li, Xinwei

    2015-11-18

    The rising development of resistance to conventional fungicides is driving the search for new alternative candidates to control plant diseases. In this study, a series of new fluorine-containing stilbene derivatives was synthesized on the basis of our previous quantitative structure-activity relationship analysis results. Bioassays in vivo revealed that the title compounds exhibited potent fungicidal activities against phytopathogenic fungi (Colletotrichum lagenarium and Pseudoperonospora cubensis) from cucumber plants. In comparison to the previous results, the introduction of a fluorine moiety showed improved activities of some compounds against those fungi. Notably, compound 9 exhibited a control efficacy against C. lagenarium (83.4 ± 1.3%) comparable to that of commercial fungicide (82.7 ± 1.7%). For further understanding the possible mode of action of the stilbene against C. lagenarium, the effects on hyphal morphology, electrolyte leakage, and respiration of mycelial cell suspension were studied. Microscopic observation showed considerably deformed mycelial morphology. The conductivity of mycelial suspension increased in the presence of compound 9, whereas no significantly inhibitory effect on respiration was observed. Taken together, the fungicidal mechanism of this stilbene is associated with its membrane disruption effect, resulting in increased membrane permeability. These results provide important clues for mechanistic study and derivatization of stilbenes as alternative sources of fungicidal agents for plant disease control.

  1. Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures.

    Science.gov (United States)

    Davanture, Marlène; Dumur, Jérôme; Bataillé-Simoneau, Nelly; Campion, Claire; Valot, Benoît; Zivy, Michel; Simoneau, Philippe; Fillinger, Sabine

    2014-07-01

    This study describes the gel-free phosphoproteomic analysis of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea grown in vitro under nonlimiting conditions. Using a combination of strong cation exchange and IMAC prior to LC-MS, we identified over 1350 phosphopeptides per fungus representing over 800 phosphoproteins. The preferred phosphorylation sites were found on serine (>80%) and threonine (>15%), whereas phosphorylated tyrosine residues were found at less than 1% in A. brassicicola and at a slightly higher ratio in B. cinerea (1.5%). Biological processes represented principally among the phoshoproteins were those involved in response and transduction of stimuli as well as in regulation of cellular and metabolic processes. Most known elements of signal transduction were found in the datasets of both fungi. This study also revealed unexpected phosphorylation sites in histidine kinases, a category overrepresented in filamentous ascomycetes compared to yeast. The data have been deposited to the ProteomeXchange database with identifier PXD000817 (http://proteomecentral.proteomexchange.org/dataset/PXD000817).

  2. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    Science.gov (United States)

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  3. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata

    OpenAIRE

    de Oliveira, Luciana G.; Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

  4. Cell culture based production of Homalodisca Coagulata Virus 1 (HOCV-1): Towards a glassy-winged Sharpshooter biological control system

    Science.gov (United States)

    We show that HoCV-1 can cause mortality and occurs in Texas populations of glassy-winged sharpshooter (GWSS; Homalodisca vitripennis, Hemiptera: Cicadellidae). The GWSS is an invasive pest and important vector of Xylella fastidiosa, a xylem-limited bacteria that causes Pierce’s disease in grapevine...

  5. Optimizing EPG settings to record blue-green sharpshooter X waves for future studies of grape host plant resistance to Xf inoculation

    Science.gov (United States)

    The long-term goal of the research reported in this review is to develop methodology for assessment of grapevine resistant to sharpshooter inoculation of Xylella fastidiosa(Xf)into healthy grapevines, thereby preventing Xf infection. Such a trait would be quite different from the more common mechani...

  6. Modeling deployment of Pierce’s disease resistant grapevines

    Science.gov (United States)

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  7. Playback interference of glassy-winged sharp shooter communication

    Science.gov (United States)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  8. Bacterial Leaf Scorch of Amenity Trees a Wide-Spread Problem of Economic Significance to the Urban Forest

    Science.gov (United States)

    James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton

    2003-01-01

    Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...

  9. Management of almond leaf scorch disease: long term data on yield, tree vitality, and disease progress

    Science.gov (United States)

    Almond leaf scorch (ALS) disease has been a chronic problem for California almond growers. This disease is caused by the bacterial pathogen Xylella fastidiosa and is transmitted by xylem-feeding insects. Previous research suggested that retaining, rather than roguing, ALS-affected trees may be more ...

  10. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata

    OpenAIRE

    de Oliveira, Luciana G.; Tormet Gonzalez, Gabriela D; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

  11. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  12. Glassy-winged sharpshooter oviposition effects on photinia volatile chemistry with implications on egg parasitoid effectiveness

    Science.gov (United States)

    An effective way to limit incidence of Pierce’s disease of grapevine is to reduce populations of glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), which transmit the causal bacterium, Xylella fastidiosa. One strategy is to utilize egg parasitoids such as ...

  13. Cells derived from the glassy-winged sharpshooter, Homalodisca vitripennis, support infection and replication of viral RNA from a clone of Homalodisca coagulata virus 1 (HoCV-1).

    Science.gov (United States)

    Pierce’s disease is a common and devastating disease of grapevines caused by the bacterium Xylella fastidiosa. The bacterium is often transmitted to plants by the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Hemiptera: Cicadellidae) which has become a high profile pest insect targete...

  14. Propagation of Homalodisca Coagulata Virus-01 via Homalodisca Vitripennis cell culture

    Science.gov (United States)

    The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa, a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevin...

  15. Preservação de fungos fitopatogênicos habitantes do solo Storage of soilborne phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    César J. Bueno

    2006-03-01

    Full Text Available A preservação de fungos fitopatogênicos por longos períodos de tempo é importante para que pesquisas possam ser realizadas a qualquer momento. Os fungos habitantes do solo são organismos que podem produzir estruturas de resistência em face de situações adversas, tais como ausência de hospedeiros e ou condições climáticas desfavoráveis para a sua sobrevivência. O objetivo deste trabalho foi desenvolver metodologias de preservação de estruturas de resistência para os fungos Fusarium oxysporum f.sp. lycopersici raça 2, Macrophomina phaseolina, Rhizoctonia solani AG4 HGI, Sclerotium rolfsii, Sclerotinia sclerotiorum e Verticillium dahliae. O delineamento foi inteiramente casualizado, com um método de produção de estruturas para cada fungo, submetido a três tratamentos [temperatura ambiente de laboratório (28±2ºC, de geladeira (5ºC e de freezer (-20ºC] e com dois frascos por temperatura. Mensalmente, e por um período de um ano, a sobrevivência e o vigor das colônias de cada patógeno foram avaliadas em meios de cultura específicos. Testes de patogenicidade foram realizados após um ano de preservação, com as estruturas que sobreviveram aos melhores tratamentos (temperatura para todos os fungos. As melhores temperaturas (tratamentos para preservar os fungos foram: a F. oxysporum f.sp. lycopersici em temperatura de refrigeração e de freezer (5,2 e 2,9 x 10³ufc.g-1 de talco, respectivamente; b M. phaseolina em temperatura de refrigeração [100% de sobrevivência (S e índice 3 de vigor (V] e S. rolfsii em temperatura ambiente (74,4% S e 1 V e c S. sclerotiorum e V. dahliae, ambos em temperatura de freezer (100% S e 3 V. Após um ano de preservação, somente V. dahliae perdeu a patogenicidade na metodologia desenvolvida.Preservation of soilborne phytopathogenic fungi for long periods of time is important so that researches can be followed up at any moment. Soilborne phytopathogenic fungi are organisms that can

  16. Exploring the Potentials of Lysinibacillus sphaericus ZA9 for Plant Growth Promotion and Biocontrol Activities against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Zakira Naureen

    2017-08-01

    Full Text Available There is an ongoing hunt for biologically active compounds that can combat phytopathogenic fungi and improve plant growth without causing any hazards to the environment. Consequently the present study aims at deciphering the plant growth promotion and antifungal capability of Lysinibacillus sphaericus ZA9. The bacterium was previously isolated and identified in our laboratory from maize rhizosphere using 16S rRNA gene sequencing. The test bacterium L. sphaericus ZA9 was found to produce high quantity of IAA (697 μg/ mL; siderophores (195.79 μg/ mL, HCN and hydrolytic enzyme as compared to the reference strain Bacillus sphaericus Z2-7. The bacterium was also capable of solubilizing silicates (Si, phosphates (P, and potassium (K. The bacterium enhanced the seedling vigor and germination of seeds pretreated with it and promoted the shoot length of both cucumber and tomato seeds in greenhouse experiment. L. sphaericus ZA9 and its cell free culture supernatant showed varied antagonistic behavior against Alternaria alternata, Curvularia lunata, Aspergillus sp., Sclerotinia sp., Bipolaris spicifera, Trichophyton sp. Fermentation broth culture of L. sphaericus ZA9 was then used to isolate antifungal metabolites by silica column chromatography. Identification and determination of antifungal compounds was carried out by Thin-layer chromatography (TLC followed by NMR spectroscopy. Two compounds were isolated and identified as 2-pentyl-4-quinolinecarboxylic acid (C15H17NO2 which is a quinoline alkaloid and 1- methylcyclohexene which is a cycloalkene. Compound 1; 2-Penthyl-4-quinolinecarboxylic acid was found to be highly antagonistic against most of the fungi tested as compared to the bacterium itself. Its activity was comparable to that of fungicide Benlate, while compound 2; 1- methylcyclohexene did not show any antifungal activity.

  17. Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Sathiyabama, Muthukrishnan

    2014-08-01

    An alkaline serine protease producing strain Alternaria solani was optimized for its enzyme production under submerged conditions. The maximum production of protease by A. solani was achieved by using sodium nitrate at the optimum concentration of 0.2% w/v. A. solani produced higher quantities (3.75 [unit/mg of protein]) of an inducible extracellular proteases on day 9 after incubation in czapek's dox broth medium amended with 1% casein as an inducer at pH 8.5, temperature 27 °C and 3% sucrose as carbon source. Extracellular proteases were precipitated by ammonium sulphate saturation (80%) method and purified on Sephadex G-100 column chromatography. The molecular mass of SDS-PAGE and Sephadex G-100 Column Gel permeation chromatography purified protease was estimated to 42 kDa. In addition, trypsin digestion of 42 kDa protein band was carried out and analyzed by MALDI-TOF for the identification of protease. The sequence IKELATNGVVTNVK (378-391) segment of the alkaline serine protease was found by using MS/MS spectrum at 1485 m/z from the purified fraction. It showed optimal activity at 50 °C and pH 9-10 and broad pH stability between pH 6-12. The protease activity was inhibited by phenyl methyl sulfonyl fluoride (PMSF), all the results indicated that the presence of a serine residue in the active site and is thus most likely a member of the serine protease family. This may function as a virulence protein during pathogenesis by A. solani. The results suggested that the presence of appreciable extracellular proteolytic activity in filamentous fungi may serve as a marker of their phytopathogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. THE IMPACT OF FERTILIZATION AND FOLIAR STIMULATION PRODUCTS BOTH ON INCREASING THE RESISTANCE TO MAJOR PHYTOPATHOGENS ATTACKS, AND ON INCREASING THE QUANTITY AND QUALITY OF WINE GRAPES HARVEST

    Directory of Open Access Journals (Sweden)

    Cristina BUNESCU

    2014-12-01

    Full Text Available The paper aimed to demonstrate the impact of fertilization and foliar stimulation products both on increasing the resistance to major phytopathogens attacks, and on increasing the quantity and quality of wine grapes harvest. Applying the foliar fertilizer products Plonvit Kali (c1, Tytanit (c2 and Optysil (c3 to vines, for a period of three years (2011/2013, in phenophases of intensive growth of shoots and grapes at approved dosages, simultaneously with pesticide treatment, not only a reduction of pathogenic fungi attack was obtained, but also and an increase of harvest without diminishing the quality of the grapes.

  19. Dicty_cDB: Contig-U11048-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available :none) Polynucleobacter necessarius sub... 63 3e-08 CP000614_1758( CP000614 |pid:none) Burkholderia vietnam...L939122_50( AL939122 |pid:none) Streptomyces coelicolor A3(2) com... 53 4e-05 AE009442_1350( AE009442 |pid:none) Xylella fastidi...:none) Streptomyces coelicolor A3(2) co... 54 1e-05 AP008957_1332( AP008957 |pid:none) Rhodoco...:none) Xylella fastidiosa 9a5c, comple... 54 2e-05 AE016853_1743( AE016853 |pid:none) Pseudomonas syringae...:none) Xylella fastidiosa M23, complet... 53 4e-05 AE004091_2829( AE004091 |pid:none) Pseudomonas aerugin

  20. Essential oil composition and antifungal activity of Melissa officinalis originating from north-Est Morocco, against postharvest phytopathogenic fungi in apples.

    Science.gov (United States)

    El Ouadi, Y; Manssouri, M; Bouyanzer, A; Majidi, L; Bendaif, H; Elmsellem, H; Shariati, M A; Melhaoui, A; Hammouti, B

    2017-06-01

    To investigate biological control methods against post-harvest phytopathogenic fungi in apples, tests on the antifungal activity of essential oil of Melissa officinalis were carried out. The essential oil, obtained by hydrodistillation, was analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Analysis of the essential oil was able to detect 88.7% of the components. The main components are P-mentha-1,2,3-triol (13.1%), P-menth-3-en-8-ol (8.8%), pulegone (8.8%), piperitynone oxide (8.4%) and 2-piperitone oxide (7.3%). The determination of the antifungal activity of the essential oil of M. officinalisis carried out in vitro using the technique of poison food (PF) and the volatile activity test (VA). To carry out these two tests, three phytopathogens that cause the deterioration of apples have been selected: Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer. The overall results of this study suggest that M. officinalis essential oil has potential as a bio-antifungal preservative for the control of post-harvest diseases of apple. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani.

    Science.gov (United States)

    Pereira, Jackeline L; Queiroz, Rayner M L; Charneau, Sébastien O; Felix, Carlos R; Ricart, Carlos A O; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J; Noronha, Eliane F

    2014-01-01

    The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.

  2. Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce's disease of grapevine in the U.S.

    Directory of Open Access Journals (Sweden)

    Leonard Nunney

    Full Text Available Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1 a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2 evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3 evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4 much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5 the circumstantial evidence of importation of known hosts (coffee plants from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously

  3. Genome-wide identification of HrpL-regulated genes in the necrotrophic phytopathogen Dickeya dadantii 3937.

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    Full Text Available BACKGROUND: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. METHODOLOGY/PRINCIPAL FINDINGS: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937, transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cut-off value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA. In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. CONCLUSION/SIGNIFICANCES: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937 through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for

  4. Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Chandrasekar, Raman; Sa, Tongmin; Sathiyabama, Muthukrishnan

    2014-07-01

    Serine proteases are involved in an enormous number of biological processes. The present study aims at characterizing three-dimensional (3D) molecular architecture of serine proteases from early blight pathogen, Alternaria solani that are hypothesized to be markers of phytopathogenicity. A serine protease was purified to homogeneity and MALDI-TOF-MS/MS analysis revealed that protease produced by A. solani belongs to alkaline serine proteases (AsP). AsP is made up of 403 amino acid residues with molecular weight of 42.1 kDa (Isoelectric point - 6.51) and its molecular formula was C1859 H2930 N516 O595 S4 . AsP structure model was built based on its comparative homology with serine protease using the program, MODELER. AsP had 16 β-sheets and 10 α-helices, with Ser(350) (G347-G357), Asp(158) (D158-H169), and His(193) (H193-G203) in separate turn/coil structures. Biological metal binding region situated near 6th-helix and His(193) residue is responsible for metal binding site. Also, calcium ion (Ca(2+)) is coordinated by the carboxyl groups of Lys(84), Ile(85), Lys(86), Asp(87), Phe(88), Ala(89), Ala(90) (K84-A90) for first Ca(2+) binding site and carbonyl oxygen atom of Lys(244), Gly(245), Arg(246), Thr(247), Lys(248), Lys(249), and Ala(250) (K244-A250), for second Ca(2+) binding site. Moreover, Ramachandran plot analysis of protein residues falling into most favored secondary structures were determined (83.3%). The predicted molecular 3D structural model was further verified using PROCHECK, ERRAT, and VADAR servers to confirm the geometry and stereo-chemical parameters of the molecular structural design. The functional analysis of AsP 3D molecular structure predictions familiar in the current study may provide a new perspective in the understanding and identification of antifungal protease inhibitor designing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification

    Directory of Open Access Journals (Sweden)

    Amyotte Stefan G

    2012-07-01

    Full Text Available Abstract Background Verticillium dahliae (Vd and Verticillium albo-atrum (Va are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs have contributed to the generation of four lineage-specific (LS regions in VdLs.17. Results We present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102. Conclusions Copia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these

  6. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    Science.gov (United States)

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens.

  7. Draft Genome Sequences of Pseudomonas fluorescens Strains PA4C2 and PA3G8 and Pseudomonas putida PA14H7, Three Biocontrol Bacteria against Dickeya Phytopathogens.

    Science.gov (United States)

    Cigna, Jérémy; Raoul des Essarts, Yannick; Mondy, Samuel; Hélias, Valérie; Beury-Cirou, Amélie; Faure, Denis

    2015-01-29

    Pseudomonas fluorescens strains PA4C2 and PA3G8 and Pseudomonas putida strain PA14H7 were isolated from potato rhizosphere and show an ability to inhibit the growth of Dickeya phytopathogens. Here, we report their draft genome sequences, which provide a basis for understanding the molecular mechanisms involved in antibiosis against Dickeya.

  8. Rhizobium rubi(T): a gram-negative phytopathogenic bacterium expressing the Lewis B epitope on the outer core of its lipooligosaccharide fraction.

    Science.gov (United States)

    Gargiulo, Valentina; Garozzo, Domenico; Lanzetta, Rosa; Molinaro, Antonio; Sturiale, Luisa; De Castro, Cristina; Parrilli, Michelangelo

    2008-07-21

    The structure of the core oligosaccharide from the phytopathogenic bacterium Rhizobium rubi was deduced by combining information from complementary chemical approaches (alkaline and acid hydrolysis), similar to the "overlap peptide" strategy. This structure is new and it contains two main oligosaccharide backbones that differ in the substitution degree of the external Kdo unit. The relevant feature shared by both oligosaccharides is the presence of a tetrasaccharide motif that is similar to the blood group Lewis B antigen (Le(B)). This epitope differs from Le(B) in the glycosidic configuration of the glucosamine unit (alpha and not beta) and in the occurrence of acetyls substituents at O3 and/or O4 of the galactose moiety. Other notable structural features are the location of the Dha residue, the presence of a alpha-glucose unit that is linked to the inner Kdo unit, the high number of acid sugars and the highly branched core structure.

  9. Structural and functional characterization of the GalNAc/Gal-specific lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum (Lib.) de Bary.

    Science.gov (United States)

    Candy, Laure; Van Damme, Els J M; Peumans, Willy J; Menu-Bouaouiche, Laurence; Erard, Monique; Rougé, Pierre

    2003-08-22

    The lectin found in mycelium and sclerotes of the phytopathogenic fungus Sclerotinia sclerotiorum is a homodimer consisting of two identical non-covalently bound subunits of 16,000 Da. CD spectra analysis revealed that the S. sclerotiorum agglutinin (SSA) contains predominantly beta-sheet structures. SSA exhibits specificity towards GalNAc whereby the hydroxyls at positions 4 and 6 of the pyranose ring play a key role in the interaction with simple sugars. The carbohydrate-binding site of SSA can also accommodate disaccharides. The N-terminal sequence of SSA shares no significant similarity with any other protein except a lectin from the Sclerotiniaceae species Ciborinia camelliae. A comparison of SSA and the lectins from C. camelliae and some previously characterized lectins indicates that the Sclerotiniaceae lectins form a homogeneous family of fungal lectins. This newly identified lectin family, which is structurally unrelated to any other family of fungal lectins, is most probably confined to the Ascomycota.

  10. Heterologous expression of the glucose oxidase gene in Trichoderma atroviride leads enhanced ability to attack phytopathogenic fungi and induction of plant systemic disease resistance

    Institute of Scientific and Technical Information of China (English)

    Robert L Mach; Brunner Kurt; Matteo Lorito; Susanne Zeilinger; Rosalia Ciliento; Sheridan Woo

    2004-01-01

    @@ A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain Pl. goxA expression occurred immediately after contact with the plant pathogen,and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum.

  11. The alternative sigma factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp-inducing conditions.

    Science.gov (United States)

    Cesbron, Sophie; Paulin, Jean-Pierre; Tharaud, Michel; Barny, Marie-Anne; Brisset, Marie-Noëlle

    2006-04-01

    In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative sigma factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria.

  12. lpxC and yafS are the most suitable internal controls to normalize real time RT-qPCR expression in the phytopathogenic bacteria Dickeya dadantii.

    Directory of Open Access Journals (Sweden)

    Florence Hommais

    Full Text Available BACKGROUND: Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. RESULTS: We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC and ABF-0020529 (yafS were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. CONCLUSIONS: We have identified at least two genes, lpxC (ABF-0017965 and yafS (ABF-0020509, whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria.

  13. Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain

    Directory of Open Access Journals (Sweden)

    Karla Isabel eLira-De León

    2014-08-01

    Full Text Available The antimicrobial activity of twelve plant extracts was tested against the phytopathogens Alternaria alternata and Fusarium solani. In addition, the compatibility of the extracts towards Bacillus liqueniformis, a biofertilizer and a non-target microorganism, was assessed. Plants tested belong to Euphorbiaceae, Asteraceae, Crassulaceae, Rubiaceae, Convolvulaceae, Verbenaceae, Orchidaceae, Nyctaginaceae, Boraginaceae, and Tiliaecae families and were collected in the State of Oaxaca. The antifungal activity of the plant extracts (50 to 100 mg/mL against A. alternata and F. solani, was determined by measuring the mycelium radial growth and obtaining the minimum inhibitory concentration (MIC of fungal growth. In addition, with the aim of finding plant extracts which are compatible with a B. licheniformis biofertilizer strain and to test the nontoxic nature of the treatments, the toxicity of the extracts towards this strain was evaluated using the agar diffusion method. Azoxystrobin (12 μg and chloramphenicol (30 μg were used as positive controls for the pathogens and for the non-target bacteria, respectively. Plant extracts inhibited fungal growth in the ranges of 0.76 to 56.17 % against F. solani and 2.02 to 69.07 % against A. alternata. The extracts of Acalypha subviscida, Ipomoea murucoides, Tournefortia densiflora and Lantana achyranthifolia showed MIC values between 5.77-12.5 mg/mL for at least one of the fungal species. The best treatment, Adenophyllum aurantium, exhibited a maximum inhibition for both F. solani (56.17%, MIC = 7.78 mg/mL and A. alternata (68.64% MIC = 7.78 mg/mL, and resulted innocuous toward B. licheniformis. Therefore, this plant has an outstanding potential for the agroecological control of fungal phytopathogens in industrial crops.

  14. Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain

    Science.gov (United States)

    Lira-De León, Karla I.; Ramírez-Mares, Marco V.; Sánchez-López, Vladimir; Ramírez-Lepe, Mario; Salas-Coronado, Raúl; Santos-Sánchez, Norma F.; Valadez-Blanco, Rogelio; Hernández-Carlos, Beatriz

    2014-01-01

    The antimicrobial activity of 12 plant extracts was tested against the phytopathogens Alternaria alternata and Fusarium solani. In addition, the compatibility of the extracts toward Bacillus liqueniformis, a biofertilizer and a non-target microorganism, was assessed. Plants tested belong to the Euphorbiaceae, Asteraceae, Crassulaceae, Rubiaceae, Convolvulaceae, Verbenaceae, Orchidaceae, Nyctaginaceae, Boraginaceae, and Tiliaceae families and were collected in the State of Oaxaca. The antifungal activity of the plant extracts (50–100 mg/mL) against A. alternata and F. solani, was determined by measuring the mycelium radial growth and obtaining the minimum inhibitory concentration (MIC) of fungal growth. In addition, with the aim of finding plant extracts which are compatible with a B. licheniformis biofertilizer strain and to test the non-toxic nature of the treatments, the toxicity of the extracts toward this strain was evaluated using the agar diffusion method. Azoxystrobin (12 μg) and chloramphenicol (30 μg) were used as positive controls for the pathogens and for the non-target bacteria, respectively. Plant extracts inhibited fungal growth in the ranges of 0.76–56.17% against F. solani and 2.02–69.07% against A. alternata. The extracts of Acalypha subviscida, Ipomoea murucoides, Tournefortia densiflora and Lantana achyranthifolia showed MIC values between 5.77–12.5 mg/mL for at least one of the fungal species. The best treatment, Adenophyllum aurantium, exhibited a maximum inhibition for both F. solani (56.17%, MIC = 7.78 mg/mL) and A. alternata (68.64% MIC = 7.78 mg/mL), and resulted innocuous toward B. licheniformis. Therefore, this plant has an outstanding potential for the agroecological control of fungal phytopathogens in industrial crops. PMID:25147544

  15. Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain.

    Science.gov (United States)

    Lira-De León, Karla I; Ramírez-Mares, Marco V; Sánchez-López, Vladimir; Ramírez-Lepe, Mario; Salas-Coronado, Raúl; Santos-Sánchez, Norma F; Valadez-Blanco, Rogelio; Hernández-Carlos, Beatriz

    2014-01-01

    The antimicrobial activity of 12 plant extracts was tested against the phytopathogens Alternaria alternata and Fusarium solani. In addition, the compatibility of the extracts toward Bacillus liqueniformis, a biofertilizer and a non-target microorganism, was assessed. Plants tested belong to the Euphorbiaceae, Asteraceae, Crassulaceae, Rubiaceae, Convolvulaceae, Verbenaceae, Orchidaceae, Nyctaginaceae, Boraginaceae, and Tiliaceae families and were collected in the State of Oaxaca. The antifungal activity of the plant extracts (50-100 mg/mL) against A. alternata and F. solani, was determined by measuring the mycelium radial growth and obtaining the minimum inhibitory concentration (MIC) of fungal growth. In addition, with the aim of finding plant extracts which are compatible with a B. licheniformis biofertilizer strain and to test the non-toxic nature of the treatments, the toxicity of the extracts toward this strain was evaluated using the agar diffusion method. Azoxystrobin (12 μg) and chloramphenicol (30 μg) were used as positive controls for the pathogens and for the non-target bacteria, respectively. Plant extracts inhibited fungal growth in the ranges of 0.76-56.17% against F. solani and 2.02-69.07% against A. alternata. The extracts of Acalypha subviscida, Ipomoea murucoides, Tournefortia densiflora and Lantana achyranthifolia showed MIC values between 5.77-12.5 mg/mL for at least one of the fungal species. The best treatment, Adenophyllum aurantium, exhibited a maximum inhibition for both F. solani (56.17%, MIC = 7.78 mg/mL) and A. alternata (68.64% MIC = 7.78 mg/mL), and resulted innocuous toward B. licheniformis. Therefore, this plant has an outstanding potential for the agroecological control of fungal phytopathogens in industrial crops.

  16. Transcriptomic profiling of microbe-microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani.

    Science.gov (United States)

    Hennessy, Rosanna C; Glaring, Mikkel A; Olsson, Stefan; Stougaard, Peter

    2017-08-10

    Few studies to date report the transcriptional response of biocontrol bacteria toward phytopathogens. In order to gain insights into the potential mechanism underlying the antagonism of the antimicrobial producing strain P. fluorescens In5 against the phytopathogens Rhizoctonia solani and Pythium aphanidermatum, global RNA sequencing was performed. Differential gene expression profiling of P. fluorescens In5 in response to either R. solani or P. aphanidermatum was investigated using transcriptome sequencing (RNA-seq). Total RNA was isolated from single bacterial cultures of P. fluorescens In5 or bacterial cultures in dual-culture for 48 h with each pathogen in biological triplicates. RNA-seq libraries were constructed following a default Illumina stranded RNA protocol including rRNA depletion and were sequenced 2 × 100 bases on Illumina HiSeq generating approximately 10 million reads per sample. No significant changes in global gene expression were recorded during dual-culture of P. fluorescens In5 with any of the two pathogens but rather each pathogen appeared to induce expression of a specific set of genes. A particularly strong transcriptional response to R. solani was observed and notably several genes possibly associated with secondary metabolite detoxification and metabolism were highly upregulated in response to the fungus. A total of 23 genes were significantly upregulated and seven genes were significantly downregulated with at least respectively a threefold change in expression level in response to R. solani compared to the no fungus control. In contrast, only one gene was significantly upregulated over threefold and three transcripts were significantly downregulated over threefold in response to P. aphanidermatum. Genes known to be involved in synthesis of secondary metabolites, e.g. non-ribosomal synthetases and hydrogen cyanide were not differentially expressed at the time points studied. This study demonstrates that genes possibly involved in

  17. The Transition from a Phytopathogenic Smut Ancestor to an Anamorphic Biocontrol Agent Deciphered by Comparative Whole-Genome Analysis[W][OPEN

    Science.gov (United States)

    Lefebvre, François; Joly, David L.; Labbé, Caroline; Teichmann, Beate; Linning, Rob; Belzile, François; Bakkeren, Guus; Bélanger, Richard R.

    2013-01-01

    Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ∼23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles. PMID:23800965

  18. FTIR spectroscopic evaluation of changes in the cellular biochemical composition of the phytopathogenic fungus Alternaria alternata induced by extracts of some Greek medicinal and aromatic plants

    Science.gov (United States)

    Skotti, Efstathia; Kountouri, Sophia; Bouchagier, Pavlos; Tsitsigiannis, Dimitrios I.; Polissiou, Moschos; Tarantilis, Petros A.

    2014-06-01

    In this study, the biological activity of aquatic extracts of selected Greek medicinal and aromatic plants to the phytopathogenic fungus Alternaria alternata was investigated. Lamiaceae species (Hyssopus officinalis L., Melissa officinalis L., Origanum dictamnus L., Origanum vulgare L. and Salvia officinalis L.) were found to enhance significantly the mycelium growth whereas Crocus sativus appears to inhibit it slightly. M. officinalis and S. officinalis caused the highest stimulation in mycelium growth (+97%) and conidia production (+65%) respectively. In order to further investigate the bioactivity of plant extracts to A. alternata, we employed Fourier Transform Infrared Spectroscopy (FTIR). Differences of original spectra were assigned mainly to amides of proteins. The second derivative transformation of spectra revealed changes in spectral regions corresponding to absorptions of the major cellular constituents such as cell membrane and proteins. Principal component analysis of the second derivative transformed spectra confirmed that fatty acids of the cell membranes, amides of proteins and polysaccharides of the cell wall had the major contribution to data variation. FTIR band area ratios were found to correlate with fungal mycelium growth.

  19. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    Science.gov (United States)

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-07-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

  20. MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis.

    Science.gov (United States)

    Tenorio-Gómez, María; de Sena-Tomás, Carmen; Pérez-Martín, Jose

    2015-01-01

    DNA damage response (DDR) leads to DNA repair, and depending on the extent of the damage, to further events, including cell death. Evidence suggests that cell differentiation may also be a consequence of the DDR. During the formation of the infective hypha in the phytopathogenic fungus Ustilago maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2 cell cycle arrest, which in turn is essential to display the virulence program. However, the triggering factor of DDR in this process has remained elusive. In this report we provide data suggesting that no DNA damage is associated with the activation of the DDR during the formation of the infective filament in U. maydis. We have analyzed bulk DNA replication during the formation of the infective filament, and we found no signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a surrogate marker of the presence of DNA damage, we were unable to detect any sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1 complexes, both instrumental to transmit the DNA damage signal, are required for the induction of the above mentioned cell cycle arrest, as well as for virulence. In contrast, we have found that the claspin-like protein Mrc1, which in other systems serves as scaffold for Atr1 and Chk1, was required for both processes. We discuss possible alternative ways to trigger the DDR, independent of DNA damage, in U. maydis during virulence program activation.

  1. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    Science.gov (United States)

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

  2. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens

    Science.gov (United States)

    Mishra, Sandhya; Singh, Braj Raj; Naqvi, Alim H.; Singh, H. B.

    2017-01-01

    Stenotrophomonas sp. is emerging as a popular microbe of global concern with various potential ecological roles. Biosynthesis of gold and silver nanoparticles (AgNPs) using this bacterial strain has shown promising applications in life sciences. However, there is no report on efficient agricultural applications of biosynthesized AgNPs using Stenotrophomonas sp. In this regard, successful biosynthesis of AgNPs using Stenotrophomonas sp. BHU-S7 (MTCC 5978) was monitored by Uv-visible spectrum showing surface plasmon resonance (SPR) peak at 440 nm. The biosynthesized AgNPs were spherical with an average mean size of ~12 nm. The antifungal efficacy of biosynthesized AgNPs against foliar and soil-borne phytopathogens was observed. The inhibitory impact of AgNPs (2, 4, 10 μg/ml) on conidial germination was recorded under in vitro conditions. Interestingly, sclerotia of Sclerotium rolfsii exposed to AgNPs failed to germinate on PDA medium and in soil system. Moreover, AgNPs treatment successfully managed collar rot of chickpea caused by S. rolfsii under greenhouse conditions. The reduced sclerotia germination, phenolic acids induction, altered lignification and H2O2 production was observed to be the probable mechanisms providing protection to chickpea against S. rolfsii. Our data revealed that AgNPs treated plants are better equipped to cope with pathogen challenge pointing towards their robust applications in plant disease management. PMID:28345581

  3. The high-affinity phosphodiesterase BcPde2 has impact on growth, differentiation and virulence of the phytopathogenic ascomycete Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Karin Harren

    Full Text Available Components of the cAMP signaling pathway, such as the adenylate cyclase Bac and the protein kinase A (PKA were shown to affect growth, morphogenesis and differentiation as well as virulence of the phytopathogenic fungus Botrytis cinerea. While loss of Bac caused drastically reduced intracellular cAMP levels, deletion of the PKA resulted in extremely increased cAMP concentrations. To regulate the intracellular level of the second messenger cAMP, a balance between its biosynthesis through adenylate cyclase activity and its hydrolysis by phosphodiesterases (PDEs is crucial. Here, we report the functional characterization of the two PDEs in the ascomycete B. cinerea, BcPde1 and BcPde2. While deletion of bcpde2 resulted in severely affected vegetative growth, conidiation, germination and virulence, the bcpde1 deletion strain displayed a wild-type-like phenotype. However, the double bcpde1/2 deletion mutant exhibited an even stronger phenotype. Localization studies revealed that BcPde2 accumulates at the plasma membrane, but is also localized in the cytoplasm. BcPde1 was shown to be distributed in the cytoplasm as well, but also accumulates in so far unknown mobile vesicles. Overexpression of bcpde1 in the Δbcpde2 background rescued the deletion phenotype, and in addition an increased transcript level of bcpde1 in the Δbcpde2 strain was observed, indicating redundant functions of both PDEs and an interdependent gene expression.

  4. The response of the grape berry moth (Lobesia botrana) to a dietary phytopathogenic fungus (Botrytis cinerea): the significance of fungus sterols.

    Science.gov (United States)

    Mondy; Corio-Costet

    2000-12-01

    A Tortricidae (Lobesia botrana) has a mutualistic relationship with the fungus (Botrytis cinerea). In this study, we investigated the growth, survival, fecundity and amount of sterols and steroids in larvae of this vineyard pest reared on artificial diets containing mycelium (3%) or purified sterols (0.01%) of the phytopathogenic fungus. Two principal questions related to the physiological and biochemical basis of this mutualistic relationship were addressed: (1) how the fungus influences growth, survival, fecundity, sterol and steroid contents of the insect and (2) are fungal sterols involved in the biochemical basis of mutualism? The presence of fungus in the diet led to a decrease of total duration of larval development (mean gain 5.1-9.4 days compared to the total duration in control of 42.9 days), an increase in survival (mean gain 50-76.3%) and fecundity (gain of 94-102%). These positive effects of the fungus on the biology and physiology of the insect were directly correlated to the presence of fungal sterols in the diet. Fungal sterols are one of the biochemical basis of the mutualistic relationship between L. botrana and B. cinerea.

  5. Mobilization of horizontally acquired island 2 is induced in planta in the phytopathogen Pectobacterium atrosepticum SCRI1043 and involves the putative relaxase ECA0613 and quorum sensing.

    Science.gov (United States)

    Vanga, Bhanupratap R; Ramakrishnan, Pavithra; Butler, Ruth C; Toth, Ian K; Ronson, Clive W; Jacobs, Jeanne M E; Pitman, Andrew R

    2015-11-01

    Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.

  6. New Protein-Protein Interactions Identified for the Regulatory and Structural Components and Substrates of the Type III Secretion System of the Phytopathogen Xanthomonas axonopodis Pathovar citri

    Science.gov (United States)

    Alegria, Marcos C.; Docena, Cassia; Khater, Leticia; Ramos, Carlos H. I.; da Silva, Ana C. R.; Farah, Chuck S.

    2004-01-01

    We have initiated a project to identify protein-protein interactions involved in the pathogenicity of the bacterial plant pathogen Xanthomonas axonopodis pv. citri. Using a yeast two-hybrid system based on Gal4 DNA-binding and activation domains, we have focused on identifying interactions involving subunits, regulators, and substrates of the type III secretion system coded by the hrp (for hypersensitive response and pathogenicity), hrc (for hrp conserved), and hpa (for hrp associated) genes. We have identified several previously uncharacterized interactions involving (i) HrpG, a two-component system response regulator responsible for the expression of X. axonopodis pv. citri hrp operons, and XAC0095, a previously uncharacterized protein encountered only in Xanthomonas spp.; (ii) HpaA, a protein secreted by the type III secretion system, HpaB, and the C-terminal domain of HrcV; (iii) HrpB1, HrpD6, and HrpW; and (iv) HrpB2 and HrcU. Homotropic interactions were also identified for the ATPase HrcN. These newly identified protein-protein interactions increase our understanding of the functional integration of phytopathogen-specific type III secretion system components and suggest new hypotheses regarding the molecular mechanisms underlying Xanthomonas pathogenicity. PMID:15342589

  7. Tallow amphopolycarboxyglycinate-stabilized silver nanoparticles: new frontiers in development of plant protection products with a broad spectrum of action against phytopathogens

    Science.gov (United States)

    Krutyakov, Yurii A.; Kudrinskiy, Alexey A.; Zherebin, Pavel M.; Yapryntsev, Alexey D.; Pobedinskaya, Marina A.; Elansky, Sergey N.; Denisov, Albert N.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.

    2016-07-01

    Sustainable agriculture calls for minimal use of agrochemicals in order to protect the environment. It has caused an increase in the rate of nanoparticles use, in particular silver nanoparticles (AgNPs) due to their safety for mammals, unique biological activity and a broad spectrum of action against fungal and bacterial pathogens. Until now the use of AgNPs dispersions in the agricultural sector has been essentially limited due to many factors decreased their stability (mixing with other pesticides, presence of electrolytes). We present a versatile synthesis of polyampholyte surfactant (tallow amphopolycarboxyglycinate) stabilized AgNPs. We took a close look at unique aggregation behavior (via dynamic light scattering and UV-vis spectroscopy) and biocidal activity of obtained silver colloids. AgNPs are characterized by exclusively high aggregative stability in the presence of coagulating agents NaNO3 and NaSO4 (up to 1 M), during drying/redispergation, and frost/defrost cycles. The dispersion of AgNPs shows high biocidal activity (EC50 is ten times lower than commercial species ones) with respect to Phytophthora infestans and phytopathogenic fungi. This points to the possibility of successful application of silver preparations within agriculture with the goal of partial reduction of the use of toxic and expensive synthetic antibiotics and pesticides.

  8. Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts

    Directory of Open Access Journals (Sweden)

    Andrew Day

    2017-08-01

    Full Text Available Dickeya solani is an economically important phytopathogen widespread in mainland Europe that can reduce potato crop yields by 25%. There are no effective environmentally-acceptable chemical systems available for diseases caused by Dickeya. Bacteriophages have been suggested for use in biocontrol of this pathogen in the field, and limited field trials have been conducted. To date only a small number of bacteriophages capable of infecting D. solani have been isolated and characterized, and so there is a need to expand the repertoire of phages that may have potential utility in phage therapy strategies. Here we describe 67 bacteriophages from environmental sources, the majority of which are members of the viral family Myoviridae. Full genomic sequencing of two isolates revealed a high degree of DNA identity with D. solani bacteriophages isolated in Europe in the past 5 years, suggesting a wide ecological distribution of this phage family. Transduction experiments showed that the majority of the new environmental bacteriophages are capable of facilitating efficient horizontal gene transfer. The possible risk of unintentional transfer of virulence or antibiotic resistance genes between hosts susceptible to transducing phages cautions against their environmental use for biocontrol, until specific phages are fully tested for transduction capabilities.

  9. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens

    KAUST Repository

    Decker, Eva L.

    2017-03-06

    In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.

  10. Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source.

    Science.gov (United States)

    Dumas, B; Borel, C; Herbert, C; Maury, J; Jacquet, C; Balsse, R; Esquerré-Tugayé, M T

    2001-07-11

    The gene CLPT1 (Colletotrichum lindemuthianum Protein Transport 1) encoding a Rab/GTPase was isolated from the filamentous fungus Colletotrichum lindemuthianum, the causal agent of bean anthracnose. At the amino acid level, CLPT1 shows between 54 and 80% identity to SEC4-like proteins, a class of molecules required for intracellular vesicular transport in yeasts. In particular, typical SEC4 domains involved in nucleotide binding and membrane attachment are present in the CLPT1 sequence. Functional identity of CLPT1 with SEC4 was confirmed by complementation of the Saccharomyces cerevisiae sec4-8 mutation. This is the first report of a gene involved in the control of intracellular vesicular trafficking in a phytopathogenic fungus. RNA blot analyses of CLPT1 expression were performed during in vitro growth of the fungus on synthetic media containing glucose or pectin, as single carbon source. The accumulation of CLPT1 mRNA was strongly increased on pectin, a plant cell wall polysaccharide that induces the production of extracellular pectinases, whereas the level of CLPT1 mRNA was below the detection threshold on glucose. These results suggest that CLPT1 is mainly involved in protein secretion and that the production of extracellular enzymes potentially involved in pathogenesis in filamentous fungi is sustained by induction of the genes involved in the secretory machinery.

  11. Eukaryotic extracellular catalase–peroxidase from Magnaporthe grisea – Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group

    Science.gov (United States)

    Zámocký, Marcel; Droghetti, Enrica; Bellei, Marzia; Gasselhuber, Bernhard; Pabst, Martin; Furtmüller, Paul G.; Battistuzzi, Gianantonio; Smulevich, Giulietta; Obinger, Christian

    2012-01-01

    All phytopathogenic fungi have two catalase–peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase–peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV–Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°′ of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a Kd value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure–function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host–pathogen interaction. PMID:21971530

  12. Eukaryotic extracellular catalase-peroxidase from Magnaporthe grisea - Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group.

    Science.gov (United States)

    Zámocký, Marcel; Droghetti, Enrica; Bellei, Marzia; Gasselhuber, Bernhard; Pabst, Martin; Furtmüller, Paul G; Battistuzzi, Gianantonio; Smulevich, Giulietta; Obinger, Christian

    2012-03-01

    All phytopathogenic fungi have two catalase-peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase-peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV-Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°' of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a K(d) value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure-function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host-pathogen interaction.

  13. MRN- and 9-1-1-Independent Activation of the ATR-Chk1 Pathway during the Induction of the Virulence Program in the Phytopathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    María Tenorio-Gómez

    Full Text Available DNA damage response (DDR leads to DNA repair, and depending on the extent of the damage, to further events, including cell death. Evidence suggests that cell differentiation may also be a consequence of the DDR. During the formation of the infective hypha in the phytopathogenic fungus Ustilago maydis, two DDR kinases, Atr1 and Chk1, are required to induce a G2 cell cycle arrest, which in turn is essential to display the virulence program. However, the triggering factor of DDR in this process has remained elusive. In this report we provide data suggesting that no DNA damage is associated with the activation of the DDR during the formation of the infective filament in U. maydis. We have analyzed bulk DNA replication during the formation of the infective filament, and we found no signs of impaired DNA replication. Furthermore, using RPA-GFP fusion as a surrogate marker of the presence of DNA damage, we were unable to detect any sign of DNA damage at the cellular level. In addition, neither MRN nor 9-1-1 complexes, both instrumental to transmit the DNA damage signal, are required for the induction of the above mentioned cell cycle arrest, as well as for virulence. In contrast, we have found that the claspin-like protein Mrc1, which in other systems serves as scaffold for Atr1 and Chk1, was required for both processes. We discuss possible alternative ways to trigger the DDR, independent of DNA damage, in U. maydis during virulence program activation.

  14. Aspergillus piperis A/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen Pythium aphanidermatum

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2016-01-01

    Full Text Available Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS region, β-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing. [Projekat Ministarstva nauke Republike Srbije, br. TR31080 i br. ON173048, i EU Commission project AREA, br.316004

  15. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes.

    Science.gov (United States)

    Tan, H; West, J A; Ramsay, J P; Monson, R E; Griffin, J L; Toth, I K; Salmond, G P C

    2014-07-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen Pectobacterium atrosepticum strain SCRI1043. MS-based detection of c-di-GMP and 5'-phosphoguanylyl-(3'-5')-guanosine in these strains revealed that overexpression of most genes promoted modest 1-10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively. Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6-N-acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in Pe. atrosepticum. However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c

  16. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Directory of Open Access Journals (Sweden)

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  17. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens.

    Science.gov (United States)

    Saratale, Rijuta G; Benelli, Giovanni; Kumar, Gopalakrishnan; Kim, Dong Su; Saratale, Ganesh D

    2017-07-11

    In recent years, the use of nanoparticle-based antimicrobials has been increased due to many advantages over conventional agrochemicals. This study investigates the utilization of common medicinal plant dandelion, Taraxacum officinale, for the synthesis of silver nanoparticles (TOL-AgNPs). AgNPs were evaluated for antimicrobial activity against two important phytopathogens, Xanthomonas axonopodis and Pseudomonas syringae. The morphology, size, and structure of TOL-AgNPs were characterized using UV-visible spectroscopy and X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) showed the presence of phytochemicals involved during synthesis of NPs. High-resolution transmission electron microscopy (HR-TEM) analysis shed light on the size of monodispersed spherical AgNPs ranging between 5 and 30 nm, with an average particle size of about 15 nm. The TOL-AgNPs (at 20 μg/mL concentration) showed significant antibacterial activity with significant growth inhibition of phytopathogens X. axonopodis (22.0 ± 0.84 mm) and P. syringae (19.5 ± 0.66 mm). The synthesized AgNPs had higher antibacterial activity in comparison with commercial AgNPs. Synergistic assays with standard antibiotics revealed that nanoformulations with tetracycline showed better broad-spectrum efficiency to control phytopathogens. They also possessed significant antioxidant potential in terms of ABTS (IC50 = 45.6 μg/mL), DPPH (IC50 = 56.1 μg/mL), and NO (IC50 = 55.2 μg/mL) free radical scavenging activity. The TOL-AgNPs showed high cytotoxic effect against human liver cancer cells (HepG2). Overall, dandelion-mediated AgNPs synthesis can represent a novel approach to develop effective antimicrobial and anticancer drugs with a cheap and eco-friendly nature.

  18. Alternation of host plants as a survival mechanism of leafhoppers Dilobopterus costalimai and Oncometopia facialis (Hemiptera: Cicadellidae), vectors of the Citrus Variegated Chlorosis (CVC)

    OpenAIRE

    José Maria Milanez; José Roberto Postali Parra; Denise Cristina Magri

    2001-01-01

    Dilobopterus costalimai (Young) and Oncometopia facialis (Signoret) are two of the most important species of citrus leafhoppers, vectors of bacterium Xylella fastidiosa which causes the Citrus Variegated Chlorosis (CVC) disease. To develop a rearing technique for these species under laboratory conditions, the egg laying preference and nymph development were studied in different breeding systems: Rangpur lime (Citrus limonia) and "falso boldo" (Vernonia condensata) as host plants. Trials were ...

  19. The H2020 POnTE Project Web site: an online resource for scientific dissemination on emerging pest diseases

    OpenAIRE

    Morelli, Massimiliano; Saponari, Maria; Tavano, Danilo; Boscia, Donato; Obradovic, Aleksa

    2016-01-01

    The International Research Consortium POnTE (Pest Organism Threatening Europe) is being funded by the European Commission under the Horizon 2020 programme to investigate four pathogens (i.e. Xylella fastidiosa, Candidatus Liberibacter solanacearum, Hymenoscyphus fraxineus and Phythophtora spp.) representing a major threat to strategic crops and natural landscapes in the EU, and identify integrated management strategies for their containment. The wide range of studies conducted within the Proj...

  20. The H2020 POnTE Project Web site: an online resource for scientific dissemination on emerging pest diseases

    OpenAIRE

    Morelli, Massimiliano; Saponari, Maria; Tavano, Danilo; Boscia, Donato; Obradovic, Aleksa

    2017-01-01

    The International Research Consortium POnTE (Pest Organism Threatening Europe) is being funded by the European Commission under the Horizon 2020 programme to investigate four pathogens (i.e. Xylella fastidiosa, CandidatusLiberibacter solanacearum, Hymenoscyphus fraxineus and Phythophtora spp.) representing a major threat to strategic crops and natural landscapes in the EU, and identify integrated management strategies for their containment. The wide range of studies conducted within the Proje...

  1. THE H2020 PONTE PROJECT WEB SITE: AN ONLINE RESOURCE FOR SCIENTIFIC DISSEMINATION ON EMERGING PEST DISEASES.

    OpenAIRE

    M. Morelli1, M. Saponari1, D. Tavano1, D. Boscia1, A. Obradović2.

    2016-01-01

    The International Research Consortium POnTE (Pest Organism Threatening Europe) is being funded by the European Commission under the Horizon 2020 programme to investigate four pathogens (i.e. Xylella fastidiosa, Candidatus Liberibacter solanacearum, Hymenoscyphus fraxineus and Phythophtora spp.) representing a major threat to strategic crops and natural landscapes in the EU, and to identify integrated management strategies for their containment. The wide range of studies c...

  2. A Facile and Efficient Synthesis of Diaryl Amines or Ethers under Microwave Irradiation at Presence of KF/Al2O3 without Solvent and Their Anti-Fungal Biological Activities against Six Phytopathogens

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-09-01

    Full Text Available A series of diaryl amines, ethers and thioethers were synthesized under microwave irradiation efficiently at presence of KF/Al2O3 in 83%–96% yields without any solvent. The salient characters of this method lie in short reaction time, high yields, general applicability to substrates and simple workup procedure. At the same time, their antifungal biological activities against six phytopathogen were evaluated. Most of the compounds (3b, 3c, 3g–o are more potent than thiophannate-methyl against to Magnaporthe oryzae. This implies that diaryl amine or ether moiety may be helpful in finding a fungicide against Magnaporthe oryzae.

  3. Isolation, characterization and molecular three-dimensional structural predictions of metalloprotease from a phytopathogenic fungus, Alternaria solani (Ell. and Mart.) Sor.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Chandrasekar, Raman; Chun, Se-Chul; Sathiyabama, Muthukrishnan

    2016-08-01

    The present study aims at isolation, identification, characterization and prediction of three-dimensional molecular architecture of a proteolytic enzyme from the early blight pathogen, Alternaria solani which are hypothesized to be a marker of phytopathogenicity. Maximum enzyme production by A. solani was observed in Czapex's Dox broth amended with 2% (w/v) casein than other inducer amendments. Results indicate that the enzyme remained highly active in a pH range of 7.0-10.0 and a temperature range of 45-50°C. The enzyme was strongly inhibited by EDTA, whereas phenylmethylsulfonyl fluoride and monovalent cations (Na(+), K(+)) had little effect. Metal ions such as MgSO4, CaCl2, KCl at 10 mM concentration showed a stimulatory effect (>85%) on protease activity. Matrix-assisted laser desorption and ionization time of flight/mass spectrometry analysis of partially purified enzyme revealed the presence of protease belonging to a keratinolytic protein (metalloprotease) of exopeptidase nature. Putative A. solani keratinolytic enzyme (AsK) is made up of 216 amino acid residues with molecular weight (MW) 24.5 kDa, having a molecular formula of C1094H1704N290O342S4. Ramachandran plot analysis of the protein residues falling into the most favored secondary structures was observed at 84.2%. The major protein structural blocks, 2-β-sheets, and 9-α-helices have a greater tendency to be conserved during the evolutionary process than do mere sequences of amino acids. Besides, AsK, model prediction showed the presence of a Zinc atom at helix regions (Helix 3, 6, 7: His(57), His(130), His(169), and Cys(123)). Thus, it can be concluded that the major proteinases of AsK are divalent cation-requiring metalloproteinases and make them potential targets of protease inhibitors designing. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Antibiosis and dark-pigments secretion by the phytopathogenic and environmental fungal species after interaction in vitro with a Bacillus subtilis isolate

    Directory of Open Access Journals (Sweden)

    Alexandre Paulo Machado

    2010-10-01

    Full Text Available In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.Na presente investigação, nosso objetivo principal foi relatar diferentes interações in vitro de um isolado bacteriano ambiental com espécies fúngicas. Através da identificação clássica, nós verificamos que o bacilo ambiental apresentava endósporos terminais e subterminais, características metabólicas de mesofilia, acidofilia, halotolerância, redução de nitrato e produção de enzimas, como caseinase e catalase. Análise de seqüências parciais do gene 16S RNAr contendo de 400 a 700 bases revelou identidade com gênero Bacillus. No entanto, a espécie Bacillus subtilis foi confirmada somente depois da análise de seqüências dos genes rpoB, gyrA, and 16S RNAr. Intensa atividade inibitória aos fungos ambientais, como Penicillium sp, Aspergillus flavus, A. niger, e fitopatogênicos, como Colletotrichum sp, Alternaria alternata, Fusarium solani

  5. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms.

    Science.gov (United States)

    Lara-Márquez, Alicia; Zavala-Páramo, María G; López-Romero, Everardo; Calderón-Cortés, Nancy; López-Gómez, Rodolfo; Conejo-Saucedo, Ulises; Cano-Camacho, Horacio

    2011-12-09

    Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides.The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin lyases. A time-course analysis

  6. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms

    Directory of Open Access Journals (Sweden)

    Lara-Márquez Alicia

    2011-12-01

    Full Text Available Abstract Background Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Results Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. Conclusions The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of

  7. Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system.

    Science.gov (United States)

    Wibberg, Daniel; Rupp, Oliver; Jelonek, Lukas; Kröber, Magdalena; Verwaaijen, Bart; Blom, Jochen; Winkler, Anika; Goesmann, Alexander; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2015-06-10

    The phytopathogenic fungus Rhizoctonia solani AG1-IB of the phylum Basidiomycota affects various economically important crops comprising bean, rice, soybean, figs, cabbage and lettuce. The R. solani isolate 7/3/14 of the anastomosis group AG1-IB was deeply resequenced on the Illumina MiSeq system applying the mate-pair mode to improve its genome sequence. Assembly of obtained sequence reads significantly reduced the amount of scaffolds and improved the genome sequence of the isolate compared to the previous sequencing approach. The genome sequence of the AG1-IB isolate 7/3/14 now provides an up-graded basis to analyze genome features predicted to play a role in pathogenesis and for the development of strategies to antagonize the pathogenic impact of this fungus.

  8. Inibição do desenvolvimento de fungos fitopatogênicos por detergente derivado de óleo da mamona (Ricinus communis The castor oil plant detergent (Ricinus communis inhibits the asexual development of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Eunice Hitomi Takano

    2007-10-01

    Full Text Available No presente estudo avaliou-se o efeito fungitóxico do detergente derivado do óleo da mamona (Ricinus communis sobre o desenvolvimento dos fitopatógenos: Pyricularia grisea, Fusarium graminearum e Colletotrichum lindemuthianum. Seis concentrações do detergente (12,5mL L-1 a 300mL L-1 foram, individualmente, incorporadas ao Meio Basal; a seguir, após inoculação fúngica, o crescimento radial dos micélios foi avaliado. A inibição total do desenvolvimento de C. lindemuthianum e P. grisea foi observada entre as concentrações de 50mL L-1 e 200mL L-1, respectivamente. Com base no crescimento miceliano das colônias de F. graminearum, a atividade antifúngica do detergente do óleo da mamona (DOM determinou inibição variável entre 79,4 e 91% para a raça F2 e entre 80,7 e 90,7% para a raça F4. O detergente, nas concentrações de 100 a 300mL L-1, inibiu em 100% a germinação de conídios de F. graminearum (raças F-4 e F-2. Os resultados demonstram nítida atividade antifúngica do detergente derivado do óleo da mamona sobre fitopatógenos.In the present study the fungitoxic effect of the castor oil plant detergent (Ricinus communis on the development of the phytopathogens Pyricularia grisea, Fusarium graminearum and Colletotrichum lindemuthianum was evaluated. Six concentrations of the detergent (12.5mL L-1 to 300mL L-1 had been, individually, incorporated to the Basal Medium. After fungi inoculations, the radial growth of mycelia were evaluated. Detergent at 50mL L-1 and 200mL L-1 inhibited completely the development of P. grisea and C. lindemuthianum, respectively. On the basis of the mycelial growth of F. graminearum, the fungitoxic activity of the castor oil plant detergent (DOM determined inhibition in the range of 79.4 and 91% for the F2 race and 80.7 and 90.7% for the F4 race. Detergent at the concentrations of 100mL L-1 to 300mL L-1 inhibited in 100% the F. graminearum germination conidia (races F-4 and F-2. Results

  9. Complete inhibition of the tentoxin-resistant F1-ATPase from Escherichia coli by the phytopathogenic inhibitor tentoxin after substitution of critical residues in the alpha - and beta -subunit.

    Science.gov (United States)

    Schnick, Claudia; Körtgen, Nicole; Groth, Georg

    2002-12-27

    Substitution of critical residues in the alpha- and beta-subunit can turn the typically resistant ATP synthase from the bacterium Escherichia coli into an enzyme showing high sensitivity to the phytopathogenic inhibitor tentoxin, which usually affects only certain sensitive plant species. In contrast to recent results obtained with the thermophilic F(1) (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119), substitution of a critical serine in the beta-subunit (betaSer(59)), which is supposed to provide an important intermolecular hydrogen bond in the binding site, was not sufficient on its own for conferring tentoxin sensitivity to the E. coli F(1) complex. Superimposition of the chloroplast F(1)-tentoxin inhibitor complex on a homology model of the E. coli F(1) complex provided detailed information on the critical residues in the alpha-subunit of the binding cleft and allowed us to model the binding site according to the steric requirements of the inhibitor. Substitution of the highly conserved residue alphaLeu(64) seems to be most important for allowing access of the inhibitor to the binding site. Combining this substitution with either additional replacements in the alpha-subunit (Q49A, L95A, E96Q, I273M) or the replacement of Ser(59) in the beta-subunit enhanced the sensitivity to the inhibitor and resulted in a complete inhibition of the E. coli F(1)-ATPase by the plant-specific inhibitor tentoxin.

  10. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase.

    Science.gov (United States)

    Pérez-Mendoza, Daniel; Coulthurst, Sarah J; Humphris, Sonia; Campbell, Emma; Welch, Martin; Toth, Ian K; Salmond, George P C

    2011-11-01

    Cyclic diguanylate (c-di-GMP) is a second messenger controlling many important bacterial processes. The phytopathogen Pectobacterium atrosepticum SCRI1043 (Pba1043) possesses a Type I secretion system (T1SS) essential for the secretion of a proteinaceous multi-repeat adhesin (MRP) required for binding to the host plant. The genes encoding the MRP and the T1SS are tightly linked to genes encoding several putative c-di-GMP regulatory components. We show that c-di-GMP regulates secreted MRP levels in Pba1043 through the action of two genes encoding predicted diguanylate cyclase (DGC) and phosphodiesterase proteins (ECA3270 and ECA3271). Phenotypic analyses and quantification of c-di-GMP levels demonstrated that ECA3270 and ECA3271 regulate secreted MRP levels by increasing and decreasing, respectively, the intracellular levels of c-di-GMP. Moreover, ECA3270 represents the first active DGC reported to have an alternative active-site motif from the 'canonical' GG[D/E]EF. ECA3270 has an A-site motif of SGDEF and analysis of single amino acid replacements demonstrated that the first position of this motif can tolerate functional substitution. Serine in position one of the A-site is also observed in many other DGCs. Finally, another T1SS-linked regulator (ECA3265) also plays an important role in regulating secreted MRP, with an altered localization of MRP observed in an ECA3265 mutant background. Mutants defective in these three T1SS-linked regulators exhibit a reduction in root binding and virulence, confirming that this complex, finely tuned regulation system is crucial in the interaction with host plants.

  11. Caracterização da comunidade bacteriana endofítica de citros por isolamento, PCR específico e DGGE Characterization of the endophytic bacterial community from citrus by isolation, specific PCR and DGGE

    Directory of Open Access Journals (Sweden)

    Paulo Teixeira Lacava

    2006-04-01

    Full Text Available O objetivo deste trabalho foi caracterizar a comunidade bacteriana endofítica de plantas assintomáticas (escapes e afetadas pela clorose variegada dos citros (CVC por meio de isolamento em meio de cultura, técnica de gradiente desnaturante em gel de eletroforese (DGGE e detecção de Methylobacterium mesophilicum e Xyllela fastidiosa por meio de PCR específico, para estudar esta comunidade e sua relação com a ocorrência da CVC. A análise da comunidade bacteriana via DGGE permitiu a detecção de X. fastidiosa, bem como Klebsiella sp. e Acinetobacter sp. como endófitos de citros. Foram observados também Curtobacterium sp., Pseudomonas sp., Enterobacter sp. e Bacillus spp. Utilizando primers específicos, Methylobacterium mesophilicum e X. fastidiosa também foram observadas, reforçando hipóteses de que estas bactérias podem estar interagindo no interior da planta hospedeira.The aim of this work was to characterize endophytic bacterial community of assintomatic (escape and Citrus Variegated Chlorosis (CVC-affected citrus plants using isolation in culture medium, denaturing gradient gel electrophoresis (DGGE technique and Methylobacterium mesophilicum as well as Xylella fastidiosa specific PCR, allowing to assess this community and its interactions with CVC. The study of bacterial community by DGGE analysis allowed the detection of X. fastidiosa, as well as Klebsiella sp. e Acinetobacter sp., which were not detected previously. Curtobacterium sp., Pseudomonas sp., Enterobacter sp. and Bacillus spp. were also observed as endophyte in citrus plants. Using specific primers Methylobacterium mesophilicum and X. fastidiosa were observed, reinforcing that these bacteria could interact inside the host plant.

  12. Compositions and Methods for the Treatment of Pierce's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Goutam (Santa Fe, NM)

    2008-10-07

    Chimeric anti-microbial proteins, compositions, and methods for the therapeutic and prophylactic treatment of plant diseases caused by the bacterial pathogen Xylella fastidiosa are provided. The anti-microbial proteins of the invention generally comprise a surface recognition domain polypeptide, capable of binding to a bacterial membrane component, fused to a bacterial lysis domain polypeptide, capable of affecting lysis or rupture of the bacterial membrane, typically via a fused polypeptide linker. In particular, methods and compositions for the treatment or prevention of Pierce's disease of grapevines are provided. Methods for the generation of transgenic Vitus vinefera plants expressing xylem-secreted anti-microbial chimeras are also provided.

  13. Avaliação de tangerinas, tangores e tangelos em relação à clorose variegada dos citros Evaluation of mandarines, tangors and tangelos in relation to the citrus variegated chlorosis (CVC

    Directory of Open Access Journals (Sweden)

    Simone Rodrigues da Silva

    2004-04-01

    Full Text Available A Clorose Variegada dos Citros (CVC, causada pela bactéria Xylella fastidiosa, é uma séria ameaça à citricultura brasileira, constituindo-se, atualmente, numa das principais doenças dos citros no Brasil. O objetivo desse trabalho foi avaliar cultivares de citros introduzidas quanto à suscetibilidade ou resistência à CVC, em condições de campo. O trabalho foi conduzido em Bebedouro-SP. Os materiais genéticos estudados foram cultivares de tangerinas e híbridos (tangores e tangelos introduzidas de bancos de germoplasma da Itália, Portugal, Espanha e Córsega. O trabalho foi constituído por 56 parcelas, com três plantas das quais uma foi inoculada, empregando-se o método de encostia, utilizando-se de mudas previamente infectadas como fontes da bactéria. Foram avaliados os sintomas da doença mediante observação visual através de notas e teste de PCR, específico para Xylella fastidiosa. Os materiais genéticos que se apresentaram positivos ao PCR, mas não apresentaram sintomas, e os que foram negativos ao PCR, possuem um potencial de utilização em programas de melhoramento genético visando à resistência e/ou à tolerância à doença.The Citrus Variegated Chlorosis (CVC, caused by the bacteria Xylella fastidiosa, is a serious threat to the Brazilian citriculture, being, actually, one of the mains diseases to the citrus in Brazil. The objective of this work was evaluate citrus cultivars, introduced according to the susceptibility or resistance to CVC, in field conditions. The research was carried in Bebedouro city - São Paulo state - Brazil. The genotypes studied were cultivars of mandarines and hybrids (tangors and tangelos, introduced from the germplasm collections of Italy, Portugal, Spain and Corsica. The work was composed by 56 portions, with 3 plants, being one of them inoculated, using the approach graft method, with infected plants. Were evaluated the symptoms of the disease by visual observation and PCR test

  14. Chemical Composition and Anti -fungal Properties of Xinjiang Propolis Extracts against Agricultural Phytopathogenic Fungi%新疆产蜂胶提取物对农作物病原真菌的抗性作用

    Institute of Scientific and Technical Information of China (English)

    阿米尼姑丽·买买提; 木塔力甫·艾买提; 尼砸木·艾海提; 布威海丽且姆·阿巴拜科日; 依米提·热合曼

    2011-01-01

    [目的]分析新疆蜂胶的化学成分并研究其抗菌活性.[方法]用超声波提取法提取蜂胶,采用GC-MS联用技术鉴定其化学成分,通过最小抑菌浓度试验和抑菌试验来测定蜂胶的抗真菌活性.[结果]从蜂胶的乙醇提取物中鉴定出23种化合物.蜂胶对不同真菌表现出不同的抗菌活性,对不同植物病原真菌的抑菌率为16.7%~39.6%,最小抑菌浓度为2.0~4.0 mg/mL.[结论]新疆蜂胶具有广谱的抑菌活性,对某些重要植物病原菌有一定防控作用.%[Objective] The purpose of this project was to analyze the chemical composition of Xinjiang propolis extracts and investigate its antifungi activity. [ Method ] Ultrasonic was used to extract propolis and Gas Chromatography - Mass Spectrometry were applied to identify its chemical composition. Through the tests of minimum inhibitory concentrations (MIC) and mycelial growth inhabitation, its antifungal activity assays were determined. [ Result] twenty - three compounds were identified in ethanol - extracted propolis (EEP). Propolis displayed different antifungi actions depending on the type of fungi tested. It showed the antifungi activity range was from 16.7% to 39.6% and minimum inhibitory concentration range was from 2.0 to 4. Omg/ mL against the tested phytopathogenic fungi as a mycelial growth inhibitor. [ Conclusion ] The results obtained in this study demonstrated that Xinjiang propolis extracts possessed a wide range spectrum of fungistatic activity and could become an alternative to controlling certain important plant fungal diseases.

  15. Antifungal Activity of Five Solanaceous Glycoalkaloids and Their Mixtures against Phytopathogenic Fungi Cercosporella brassicae and Alternaria porri%五种茄科糖苷生物碱及其混合物的抗真菌活性研究

    Institute of Scientific and Technical Information of China (English)

    赵雪淞; 高聆; 王娟; 徐文静; 周义发

    2009-01-01

    The antifungal activity of five solanaceae glycoalkaloids solanine,chaconine,solasonine,solamargine and tomatine against phytopathogenic fungi Cercosporella brassicae and Alternaria porri has been evaluated.Tomatine showed the highest antifungal activity against C.brassicae and A.porri among five compounds,followed with chaconie,solamargine and solasonine,while solanine showed the lowest antifungal activity.Mixture of potato glycoalkaloids solanine and chaconine produced marked synergistic antifungal activity.The magnitude of synergisms is higher at lower concentrations than that at higher concentrations.The antifungal activity of individual glycoalkaloid against A.porri was relative low,even no activity,but the mixture of chaconine and solanine showed significant synergism.There was no synergism between glycoalkaloids solasonine and solamargine from Solanum nigrum in inhibiting fungul growth.The mixtures of solamargine and chaconine,and solasonine and solanine both caused additive inhibition on the growth of fungi.%本文研究了五种茄科糖苷生物碱(茄碱、查茄碱、边缘茄碱、澳洲茄碱和番茄碱)对两种植物病原真菌白菜白斑病菌和葱紫斑病菌的抑制活性.结果表明番茄碱的抗真菌活性最强,其后依次是查茄碱、边缘茄碱和澳洲茄碱,茄碱的活性最弱;不同浓度茄碱和查茄碱(马铃薯中的两种糖苷生物碱)的混合物均具有协同抗真菌作用,且低浓度的混合物产生的协同作用效果较大;边缘茄碱和澳洲茄碱(龙葵中的两种糖苷生物碱)的混合物基本没有协同抗真菌作用;边缘茄碱和查茄碱的混合物以及澳洲茄碱和茄碱的混合物(均为来自不同植物的糖苷生物碱的混合物)在抗真菌活性上都呈现了相加关系.

  16. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system.

    Science.gov (United States)

    Szczepanowski, Rafael; Krahn, Irene; Linke, Burkhard; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2004-11-01

    Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP

  17. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria.

    Science.gov (United States)

    Naushad, Hafiz Sohail; Lee, Brian; Gupta, Radhey S

    2014-02-01

    Genome sequences are enabling applications of different approaches to more clearly understand microbial phylogeny and systematics. Two of these approaches involve identification of conserved signature indels (CSIs) and conserved signature proteins (CSPs) that are specific for different lineages. These molecular markers provide novel and more definitive means for demarcation of prokaryotic taxa and for identification of species from these groups. Genome sequences are also enabling determination of phylogenetic relationships among species based upon sequences for multiple proteins. In this work, we have used all of these approaches for studying the phytopathogenic bacteria belonging to the genera Dickeya, Pectobacterium and Brenneria. Members of these genera, which cause numerous diseases in important food crops and ornamental plants, are presently distinguished mainly on the basis of their branching in phylogenetic trees. No biochemical or molecular characteristic is known that is uniquely shared by species from these genera. Hence, detailed studies using the above approaches were carried out on proteins from the genomes of these bacteria to identify molecular markers that are specific for them. In phylogenetic trees based upon concatenated sequences for 23 conserved proteins, members of the genera Dickeya, Pectobacterium and Brenneria formed a strongly supported clade within the other Enterobacteriales. Comparative analysis of protein sequences from the Dickeya, Pectobacterium and Brenneria genomes has identified 10 CSIs and five CSPs that are either uniquely or largely found in all genome-sequenced species from these genera, but not present in any other bacteria in the database. In addition, our analyses have identified 10 CSIs and 17 CSPs that are specifically present in either all or most sequenced Dickeya species/strains, and six CSIs and 19 CSPs that are uniquely found in the sequenced Pectobacterium genomes. Finally, our analysis also identified three CSIs

  18. Phytopathogen-induced changes to plant methylomes.

    Science.gov (United States)

    Hewezi, Tarek; Pantalone, Vince; Bennett, Morgan; Neal Stewart, C; Burch-Smith, Tessa M

    2017-07-29

    DNA methylation is a dynamic and reversible type of epigenetic mark that contributes to cellular physiology by affecting transcription activity, transposon mobility and genome stability. When plants are infected with pathogens, plant DNA methylation patterns can change, indicating an epigenetic interplay between plant host and pathogen. In most cases methylation can change susceptibility. While DNA hypomethylation appears to be a common phenomenon during the susceptible interaction, the levels and patterns of hypomethylation in transposable elements and genic regions may mediate distinct responses against various plant pathogens. The effect of DNA methylation on the plant immune response and other cellular activities and molecular functions is established by localized differential DNA methylation via cis-regulatory mechanisms as well as through trans-acting mechanisms. Understanding the epigenetic differences that control the phenotypic variations between susceptible and resistant interactions should facilitate the identification of new sources of resistance mediated by epigenetic mechanisms, which can be exploited to endow pathogen resistance to crops.

  19. Controle de fitopatógenos do solo com materiais vegetais associados à solarização Control of soil-borne phytopathogenic fungi by the association between materials vegetable materials and solarization

    Directory of Open Access Journals (Sweden)

    Márcia Michelle de Queiroz Ambrósio

    2008-12-01

    Full Text Available A incorporação de material orgânico associada à solarização do solo é uma técnica promissora no controle de patógenos de plantas. O trabalho consistiu na prospecção de materiais vegetais promissores na produção de voláteis fungitóxicos capazes de inviabilizar as estruturas de resistência de fitopatógenos do solo. Em condição de campo foram incorporados 3 Kg/m² de folhas e ramos de brócolos, eucalipto, mamona e mandioca brava, associada ou não à solarização, visando o controle de Fusarium oxysporum f. sp. lycopersici raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii. O controle foi avaliado por meio da sobrevivência das estruturas, em meios semi-seletivo específicos, aos 7, 14, 21 e 28 dias do início do experimento. Foram monitoradas as temperaturas do solo e do ar por um DataLogger Tipo CR23X (Campbell Scientific e a porcentagem de CO2 e de O2 pelo equipamento analisador de gases (Testo 325-1. A associação da incorporação dos materiais vegetais com a solarização do solo inativou F. oxysporum f. sp. lycopersici raça 2, M. phaseolina e R. solani. O fungo S. rolfsii foi o único que não apresentou 100% de controle com solarização mais mamona durante o período estudado. A incorporação de mandioca seguido de solarização propiciou o controle de todos os fungos estudados com menos de sete dias da instalação do experimento, sendo tão eficiente quanto o brócolos na erradicação dos fitopatógenos veiculados pelo sol.The association between previous incorporation of vegetable material and soil solarization is a promising technique for control of several phytopathogens. The objective of this work consisted in the investigation of materials vegetable that are promising to produce fungitoxic volatiles capable of inactivating the resistence structures of soil plant pathogens. Three Kg/m² of vegetable materials were incorporated under field conditions, and the survival of four

  20. Antifungal Activity of the Ozonized Sunflower Oil (Oleozon) to the Phytopathogenic Fungus%臭氧化葵花油对植物病原真菌的抗性研究

    Institute of Scientific and Technical Information of China (English)

    李勃; 柯杨; 马瑜; 陈志杰

    2013-01-01

    Effects of ozonized sunflower oil (oleozon) on Penicillium expansum, Botrytis cinerea, Fusarium oxysporum, Alternaria solani and Cytospora mandshurica was evaluated. Minimum inhibitory concentrations (MICs) determined with agar dilution method indicated that oleozon was a valuable antimicrobial compound against phytopathogenic fungus, with an MIC ranging from 0.86 to 2.48 mg·mL−1. C. mandshurica, P. expansum and B. cinerea were more susceptible to oleozon than other species tested. Oleozon reduced DNA and RNA contents to 0.08 and 0.21 mg·g−1 dry weight of hyphae in C. mandshurica, respectively. Oleozon significantly suppressed activities of extracellular amylase, lipase and casease in all tested fungal species. These results proved oleozon was a broad spectrum antimicrobial agent.%  通过利用臭氧化葵花油(Oleozon)对拓展青霉 Penicillium expansum、灰葡萄孢霉 Botrytis cinerea、尖孢镰刀菌 Fusarium oxysporum、茄链格孢霉 Alternaria solani 及苹果壳囊孢 Cytospora mandshurica 的抗菌试验来评价其对不同植物病原真菌的抗性。采用平板稀释法进行的最小抑制浓度试验(MICs)证明, Oleozon 对于所有供试菌株皆具有显著抗性,其 MIC 值范围在0.86~2.48 mg·mL−1之间。其中,苹果壳囊孢,拓展青霉及灰葡萄孢霉对于 Oleozon 较其他供试菌株更为敏感。苹果壳囊孢经 Oleozon 处理后,其菌体增长量最低,仅为0.09 g·100 mL−1。相应地,各供试菌在生长过程中细胞的核酸含量也大大降低,苹果壳囊孢单位菌体干重中的 DNA 及 RNA 含量分别仅为0.08和0.21 mg·g−1。同时,各处理组中病原菌的胞外淀粉酶、脂肪酶及酪蛋白酶的活力也同样受到明显抑制。本试验证明,Oleozon 对于不同类型的植物病原真菌具有广谱抗性。

  1. Synthesis and screening for potential against phytopathogenic fungi activity of novel amides%新型酰胺类化合物的合成及抗植物病原真菌活性研究

    Institute of Scientific and Technical Information of China (English)

    周国萍; 刘伟; 金洪; 陶科; 侯太平

    2012-01-01

    In order to search for novel agrochemicals with potential anti-phythopathogenic fungi activity, a series of daphneone analogues were designed and synthesized. They were screened for antifungal activities against five phytopathogenic fungi; Rhizoctonia solani, Botrytis cirerea , Gibberella zeae , Bipolaris maydis, and Sclerotia sclerotium. The preliminary bioassays indicated that some compounds exhibited a fairly good activity. N-(2-fluorophenyl)-2, 4, 5-trimethyl-3-furancarboxamide (p) showed a strong fungistatic activity against R. solani (98% and 99% growth inhibition at 20 and 200 mg/L, respectively). Two compounds, N-(4-fluorophenyl)-2, 5-dimethyl-3-furancarboxamide (h) and N-(2-fluorophenyl)-2, 5-dimethyl-3-furancarboxamide (k) at 200 mg/L inhibited the growth of Sclerotia sclerotium at 94% and 90% , respectively. The EC50 values for compound k were 0. 034 mg/L, while for the control fungicide carbendazim were 0. 050 mg/L. According to the EC50 and the preventive activity of compound k, it can be inferred that compound k had a very good activity against Rhizoctonia solani. Thus, the compound k -was demonstrated to be the most promising candidate for further study.%为了寻找具有潜在抗真菌活性的新型农用化学品,我们以瑞香狼毒中提取的二苯酮类似物为先导,设计并合成了一系列的酰胺类化合物,并进行了以下5种植物真菌的筛选:水稻纹枯病菌(Rhizoctonia solani)、小麦赤霉病菌(Gibberella zeae)、玉米小斑病菌(Bipolaris maydis)、番茄灰霉病菌(Botrytis cirerea)和油菜菌核病菌(Sclerotinia sclerotiorum).初步的活性筛选研究显示:氮-(2-氟苯基)-2,4,5-三甲基-3-呋喃甲酰胺(p)具有很强的抗水稻纹枯病菌活性(在20和200 mg/L的浓度下抑制率分别为98%和99%);氮-(4-氟苯基)-2,5-二甲基-3-呋喃甲酰胺(h)和氮-(2-氟苯基)-2,5-二甲基-3-呋喃甲酰胺(k)这两种化合物在200 mg/L浓度下对油菜菌核病菌的抑制率分别为94%和90

  2. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp Actividad antifúngica de extractos de plantas medicinales contra el hongo fitopatógeno Alternaria spp

    Directory of Open Access Journals (Sweden)

    Paola Díaz Dellavalle

    2011-06-01

    Full Text Available The aim of the study was to evaluate the antifungal activity of extracts of 10 plant species used in traditional Uruguayan medicine against the phytopathogenic fungus Alternaria spp. The plants were selected on the basis of their reported ethnobotanical uses. Aqueous, saline buffer and acid extracts of different plant species were screened in vitro for their antifungal activity against Alternaria spp. For the antifungal evaluation we used a microspectrophotometric assay. Minimal inhibitory concentration (MIC and minimum fungicidal concentration (MFC of the extracts were determined. Three solvents were assayed on different tissues of the plants and among the 29 evaluated extracts, 31% of the extracts inhibited growth, similar to the effects of a chemical fungicide. Acid extracts of the plants were more effective than the aqueous or buffer extracts against Alternaria spp. The MIC values of the extracts were determined ranging between 1.25 and 25 µg mL-1. The MFC values of the extracts ranged between 1.25 µg mL-1 (Rosmarinus officinalis L. and 10 µg mL-1 (Cynara scolymus L.. MICs and MFCs values obtained from leaves (Salvia officinalis L. and R. officinalis and seeds extracts (Salvia sclarea L. were quite comparable to values obtained with the conventional fungicide captan (2.5 µg mL-1. The extracts of Salvia sclarea, S. officinalis and R. officinalis could be considered as potential sources of antifungal compounds for treating diseases in plants. These extracts showed maximum activity, even at very low concentrations, and the same fungicide effects as chemical fungicide. We conclude from this that these extracts exhibit amazing fungicidal properties that support their traditional use as antiseptics.El objetivo de este trabajo fue evaluar la actividad antifúngica de extractos vegetales de 10 especies utilizadas en la medicina tradicional uruguaya contra el hongo fitopatógeno Alternaria spp. Las plantas fueron seleccionadas en base a usos

  3. Establishment of a screening system for Tn5 insertion mutants of Bacillus pumilus DX01 with different anti-phytopathogenic activities%短小芽胞杆菌DX01菌株Tn5转座突变株的抑菌活性筛选体系的建立

    Institute of Scientific and Technical Information of China (English)

    胡晓璐; 陈云鹏; 沈新迁; 刘通; 顾振芳

    2012-01-01

    为建立短小芽胞杆菌Bacillus pumilus DX01菌株的Tn5转座突变株抑菌活性的高效筛选体系,采用发酵液平板抑菌法研究了各突变株发酵液对稻瘟病菌Magnaporthe grisea生长的影响,并测定了目标突变株的几丁质酶和蛋白酶活性及发酵液对稻瘟病菌分生孢子萌发的抑制率。从2 633个突变株中筛选出6个抑菌活性较对照菌株DX01显著变化的突变株。对照DX01发酵液对真菌孢子萌发的抑制率为36%,而突变株Tn5-901和Tn5-194则分别为96%和3%,抑菌活性与对照的差异达到极显著水平。其余4个突变株的几丁质酶、蛋白酶活性多重比较结果与发酵液平板抑菌结果并不完全一致,但发酵液平板抑菌法简单、高效,适用于短小芽胞杆菌突变株的抑菌活性初筛。%Inhibition of mycelial growth and conidial germination of the phytopathogenic fungus, Magna- porthe grisea by zymotic fluids of Bacillus pumilus mutants and enzymatic activities of chintinase and pro- teinase of the identified mutants were analyzed in order to establish an efficient screening system for an- tagonistic abilities in Tn5 transposon library of the B. pumilus strain DX01 and further to clone genes asso- ciated with anti-phytopathogenic activity. A total of 2 633 mutants were subjected to anti-phytopathogenic activity screening and six mutants were preliminarily identified. The tests revealed that the inhibition per- centage of M. grisea conidia that respectively treated with zymotic fluids of mutants TnS-901 and Tn5-194 and the wild-type strain DX01 were 96% , 3% , and 36%. A statistically significant difference in anti- bacterial activity between the two mutants and the control strain DX01 were found, but the other four mu- tants did not exhibit a unanimous result in the multiple comparison tests for enzymatic activities and inhi- bition of mycelial growth with bacterial zymotic fluids. In conclusion, the evaluation of inhibition of fun- gal mycelial

  4. Efeito "in vitro" de antibióticos e rizobactérias no controle de bactérias fitopatogênicas ao Eucalyptus spp. "In vitro" effect of antibiotics and rhizobacteria on the control of phytopathogenic bacteria in Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    Jeane de Fátima Cunha

    2006-12-01

    Full Text Available Doenças causadas por bactérias constituem um novo desafio à cultura do Eucalyptus spp., podendo, inclusive, limitar o uso de clones suscetíveis. O presente trabalho objetivou avaliar a eficiência de antibióticos e rizobactérias na inibição do crescimento "in vitro" de isolados de bactérias fitopatogênicas ao Eucalyptus spp. na fase de viveiro e de campo. O antibiótico sulfato de amicacina e a rizobactéria S1 (Bacillus subtillis destacaram-se quanto à inibição do crescimento do isolado fitopatogênico IP1-05 (Pseudomonas chichorii, enquanto a cefoxitina causou maior inibição dos isolados BSV16 e RVV11 (Rhizobium sp.. Os antibióticos de uso comercial na área agronômica, Mycoshield (oxitetraciclina e Agrimicina (estreptomicina e tetraciclina foram pouco efetivos. Este trabalho proporciona embasamento a alternativas para controle biológico de doenças bacterianas em mudas de Eucalyptus spp. na fase de viveiro.Diseases caused by bacteria represent a new challenge for Eucalyptus spp. and may also limit the use of susceptible clones. Our study aimed at an evaluation of the efficiency of antibiotics and rhizobacteria in inhibiting "in vitro" growth of phytopathogenic bacteria isolates in Eucalyptus spp. during the nursery stage and in the field. The antibiotic amicacine sulfate and rhizobacterium S1 (Bacillus subtilis stood out inhibiting the growth of the phytopathogenic isolate IP1-05 (Pseudomonas chichorii, whereas cefoxitin caused a greater inhibition of the isolates BSV16 and RVV11 (Rhizobium sp.. The commercial antibiotics for agricultural use Mycoshield (oxitetracycline and Agrimycin (estreptomycin and tetracycline were little effective. This study offers a base for alternatives of biological control of bacterial diseases in Eucalyptus spp. nursery seedlings.

  5. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制%Molecular Basis of Resistance of Phytopathogenic Fungi to Several Site-Specific Fungicides

    Institute of Scientific and Technical Information of China (English)

    詹家绥; 吴娥娇; 刘西莉; 陈凤平

    2014-01-01

    Site-specific fungicides play an important role in plant disease management. However, frequent applications of the fungicides over a large geographic scale can induce the emergence of resistant strains in the pathogen population. Resistance to fungicides with various modes of action has been documented in many plant fungal pathogens. This review summaries the current advances in understanding of the modes of action in five major classes of site-specific fungicides including methyl benzimidazole carbamate (MBCs), dicarboximide fungicides (DCFs), 14α-demethylase inhibitors (DMIs), quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs) and the molecular mechanisms of resistance. Evolutionary process of fungicide resistance and management programme aiming to mitigate the emergence of resistance are also discussed in the review. The target protein of MBCs isβ-tubulin, and the resistance in phytopathogenic fungi is linked to point mutation in the target protein. Amino acid substitutions in target protein occur mainly at the positions 50, 167, 198, 200, and 240, and the most frequent mutation is amino acid 198. In general, only one substitution occurs in each resistant isolate. Resistant level varies among isolates with different substitutions. The target protein of DCFs has been unknown, the resistance may be correlated with point mutation in histidine kindnase (OS-related) genes. DMIs inhibit sterol 14α-demethylation step in biosynthesis of ergosterol and resistant mechanisms usually include point mutation ofCyp51 or over-expressions ofCyp51 and transporter genes. But point mutation inCyp51 is the major mechanism of DMI resistance. Different site mutations or even same site and same amino acid substitutions could lead to different resistance to triazoles. The number of point mutations in Cyp51varies among fungi, ranging from one mutation to several mutations and different mutations have an additive effect on DMI-resistance. QoIs affect the

  6. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions.

    Science.gov (United States)

    Li, Zhijian T; Hopkins, Donald L; Gray, Dennis J

    2015-10-01

    Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions.

  7. Biological and genetic factors regulating natural competence in a bacterial plant pathogen.

    Science.gov (United States)

    Kung, Stephanie H; Almeida, Rodrigo P P

    2014-01-01

    For naturally competent bacteria, spatially structured growth can provide an environment for enhanced horizontal gene transfer through transformation and recombination. DNA is often present in the extracellular environment, such as in the extracellular matrix of biofilms, and the lysis of a single cell can result in high local DNA concentrations. Xylella fastidiosa is a naturally competent plant pathogen that typically lives in a surface-attached state, yet previous work characterizing the competence of this organism was conducted with planktonic cells in liquid environments. Here, we show that transformation and recombination efficiencies are two to three orders of magnitude higher for cells grown on solid compared with liquid media, with maximum recombination efficiencies of about 10(-3). Cells were highly competent throughout their exponential growth phase, with no significant change in recombination efficiencies until population growth rates began to slow. Mutations in type IV pili, competency-related, and cell-cell signalling genes significantly impacted the ability of X. fastidiosa to acquire and incorporate DNA. Because X. fastidiosa is highly competent when growing in a surface-attached state, as it does within its insect vectors and host plants, recombination of naturally transformed DNA could be a significant route by which horizontal gene transfer occurs in natural environments.

  8. Ação do óleo essencial de Syzygium aromaticum (L. Merr. & L.M.Perry sobre as hifas de alguns fungos fitopatogênicos Action of Syzygium aromaticum (L. Merr. & L.M.Perry essential oil on the hyphae of some phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    A.R.T Costa

    2011-01-01

    Full Text Available Atualmente o uso de métodos alternativos para o controle de doenças e pragas na agricultura, visando minimizar os danos ao meio ambiente e à saúde pública é uma prática reconhecida e necessária. Este trabalho objetivou investigar a ação do óleo essencial de Syzygium aromaticum (L. Merr. & L.M.Perry sobre o crescimento micelial in vitro dos fungos fitopatogênicos Rhizoctonia solani, Fusarium solani, Fusarium oxysporum e Macrophomina phaseolina. A análise por cromatografia gasosa acoplada com espectrometria de massa possibilitou a identificação de eugenol (83,6%, acetato de eugenila (11,6% e cariofileno (4,2%. A avaliação microscópica dos micélios dos fungos evidenciou diversas alterações morfológicas, como a presença de vacúolos, desorganização dos conteúdos celulares, diminuição na nitidez da parede celular, intensa fragmentação e menor turgência das hifas. O óleo essencial de cravo apresentou atividade fungicida na concentração de 0,15% sobre o crescimento de R. solani, F. oxysporum e F. solani, entretanto não demonstrou essa atividade sobre M. phaseolina. Esses resultados indicam perspectivas favoráveis para posterior uso do óleo de cravo no controle desses fitopatógenos na agricultura.Currently, the use of alternative methods to control diseases and pests in agriculture has been a recognized and necessary practice to minimize damages to the environment and public health. This study aimed to investigate the action of clove [Syzygium aromaticum (L. Merr. & L.M.Perry] essential oil on the in vitro mycelial growth of the phytopathogenic fungi Rhizoctonia solani, Fusarium solani, Fusarium oxysporum and Macrophomina phaseolina. Analysis by gas chromatography-mass spectrometry allowed the identification of eugenol (83.6%, eugenyl acetate (11.6% and caryophyllene (4.2%. Microscopic evaluation of mycelia showed several morphological changes such as presence of vacuoles, cell content disorganization, decreased

  9. In vitro effect of Bacillus thuringiensis strains and Cry proteins in phytopathogenic fungi of paddy rice-field Efeito in vitro de cepas e proteínas Cry de Bacillus thuringiensis em fungos fitopatogênicos da cultura do arroz irrigado

    Directory of Open Access Journals (Sweden)

    Neiva Knaak

    2007-09-01

    Full Text Available Cry1Ab and Cry1Ac strains and proteins synthesized by Bacillus thuringiensis thuringiensis and B. thuringiensis kurstaki were assessed in the following phytopathogens: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum and F. solani, which had their micelial growth decreased after incubation in the presence of the bacterial strains. As to Cry proteins, there were no inhibition halo development in the assessed concentrations.As cepas e proteínas Cry1Ab e Cry1Ac sintetizadas por Bacillus thuringiensis thuringiensis e B. thuringiensis kurstaki, foram avaliadas nos fitopatógenos: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum e F. solani, os quais tiveram seu crescimento micelial reduzido após a incubação na presença das cepas bacterianas. Em relação às proteínas Cry, não houve formação de halo de inibição nas concentrações avaliadas.

  10. Blocking the Transmission of a Noncirculative Vector-Borne Plant Pathogenic Bacterium.

    Science.gov (United States)

    Labroussaa, Fabien; Zeilinger, Adam R; Almeida, Rodrigo P P

    2016-07-01

    The successful control of insect-borne plant pathogens is often difficult to achieve due to the ecologically complex interactions among pathogens, vectors, and host plants. Disease management often relies on pesticides and other approaches that have limited long-term sustainability. To add a new tool to control vector-borne diseases, we attempted to block the transmission of a bacterial insect-transmitted pathogen, the bacterium Xylella fastidiosa, by disrupting bacteria-insect vector interactions. X. fastidiosa is known to attach to and colonize the cuticular surface of the mouthparts of vectors; a set of recombinant peptides was generated and the chemical affinities of these peptides to chitin and related carbohydrates was assayed in vitro. Two candidates, the X. fastidiosa hypothetical protein PD1764 and an N-terminal region of the hemagglutinin-like protein B (HxfB) showed affinity for these substrates. These proteins were provided to vectors via an artificial diet system in which insects acquire X. fastidiosa, followed by an inoculation access period on plants under greenhouse conditions. Both PD1764 and HxfAD1-3 significantly blocked transmission. Furthermore, bacterial populations within insects over a 10-day period demonstrated that these peptides inhibited cell adhesion to vectors but not bacterial multiplication, indicating that the mode of action of these peptides is restricted to limiting cell adhesion to insects, likely via competition for adhesion sites. These results open a new venue in the search for sustainable disease-control strategies that are pathogen specific and may have limited nontarget effects.

  11. Incidência de Dilobopterus costalimai Young e Acrogonia citrina Marucci & Cavichioli, em pomares cítricos no noroeste paranaense = Incidence of Dilobopterus costalimai Young and Acrogonia citrina Marucci & Cavichioli, in citrus orchards in Northwestern Paraná

    Directory of Open Access Journals (Sweden)

    Aline Maria Orbolato Gonçalves

    2008-07-01

    Full Text Available As cigarrinhas das famílias Cicadellidae e Cercopidae são vetores da bactéria Xylella fastidiosa Wells, causadora da Clorose variegada dos citros. Esta doença traz sérios prejuízos à lavoura de citros no Noroeste Paranaense, e é estudada no Brasil desde 1987, quando foi descoberta pela primeira vez na região de Colina, São Paulo. Os vetores transmitem a X. fastidiosa quando se alimentam sugando a seiva do xilema, local onde a bactéria se instala, obstruindo a passagem da seiva. Este trabalho teve o objetivo de avaliar aocorrência das cigarrinhas vetoras Dilobopterus costalimai e Acrogonia citrina em pomar comercial de citros. O experimento foi realizado no sítio “Laranjeiras I”, município de Nova Esperança, região noroeste do Paraná, no período de julho de 2004 a agosto de 2006. Foram feitas amostragens mensais, por meio de armadilhas adesivas amarelas (Biocontrole®, nas variedades de laranjeiras [Citrus sinensis (L. Osbeck] Folha Murcha, Valência, Pêra e Natal.Nas variedades Pêra e Valência, a cigarrinha mais capturada foi Dilobopterus costalimai. Os meses de maior ocorrência das espécies foram entre dezembro e maio de cada ano.The sharpshooters of the families Cicadellidae and Cercopidae are vectors of Xylella fastidiosa (Wells, which causes citrus variegated chlorosis. This disease causes severe damage to the Paraná citrus industry, and it has been studied in Brazil since 1987, when it was discovered for the first time in the area of Colina, SP. The vectors transmit X. fastidiosa when they feed on the xylem sap, where the bacteria settles, obstructing the passage of the sap. This workhad the objective of evaluating the occurrence of the vector sharpshooter Dilobopterus costalimai and Acrogonia citrina in a commercial citrus orchard during the period between July 2004 and August 2006. The experiment was accomplished in the Laranjeiras I farm, in the city of Nova Esperança, northwestern Paraná. The collections

  12. 沼液对植物病害的防治效果及机理研究I:对植物病原真菌的抑制效果及抑菌机理初探%Biocontrol Effect and Mechanism of Biogas Slurry on Plant Disease I :Primary Study of Growth Inhibition Effects and Mechanism on Phytopathogen Fungi

    Institute of Scientific and Technical Information of China (English)

    马艳; 李海; 常志州; 徐跃定; 张建英

    2011-01-01

    effect on spore germination of F. axysporurnfsp. fragariae with different degree. The inhibition effect of BS coming from pig manure and its sterilized filter was better than that of cow manure. Inhibition effect of both BS on five phytopathogens of strawberry showed significant difference:growth inhibition rate with 73%~87% on F. axysporurn fsp. fragariae, Colletotrichurn gloeosporioides (Penz.) Sacc. and Verticilliurn dahliae Kelb was obtained, while to Phtophthora capsici,we got growth inhibition rate with 38% and no inhibition effect on Pythiurn aphaniderrnaturn. Anti-microorganisms survived in BS played an important role in mycelia growth inhibition of phytopathogens and disease control of plant in consequence.

  13. Selection of endophytic fungi from comfrey (Symphytum officinale L. for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib. Seleção de fungos endofíticos de confrei (Symphytum officinale L., buscando controle biológico in vitro do fitopatógeno Sclerotinia sclerotiorum (Lib.

    Directory of Open Access Journals (Sweden)

    Rafaeli Rocha

    2009-03-01

    Full Text Available Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM is a very common strategy. The white mold produced by Sclerotiniasclerotiorum (Lib. causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytumofficinale L. leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.O controle biológico consiste no uso de organismos que atacam outros que causam danos a culturas de plantas. Esta é uma estratégia muito utilizada no Controle Integrado de Pragas (CIP. O mofo branco, causado por Sclerotiniasclerotiorum (Lib., causa danos em culturas de feijão. Este fungo é encontrado no solo e seus sintomas são caracterizados por lesões úmidas cobertas por micélios algodonosos, crescidos a partir do solo e/ou da planta

  14. Potencial fungitóxico do óleo essencial de Piper hispidinervum (pimenta longa sobre os fungos fitopatogênicos Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides Fungitoxic potential of the essential oil the Piper hispidinervum (long-pepper against phytopathogenic fungi Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Lidiany Mendonça Zacaroni

    2009-03-01

    Full Text Available O objetivo deste trabalho foi avaliar a atividade fungicida in vitro do óleo essencial das folhas de Piper hispidinervum sobre Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides. Para os ensaios biológicos, empregou-se o teste bioanalítico in vitro utilizando as concentrações de 100, 200, 500, 1000, 1500 e 2000 µg.mL-1 do óleo essencial. Estas foram incorporadas no meio de cultura BDA (batata-dextrose-ágar para avaliação do crescimento ou inibição micelial. O delineamento estatístico utilizado foi o inteiramente casualizado, com quatro repetições. Na concentração de 200 µg.mL-1, observou-se uma inibição total do fitopatógeno Bipolaris sorokiniana enquanto que, para o Fusarium oxysporum e o Colletotrichum gloeosporioides esta ocorreu na concentração de 1000 µg.mL-1.The objective of this study was to evaluate the in vitro antifungal activity of the essential oil of the leaves of Piper hispidinervum against Bipolaris sorokiniana, Fusarium oxysporum and Colletotrichum gloeosporioides. For the biological tests, using the bioanalitic test in vitro the concentrations of 100, 200, 500, 1000, 1500 and 2000 µg.mL-1 the essential oil. This were incorporated into PDA (potato dextrose agar medium in order to evaluate fungal mycelial growth or inhibition. The statistic design used was completely randomized, with four replicates. In the concentration of 200 µg.mL-1, observed inhibited complete the phytopathogens Bipolaris sorokiniana while the Fusarium oxysporum and Colletotrichum gloeosporioides this is occurred in the concentration of 1000 µg.mL-1.

  15. Atividade antimicrobiana de óleos essenciais no controle de alguns fitopatógenos fúngicos in vitro e no tratamento de sementes Antimicrobial activity of essential oils on the in vitro control of some fungal phytopathogens and on seed treatment

    Directory of Open Access Journals (Sweden)

    T. Hillen

    2012-01-01

    Full Text Available Este trabalho verificou o efeito dos óleos essenciais (OE extraídos de Eremanthus erythropappus (candeia, Cymbopogon martinii (palmarosa e de Rosmarinus officinalis (alecrim no crescimento micelial de alguns fitopatógenos fúngicos e no tratamento de sementes de milho, soja e feijão. No teste in vitro, alíquotas de 20, 40, 60, 100, 200, 500 e 1000 μL de cada um dos óleos essenciais foram distribuídas na superfície do meio de cultura. Posteriormente, discos de meio de cultura com micélio de Alternaria carthami, Alternaria sp. e Rhizoctonia solani foram transferidos para o centro de cada placa. O crescimento foi mensurado e calculada a taxa de inibição do crescimento micelial (ICM. Para verificar o efeito dos OE na germinação das sementes utilizou-se a aplicação deles por fumigação. Foi avaliada a percentagem de sementes germinadas e a incidência de patógenos nas sementes. Sobre o crescimento micelial, o óleo de palmarosa inibiu completamente todos os patógenos fúngicos, independentemente da concentração. Já os óleos de candeia e alecrim foram melhores quando foram adicionadas alíquotas superiores a 200 μL. Os óleos influenciaram diferentemente a germinação e a sanidade das sementes de milho, soja e feijão.This study aimed to verify the effect of essential oils (EO extracted from Eremanthus erythropappus ("candeia" Cymbopogon martinii ("palmarosa" and Rosmarinus officinalis (rosemary on the mycelial growth of some fungal phytopathogens, as well as on the treatment of corn, soybean and bean seeds. In the in vitro test, aliquots of 20, 40, 60, 100, 200, 500 and 1000 μL of each essential oil were distributed on the surface of the culture medium. Then, discs of culture medium with mycelium of Alternaria carthami, Alternaria sp and Rhizoctonia solani were transferred to the center of each plate. Growth was measured and the mycelial growth inhibition rate (MGI was calculated. To verify the effect of EO on seed

  16. Citrus plastid-related gene profiling based on expressed sequence tag analyses

    Directory of Open Access Journals (Sweden)

    Tercilio Calsa Jr.

    2007-01-01

    Full Text Available Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark or in reproductive organs (flowers and fruits. Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC.

  17. Myconanoparticles: synthesis and their role in phytopathogens management

    Science.gov (United States)

    Alghuthaymi, Mousa A.; Almoammar, Hassan; Rai, Mahindra; Said-Galiev, Ernest; Abd-Elsalam, Kamel A.

    2015-01-01

    Nanotechnology can offer green and eco-friendly alternatives for plant disease management. Apart from being eco-friendly, fungi are used as bio-manufacturing units, which will provide an added benefit in being easy to use, as compared to other microbes. The non-pathogenic nature of some fungal species in combination with the simplicity of production and handling will improve the mass production of silver nanoparticles. Recently, a diverse range of fungi have been screened for their ability to create silver nanoparticles. Mycosynthesis of gold, silver, gold–silver alloy, selenium, tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, usnic acid, magnetite, cadmium telluride and uraninite nanoparticles has also been reported by various researchers. Nanotechnological application in plant pathology is still in the early stages. For example, nanofungicides, nanopesticides and nanoherbicides are being used extensively in agriculture practices. Remote activation and monitoring of intelligent nano-delivery systems can assist agricultural growers of the future to minimize fungicides and pesticides use. Nanoparticle-mediated gene transfer would be useful for improvement of crops resistant to pathogens and pest. This review critically assesses the role of fungi in the synthesis of nanoparticles, the mechanism involved in the synthesis, the effect of different factors on the reduction of metal ions in developing low-cost techniques for the synthesis and recovery of nanoparticles. Moreover, the application of nanoparticles in plant disease control, antimicrobial mechanisms, and nanotoxicity on plant ecosystem and soil microbial communities has also been discussed in detail. PMID:26019636

  18. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    user

    2012-09-04

    Sep 4, 2012 ... The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of .... laurel, avocado and ginger extracts have strong ... composition and antifungal activity of essential oils of seven.

  19. Comparative Analyses of Exoproteinases Produced by Three Phytopathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Tatiana A. Valueva

    2011-01-01

    Full Text Available Proteinases secreted by the oomycete Phytophthora infestans (Mont. de Bary, Rhizoctonia solani, and Fusarium culmorum belonging to different families of fungi have been studied to determine if the exoenzyme secretion depends on the environmental conditions and the phylogenetic position of the pathogen. The substrate specificity of the extracellular proteinases of F. culmorum, R. solani, and P. infestans and their sensitivity to the action of synthetic and protein inhibitors suggest that they contain trypsin-like and subtilisin-like enzymes regardless of culture medium composition. The relation of trypsin-like and subtilisin-like enzymes is dependent on the culture medium composition, especially on the form of nitrogen nutrition, particularly in the case of the exoenzymes secreted by R. solani. Phylogenetic analyses have shown that the exoproteinase set of ascomycetes and oomycetes has more similarities than basidiomycetes although they are more distant relatives. Our data suggests that the multiple proteinases secreted by pathogenic fungi could play different roles in pathogenesis, increasing the adaptability and host range, or could have different functions in survival in various ecological habitats outside the host.

  20. Glycyrrhiza glabra extract protects plants against important phytopathogenic fungi.

    Science.gov (United States)

    Schuster, C; Konstantinidou-Doltsinis, S; Schmitt, A

    2010-01-01

    In previous investigations an ethanolic plant extract from Glycyrrhiza glabra (2.5% w/v) showed 100% efficacy against late blight (Phytophthora infestans) on detached tomato leaves. Based on these findings, the objective of this work was to investigate the effect of this extract against different important plant pathogenic fungi. Tests were carried out on potted plants. Against P. infestans, efficacies of 75% and 58% were achieved on tomato and potato plants with 5% extract concentration, respectively. Against another Oomycete, Pseudoperonospora cubensis, on cucumber, application of a 2.5% extract led to an efficacy of above 90%. The EC50-value was calculated to be 0.5% In a trial on beans against bean rust (Uromyces appendiculatus), G. glabra extract (5% concentration) showed 92% efficacy. In contrast, against powdery mildew on cucumber (Podosphaera xanthii), no disease reduction was found. Overall, the results indicate a high potential for the extract of G. glabra to control a number of important plant pathogens.

  1. In Vitro antifungal potency of plant extracts against five phytopathogens

    Directory of Open Access Journals (Sweden)

    Ashwani Tapwal

    2011-12-01

    Full Text Available The antifungal activity of aqueous extract of Cannabis sativa, Parthenium hysterophorus, Urtica dioeca, Polystichum squarrosum and Adiantum venustum was investigated against Alternaria solani, Alternaria zinniae, Curvularia lunata, Rhizoctonia solani and Fusarium oxysporum at different concentrations (5, 10, 15 and 20%. At 20%, maximum antifungal potential was observed with the extracts of C. sativa, which recorded excellent inhibitory activity against C. lunata (100%, A. zinniae (59.68%, followed by leaf extract of P. hysterophorus (50% against A. solani. The application of botanical extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.

  2. Activity of Azoxystrobin and SHAM to Four Phytopathogens

    Institute of Scientific and Technical Information of China (English)

    JIN Li-hua; CHEN Yu; CHEN Chang-jun; WANG Jian-xin; ZHOU Ming-guo

    2009-01-01

    The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to be aware of the mechanism of azoxystrobin in inhibition on mycelial respiration and the influence of SHAM. The activity test of azoxystrobin and SHAM was carried out with a mycelial linear growth test and spore germination test. Other related biological properties were also observed. Inhibition of azoxystrobin and SHAM on 4 pathogens was determined by using SP-Ⅱ oxygraph system. Azoxystrobin inhibited mycelial growth in Colletotrichum capsici, Botrytis cinerea, Rhizoctonia solani, and Magnaporthe grisea, respectively; it also inhibited conidia germination, and conidia production in C. capsici, B. cinerea M. grisea, and sclerotia formation in R. solani. Moreover, it created stayed pigment biosynthesis in C. capsici and M. grisea somehow. Salicylhydroxamic acid enhanced inhibition by azoxystrobin. An oxygen consuming test of the mycelia showed that azoxystrobin inhibited all the 4 fungi's respiration in the early stages. With the concentration rising up, the effectiveness increased. However, as time went on, the respiration of the mycelia treated with fungicides recovered and SHAM could not inhibit the oxygen consuming. This reaction between the mycelia and the fungicides appeared not to initiate alternative respiration but rather the other mechanism created a lack of efficacy.

  3. Inhibition of growth of some phytopathogenic and mycotoxigenic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Whatman no 1 filter paper and the filtrate obtained was freeze-dried to complete ... analysis on a Perkin-Elmer 2000 FT-IR instrument set at 7800-370 cm-1 in a single ... revealed the presence of aluminium oxide (Al2O3), cal-.

  4. Microscopic phytopathogenic fungi rare and new for Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Ruszkiewicz

    2014-08-01

    Full Text Available The paper presents a list of 36 rare species of fungi with remarks about their morphology and distribution in Poland. Three of the species are new for Poland: Romularia asplenii Jaap, R. concomitans Ell. et Holw. and Ascochyta actoeae (Bres. J. J. Davis. Altogether, 13 parasitic species occur on the plans which have not been known as their hosts in Poland, so far, 19 are rare on the listed hosts. The fungi were collected in the area of projected Jurassic National Park, Częstochowa Upland.

  5. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants.

    Science.gov (United States)

    Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio

    2014-03-01

    This review is about the isolation as well as chemical and biological characterization of simple and complex mono-, sesqui-, di-, sester- and tri-terpenes produced by fungal pathogens of agrarian and forest plants and by some allelopathic plants. In several cases, the structure activity relationships are also discussed, as well as their potential application in agriculture as natural safe herbicides, fungicides and bactericides. Furthermore, the potential application of some fungal terpenes as anticancer compounds with a new mode of action is also discussed.

  6. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces

    Science.gov (United States)

    The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...

  7. Fitodefensivos em plantas medicinais: macromoléculas hidrofílicas de folhas de mil folhas (Achillea millefolium L. inibem o crescimento in vitro de bactérias fitopatogênicas Agrochemicals in medicinal plants: hydrophilic macromolecules from leaves of "mil folhas" (Achillea millefolium L. inhibit in vitro growth of phytopathogenic bacteria

    Directory of Open Access Journals (Sweden)

    N.G. Tessarollo

    2013-01-01

    Full Text Available Extratos aquosos da planta medicinal Achillea millefolium contêm macromoléculas de interesse para desenvolver fitodefensivos para a agricultura. Duas frações de mil folhas foram obtidas por ultrafiltração, E1 (contendo moléculas maiores que 30 kDa, e E3 (peptídeos entre 1 e 10 kDa que inibiram o crescimento das bactérias fitopatogênicas Ralstonia solanacearum, gram-negativa, e Clavibacter michiganensis subsp. michiganensis, gram-positiva, com dependência de concentração. Os valores de concentração inibitória mínima (CIM para ambos os extratos e bactérias foram baixos, entre 20 e 80µM. A CIM relativa à proteína total evidenciou a presença de macromoléculas muito ativas em E3, embora com baixa concentração proteica. E3 se aplica à prospecção de peptídeos antimicrobianos. Estimar a CIM relativa à quantidade de amostra vegetal valorizou o potencial antimicrobiano natural de E1, que contém alta concentração proteica. E1e E3 se aplicam ao desenvolvimento de fitodefensivos para uso biotecnológico. A ultrafiltração fracionou as amostras de forma nativa, rápida, e com baixo custo; além de dessalinizar, clarificar, purificar, e concentrar E1 e E3. Esse estudo inédito sobre a separômica e a ação antimicrobiana de extratos macromoleculares aquosos de mil folhas sugere que plantas cicatrizantes podem apresentar grande potencial para desenvolver fitodefensivos agrícolas naturais não danosos, à semelhança de medicamentos fitoterápicos.Aqueous extracts from the medicinal plant Achillea millefolium contain macromolecules of interest to develop agrochemicals for agriculture. Two fractions of "mil folhas" were obtained by ultrafiltration, E1 (containing molecules larger than 30 kDa and E3 (peptides between 1 and 10 kDa, which inhibited the growth of phytopathogenic bacteria Ralstonia solanacearum, gram-negative, and Clavibacter michiganensis subsp. michiganensis, gram-positive, concentration-dependent. The values of

  8. Rooting of healthy and CVC-affected 'Valência' sweet orange stem cuttings, through the use of plant regulators

    Directory of Open Access Journals (Sweden)

    Gustavo Habermann

    2006-01-01

    Full Text Available Citrus variegated chlorosis (CVC is a disease caused by Xylella fastidiosa. Using different concentrations of plant regulators, such as auxins (indole-3-butyric acid and gibberellic acid biosynthesis-inhibitor (paclobutrazol, physiological rooting capacity of healthy and CVC-affected stem cuttings were evaluated in order to investigate the importance of plant hormone imbalance and xylem occlusion in plants with CVC. The percentages of dead, alive and rooted cuttings, cuttings with callus and mean number of roots per cuttings did not show statistical differences in response to the distinct concentrations of synthetic plant regulators. There were differences only between healthy and CVC-affected cuttings. This showed the importance of xylem occlusion and diffusive disturbances in diseased plants, in relation to root initiation capacity and hormonal translocation in the plant tissue.Clorose variegada dos citros (CVC é uma doença causada por Xylella fastidiosa, podendo determinar oclusão do xilema e desbalanço hormonal, o que por fim está relacionado ao processo de iniciação radicial em estacas. Usando diferentes concentrações de fitorreguladores, como auxinas (ácido 3-indol butírico e inibidores da biossíntese de ácido giberélico (paclobutrazol, que são promotores do enraizamento de estacas, verificou-se a capacidade fisiológica de enraizamento de estacas sadias e com CVC, a fim de investigar a importância do desbalanço hormonal e oclusão do xilema em plantas doentes. As porcentagens de estacas mortas, vivas, enraizadas e com calo e o número médio de raízes por estaca não mostraram diferenças estatísticas em resposta às diferentes concentrações dos reguladores vegetais sintéticos. Houve diferenças apenas entre estacas sadias e doentes. Isto aponta a importância da oclusão do xilema e distúrbios difusivos em plantas doentes, em relação à capacidade de iniciação radicial e à translocação hormonal no tecido

  9. Vascular Occlusions in Grapevines with Pierce’s Disease Make Disease Symptom Development Worse1[OA

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Walker, M. Andrew; Labavitch, John M.

    2013-01-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce’s disease (PD) and the impact of occlusions on the hosts’ water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen’s systemic spread in them, but may significantly suppress the vines’ water conduction, contributing to PD symptom development and the vines’ eventual death. PMID:23292789

  10. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse.

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Walker, M Andrew; Labavitch, John M

    2013-03-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce's disease (PD) and the impact of occlusions on the hosts' water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen's systemic spread in them, but may significantly suppress the vines' water conduction, contributing to PD symptom development and the vines' eventual death.

  11. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  12. Espécies de cigarrinhas em cultivo de café no Município de Santa Teresa, Espírito Santo, Brasil (Hemiptera, Cicadellidae, Cicadellinae

    Directory of Open Access Journals (Sweden)

    Rachel A. Carvalho

    2015-01-01

    Full Text Available As cigarrinhas da subfamília Cicadellinae são importantes vetores de patógenos de plantas cultivadas, dentre eles, a bactéria Xylella fastidiosa, que, no Brasil, ataca cultivos de citros, café e também de ameixa. Pouca informação é conhecida sobre a ocorrência, distribuição e biologia de cicadelíneos em plantações de café. Este trabalho apresenta uma lista de 141 espécimes, coletados em meses alternados, no período entre junho de 2009 e abril de 2010, em plantação de café no Município de Santa Teresa no Estado do Espírito Santo, Brasil. Esses espécimes estão distribuídos em 16 gêneros e 21 espécies pertencentes às duas tribos de Cicadellinae: Cicadellini e Proconiini. Dentre os Cicadellini listados, o gênero Graphocephala é, pela primeira vez, registrado para o Brasil.

  13. Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants

    Directory of Open Access Journals (Sweden)

    Laura M Perilla-Henao

    2016-08-01

    Full Text Available Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: 1 all known vector-borne bacteria share the ability to propagate in the plant and insect host; 2 particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; 3 all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and 4 vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.

  14. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus

    Directory of Open Access Journals (Sweden)

    Luis Antonio Peroni

    2007-01-01

    Full Text Available Plants not only evolve but also reduce oxygen in photosynthesis. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS. Plants are adequately protected by the presence of multiple antioxidative enzymes in the cytosol and also in the different cell organelles such as chloroplasts, mitochondria, and peroxisomes. Traditionally, ROS were considered to be only a toxic byproduct of aerobic metabolism. However, recently it has become apparent that plants actively produce these molecules which may control many different physiological processes such as abiotic and biotic stress response, pathogen defense and systemic signaling. The search results using the Citrus Genome Program in Brazil (CitEST for oxidative stress and the antioxidant enzyme system in Citrus Sinensis variety ‘Pera IAC’ indicated that the multiple ROS-scavenging enzymes were expressed throughout all citrus tissues. The analyses demonstrated the ubiquitous expression of metallothioneins, probably indicating a constitutive expression pattern. Oxalate oxidase has been identified as the most abundant expressed gene in developing fruits, which suggests a specific function in the ripening of citrus fruit. Moreover, infected leaves with Xylella fastidiosa and Leprosis citri showed a massive change in their ROS gene expression profile which may indicate that the suppression of ROS detoxifying mechanisms may be involved in the induction of the diseases.

  15. Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis.

    Science.gov (United States)

    Dömötör, Dóra; Frank, Tamara; Rákhely, Gábor; Doffkay, Zsolt; Schneider, György; Kovács, Tamás

    2016-09-01

    Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most frequent infective diseases of walnut, resulting in serious economic losses. One potential solution to control this disease could be the application of bacteriophages. In this study, 24 phages were isolated from soil and walnut aerial tissues infected with Xaj. Two polyvalent bacteriophages, Xaj2 and Xaj24 were chosen for further characterization including their morphological, physiological and genomic analyses. Xaj2 was classified as Siphoviridae whereas Xaj24 belonged to the Podoviridae family. Both phages demonstrated lytic effect on Xaj in laboratory trials. Complete genomes of Xaj2 and Xaj24 were determined. Genomes of Xaj2 and Xaj24 consisted of 49.241 and 44.861 nucleotides encoding 80 and 53 genes, respectively. Comparative genome analyses have revealed that Xaj2 had a unique genome sequence, while Xaj24 was a phiKMV-like phage and it was most similar to the Prado phage which is virulent for Xylella fastidiosa and Xanthomonas spp. In this study, we present the first two complete Xaj phage sequences enabling an insight into the genomics of Xaj phages.

  16. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  17. Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks

    Directory of Open Access Journals (Sweden)

    Andrea Luvisi

    2016-08-01

    Full Text Available In many European rural areas, agriculture is not only an economic activity, but it is strictly linked to environmental and social characteristics of the area. Thus, sometimes, a pathogen can become a social threat, as in the case of Xylella fastidiosa and olive trees (Olea europaea L. in Salento. Fast and systemic response to threats represents the key to success in stopping pest invasions, and proves a great help in managing lots of data in a short time or coordinating large-scale monitoring coming from applying Information Technology tools. Regarding the field of applications, the advantages provided by new technologies are countless. However, is it the same in agriculture? Electronic identification tools can be applied for plant health management and certification. Treatments, agrochemical management or impact assessment may also be supported by dematerialization of data. Information Technology solution for urban forestry management or traceability of commodities belonging to “Food from Somewhere” regimes were analyzed and compared to protection from pests of a unique tree heritage such as olive trees in Salento.

  18. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available The glassy-winged sharpshooter (GWSS Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs.

  19. In silico comparison of bacterial strains using mutual information

    Indian Academy of Sciences (India)

    D Swati

    2007-09-01

    Fast-sequencing throughput methods have increased the number of completely sequenced bacterial genomes to about 400 by December 2006, with the number increasing rapidly. These include several strains. In silico methods of comparative genomics are of use in categorizing and phylogenetically sorting these bacteria. Various word-based tools have been used for quantifying the similarities and differences between entire genomes. The simple di-nucleotide frequency comparison, codon specificity and k-mer repeat detection are among some of the well-known methods. In this paper, we show that the Mutual Information function, which is a measure of correlations and a concept from Information Theory, is very effective in determining the similarities and differences among genome sequences of various strains of bacteria such as the plant pathogen Xylella fastidiosa, marine Cyanobacteria Prochlorococcus marinus or animal and human pathogens such as species of Ehrlichia and Legionella. The short-range three-base periodicity, small sequence repeats and long-range correlations taken together constitute a genome signature that can be used as a technique for identifying new bacterial strains with the help of strains already catalogued in the database. There have been several applications of using the Mutual Information function as a measure of correlations in genomics but this is the first whole genome analysis done to detect strain similarities and differences.

  20. In vivo induced antigen technology (IVIAT) and change mediated antigen technology (CMAT).

    Science.gov (United States)

    Handfield, Martin; Hillman, Jeffrey D

    2006-09-01

    In this chapter, an overview of in vivo induced antigen technology (IVIAT) and change mediated antigen technology (CMAT) will be presented, including a discussion of the advantages and limitations of these methods. Over fifteen different microbial pathogens have been or are known to be currently studied with these methods. Salient data obtained from the application of IVIAT and/or CMAT to a selection of human and plant pathogens will be summarized. This includes recent reports on Streptococcus pyogenes (Group A) in neurological disorders and invasive diseases, Xylella fastidiosa in Pierce's disease, Xanthomonas campestris in bean blight, Salmonella enterica serovar typhi in typhoid fever and Leishmania spp. related infections. Special emphasis will be given to those targets that have been further investigated for the development of novel vaccine, diagnostic and/or antibiotherapy strategies. This encompasses a new point-of-care serological diagnostic test for chronic periodontal diseases. Finally, Mycobacterium tuberculosis in vivo induced products will be described as providing a rational basis for differentiating subjects with primary, dormant or secondary tuberculosis infections, from control subjects who have or did not have prior vaccination with BCG.

  1. Synthetic blends of volatile, phytopathogen-induced odorants can be used to manipulate vector behavior.

    Directory of Open Access Journals (Sweden)

    Alexander eAksenov

    2014-12-01

    Full Text Available Volatile organic compounds (VOCs are emitted from all plants and these VOCs are important means of communication between plants and insects. It has been documented that pathogen infections alter VOC profiles rendering infected plants more attractive to specific vectors transmitting these pathogens than uninfected plants, thus potentially aiding in pathogen propagation. Mimicking these chemical cues might enable insect attraction away from the plant or disruption of host finding behavior of the vector. However, the practical implications have not been fully explored. We used citrus, Diaphorina citri and huanglongbing (HLB as a model host-vector-disease system because HLB threatens citrus production worldwide and is similar to other critical diseases of food crops, such as Zebra Chip affecting potato. We formulated a synthetic chemical blend using selected HLB-specific biomarker compounds, and tested the blend with the Attenu assay system for chemosensory proteins. The Attenu assay system is a procedure that identifies interactions between insect chemosensory proteins and their ligands. We found that an equimolar mixture of compounds mimicking the volatile profile of HLB-infected citrus bound chemosensory proteins. Further investigation of this blend in laboratory behavioral assays resulted in development of a synthetic lure that was more attractive to D. citri than natural citrus tree volatiles. This strategy could provide a new route to produce chemical lures for vector population control for a variety of plant and/or animal systems and it may result in the development of a practical lure for monitoring vectors of disease, such as D. citri.

  2. Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans.

    Directory of Open Access Journals (Sweden)

    Xiaoqi Pan

    Full Text Available Plants are endowed with a sophisticated defense mechanism that gives signals to plant cells about the immediate danger from surroundings and protects them from pathogen invasion. In the search for the particular proteins involved in fruit defense responses, we report here a comparative analysis of tomato fruit (Solanum lycopersicum cv. Ailsa Craig infected by Rhizopus nigricans Ehrenb, which is a significant contributor to postharvest rot disease in fresh tomato fruits. In total, four hundred forty-five tomato proteins were detected in common between the non-infected group and infected tomato fruit of mature green. Forty-nine differentially expressed spots in 2-D gels were identified, and were sorted into fifteen functional groups. Most of these proteins participate directly in the stress response process, while others were found to be involved in several equally important biological processes: protein metabolic process, carbohydrate metabolic process, ethylene biosynthesis, and cell death and so on. These responses occur in different cellular components, both intra- and extracellular spaces. The differentially expressed proteins were integrated into several pathways to show the regulation style existing in tomato fruit host. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their roles in pathogen-plant interactions. Collectively results provide evidence that several regulatory pathways contribute to the resistance of tomato fruit to pathogen.

  3. Whole cell fatty acid analysis as a tool for classification of phytopathogenic pseudomonas bacteria.

    NARCIS (Netherlands)

    Janse, J.D.

    1992-01-01

    In this thesis some members of the plant pathogenic bacterial genus Pseudomonas have been studied. Conventional morphological, biochemical, physiological and pathogenitcity tests as well as a 'finger-print' technique, viz. automated whole cell fatty acid analysis, were used. The taxonomy of the plan

  4. Detection and characterization of a novel Gammapartitivirus in the phytopathogenic fungus Colletotrichum acutatum strain HNZJ001.

    Science.gov (United States)

    Zhong, Jie; Chen, Dan; Lei, Xiang Hua; Zhu, Hong Jian; Zhu, Jun Zi; Da Gao, Bi

    2014-09-22

    Spherical virus-like particles about 40nm in diameter were observed under transmission electron microscope (TEM) and two dsRNA bands (dsRNA-1 and dsRNA-2) were detected on agarose gel after extraction from the mycelial preparation of a Colletotrichum acutatum strain HNZJ001 that isolated from an anthracnose lesion on immature pepper fruit. The complete nucleotide sequences of the dsRNAs were determined. DsRNA-1 (1762 nt) and dsRNA-2 (1381 nt) each contained a single open reading frame and potentially encoded 62 kDa and 40 kDa proteins, respectively. The 62 kDa protein showed similarity to the RNA-dependent RNA polymerase (RdRp) of partitiviruses, while the 40 kDa product had no significant similarity to any published capsid protein throughout all databases, besides of low homology with the hypothetical "capsid" protein of a few partitiviruses in fungus Ustilaginoidea virens. Genome comparison and phylogenetic analysis indicated that the virus is closely related to the mycovirus in the family Partitiviridae. The results suggested a novel two-segment dsRNA virus be detected. We name it Colletotrichum acutatum partitivirus 1 (CaPV1). RT-PCR detection, using a primer pair based on the RdRp of the dsRNA-1 showed very high efficiency of CaPV1 transmission into the progenies of the fungus. Virus curing and fungal phenotype observation for evaluation of the impact of CaPV1 in host fungus were also carried out.

  5. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains.

    Science.gov (United States)

    Benomari, Fatima Zahra; Andreu, Vanessa; Kotarba, Jules; Dib, Mohammed El Amine; Bertrand, Cédric; Muselli, Alain; Costa, Jean; Djabou, Nassim

    2017-09-02

    Chemical composition and antifungal activity of essential oils of Algerian Mentha species were studied. Chemical compositions of different Mentha species oils (Mentha rotundifolia, M. spicata, M. pulegium, and M. piperita) were investigated by capillary GC and GC/MS, and their antifungal activities were evaluated by means of paper disc diffusion method and minimum inhibitory concentration (MIC) assays. In total, 98 components from all Mentha species were identified. All oils were rich in monoterpene-oxygenated components. In addition, we reported fumigant antifungal activity of Algerian Mentha essential oils against four fungi: Botrytis cinerea, Penicillium expansum, Monilinia laxa, and M. fructigena. All oils demonstrated very good inhibition especially against B. cinerea, M. laxa, and M. fructigena. Both Monilinia fungi were extremely sensitive to all Algerian Mentha oils, which suggests that Mentha essential oils have the potential to be used as bio-pesticides to protect fruit trees, such as apple and pear trees, and provides an alternative to chemical pesticides.

  6. Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil

    Directory of Open Access Journals (Sweden)

    Beatriz de Oliveira Costa

    2012-03-01

    Full Text Available The effect of inoculation of Aspergillus flavus, Fusarium verticillioides, and Penicillium sp. in Dystrophic Red Latosol (DRL and Eutroferric Red Latosol (ERL soils with or without glucose on the total carbohydrate content and the dehydrogenase and amylase activities was studied. The fungal growth and spore production in culture medium with and without glucose were also evaluated. A completely randomized design with factorial arrangement was used. The addition of glucose in the culture medium increased the growth rate of A. flavus and Penicillium sp. but not of F. verticillioides. The number of spores increased 1.2 for F. verticillioides and 8.2 times for A. flavus in the medium with glucose, but was reduced 3.5 times for Penicillium sp. The total carbohydrates contents reduced significantly according to first and second degree equations. The consumption of total carbohydrates by A. flavus and Penicillium sp. was higher than the control or soil inoculated with F. verticillioides. The addition of glucose to soils benefited the use of carbohydrates, probably due to the stimulation of fungal growth. Dehydrogenase activity increased between 1.5 to 1.8 times (p <0.05 in soils with glucose and inoculated with the fungi (except F. verticillioides, in relation to soil without glucose. Amylase activity increased 1.3 to 1.5 times due to the addition of glucose in the soil. Increased amylase activity was observed in the DRL soil with glucose and inoculated with A. flavus and Penicillium sp. when compared to control.

  7. Resistances to an insect herbivore and a phytopathogen in Barbarea vulgaris

    DEFF Research Database (Denmark)

    Christensen, Stina

    pubescence; one has glabrous leaves and is therefore called G-type while the other has pubescent leaves and is called the P-type. The G-type is resistant to most genotypes of the flea beetle Phyllotreta nemorum as well as some other Brassicales specialists, and this resistance is conferred by saponins. The P...

  8. Scorpion toxins modify phytopathogenic fungus physiology. A possible source of new fungicides.

    Science.gov (United States)

    Joya, Galax; D'Suze, Gina; Salazar, Víctor; Rosales, Arnaldo; Sevcik, Carlos; Visbal, Gonzalo; Ferreira, André T S; Perales, Jonas

    2011-06-08

    Seven toxins (F1-F7) were purified from Tityus discrepans scorpion venom on a C18 HPLC column. The compounds were fungitoxic on Macrophomina phaseolina. The molecular masses of F1-F7 were (Da) 1061.1, 7328.8, 7288.3, 7268.5, 7104.6, 6924.6, and 6823.3, respectively. It is not known if F1 is a small peptide or some other kind of organic molecule. Compounds F2-F7 were peptides. The most potent was F7, with a minimal inhibition concentration of 0.4 μg/μL and a concentration for 50% inhibition of 0.13 μg/μL. Fungal esterase activity was abolished by F2, F3, and F5 and inhibited by 89, 60, 58, and 54% by F4, F6, F7, and F1, respectively. F1, F2, F5, and F7 induced an increase on hyphae chitin wall and septum thickness. Peptides F3-F6 induced efflux of the fluorescent dye Na-CoroNa Red complex from hyphae. Only F5 and F6 were inhibited by the prokaryote sodium channel blockers amiloride and mibefradil. Gas chromatography-mass spectrometry analysis suggested that F1, F5, F6, and F7 altered sterol biosynthesis either by inhibiting ergosterol biosynthesis or by producing ergosterol analogues. The peptides affect M. phaseolina viability by three mechanisms: decreasing esterase activity, altering Na(+) membrane permeability, and altering wall sterol biosynthesis. It seems that interfering with sterol synthesis is an important mechanism behind the effect of the fungicideal toxins. However, the antifungal effects at short times are indicative of a direct esterase inhibition, which, with the increased membrane leakiness to Na(+), makes the fungus inviable.

  9. Genome Sequences of Three Phytopathogenic Species of the Magnaporthaceae Family of Fungi.

    Science.gov (United States)

    Okagaki, Laura H; Nunes, Cristiano C; Sailsbery, Joshua; Clay, Brent; Brown, Doug; John, Titus; Oh, Yeonyee; Young, Nelson; Fitzgerald, Michael; Haas, Brian J; Zeng, Qiandong; Young, Sarah; Adiconis, Xian; Fan, Lin; Levin, Joshua Z; Mitchell, Thomas K; Okubara, Patricia A; Farman, Mark L; Kohn, Linda M; Birren, Bruce; Ma, Li-Jun; Dean, Ralph A

    2015-09-28

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), take-all disease in wheat and other grasses (G. graminis), and summer patch disease in turf grasses (M. poae). Here, we present the finished genome sequence for M. oryzae and draft sequences for M. poae and G. graminis var. tritici. We used multiple technologies to sequence and annotate the genomes of M. oryzae, M. poae, and G. graminis var. tritici. The M. oryzae genome is now finished to seven chromosomes whereas M. poae and G. graminis var. tritici are sequenced to 40.0× and 25.0× coverage respectively. Gene models were developed by the use of multiple computational techniques and further supported by RNAseq data. In addition, we performed preliminary analysis of genome architecture and repetitive element DNA.

  10. Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum.

    Science.gov (United States)

    Mandujano-González, Virginia; Arana-Cuenca, Ainhoa; Anducho-Reyes, Miguel Ángel; Téllez-Jurado, Alejandro; González-Becerra, Aldo E; Mercado-Flores, Yuridia

    2013-12-01

    In this work, the extracellular protease Eap1 from Sporisorium reilianum was characterized in solid and liquid cultures using different culture media. The results showed that Eap1 was produced in all media and under all culture conditions, with the most activity in solid culture at an acidic pH of 3-5. Following purification, the 41 kDa protease demonstrated aspartyl protease activity. The enzyme was stable at a wide range of temperatures and pH values, but 45°C and pH 3 were optimal. The K(m) and V(max( values obtained were 0.69 mg/mL and 0.66 μmol/min, respectively, with albumin as the substrate. Eap1 degraded hemoglobin as well as proteins obtained from corn germ, roots, stems and slides at pH 3 and also had milk-clotting activity. Sequencing analysis showed that this protein has 100% similarity to the peptide sequence theoretically obtained from the sr11394 gene, which encodes an aspartyl protease secreted by S. reilianum.

  11. Antimicrobial and anti-pathogenic activity of some thioureides derivatives against Erwinia amylovora phytopathogenic strains.

    Science.gov (United States)

    Măruţescu, Luminiţa; Niţulescu, Mihai-George; Bucur, Marcela; Diţu, Lia-Mara; Mihăescu, Grigore; Lazăr, Veronica; Sesan, Tatiana

    2011-01-01

    A series of N-(1-methyl-1 Hpyrazole-4-carbonyl)-thiourea derivatives were assessed for their in vitro antimicrobial and anti-pathogenic activity against twenty-two strains of Erwinia amylovora isolated from different regions in Romania. The compounds were solubilised in dimethylsulfoxide and screened for their in vitro antimicrobial activity. The qualitative screening of the susceptibility spectra of various strains to the compounds was performed by adapted diffusion techniques (distribution of the tested compound solution directly on the solid medium previously seeded with the bacterial inoculums). The quantitative assay of the minimal inhibitory concentration (MIC, microg/mL) was based on liquid medium two-fold microdilutions. The subinhibitory concentrations of the tested substances were investigated for their influence on biofilm development on inert substrata. The present study showed that six new thiourea compounds exhibited a low antibacterial activity (MIC values > 500 microg/ml), but the subinhibitory concentrations inhibited the biofilm development on inert substrata. Thus, these results could suggest the usefulness of the tested compounds as control agents for preventing the first stage (colonization) of the infection with the fire blight pathogen.

  12. Mycosphaerella podagrariae-a necrotrophic phytopathogen forming a special cellular interaction with its host Aegopodium podagraria

    NARCIS (Netherlands)

    Simon, U.K.; Groenewald, J.Z.; Stierhof, Y.D.; Crous, P.W.; Bauer, R.

    2010-01-01

    We present a new kind of cellular interaction found between Mycosphaerella podagrariae and Aegopodium podagraria, which is remarkably different to the interaction type of the obligate biotrophic fungus Cymadothea trifolii, another member of the Mycosphaerellaceae (Capnodiales, Dothideomycetes, Ascom

  13. Mycosphaerella podagrariae - a necrotrophic phytopathogen forming a special cellular interaction with its host Aegopodium podagraria

    NARCIS (Netherlands)

    Simon, U.K.; Groenewald, J.Z.; Stierhof, Y.D.; Crous, P.W.; Bauer, R.

    2010-01-01

    We present a new kind of cellular interaction found between Mycosphaerella podagrariae and Aegopodium podagraria, which is remarkably different to the interaction type of the obligate biotrophic fungus Cymadothea trifolii, another member of the Mycosphaerellaceae (Capnodiales, Dothideomycetes, Ascom

  14. Mycosphaerella podagrariae - a necrotrophic phytopathogen forming a special cellular interaction with its host Aegopodium podagraria

    OpenAIRE

    Simon, U.K.; Groenewald, J.Z.; Stierhof, Y D; Crous, P.W.; Bauer, R

    2010-01-01

    We present a new kind of cellular interaction found between Mycosphaerella podagrariae and Aegopodium podagraria, which is remarkably different to the interaction type of the obligate biotrophic fungus Cymadothea trifolii, another member of the Mycosphaerellaceae (Capnodiales, Dothideomycetes, Ascomycota) which we have described earlier. Observations are based on both conventional and cryofixed material and show that some features of this particular interaction are better discernable after ch...

  15. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    Science.gov (United States)

    Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.

  16. Toxicity, analgesic and sedative potential of crude extract of soil-borne phytopathogenic fungi Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2016-11-01

    Full Text Available Background: Aspergillus flavus is one of the most abundant mold present around the world. The present study was conducted to investigate the acute toxicity, analgesic and sedative effect of the crude extract obtained from soil borne fungi A. flavus. Methods: The fungi was isolated from soil samples and identified morphologically and microscopically. The growth condition i.e. media, temperature, pH, and incubation period were optimized. In these optimized growth condition, A. flavus was grown in batch culture in shaking incubator. Crude contents were extracted by using ethyl acetate solvent. Crude secondary metabolites were screened for acute toxicity, analgesic and sedative effect. Results: Upon completion of the experiment, blood was collected from the tail vein of albino mice, and different haematological tests were conducted. White blood cells counts displayed a slight increase (10.6× 109/L above their normal range (0.8–6.8 × 109/L, which may be due to the increment in the number of lymphocytes or granulocytes. However, the percentage of lymphocytes was much lower (17.7%, while the percentage of the granulocytes was higher (61.4% than its normal range (8.6–38.9%. A reduction in the mean number of writhing in the different test groups was caused by the application of the crude ethyl acetate extract through the i.p. route at different doses (50, 100, and 150 mg/kg body weight. The results of our investigation showed the EtOAc extract of A. flavus can cause a significant sedative effect in open field. Conclusion: It was concluded from the present study that the A. flavus has the potential to produce bioactive metabolites which have analgesic and sedative effect.

  17. Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile

    Directory of Open Access Journals (Sweden)

    Ferro Jesus A

    2010-11-01

    Full Text Available Abstract Background Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac, and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC and tandem mass spectrometry (MS/MS. Results In order to gain insight into the metabolism of Xac, cells were grown on two different media (NB - Nutrient Broth and TSE - Tryptone Sucrose broth enriched with glutamic acid, and proteins were proteolyzed with trypsin and examined by 2D LC-MS/MS. Approximately 39% of all predicted proteins by annotation of Xac were identified with their component peptides unambiguously assigned to tandem mass spectra. The proteins, about 1,100, were distributed in all annotated functional categories. Conclusions This is the first proteomic reference map for the most aggressive strain of Xanthomonas pathogen of all orange varieties. The compilation of metabolic pathways involved with bacterial growth showed that Xac expresses a complete central and intermediary metabolism, replication, transcription and translation machineries and regulation factors, distinct membrane transporters (ABC, MFS and pumps and receptors (MCP, TonB dependent and metabolites acquisition, two-component systems (sensor and regulatory components and response regulators. These data corroborate the growth curve in vitro and are the first reports indicating that many of these genome annotated genes are translated into operative in Xac. This proteomic analysis also provided information regarding the influence of culture medium on growth and protein expression of Xac.

  18. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Metwaly eRamadan

    2015-09-01

    Full Text Available Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defence pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defence-related compounds such as H2O2, anthocyanin, camalexin, and increased expression of defence related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence.The prominent headspace volatile of T. asperellum IsmT5 was identified to be 6-pentyl-α-pyrone, which was solely applied to A. thaliana to verify the growth and defence reactions. Most noticeable is that A. thaliana preexposed to 6PP showed significantly reduced symptoms when challenged with Botrytis cinerea and Alternaria brassicicola, indicating that defence-activated plants subsequently became more resistant to pathogen attack. Together, these results support that products that are based on Trichoderma volatiles have the potential being a useful biocontrol agent in agriculture.

  19. IN VITRO ANTIFUNGAL ACTIVITY OF ESSENTIAL OILS ON GROWTH OF PHYTOPATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2010-12-01

    Full Text Available Eleven essential oils (clove, rosemary, cinnamon leaf, sage, scots pine, neroli, peppermint, aniseed, caraway, lavander, common thyme were tested for in vitro antifungal activity on twelve plant pathogenic fungi (Fusarium graminearum, F. verticillioides, F. subglutinans, F. oxysporum, F. avenaceum, Diaporthe helianthi, Diaporthe phaseolorum var. caulivora, Phomopsis longicolla, P. viticola, Helminthosporium sativum, Colletotrichum coccodes, Thanatephorus cucumeris. The results indicated that all oils except scots pine and neroli had antifungal activity against some or all tested fungi. The best antifungal activity had common thyme, cinnamon leaf, clove and aniseed oils. When compared to control, scots pine, neroli and sage oils stimulated mycelium growth of some investigated fungi.

  20. Study of the mode of action of a polygalacturonase from the phytopathogen Burkholderia cepacia

    DEFF Research Database (Denmark)

    Massa, C.; Clausen, Mads Hartvig; Stojan, J.

    2007-01-01

    of pectins. The mode of action of BcPeh28A on different substrates has been investigated and its enzymatic mechanism elucidated. The hydrolysis of polygalacturonate indicates that BcPeh28A is a non-processive enzyme that releases oligomers with chain lengths ranging from two to eight. By inspection...

  1. Biological Role of Pigment Production for the Bacterial Phytopathogen Pantoea stewartii subsp. stewartii

    OpenAIRE

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M. Caroline

    2012-01-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contribute...

  2. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M Caroline

    2012-10-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.

  3. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris

    OpenAIRE

    Qian, Wei; Jia, Yantao; Ren, Shuang-Xi; He, Yong-Qiang; Feng, Jia-Xun; Lu, Ling-Feng; Sun, Qihong; Ying, Ge; Tang, Dong-Jie; Tang, Hua; Wu, Wei; Hao, Pei; Wang, Lifeng; Jiang, Bo-Le; Zeng, Shenyan

    2005-01-01

    Xanthomonas campestris pathovar campestris (Xcc) is the causative agent of crucifer black rot disease, which causes severe losses in agricultural yield world-wide. This bacterium is a model organism for studying plant-bacteria interactions. We sequenced the complete genome of Xcc 8004 (5,148,708 bp), which is highly conserved relative to that of Xcc ATCC 33913. Comparative genomics analysis indicated that, in addition to a significant genomic-scale rearrangement cross the replication axis bet...

  4. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris.

    Science.gov (United States)

    Qian, Wei; Jia, Yantao; Ren, Shuang-Xi; He, Yong-Qiang; Feng, Jia-Xun; Lu, Ling-Feng; Sun, Qihong; Ying, Ge; Tang, Dong-Jie; Tang, Hua; Wu, Wei; Hao, Pei; Wang, Lifeng; Jiang, Bo-Le; Zeng, Shenyan; Gu, Wen-Yi; Lu, Gang; Rong, Li; Tian, Yingchuan; Yao, Zhijian; Fu, Gang; Chen, Baoshan; Fang, Rongxiang; Qiang, Boqin; Chen, Zhu; Zhao, Guo-Ping; Tang, Ji-Liang; He, Chaozu

    2005-06-01

    Xanthomonas campestris pathovar campestris (Xcc) is the causative agent of crucifer black rot disease, which causes severe losses in agricultural yield world-wide. This bacterium is a model organism for studying plant-bacteria interactions. We sequenced the complete genome of Xcc 8004 (5,148,708 bp), which is highly conserved relative to that of Xcc ATCC 33913. Comparative genomics analysis indicated that, in addition to a significant genomic-scale rearrangement cross the replication axis between two IS1478 elements, loss and acquisition of blocks of genes, rather than point mutations, constitute the main genetic variation between the two Xcc strains. Screening of a high-density transposon insertional mutant library (16,512 clones) of Xcc 8004 against a host plant (Brassica oleraceae) identified 75 nonredundant, single-copy insertions in protein-coding sequences (CDSs) and intergenic regions. In addition to known virulence factors, full virulence was found to require several additional metabolic pathways and regulatory systems, such as fatty acid degradation, type IV secretion system, cell signaling, and amino acids and nucleotide metabolism. Among the identified pathogenicity-related genes, three of unknown function were found in Xcc 8004-specific chromosomal segments, revealing a direct correlation between genomic dynamics and Xcc virulence. The present combination of comparative and functional genomic analyses provides valuable information about the genetic basis of Xcc pathogenicity, which may offer novel insight toward the development of efficient methods for prevention of this important plant disease.

  5. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    Science.gov (United States)

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Detection of double stranded RNA in phytopathogenic Macrophomina phaseolina causing charcoal rot in Cyamopsis tetragonoloba.

    Science.gov (United States)

    Arora, Pooja; Dilbaghi, Neeraj; Chaudhury, Ashok

    2012-03-01

    One hundred one isolates of Macrophomina phaseolina from various hosts and eco-geographical locations were employed for elucidating relationships among genetic diversity and virulence. Highly pathogenic, moderately pathogenic, and hypovirulent cluster bean specific isolates were identified. In order to correlate respective phenotypes of plant pathogenic fungus multiple and complex patterns of dsRNA elements were analyzed. Double-stranded ribonucleic acids (dsRNA) are ubiquitous in all major groups and most of them have vast potential as biological control agents for fungi. Rate of virulence and its further association could ascertain by host plant and their fungal genotypes. Variability of the fungal genotypes decides the link between the complexity of dsRNA with different variants and the change in virulence pattern. Double-stranded RNA was identified in approximately 21.7% of M. phaseolina isolates from charcoal rot infected cluster bean varieties. After recurrent laboratory transfer on culture media, the preponderance of the isolates harboring dsRNAs developed degenerate culture phenotypes and showed reduced virulence (hypovirulence) to cluster bean. Macrophomina has successfully showed diversified and reproducible banding profile in dsRNA containing/free isolates. This is the first report of hypovirulence and detection of dsRNA in Macrophomina phaseolina isolates of cluster bean origin.

  7. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi

    Science.gov (United States)

    Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.

    In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

  8. Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina.

    Science.gov (United States)

    Bhowal, Jayati; Guha, Arun Kumar; Chatterjee, Bishnu Pada

    2005-09-05

    A lectin was isolated and purified from the culture filtrate of the plant pathogenic fungus Macrophomina phaseolina by a combination of ammonium sulfate precipitation, affinity chromatography on fetuin-Sepharose 4B and ion-exchange chromatography on DEAE-A 50. The lectin designated MPL was homogeneous by PAGE and HPLC and a monomeric protein with a molecular weight of approximately 34 kDa as demonstrated by SDS-PAGE. It is a glycoprotein and agglutinated human erythrocytes regardless of the human blood type. Neuraminidase treatment of erythrocytes reduced the agglutination activity of the lectin. It is thermally stable and exhibits maximum activity between pH 6 and 7.2. Its carbohydrate binding specificity was investigated both by hapten inhibition of hemagglutination and by enzyme-conjugated lectin inhibition assay. Although, M. phaseolina lectin bound sialic acid, it exhibited binding affinity towards neuraminyl oligosaccharides of N-linked glycoproteins, alpha-Neu5Ac-(2-->3)-beta-Gal-(1-->4)-GlcNAc being maximum.

  9. Growth Behavior of Phytopathogen Clavibacter michiganensis ssp. sepedonicus Treated with Selenium Biocomposites of Mushroom Origin

    Directory of Open Access Journals (Sweden)

    A.I. Perfileva

    2016-02-01

    Full Text Available The results of studying the effect of biologically obtained selenium nanocomposites on the bacterium Clavibacter michiganensis ssp. sepedonicus (Cms are presented. Cms is a Gram-positive bacterium, which causes one of the most dangerous potato diseases, ring rot. The effective alongside ecologically safe methods for combating Cms are lacking. As the agents feasible for use in this purpose, we examined the selenium nanocomposites obtained from the macrobasidiomycetes' submerged cultures. For exploring the bionanocomposites effect on Cms, the methods of agar well diffusion, the suspension turbidity measurement, and the colony-forming units count were applied. The results showed that all the nanocomposites under study lowered the bacterial suspension's absorption values compared to the reference specimen, that testified to the observation of bacteriostatic effect of the agents tested. The suppression action of nanocompostes was elucidated by means of both agar well diffusion assay and colony-forming units count. Thus, the results obtained demonstrate the occurrence of bacteriostatic and bactericidal effects of the substances under study, and favor the supposition on advisability of further research into the selenium nanocomposites as the agents for agricultural recovery from the bacterial pathogens.

  10. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis.

    Science.gov (United States)

    Dreier, J; Meletzus, D; Eichenlaub, R

    1997-03-01

    The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, causing bacterial wilt and canker, harbors two plasmids, pCM1 (27.5 kb) and pCM2 (72 kb), carrying genes involved in virulence. The region of plasmid pCM2 encoding the pathogenicity locus pat-1 was mapped by deletion analysis and complementation studies to a 1.5-kb Bg/II/SmaI DNA fragment. Introduction of the pat-1 region into endophytic, plasmid-free isolates of C. michiganensis subsp. michiganensis converted these bacteria into virulent pathogens. Based on the nucleotide sequence of the pat-1 region, an open reading frame (ORF1) can be predicted, coding for a protein of 280 amino acids and 29.7 kDa with homology to serine proteases. Introduction of a frame-shift mutation in ORF1 leads to a loss of the pathogenic phenotype. Northern (RNA) hybridizations identified an 1.5-knt transcript of the pat-1 structural gene. The site of transcription initiation was mapped by primer extension and a typical -10/-35 region was located with significant homology to the consensus Escherichia coli sigma 70 and Bacillus subtilis sigma 43 promoters. Downstream of the pat-1 structural gene, a peculiar repetitive sequence motif (pat-1rep) is located, consisting of 20 direct tandem repeats preceded by a run of 14 guanosine residues. DNA sequences homologous to pat-1rep were isolated and characterized from four virulent C. michiganensis subsp. michiganensis strains exhibiting a high extent of structural conservation. The deletion of this repetitive sequence reduced virulence significantly but did not lead to a complete loss of the virulence phenotype.

  11. A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies.

    Science.gov (United States)

    Bach, H-J; Jessen, I; Schloter, M; Munch, J C

    2003-01-01

    Real-time TaqMan-PCR assays were developed for detection, differentiation and absolute quantification of the pathogenic subspecies of Clavibacter michiganensis (Cm) in one single PCR run. The designed primer pair, targeting intergenic sequences of the rRNA operon (ITS) common in all subspecies, was suitable for the amplification of the expected 223-nt DNA fragments of all subspecies. Closely related bacteria were completely discriminated, except of Rathayibacter iranicus, from which weak PCR product bands appeared on agarose gel after 35 PCR cycles. Sufficient specificity of PCR detection was reached by introduction of the additional subspecies specific probes used in TaqMan-PCR. Only Cm species were detected and there was clear differentiation among the subspecies C. michiganensis sepedonicus (Cms), C. michiganensis michiganensis (Cmm), C. michiganensis nebraskensis (Cmn), C. michiganensis insidiosus (Cmi) and C. michiganensis tessellarius (Cmt). The TaqMan assays were optimized to enable a simultaneous quantification of each subspecies. Validity is shown by comparison with cell counts.

  12. Antifungal Depsidone Metabolites from Cordyceps dipterigena, an Endophytic Fungus Antagonistic to the Phytopathogen Gibberella fujikuroi

    Science.gov (United States)

    Varughese, Titto; Riosa, Nivia; Higginbotham, Sarah; Arnold, A. Elizabeth; Coley, Phyllis D.; Kursar, Thomas A.; Gerwick, William H.; Cubilla Rios, L.

    2012-01-01

    Among thirty four endophytic fungal strains screened for in vitro antagonism, the endophytic fungus Cordyceps dipterigena was found to strongly inhibit mycelial growth of the plant pathogenic fungus Gibberella fujikuroi. Two new depsidone metabolites, cordycepsidone A (1) and cordycepsidone B (2), were isolated from the PDA culture extract of C. dipterigena and identified as being responsible for the antifungal activity. Elucidation of their chemical structures was carried out using 1D and 2D NMR spectroscopy in combination with IR and MS spectroscopic data. Cordycepsidone A displayed strong and dose-dependent antifungal activity against the plant pathogenic fungus Gibberella fujikuroi. The isolates were inactive in bioassays for malaria (Plasmodium falciparum), leishmaniasis (Leishmania donovani), Chagas’s disease (Trypanosoma cruzi), and cytotoxicity at 10 μg/mL. The compounds were also found to be inactive against several bacterial strains at 50 μg/mL. PMID:22707798

  13. Antagonist capacity of Newly Isolated Strains of Pseudomonas Fluorescens against Three Important Phytopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Reynaldo D.L. Cruz-Quiroz

    2011-01-01

    Full Text Available Problem statement: Phytopatogenic bacteria cause several damages to plants with important economical consequences. They provoke losses of product quality affecting all commercial chain of crops, for this reason, their control is a priority. Approach: We evaluated antagonist capacity of newly isolated Pseudonomas fluorescens strains against three important phytopatogenic bacteria (Clavibacter michiganensis, Xanthomonas axonopodis and Erwinia carotovora. Soils from commercial cropping of Capsicum annum L of several Mexican regions were used to isolate P. fluorescens strains. Results: Isolates producing flourescein were purified on King B agar and biochemically identified. Crude extracts with and without cells were produced in King B broths and their antagonist capacities were evaluated by the plate diffusion procedure on nutritive agar. Conclusion: Obtained results demonstrated that cell free extracts exhibited a limited antagonist capacity in comparison of those extracts with cells, which showed an excellent capacity to inhibit the growth of C. michiganensis, X. axonopodis and E. carotovora, demonstrating the intracellular nature of the bioactive metabolites associated to bacterial growth inhibition.

  14. Studies on phytopathogenic and saprotrophic fungi in rush associations of Lake Glinno (NW Poland

    Directory of Open Access Journals (Sweden)

    Kinga Mazurkiewicz-Zapałowicz

    2013-12-01

    Full Text Available During the vegetation seasons in years 2004-2005 the health state of rush plant species from Phragmition and Magnocaricion alliances around the Lake Glinno was investigated. From 13 plant species with disease symptoms 94 species of fungi and FLO were isolated. The highest mycological biodiversity was stated in Phragmitetum australis (24 species and Thelypteridi-Phragmitetum (27 species plant associations. The host species in which the biggest number of fungi and FLO species was observed were: Phragmites australis (37 species and Carex acutiformis (25 species. The highest mycological similarity based on the Jaccard-Sörensen coefficient occurred between Caricetum acutiformis and Glycerietum maximae plant associations (50% whereas the lowest value of the coefficient represented Glycerietum maximae and Phalaridetum arundinaceae associations (7%.

  15. Exploring Western Ghats microbial diversity for antagonistic microorganisms against fungal phytopathogens of pepper and chickpea

    Directory of Open Access Journals (Sweden)

    B.N. RAMKUMAR

    2015-08-01

    Full Text Available Newly isolated microbial cultures from Western Ghat soil samples of Kerala region in India were screened for antagonistic activity by well diffusion and dual culture plating against Phytophthora capsici and Rhizoctonia solani, infecting pepper and chickpea, respectively. Bioactive samples were made by varying solvent extraction of the culture broths of the potent isolates belongs to Actinomycetes, Pseudomonas, Bacillus and Trichoderma. The efficacy of the isolates to produce other potent antifungal metabolites such as cell wall degrading enzymes, HCN and volatile compounds were also checked. Treatment with antagonistic isolates in vivo under greenhouse conditions revealed significant reduction of the disease intensity of foot rot disease of black pepper and collar rot of chick pea.

  16. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple.

    Science.gov (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.

  17. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    DEFF Research Database (Denmark)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets conta...

  18. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango

    Directory of Open Access Journals (Sweden)

    Purvi M. Rakhashiya

    2015-12-01

    Full Text Available Actinobaceria, Micrococcus luteus SUBG006 was isolated from infected leaves of Mangifera indica L. vr. Nylon in Rajkot, (22.30°N, 70.78°E, Gujarat, India. The genome size is 3.86 Mb with G + C content of 69.80% and contains 112 rRNA sequences (5S, 16S and 23S. The whole genome sequencing has been deposited in DDBJ/EMBL/GenBank under the accession number JOKP00000000.

  19. Development of Conductive Polymer Analysis for the Rapid Detection and Identification of Phytopathogenic Microbes

    Science.gov (United States)

    A. Dan Wilson; D.G. Lester; C.S. Oberle

    2004-01-01

    Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to...

  20. Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis.

    Science.gov (United States)

    Couturier, Marie; Mathieu, Yann; Li, Ai; Navarro, David; Drula, Elodie; Haon, Mireille; Grisel, Sacha; Ludwig, Roland; Berrin, Jean-Guy

    2016-01-01

    The discovery of novel fungal lignocellulolytic enzymes is essential to improve the breakdown of plant biomass for the production of second-generation biofuels or biobased materials in green biorefineries. We previously reported that Ustilago maydis grown on maize secreted a diverse set of lignocellulose-acting enzymes including hemicellulases and putative oxidoreductases. One of the most abundant proteins of the secretome was a putative glucose-methanol-choline (GMC) oxidoreductase. The phylogenetic prediction of its function was hampered by the few characterized members within its clade. Therefore, we cloned the gene and produced the recombinant protein to high yield in Pichia pastoris. Functional screening using a library of substrates revealed that this enzyme was able to oxidize several aromatic alcohols. Of the tested aryl-alcohols, the highest oxidation rate was obtained with 4-anisyl alcohol. Oxygen, 1,4-benzoquinone, and 2,6-dichloroindophenol can serve as electron acceptors. This GMC oxidoreductase displays the characteristics of an aryl-alcohol oxidase (E.C.1.1.3.7), which is suggested to act on the lignin fraction in biomass.

  1. Model analysis for plant disease dynamics co-mediated by herbivory and herbivore-borne phytopathogens.

    Science.gov (United States)

    Nakazawa, Takefumi; Yamanaka, Takehiko; Urano, Satoru

    2012-08-23

    Plants are subject to diseases caused by pathogens, many of which are transmitted by herbivorous arthropod vectors. To understand plant disease dynamics, we studied a minimum hybrid model combining consumer-resource (herbivore-plant) and susceptible-infected models, in which the disease is transmitted bi-directionally between the consumer and the resource from the infected to susceptible classes. Model analysis showed that: (i) the disease is more likely to persist when the herbivore feeds on the susceptible plants rather than the infected plants, and (ii) alternative stable states can exist in which the system converges to either a disease-free or an endemic state, depending on the initial conditions. The second finding is particularly important because it suggests that the disease may persist once established, even though the initial prevalence is low (i.e. the R(0) rule does not always hold). This situation is likely to occur when the infection improves the plant nutritive quality, and the herbivore preferentially feeds on the infected resource (i.e. indirect vector-pathogen mutualism). Our results highlight the importance of the eco-epidemiological perspective that integration of tripartite interactions among host plant, plant pathogen and herbivore vector is crucial for the successful control of plant diseases.

  2. Association between virulence and triazole tolerance in the phytopathogenic fungus Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Lina Yang

    Full Text Available Host resistance and synthetic antimicrobials such as fungicides are two of the main approaches used to control plant diseases in conventional agriculture. Although pathogens often evolve to overcome host resistance and antimicrobials, the majority of reports have involved qualitative host - pathogen interactions or antimicrobials targeting a single pathogen protein or metabolic pathway. Studies that consider jointly the evolution of virulence, defined as the degree of damage caused to a host by parasite infection, and antimicrobial resistance are rare. Here we compared virulence and fungicide tolerance in the fungal pathogen Mycosphaerella graminicola sampled from wheat fields across three continents and found a positive correlation between virulence and tolerance to a triazole fungicide. We also found that quantitative host resistance selected for higher pathogen virulence. The possible mechanisms responsible for these observations and their consequences for sustainable disease management are discussed.

  3. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  4. The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Pieckenstain, F L; Gárriz, A; Chornomaz, E M; Sánchez, D H; Ruiz, O A

    2001-12-01

    We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. Alpha-Difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.

  5. Identification and Pathogenicity of Phytopathogenic Bacteria Associated with Soft Rot Disease of Girasole Tuber

    OpenAIRE

    Mamdoh Ewis ISMAIL; Abdel-Monaim, Montaser Fawzy; Yasser Mahmoud MOSTAFA

    2012-01-01

    During 2010-2011 growing seasons six bacterial isolates were separated from naturally infected girasole plants tubers (Helianthus tuberosus L.) cv. �Balady�, showing soft rot, collected from experimental Farm of the Faculty of Agriculture, in El-Minia University, Egypt. Pathogenicity tests showed various virulence for the bacteria isolated from girasole tubers, found pathogenic. These organisms were characterized as rod-shaped, Gram negative, ?-methyl-d-glucoside medium, reducing substances f...

  6. Identification and Pathogenicity of Phytopathogenic Bacteria Associated with Soft Rot Disease of Girasole Tuber

    Directory of Open Access Journals (Sweden)

    Mamdoh Ewis ISMAIL

    2012-02-01

    Full Text Available During 2010-2011 growing seasons six bacterial isolates were separated from naturally infected girasole plants tubers (Helianthus tuberosus L. cv. Balady, showing soft rot, collected from experimental Farm of the Faculty of Agriculture, in El-Minia University, Egypt. Pathogenicity tests showed various virulence for the bacteria isolated from girasole tubers, found pathogenic. These organisms were characterized as rod-shaped, Gram negative, ?-methyl-d-glucoside medium, reducing substances from sucrose, phos, phatase activity and deep cavities on pectate medium. Otherwise, diagnostic tests suggested that the pathogen was Erwinia carotovora ssp. carotovora. The isolated bacteria caused soft rot of wounded tubers when inoculated into tissues. The bacterial isolates were compared for their degree of pathogenicity as well as for differences in specific symptoms, induced in different hosts. The tested isolates could infect several host ranges, such as fruits of apricot, apple, olive, lemon, squash, eggplant and potato tubers, bulbs and garlic and onion cloves, roots radish, carrot, sweet potato and rape. On the other hand, no symptoms were exhibited on pods of bean and cowpea, faba bean, fruits of pepper and tomato. The extracts of experimentally diseased girasole tubers were active in pectinase and also in caboxymethyl cellulose at pH 6 compared to enzyme activities in healthy tissues. Also, the isolated bacteria increased the total and reducing sugars in infected tissues.

  7. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites.

    Science.gov (United States)

    Bühlmann, Andreas; Dreo, Tanja; Rezzonico, Fabio; Pothier, Joël F; Smits, Theo H M; Ravnikar, Maja; Frey, Jürg E; Duffy, Brion

    2014-07-01

    Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.

  8. Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food.

    Science.gov (United States)

    Juárez-Montiel, Margarita; Ruiloba de León, Sandra; Chávez-Camarillo, Griselda; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes

    2011-01-01

    In recent years the need has arisen to study and develop (or re-discover) foods that have nutritional characteristics as well as specific functions, such as improving health and/or reducing the risk of disease. For this reason knowledge of the nutritional value of food is important to promote greater consumer acceptance. In Mexico huitlacoche (also, cuitlacoche) has traditionally been prized as a delicacy since the time of the Aztecs and is currently being studied as a potential functional food and as a producer of natural bioactive substances that are used in fortifying foods. To present an updated review about the properties of the huitlacoche (corn smut) as functional food. A bibliographic search was performed and data were discussed. The data of the works reviewed here show that huitlacoche contains many compounds that confer to it unique organoleptic and nutraceutical characteristics. The content of bioactive substances in huitlacoche supports the proposal that this is a good functional food as well as producer of compounds to enrich other foods. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Genome sequences of three phytopathogenic species of the Magnaporthaceae family of fungi

    Science.gov (United States)

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), ...

  10. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Charles G Nasmith

    2011-09-01

    Full Text Available In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the biosynthesis of the secondary metabolite deoxynivalenol (DON. The Tri6 protein with its Cys₂His₂ zinc-finger may also conform to the class of global transcription regulators. This class of global transcriptional regulators mediate various environmental cues and generally responds to the demands of cellular metabolism. To address this issue directly, we sought to find gene targets of Tri6 in F. graminearum grown in optimal nutrient conditions. Chromatin immunoprecipitation followed by Illumina sequencing (ChIP-Seq revealed that in addition to identifying six genes within the trichothecene gene cluster, Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14, the ChIP-Seq also identified 192 additional targets potentially regulated by Tri6. Functional classification revealed that, among the annotated genes, ∼40% are associated with cellular metabolism and transport and the rest of the target genes fall into the category of signal transduction and gene expression regulation. ChIP-Seq data also revealed Tri6 has the highest affinity toward its own promoter, suggesting that this gene could be subject to self-regulation. Electro mobility shift assays (EMSA performed on the promoter of Tri6 with purified Tri6 protein identified a minimum binding motif of GTGA repeats as a consensus sequence. Finally, expression profiling of F. graminearum grown under nitrogen-limiting conditions revealed that 49 out of 198 target genes are differentially regulated by Tri6. The identification of potential new targets together with deciphering novel binding sites for Tri6, casts new light into the role of this transcriptional regulator in the overall growth and development of F. graminearum.

  11. Isolation and fusion of protoplasts from the phytopathogenic fungus Sclerotium rolfsii (Sacc.

    Directory of Open Access Journals (Sweden)

    Sikandar Hayat

    2010-03-01

    Full Text Available Sclerotium rolfsii (Sacc. is a serious plant pathogenic fungus and lacks perfect (basidial stage in production. Protoplast fusion technology was employed to reconstruct fusants from this fungus. Two strains designated as A and R were used. Maximum protoplast yields of 3.8x10(5 /g mycelia and 2.8x10(5 /g mycelia were formed in strains A and R respectively. Osmotic stabilizer sucrose 1M gave maximum yield. Lysing enzyme at the rate of 15mg/ml was found best for yield. Fusion of protoplasts from strains A and R was carried out in fusion media containing PEG 4000 30% (w/v with 0.2mM CaCl2. Four fusants F1, F2, F3 and F4 were recovered. Morphological, physiological and pathogenic characters of fusants were compared with parent strains on carrots, beans and tomato.

  12. Induction of infection in Teosinte (Zea diploperennis through the phytopathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martha Concepción Pérez Díaz

    2017-01-01

    Full Text Available Introduction: The corn and teosinte share morphological and molecular similarities latter being those that support the theory of teosinte (Zea parviglumis as its predecessor, both species are attacked by specific pathogens like Ustilago maydis. Objective: To analyze the infectious process that presents U. maydis on the variety of the teosinte Zea diploperennis. Materials and Methods: We used the strain of U. maydis FB-D12, which was kept a culture media rich in nutrients (CPES pH 7.0. Viable cells without morphological alterations to the inoculation method of puncture in teosinte seedlings were used. Monitoring of infection was carried out every 24 hours by measuring concentration of chlorophyll and plant tissue through microscopic observation Results: In the seedlings of Zea diploperennis inoculated with U. maydis the symptoms of the infection were presented, wilt and chlorosis in the leaves; The chlorosis was confirmed with the low concentration of chlorophyll 12 days later to the inoculation. In the microscopic observation of cuts of the tissue plant was found mycelium long and branched from the third day of the inoculation, until the appearance of tumors in seedlings of 45 days. Conclusions: The typical signs of infection with Ustilago maydis in the variety of teosinte Zea diploperennis do not differ from those reported for corn. Ustilago maydis presents its full life cycle within the plant, confirming that the diploperennis variety is susceptible.

  13. Features of isolation and identification of phytopathogenic bacteria and search of their natural antagonists

    Directory of Open Access Journals (Sweden)

    O. S. Stonchyus

    2010-08-01

    Full Text Available Microflora of vegetables affected by bacteriosis was isolated and investigated. On the basis of morphological, cultural, physiological and biochemical characteristics of selected strains they were identified, and their plants pathogenicity was shown. The antagonistic influence of strain Bacillus thuringiensis var. thuringiensis IMV B-7186 on isolated bacterial culture was studied.

  14. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum.

    Science.gov (United States)

    Meziani, Saïda; Oomah, B Dave; Zaidi, Farid; Simon-Levert, Annabel; Bertrand, Cédric; Zaidi-Yahiaoui, Rachida

    2015-01-01

    Acetone and ethanol extracts of carob (Ceratonia siliqua L.) leaf and pods were evaluated for their in vitro inhibitory ability against the pectinolytic Gram negative Pectobacterium atrosepticum (Pca, CFBP-5384) bacteria, the causal agent of potato soft rot. Potato (Solanum tuberosum, var nicola) tuber rot tissues obtained after 5 day bacterial inoculation was analyzed by LC-MS and GC-MS to study Pca pathogenicity. Trans/cis N-feruloylputrescine was identified in potato tuber after 5-day inoculation with Pca in a dark moist chamber. Although glycoalkoloid (α-chaconine and α-solanine) production increased due to Pca soft rot infection, it was not a resistance-determining factor. Many secondary metabolites were identified including the phytoalexins solavetivone and fatty acids responsible for plant defence responses. Acetone extract of carob leaf (FCA) exhibited the strongest inhibitory effect (IC50 = 1.5 mg/ml) and displayed synergistic antimicrobial effect in the presence of infected potato tuber extract (Pdt-Pca extract) against Pca. This synergy could be used in an integrated control program against potato soft rot pathogens, thereby reducing chemical treatments.

  15. Exploring Western Ghats microbial diversity for antagonistic microorganisms against fungal phytopathogens of pepper and chickpea

    National Research Council Canada - National Science Library

    B.N. RAMKUMAR; K.M. NAMPOOTHIRI; U. SHEEBA; P. JAYACHANDRAN; N.S. SREESHMA; S.M. SNEHA; K.S. Meenakumari; P. Sivaprasad

    2015-01-01

    ... capsici and Rhizoctonia solani, infecting pepper and chickpea, respectively. Bioactive samples were made by varying solvent extraction of the culture broths of the potent isolates belongs to Actinomycetes, Pseudomonas, Bacillus and Trichoderma...

  16. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple

    NARCIS (Netherlands)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C.; Crous, Pedro W.; Lavrov, Dennis V.; Li, Huanyu; Gleason, Mark L.

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we

  17. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple

    NARCIS (Netherlands)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C.; Crous, Pedro W.; Lavrov, Dennis V.; Li, Huanyu; Gleason, Mark L.

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so

  18. Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Diana Pabón-Baquero

    2015-01-01

    Full Text Available Jatropha curcas es una planta con gran potencial agrícola e industrial. En este estudio se aislaron dos hongos de semillas no germinadas. Los aislamientos fúngicos se identificaron morfológica y molecularmente como Fusarium equiseti y Curvularia lunata. Los efectos del quitosano se evaluaron sobre el crecimiento micelial, esporulación y germinación de esporas de F. equiseti y C. lunata. Además, se estudió el efecto sobre la germinación de las semillas de J. curcas. Los resultados demostraron que todas las concentraciones probadas de quitosano (0.5, 1.0, 2.0 y 4.0 mg·mL-1 inhibieron el crecimiento micelial de los hongos. Las respuestas de esporulación y germinación de esporas fueron diferentes dependiendo de la especie fúngica; el quitosano inhibió completamente la esporulación C. lunata y la germinación de esporas de F. equiseti. La inoculación con F. equiseti y C. lunata redujo la germinación de semillas de J. curcas 20 y 26.6 %, respectivamente; sin embargo, la aplicación de quitosano antes de la inoculación inhibió la actividad patogénica. En conclusión, el quitosano no afectó la germinación de las semillas y causó efectos inhibitorios en F. equiseti y C. lunata. Este es el primer reporte del efecto del quitosano en J. curcas.

  19. Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen.

    Directory of Open Access Journals (Sweden)

    Guillaume Daverdin

    Full Text Available Modern agriculture favours the selection and spread of novel plant diseases. Furthermore, crop genetic resistance against pathogens is often rendered ineffective within a few years of its commercial deployment. Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape, develops gene-for-gene interactions with its host plant, and has a high evolutionary potential to render ineffective novel sources of resistance in crops. Here, we established a four-year field experiment to monitor the evolution of populations confronted with the newly released Rlm7 resistance and to investigate the nature of the mutations responsible for virulence against Rlm7. A total of 2551 fungal isolates were collected from experimental crops of a Rlm7 cultivar or a cultivar without Rlm7. All isolates were phenotyped for virulence and a subset was genotyped with neutral genetic markers. Virulent isolates were investigated for molecular events at the AvrLm4-7 locus. Whilst virulent isolates were not found in neighbouring crops, their frequency had reached 36% in the experimental field after four years. An extreme diversity of independent molecular events leading to virulence was identified in populations, with large-scale Repeat Induced Point mutations or complete deletion of AvrLm4-7 being the most frequent. Our data suggest that increased mutability of fungal genes involved in the interactions with plants is directly related to their genomic environment and reproductive system. Thus, rapid allelic diversification of avirulence genes can be generated in L. maculans populations in a single field provided that large population sizes and sexual reproduction are favoured by agricultural practices.

  20. Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria.

    Science.gov (United States)

    Chamam, Amel; Wisniewski-Dyé, Florence; Comte, Gilles; Bertrand, Cédric; Prigent-Combaret, Claire

    2015-12-01

    Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant-bacteria biotic interactions.

  1. The major Cu,Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity

    NARCIS (Netherlands)

    Moore, S; De Vries, OMH; Tudzynski, P

    2002-01-01

    Superoxide dismutase (SOD) activities of the biotrophic pathogen Claviceps purpurea, which causes the ergot disease on a wide range of host grasses, were examined in axenic and pathogenic cultures. Almost all SOD activity in axenic culture originated from a single Cu,Zn SOD; a substantial part of th

  2. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum

    Institute of Scientific and Technical Information of China (English)

    Ji-ye WANG; Hong-ye LI

    2008-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) system was assessed for conducting insertional mutagenesis in Penicillium digitatum, a major fungal pathogen infecting post-harvest citrus fruits. A transformation efficiency of up to 60 transformants per 106 conidia was achieved by this system. The integration of the hph gene into the fungal genome was verified by polymerase chain reaction (PCR) amplification and sequencing. These transformants tested were also shown to be mitotically stable. Southern blot analysis of 14 randomly selected transformants showed that the hph gene was randomly integrated as single copy into the fungal genome of P. digitatum. Thus, we conclude that ATMT of P. digitatum could be used as an alternatively practical genetic tool for conducting insertional mutagenesis in P. digitatum to study functional genomics.

  3. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato.

    Science.gov (United States)

    Pastor, Nicolás; Carlier, Evelin; Andrés, Javier; Rosas, Susana B; Rovera, Marisa

    2012-03-01

    Fluorescent Pseudomonas spp., isolated from rhizosphere soil of tomato and pepper plants, were evaluated in vitro as potential antagonists of fungal pathogens. Strains were characterized using the API 20NE biochemical system, and tested against the causal agents of stem canker and leaf blight (Alternaria alternata f. sp. lycopersici), southern blight (Sclerotium rolfsii Sacc.), and root rot (Fusarium solani). To this end, dual culture antagonism assays were carried out on 25% Tryptic Soy Agar, King B medium, and Potato Dextrose Agar to determine the effect of the strains on mycelial growth of the pathogens. The effect of two concentrations of FeCl(3) on antagonism against Alternaria alternata f. sp. lycopersici was also tested. In addition, strains were screened for ability to produce exoenzymes and siderophores. Finally, the selected Pseudomonas strain, PCI2, was evaluated for effect on tomato seedling development and as a potential candidate for controlling tomato damping-off caused by Sclerotium rolfsii Sacc., under growth chamber conditions. All strains significantly inhibited Alternaria alternata f. sp. lycopersici, particularly in 25% TSA medium. Antagonistic effect on Sclerotium rolfsii Sacc. and Fusarium solani was greater on King B medium. Protease was produced by 30% of the strains, but no strains produced cellulase or chitinase. Growth chamber studies resulted in significant increases in plant stand as well as in root dry weight. PCI2 was able to establish and survive in tomato plants rhizosphere after 40 days following planting of bacterized seeds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Resistances to an insect herbivore and a phytopathogen in Barbarea vulgaris

    DEFF Research Database (Denmark)

    Christensen, Stina

    The crucifer Barbarea vulgaris grows naturally in Europe and Western Asia. In Denmark and neighbouring countries, the subspecies arcuata exists in two types that differ in insect and pathogen resistance, as well as in several other traits. The types have been named after the degree of leaf...... that the distinctiveness of the two types is most likely maintained by a considerable reproductive barrier, and that selection against hybridisation occurs both before and after fertilisation....

  5. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana.

    Science.gov (United States)

    Piisilä, Maria; Keceli, Mehmet A; Brader, Günter; Jakobson, Liina; Jõesaar, Indrek; Sipari, Nina; Kollist, Hannes; Palva, E Tapio; Kariola, Tarja

    2015-02-13

    The Arabidopsis thaliana F-box protein MORE AXILLARY GROWTH2 (MAX2) has previously been characterized for its role in plant development. MAX2 appears essential for the perception of the newly characterized phytohormone strigolactone, a negative regulator of polar auxin transport in Arabidopsis. A reverse genetic screen for F-box protein mutants altered in their stress responses identified MAX2 as a component of plant defense. Here we show that MAX2 contributes to plant resistance against pathogenic bacteria. Interestingly, max2 mutant plants showed increased susceptibility to the bacterial necrotroph Pectobacterium carotovorum as well as to the hemi-biotroph Pseudomonas syringae but not to the fungal necrotroph Botrytis cinerea. max2 mutant phenotype was associated with constitutively increased stomatal conductance and decreased tolerance to apoplastic ROS but also with alterations in hormonal balance. Our results suggest that MAX2 previously characterized for its role in regulation of polar auxin transport in Arabidopsis, and thus plant development also significantly influences plant disease resistance. We conclude that the increased susceptibility to P. syringae and P. carotovorum is due to increased stomatal conductance in max2 mutants promoting pathogen entry into the plant apoplast. Additional factors contributing to pathogen susceptibility in max2 plants include decreased tolerance to pathogen-triggered apoplastic ROS and alterations in hormonal signaling.

  6. Interactions between a cotton phytopathogen and the host using a genomics analysis

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) is an economic crop grown worldwide. Numerous G. hirsutum polyploids have been sequenced. Bacterial infections of cotton can cause major yield losses. Pantoea ananatis is a known bacterial pathogen of both cotton buds and bolls. Thus, we conducted a whole genome an...

  7. Whole cell fatty acid analysis as a tool for classification of phytopathogenic pseudomonas bacteria

    NARCIS (Netherlands)

    Janse, J.D.

    1992-01-01

    In this thesis some members of the plant pathogenic bacterial genus Pseudomonas have been studied. Conventional morphological, biochemical, physiological and pathogenitcity tests as well as a 'finger-print' technique, viz. automated whole cell fatty acid analysis, were

  8. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    Directory of Open Access Journals (Sweden)

    Cui-Ping Miao

    2016-04-01

    Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

  9. Identification and Pathogenicity of Phytopathogenic Bacteria Associated with Soft Rot Disease of Girasole Tuber

    Directory of Open Access Journals (Sweden)

    Mamdoh Ewis ISMAIL

    2012-02-01

    Full Text Available During 2010-2011 growing seasons six bacterial isolates were separated from naturally infected girasole plants tubers (Helianthus tuberosus L. cv. �Balady�, showing soft rot, collected from experimental Farm of the Faculty of Agriculture, in El-Minia University, Egypt. Pathogenicity tests showed various virulence for the bacteria isolated from girasole tubers, found pathogenic. These organisms were characterized as rod-shaped, Gram negative, ?-methyl-d-glucoside medium, reducing substances from sucrose, phos, phatase activity and deep cavities on pectate medium. Otherwise, diagnostic tests suggested that the pathogen was Erwinia carotovora ssp. carotovora. The isolated bacteria caused soft rot of wounded tubers when inoculated into tissues. The bacterial isolates were compared for their degree of pathogenicity as well as for differences in specific symptoms, induced in different hosts. The tested isolates could infect several host ranges, such as fruits of apricot, apple, olive, lemon, squash, eggplant and potato tubers, bulbs and garlic and onion cloves, roots radish, carrot, sweet potato and rape. On the other hand, no symptoms were exhibited on pods of bean and cowpea, faba bean, fruits of pepper and tomato. The extracts of experimentally diseased girasole tubers were active in pectinase and also in caboxymethyl cellulose at pH 6 compared to enzyme activities in healthy tissues. Also, the isolated bacteria increased the total and reducing sugars in infected tissues.

  10. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees.

    Science.gov (United States)

    Geider, Klaus; Auling, Georg; Du, Zhiqiang; Jakovljevic, Vladimir; Jock, Susanne; Völksch, Beate

    2006-12-01

    Bacteria were isolated from flowers and bark of apple and pear trees at three places in Australia. In Victoria, Tasmania and Queensland, strains with white colonies on nutrient agar were screened for dome-shaped colony morphology on agar with sucrose and were found to be closely related by several criteria. The isolates were not pathogenic on apples or pears. They were characterized by a polyphasic approach including microbiological and API assays as well as fatty acid methyl ester analysis, DNA-DNA hybridization and DNA sequencing. For molecular classification, the 16S rRNA cistron and the conserved genes gpd and recA of these bacteria were investigated. Together with other taxonomic criteria, the results of these studies indicate that the bacteria belong to a novel separate species, which we propose to name Erwinia tasmaniensis sp. nov., with the type strain Et1/99(T) (=DSM 17950(T)=NCPPB 4357(T)). From DNA-DNA hybridization kinetics, microbiological characteristics and nucleotide sequence analyses, this species is related to pathogenic Erwinia species, but also to the epiphytic species Erwinia billingiae.

  11. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Dara G Stockton

    Full Text Available Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a whether development on specific host plant species influenced host plant preference in mature D. citri; and b the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.

  12. Blue mold to genomics and beyond: Insights into the biology and virulence of phytopathogenic Penicillium species

    Science.gov (United States)

    Pomes, mainly apples and pears, are economically important fruits produced and consumed worldwide. The United States is the second largest producer of pome fruit in the world behind China. Penicillium expansum and other Penicillium spp. are the most common fungal plant pathogens that cause blue mold...

  13. The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici

    Science.gov (United States)

    Millyard, Linda; Lee, Jack; Zhang, Cunjin; Yates, Gary; Sadanandom, Ari

    2016-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici commonly known as Septoria), the causal agent of Septoria Leaf Blotch (STB), is considered one of the major threats to European wheat production. Previous studies have shown the importance of ubiquitination in plant defence against a multitude of pathogens. However the ubiquitination machinery in wheat is under studied, particularly E2 enzymes that have the ability to control the ubiquitination and thereby the fate of many different target proteins. In this study we identify an E2 enzyme, Triticum aestivum Ubiquitin conjugating enzyme 4 (TaU4) that functions in wheat defence against Septoria. We demonstrate TaU4 to be a bona fide E2 enzyme through an E2 charging assay. TaU4 localises in both the cytoplasm and nucleus, therefore potentially interacting with E3 ligases and substrate proteins in multiple compartments. Virus Induced Gene Silencing of TaU4 in wheat leaves resulted in delayed development of disease symptoms, reduced Septoria growth and reproduction. We conclude that TaU4 is a novel negative regulator of defence against Septoria. PMID:27759089

  14. Draft Genome Sequence of Phytopathogenic Fungus Fusarium fujikuroi CF-295141, Isolated from Pinus sylvestris

    Science.gov (United States)

    Bertoni-Mann, Michele; Sánchez-Hidalgo, Marina; González-Menéndez, Victor

    2016-01-01

    Here, we report the draft genome sequence of a new strain of Fusarium fujikuroi, isolated from Pinus sylvestris, which was also found to produce the mycotoxin beauvericin. The Illumina-based sequence analysis revealed an approximate genome size of 44.2 Mbp, containing 164 secondary metabolite biosynthetic clusters. PMID:27795279

  15. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Oxadiazole-Stilbene Hybrids against Phytopathogenic Fungi

    Science.gov (United States)

    Jian, Weilin; He, Daohang; Song, Shaoyun

    2016-08-01

    Natural stilbenes (especially resveratrol) play important roles in plant protection by acting as both constitutive and inducible defenses. However, their exogenous applications on crops as fungicidal agents are challenged by their oxidative degradation and limited availability. In this study, a new class of resveratrol-inspired oxadiazole-stilbene hybrids was synthesized via Wittig-Horner reaction. Bioassay results indicated that some of the compounds exhibited potent fungicidal activity against Botrytis cinerea in vitro. Among these stilbene hybrids, compounds 11 showed promising inhibitory activity with the EC50 value of 144.6 μg/mL, which was superior to that of resveratrol (315.6 μg/mL). Remarkably, the considerably abnormal mycelial morphology was observed in the presence of compound 11. The inhibitory profile was further proposed by homology modeling and molecular docking studies, which showed the possible interaction of resveratrol and oxadiazole-stilbene hybrids with the cytochrome P450-dependent sterol 14α-demethylase from B. cinerea (BcCYP51) for the first time. Taken together, these results would provide new insights into the fungicidal mechanism of stilbenes, as well as an important clue for biology-oriented synthesis of stilbene hybrids with improved bioactivity against plant pathogenic fungi in crop protection.

  16. Effect of three nematicides on the growth of some phytopathogenic bacteria and fungi.

    Science.gov (United States)

    El-Khadem, M; Mehiar, F; Embabi, M S

    1977-01-01

    The effect of three nematicides, aldicarb, fensulfothion, and phenamiphos at four concentrations (1, 5, 25, and 125 ppm) was tested on the growth of five bacteria, Agrobacterium tumefaciens, Corynebacterium fascians, Erwinia carotovora, Pseudomonas solanacearum, and Streptomyces scabies and four fungi, Fusarium oxysporum f. sp. vasinfectum, Fusarium solani, Rhizoctonia solani, and Sclerotium bataticola. Of the bacteria, P. solanacearum was most affected by the chemicals at all concentrations, while E. carotovora was least affected. Fensulfothion was generally the most effective nematicide on the bacteria tested, while phenamiphos was the least effective. Similarly, the effect of the chemicals on the fungi tested varied greatly. F. solani and R. solani were generally most affected, followed by F. oxysporum, while S. bataticola was least affected. Of the chemicals tested, phenamiphos was generally the most effective, followed by fensulfothion, while aldicarb was the least effective.

  17. Doing Gener in Brazilian Biology: Obstacles and Prejudices on Knowledge Production within the FAFESP Genome Proyect

    Directory of Open Access Journals (Sweden)

    Conceição da Costa, Maria

    2008-10-01

    Full Text Available This article aims to analyse the participation of women scientist in knowledge production within the Genome Project sponsored by FAPESP (The State of São Paulo Research Foundation. Between 1997 and 2003, FAPESP invested approximately 33 million euros to develop the FAPESP Genome Project (PGF, generating major changes in Molecular Biology in Brazil: institutions devoted to fostering science and technology have been investing large sum of money; bioinformatics became one of the fields with great demand for professionals, and the results of the Xylella Genome Project, first organism sequenced in Brazil, were published in several international scientific journals including Nature, and Brazil became the first country to develop genome projects outside USA, Europe and Japan. As a consequence of this process, women scientists were loosing space as “spokespersons of this new science”, playing secondary roles at the project.Este artículo tiene como objetivo analizar la participación de las mujeres en la producción de conocimiento del proyecto genoma financiado por la FAPESP (Fundación de Apoyo a la Investigación del Estado de São Paulo. Entre 1997 y 2003, FAPESP invirtió aproximadamente 33 millones de euros en el desarrollo del Proyecto Genoma Fapesp (PGF, provocando importantes cambios en la Biología Molecular brasileña: las instituciones de fomento a la investigación comenzaron a promoverla con grandes financiaciones; la bioinformática se tornó uno de los campos con mayor demanda de profesionales y, por fin, los resultados del Proyecto Genoma de la Xylella Fastidiosa, primer organismo vivo secuenciado en Brasil, se publicaron en revistas científicas internacionales, como Nature. Con ello se convierte en el primer país fuera de la tríada EUA-Europa-Japón en desarrollar proyectos genoma. Como consecuencia del proceso, las mujeres están perdiendo espacio como “portavoces de esta nueva ciencia”, ocupando papeles secundarios en el

  18. Alternation of host plants as a survival mechanism of leafhoppers Dilobopterus costalimai and Oncometopia facialis (Hemiptera: Cicadellidae, vectors of the Citrus Variegated Chlorosis (CVC Alternância de hospedeiros como mecanismo de sobrevivência das cigarrinhas Dilobopterus costalimai e Oncometopia facialis (Hemiptera: Cicadellidae, vetoras da Clorose Variegada dos Citros (CVC

    Directory of Open Access Journals (Sweden)

    José Maria Milanez

    2001-12-01

    Full Text Available Dilobopterus costalimai (Young and Oncometopia facialis (Signoret are two of the most important species of citrus leafhoppers, vectors of bacterium Xylella fastidiosa which causes the Citrus Variegated Chlorosis (CVC disease. To develop a rearing technique for these species under laboratory conditions, the egg laying preference and nymph development were studied in different breeding systems: Rangpur lime (Citrus limonia and "falso boldo" (Vernonia condensata as host plants. Trials were set up in a randomized block design with three treatments (n=8. Females of D. costalimai had particular preference for ovipositing on Rangpur lime leaves while O. facialis females placed a higher number of eggs on "falso boldo", but it did not differ statistically from the Rangpur lime. The nymphal viability of D. costalimai was null in Rangpur lime and 58% in "falso boldo". For O. facialis the nymphal viability was 25 and 78% in Rangpur lime and "falso boldo", respectively. "Falso boldo" is more suitable as a host plant to rear the two species of citrus leafhoppers. The alternation of host plants seems to be an important survival mechanism of the CVC-vector species, as shown in natural conditions.Dilobopterus costalimai (Young e Oncometopia facialis (Signoret são duas das mais importantes espécies de cigarrinhas dos citros, transmissoras da bactéria Xylella fastidiosa causadora da doença conhecida como Clorose Variegada dos Citros (CVC. Com o objetivo de se desenvolver uma técnica de criação destas espécies, em condições de laboratório, estudou-se a preferência por postura e o desenvolvimento ninfal, em diferentes sistemas de criação, tendo como plantas hospedeiras limão cravo (Citrus limonia e falso boldo (Vernonia condensata. O delineamento experimental foi em blocos casualizados com três tratamentos e oito repetições. Fêmeas de D. costalimai tiveram acentuada preferência para ovipositar em folhas de limão cravo, enquanto que fêmeas de O

  19. Fluxo de seiva e fotossíntese em laranjeira 'Natal' com clorose variegada dos citros Sap flow and photosynthesis of 'Natal' sweet orange plants with citrus variegated chlorosis

    Directory of Open Access Journals (Sweden)

    Eduardo Caruso Machado

    2006-06-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da clorose variegada dos citros (CVC, no fluxo de seiva, trocas gasosas e atividade fotoquímica em laranjeira 'Natal', com e sem CVC, em condição de campo. O curso diário do fluxo de seiva, potencial da água na folha, assimilação de CO2, transpiração, condutância estomática e eficiência quântica máxima e efetiva do fotossistema II foram avaliados. O delineamento experimental foi em blocos ao acaso com cinco repetições. O fluxo de seiva foi 1,9 vez superior nas plantas sadias em relação às doentes. Em plantas doentes ocorreu queda de 43, 28 e 33% na assimilação de CO2, condutância estomática e transpiração, respectivamente. As plantas com CVC apresentaram fotoinibição dinâmica. Uma vez que a eficiência quântica efetiva apresentou um padrão de resposta semelhante, durante o dia, em ambos os tratamentos, o efeito protetor da fotorrespiração no aparato fotoquímico em plantas com CVC é discutido. As quedas de assimilação de CO2, transpiração e de fluxo de seiva, nas plantas com CVC, foram decorrentes do menor valor da condutância estomática, possivelmente causado pela colonização dos vasos do xilema pela Xylella fastidiosa.The objective of this work was to evaluate the effects of citrus variegated chlorosis (CVC on sap flow, gas exchanges and photochemical activity in 'Natal' sweet orange plants with and without CVC under field condition. Diurnal courses of sap flow, leaf water potential, CO2 assimilation rate and transpiration, stomatal conductance, potential and effective quantum efficiency of photosystem II were evaluated. The experiment was arranged in a random block design with five repetitions. Healthy plants showed sap flow values around 1.9 times higher than injured ones. Injured plants exhibited reductions of 43, 28 and 33% in CO2 assimilation rate, stomatal conductance and leaf transpiration, respectively. CVC-affected plants showed dynamic

  20. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-06-01

    Full Text Available The therapeutic potential of α-helical anti-microbial peptides (AH-AMP to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL, we elucidate a search methodology (SCALPEL that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens (Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20, and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25. The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  1. Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    Science.gov (United States)

    Van Sluys, Marie-Anne; White, Frank F.; Ryan, Robert P.; Dow, J. Maxwell; Rabinowicz, Pablo; Salzberg, Steven L.; Leach, Jan E.; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J.

    2008-01-01

    Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale

  2. Plant Pathogenic Bacteria Utilize Biofilm Growth-associated Repressor (BigR), a Novel Winged-helix Redox Switch, to Control Hydrogen Sulfide Detoxification under Hypoxia*

    Science.gov (United States)

    Guimarães, Beatriz G.; Barbosa, Rosicler L.; Soprano, Adriana S.; Campos, Bruna M.; de Souza, Tiago A.; Tonoli, Celisa C. C.; Leme, Adriana F. P.; Murakami, Mario T.; Benedetti, Celso E.

    2011-01-01

    Winged-helix transcriptional factors play important roles in the control of gene expression in many organisms. In the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens, the winged-helix protein BigR, a member of the ArsR/SmtB family of metal sensors, regulates transcription of the bigR operon involved in bacterial biofilm growth. Previous studies showed that BigR represses transcription of its own operon through the occupation of the RNA polymerase-binding site; however, the signals that modulate its activity and the biological function of its operon are still poorly understood. Here we show that although BigR is a homodimer similar to metal sensors, it functions as a novel redox switch that derepresses transcription upon oxidation. Crystal structures of reduced and oxidized BigR reveal that formation of a disulfide bridge involving two critical cysteines induces conformational changes in the dimer that remarkably alter the topography of the winged-helix DNA-binding interface, precluding DNA binding. This structural mechanism of DNA association-dissociation is novel among winged-helix factors. Moreover, we demonstrate that the bigR operon is required for hydrogen sulfide detoxification through the action of a sulfur dioxygenase (Blh) and sulfite exporter. As hydrogen sulfide strongly inhibits cytochrome c oxidase, it must be eliminated to allow aerobic growth under low oxygen tension, an environmental condition found in bacterial biofilms, xylem vessels, and root tissues. Accordingly, we show that the bigR operon is critical to sustain bacterial growth under hypoxia. These results suggest that BigR integrates the transcriptional regulation of a sulfur oxidation pathway to an oxidative signal through a thiol-based redox switch. PMID:21632538

  3. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available BACKGROUND: Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. CONCLUSIONS/SIGNIFICANCE: Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major

  4. Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters

    Science.gov (United States)

    Wu, Dongying; Daugherty, Sean C; Van Aken, Susan E; Pai, Grace H; Watkins, Kisha L; Khouri, Hoda; Tallon, Luke J; Zaborsky, Jennifer M; Dunbar, Helen E; Tran, Phat L; Moran, Nancy A

    2006-01-01

    controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission. PMID:16729848

  5. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    2006-06-01

    targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission.

  6. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available BACKGROUND: The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS: Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5 with known proteins. We assigned Gene Ontology (GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS: Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that

  7. Rapidly changing climatic conditions for wine grape growing in the Okanagan Valley region of British Columbia, Canada.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-06-15

    A statistical analysis was conducted on long-term climate records for sites bordering Okanagan Lake in the Okanagan Valley viticultural region of British Columbia, Canada. Average wine grape growing season temperatures are increasing rapidly in the area over the post-1980 period at rates upwards of 7.0±1.3°C/century. Similar increases in the average dormant season temperature are evident. These temperature changes are likely some of the most extreme observed among the world's wine producing areas during the past few decades. Growing degree day base 10°C (GDD10) has increased by nearly 50% at some locations since the 1970s, resulting in major impacts on the corresponding climate classification for viticulture. If current climate trends continue, the southern and central portions of the region will likely enter Winkler region II within the next few decades, placing them in the same category as well-established warmer wine regions from France, Spain, Italy, and Australia. The large dormant season temperature increases over the last several decades have resulted in the area no longer being a cold season outlier when compared to most other cool-climate viticultural areas. Based on average growing season temperatures, the southern end of Okanagan Lake has moved out of the cool-climate viticultural classification and into the intermediate zone, while the central and northern regions are now at the cool/intermediate viticulture interface, similar to the historical positions of the Rhine Valley in Germany, northern Oregon in the United States, and the Loire Valley, Burgundy-Cote, Burgundy-Beaujolais, and Champagne appelations of France. The corresponding suitable grape species for the area have evolved into warmer region varietals during this time frame, having substantial economic impacts on producers. Increased temperatures are also expected to bring greater threats from agricultural pests, notably Pierce's disease from the bacterium Xylella fastidiosa.

  8. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens.

    Science.gov (United States)

    Behnam, S; Farzaneh, M; Ahmadzadeh, M; Tehrani, A Sharifi

    2006-01-01

    The general antifungal activity of essential oils is well documented. The advantage of essential oils is their bioactivity in the vapor phase, a characteristic that makes them attractive as possible fumigants for stored product protection. Essential oils of aerial parts of Mentha piperita and Lavendula angustifolia were obtained with hydrodistillation and oils composition identified with GC-MS. Menthanol (36.24%) and menthone (32.42%) were the major compounds of the M. piperata essential oil. The essential oil of L. angustifolia was rich in linalool (49.2%) , linalyl acetate (12.3%), Lavendul acetate (6.5%), 4-terpineol (5.9%). Fungal toxicity of the essential oils were evaluated against three pathogenic fungi (Rhizopus stolonifer, Botrytis cinerea and Aspergillus niger) in vitro. Plate assayes showed that the different concentrations of essential oils have antifungal activity against these fungi, and the essential oil of L. angustifolia showed stronger fungistatic activity. Lavendula oil exhibited complete growth inhibition of all pathogens at 1000 ppm and minimum EC50 (311.24 ppm) resulted on B. cinerea.

  9. Kunitz Trypsin Inhibitor: An Antagonist of Cell Death Triggered by Phytopathogens and Fumonisin B1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Günter Brader; E. Tapio Palva

    2008-01-01

    Programmed cell death (PCD) is a central regulatory process in both plant development and in plant responses to pathogens. PCD requires a coordinate activation of pro-apoptotic factors such as proteases and suppressors inhibiting and modulating these processes. In plants, various caspase-like cysteine proteases as well as serine proteases have been implicated in PCD. Here, we show that a serine protease (Kunitz trypsin) inhibitor (KTI1) of Arabidopsis acts as a functional KTI when produced in bacteria and in planta. Expression of AtKTI1 is induced late in response to bacterial and fungal elicitors and to salicylic acid. RNAi silencing of the AtKTI1 gene results in enhanced lesion development after infiltration of leaf tissue with the PCD-eliciting fungal toxin fumonisin B1 (FB1) or the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 carrying avrB (Pst avrB). Overexpression of AtKTI1 results in reduced lesion development after Pst avrB and FB1 infiltration. Interestingly, RNAi silencing of AtKTI1 leads to enhanced resistance to the virulent pathogen Erwinia carotovora subsp, carotovora SCC1, while overexpression of AtKTI1 leads to higher susceptibility towards this pathogen. Together, these data indicate that AtKTI1 is involved in modulating PCD in plant-pathogen interactions.

  10. Microbiological Control of Soil-Borne Phytopathogenic Fungi with Special Emphasis on Wilt-Inducing Fusarium oxysporum

    National Research Council Canada - National Science Library

    Claude Alabouvette; Chantal Olivain; Quirico Migheli; Christian Steinberg

    2009-01-01

    .... In addition to Pseudomonas spp. and Trichoderma spp., which are the two most widely studied groups of biological control agents, the protective strains of Fusarium oxysporum represent an original model...

  11. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    Directory of Open Access Journals (Sweden)

    Raquel eGonzález-Fernández

    2015-10-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: i cell wall-degrading enzymes such as pectinesterases, and endo-polygalacturonases; ii proteases involved in host protein degradation such as an aspartic protease; iii proteins related to the oxidative burst such as glyoxal oxidase; iv proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and v proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts.

  12. Improved production of phleichrome from the phytopathogenic fungus Cladosporium phlei using synthetic inducers and photodynamic ROS production by phleichrome.

    Science.gov (United States)

    So, Kum-Kang; Jo, Ik-Su; Chae, Min-Seon; Kim, Jung-Mi; Chung, Hea-Jong; Yang, Moon-Sik; Kim, Beom-Tae; Kim, Jin-Kug; Choi, Jong-Kyung; Kim, Dae-Hyuk

    2015-03-01

    Two different diketopiperazines, cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe), which were isolated from the culture filtrate of Epichloe typhina and found to be inducers of phleichrome production, were chemically synthesized and evaluated for use in the improved production of phleichrome from wild-type and UV-mutagenized strains (M0035) of Cladosporium phlei. When supplemented with PDA and V8 juice agar media, both inducers showed significant increases in the production of phleichrome. Phleichrome production was increased in a dose-dependent manner up to a concentration of maximum yield for both inducers. No further significant induction was observed by supplementing inducers over the concentration of maximum yield. Among the two inducers, cyclo-(L-Pro-L-Phe) showed better inducing capability than cyclo-(L-Pro-L-Leu). The maximum yield was observed from the M0035 strain grown on V8 juice media supplemented with 150 μM cyclo-(L-Pro-L-Phe), which was estimated to be 232.6 mg of phleichrome per gram of mycelia and 10.2 mg of secreted phleichrome per 20 agar-plugs. Interestingly, growth inhibition was observed on V8 juice agar media with 100, 150, and 200 μM cyclo-(L-Pro-L-Phe) but not on PDA with the same amount of inducer, which suggests that the inhibitory effect might be through the overproduction of phleichrome rather than the toxic effect of the inducer itself. Superoxide production by purified phleichrome was dramatically stimulated upon illumination, thus demonstrating photodynamic production of superoxide in vitro by phleichrome.

  13. Rapid screening of an ordered fosmid library to clone multiple polyketide synthase genes of the phytopathogenic fungus Cladosporium phlei.

    Science.gov (United States)

    So, Kum-Kang; Kim, Jung-Mi; Nguyen, Ngoc-Luong; Park, Jin-Ah; Kim, Beom-Tae; Park, Seung-Moon; Hwang, Ki-Jun; Kim, Dae-Hyuk

    2012-12-01

    In previous studies, the biological characteristics of the fungus Cladosporium phlei and its genetic manipulation by transformation were assessed to improve production of the fungal pigment, phleichrome, which is a fungal perylenequinone that plays an important role in the production of a photodynamic therapeutic agent. However, the low production of this metabolite by the wild-type strain has limited its application. Thus, we attempted to clone and characterize the genes that encode polyketide synthases (PKS), which are responsible for the synthesis of fungal pigments such as perylenequinones including phleichrome, elsinochrome and cercosporin. Thus, we performed genomic DNA PCR using 11 different combinations of degenerate primers targeting conserved domains including β-ketoacyl synthase and acyltransferase domains. Sequence comparison of the PCR amplicons revealed a high homology to known PKSs, and four different PKS genes showing a high similarity to three representative types of PKS genes were amplified. To obtain full-length PKS genes, an ordered gene library of a phleichrome-producing C. phlei strain (ATCC 36193) was constructed in a fosmid vector and 4800 clones were analyzed using a simple pyramidal arrangement system. This hierarchical clustering method combines the efficiency of PCR with enhanced specificity. Among the three representative types of PKSs, two reducing, one partially reducing, and one non-reducing PKS were identified. These genes were subsequently cloned, sequenced, and characterized. Biological characterization of these genes to determine their roles in phleichrome production is underway, with the ultimate aim of engineering this pathway to overproduce the desired substance.

  14. [Biochemical basis of tolerance to osmotic stress in phytopathogenic fungus: The case of Macrophomina phaseolina (Tassi) Goid.

    Science.gov (United States)

    Martínez-Villarreal, Rodolfo; Garza-Romero, Tamar S; Moreno-Medina, Víctor R; Hernández-Delgado, Sanjuana; Mayek-Pérez, Netzahualcoyotl

    Fungus Macrophomina phaseolina (Tassi) Goid. is the causative agent of charcoal rot disease which causes significant yield losses in major crops such as maize, sorghum, soybean and common beans in Mexico. This fungus is a facultative parasite which shows broad ability to adapt itself to stressed environments where water deficits and/or high temperature stresses commonly occur. These environmental conditions are common for most cultivable lands throughout Mexico. Here we describe some basic facts related to the etiology and epidemiology of the fungus as well as to the importance of responses to stressed environments, particularly to water deficits, based on morphology and growth traits, as well as on physiology, biochemistry and pathogenicity of fungus M. phaseolina. To conclude, we show some perspectives related to future research into the genus, which emphasize the increasing need to improve the knowledge based on the application of both traditional and biotechnological tools in order to elucidate the mechanisms of resistance to environmental stress which can be extrapolated to other useful organisms to man. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium.

    Science.gov (United States)

    Gartemann, Karl-Heinz; Kirchner, Oliver; Engemann, Jutta; Gräfen, Ines; Eichenlaub, Rudolf; Burger, Annette

    2003-12-19

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.

  16. Stable transformation of the gram-positive phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus with several cloning vectors.

    Science.gov (United States)

    Laine, M J; Nakhei, H; Dreier, J; Lehtilä, K; Meletzus, D; Eichenlaub, R; Metzler, M C

    1996-05-01

    In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels.

  17. Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382.

    Science.gov (United States)

    Meletzus, D; Bermphol, A; Dreier, J; Eichenlaub, R

    1993-01-01

    The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt, harbors two plasmids pCM1 (27.5 kb) and pCM2 (72 kb). After curing of the plasmids, bacterial derivatives were still proficient in the ability to colonize the host plant and in the production of exopolysaccharides but exhibited a reduced virulence. When one of the two plasmids is lost, there is a significant delay in the development of wilting symptoms after infection and a plasmid-free derivative is not able to induce disease symptoms. By cloning of restriction fragments of both plasmids in the plasmid-free strain CMM100, two DNA fragments which restored the virulent phenotype were identified. Further analysis suggested that a fragment of plasmid pCM1 encodes an endocellulase which is involved in the expression of the pathogenic phenotype. Images PMID:8458855

  18. Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi

    NARCIS (Netherlands)

    Randall, T.A.; Dwyer, R.A.; Huitema, E.; Beyer, K.; Cvitanich, C.; Kelkar, H.; Ah Fong, A.M.V.; Gates, K.; Roberts, S.; Yatzkan, E.; Gaffney, T.; Law, M.; Testa, A.; Torto-Alalibo, T.; Zhang Meng,; Zheng Li,; Mueller, E.; Windass, J.; Binder, A.; Birch, P.R.J.; Gisi, U.; Govers, F.; Gow, N.A.; Mauch, F.; West, van P.; Waugh, M.E.; Yu Jun,; Boller, T.; Kamoun, S.; Lam, S.T.; Judelson, H.S.

    2005-01-01

    o overview the gene content of the important pathogen Phytophthora infestans, large-scale cDNA and genomic sequencing was performed. A set of 75,757 high-quality expressed sequence tags (ESTs) from P. infestans was obtained from 20 cDNA libraries representing a broad range of growth conditions, stre

  19. Comparison of the effects of chlorite-oxidized oxyamylose and polyacrylic acid on the multiplication of phytopathogenic viruses.

    Science.gov (United States)

    Kluge, S

    1985-10-01

    Polyacrylic acid (PAA) and chlorite-oxidized oxyamylose (COAM) inhibit the multiplication of tobacco mosaic virus (TMV) in leaf disks by up to 50%. The reduction in TMV content is time-dependent and decreases with longer time intervals between the virus infection and the application of substances. The multiplication of potato virus X (PVX) in leaf disks is not affected by either PAA or COAM. In intact plants PAA produces a strong antiviral effect on both PVX and red clover mottle virus (RCMV). The effect produced by COAM is much less pronounced, although this substance is less toxic and could be used in a higher concentration than PAA. Neither of these compounds has a significant influence on the development of virus-induced necroses in Nicotiana glutinosa, Gomphrena globosa or Phaseolus vulgaris plants when administered one day before or after virus infection.

  20. Nucleotide Sequence and Evolution of the Five-Plasmid Complement of the Phytopathogen Pseudomonas syringae pv. maculicola ES4326

    OpenAIRE

    2004-01-01

    Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an intraspecific comparative genomic analysis. To date, this is the most complex fully sequenced plasm...