WorldWideScience

Sample records for physiology plant

  1. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  2. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  3. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Regulating plant physiology with organic electronics.

    Science.gov (United States)

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  5. Physiology of woody plants

    CERN Document Server

    Hazewinkel, Michiel; Pallardy, Stephen G

    1996-01-01

    This completely revised classic volume is an up-to-date synthesis of the intensive research devoted to woody plants. Intended primarily as a text for students and a reference for researchers, this interdisciplinary book should be useful to a broad range of scientists from agroforesters, agronomists, and arborists to plant pathologists, ecophysiologists, and soil scientists. Anyone interested in plant physiology will find this text invaluable. Key Features * Includes supplementary chapter summaries and lists of general references * Provides a solid foundation of reference information * Thoroughly updated classic text/reference.

  6. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  7. Evolutionary plant physiology: Charles Darwin's forgotten synthesis.

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin's son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin's work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  8. Some Recent Advances in Plant Physiology

    Science.gov (United States)

    Stafford, G. A.

    1972-01-01

    A popular review of plant physiological research, emphasizing those apsects of plant metabolism where there has been a recent shift in emphasis that is not yet reflected in secondary school advanced texts. (AL)

  9. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  10. Knowledge about plant is basis for successful cultivation : new international standard handbook on plant physiology

    NARCIS (Netherlands)

    Esch, van H.; Heuvelink, E.; Kierkels, T.

    2015-01-01

    Plant physiology in Greenhouses’ is the new international standard handbook on plant knowledge for the commercial greenhouse grower. It relates the functioning of the plant to the rapid developments in greenhouse cultivation. It is based on a continuing series of plant physiology articles published

  11. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  12. Elements of plant physiology in theophrastus' botany.

    Science.gov (United States)

    Pennazio, Sergio

    2014-01-01

    For thousands of years the plants were considered only as a source of food and medicine, and as ornamental objects. Only from the fifth century BC, some philosophers of Ancient Greece realized that the plants were living organisms but, unfortunately, their works have come to us as fragments that we often know from the biological works of Aristotle. This eminent philosopher and man of science, however, did not give us a complete work on the plants, which he often promised to write. From scattered fragments of his conspicuous biological work, it emerges a concept of nutritive soul that, in the presence of heat and moisture, allows plants to grow and reproduce. The task of writing a comprehensive botanical work was delegated to his first pupil, Theophrastus, who left us two treatises over time translated into the various languages up to the current versions (Enquiry into plants, On the causes of plants). The plant life is described and interpreted on the basis of highly accurate observations. The physiological part of his botany is essentially the nutrition: According to Theophrastus, plants get matter and moisture from the soil through root uptake and process the absorbed substances transforming them into food, thanks to the heat. The processing (pepsis, coction) of matter into the food represents an extraordinary physiological intuition because individual organs of a plant appear to perform its specific transformation. Despite that Theophrastus did not do scientific experiments or use special methods other than the sharpness of his observations, he can be considered the forerunner of a plant physiology that would take rebirth only after two millennia.

  13. The Scientific Development of the Physiology of Plants in the American Tropics

    Directory of Open Access Journals (Sweden)

    Marco V. Gutiérrez

    2002-06-01

    Full Text Available This paper is a research and journalistic work that summarizes and synthesizes the scientific development of the physiology of plants in the American tropics, also known as the Neotropics. It contains the contributions of numerous biologists interested in the physiology of tropical plants. The fabulous structural and functional diversity of tropical forests is still the major driver of research in this field. Classical physiological work involving tropical plants, such as the discovery of C4 photosynthesis in sugarcane, is invoked to exemplify the historical and current importance of physiological research in the tropics, and its applications in agriculture, forestry and conservation. An historical background describing the early and more recent development of a tradition on the physiological study of tropical plants is followed by a summary of the research conducted on the physiology of tropical crops. Common areas of interest and influence between the fields of crop physiology and plant ecophysiology are identified and exemplified with problems on the environmental physiology of crops like coffee and cassava. The physiology of tropical forest plants is discussed in terms of its contributions to general plant physiological knowledge in areas such as photosynthetic metabolism and plant water relations. Despite the impressive technical advances achieved during the past decade, the importance of continuous development of appropriate instrumentation to study and measure the physiology of plants in situ is stressed. Although the basic metabolic processes that underlie the mechanisms of plant responses to the environment are probably highly conserved and qualitatively similar among tropical and temperate plants, it is also apparent that tropical plants exhibit metabolic peculiarities. These include aspects of photosynthetic metabolism, phloem transport physiology, sensitivity to low temperatures, reproduction, responses to climatic seasonality, and a

  14. Nuclear techniques in plant pathology 1. Plant disease control and physiology of parasitism

    International Nuclear Information System (INIS)

    Menten, J.O.M.; Ando, A.; Tulmann Neto, A.

    1986-01-01

    Nuclear techniques are advantageously used in several areas of plant pathology. Among them are: induction of mutation for disease resistance, studies with pesticides, disease control through pathogen inactivation, induction of variability and stimulation in pathogens and natural enemies, studies of microorganism physiology and diseased plant physiology, effect of gamma radiation on pesticides, technology of pesticides application, etc. (Author) [pt

  15. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  17. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  18. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  19. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  20. Physiology of Plants, Science (Experimental): 5315.41.

    Science.gov (United States)

    Gunn, William C.

    This unit of instruction deals with the physiological activities of plants. Attention is focused on the principles which underlie the activities of the typical green land plant. Emphasis is placed on biological processes such as photosynthesis, water transport, light responses, mineral nutrition, reproduction, and growth. The prerequisite for…

  1. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  2. Fatality of salt stress to plants: Morphological, physiological and ...

    African Journals Online (AJOL)

    Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. ... This adverse effect of salt stress appears on whole plant level at almost all growth stages including germination, seedling, vegetative ... from 32 Countries:.

  3. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    Science.gov (United States)

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  5. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  6. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    Science.gov (United States)

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  7. X-ray microanalysis in plant physiology

    International Nuclear Information System (INIS)

    Neumann, D.

    1979-01-01

    X-ray microanalysis represents a highly sensitive and modern method for the measurement of ions in the very small compartments of the cell. The limitations of X-ray microanalysis in biological objects exist in the preparation of the tissues and the quantitation of the results. In plant physiology this method has provided several surprising results and new insights for further investigations. (author)

  8. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  9. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  11. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    Science.gov (United States)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  12. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  13. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  14. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  15. Correlation between plant physiology and CO2 removable

    Science.gov (United States)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  16. The role of plant physiology in hydrology: looking backwards and forwards

    Science.gov (United States)

    Roberts, J.

    2007-01-01

    The implementation of plant physiological studies at the Institute of Hydrology focussed both on examining and understanding the physiological controls of transpiration as well as evaluating the value of using physiological methods to measure transpiration. Transpiration measurement by physiological methods would be particularly valuable where this could not be achieved by micrometeorological and soil physics methods. The principal physiological measurements used were determinations of leaf stomatal conductance and leaf water relations to monitor plant water stress. In this paper the value of these approaches is illustrated by describing a few case studies in which plant physiological insight, provided both as new measurements and existing knowledge, would aid in the interpretation of the hydrological behaviour of important vegetation. Woody vegetation figured largely in these studies, conducted in the UK and overseas. Each of these case studies is formulated as a quest to answer a particular question. A collaborative comparison of conifer forest transpiration in Thetford forest using micrometeorological and soil physics techniques exhibited a substantially larger (~1 mm day-1) estimate from the micrometeorological approach. So the question - Why is there a disagreement in the estimates of forest transpiration made using micrometeorological and soil physics approaches? A range of physiological studies followed that suggested that there was no one simple answer but that the larger estimate from the micrometeorology technique might include contributions of water taken up by deep roots, from shallow-rooted vegetation and possibly also from water previously stored in trees. These sources of water were probably not included in the soil physics estimate of transpiration. The annual transpiration from woodlands in NW Europe shows a low magnitude and notable similarity between different sites raising the question - Why is transpiration from European forests low and

  17. Physiological measurements of coffee young plants coexisting with sourgrass

    Directory of Open Access Journals (Sweden)

    Pedro Luis da Costa Aguiar Alves

    2012-03-01

    Full Text Available Coffee is an important crop planted in Brazil and commonly infested by sourgrass plants. Crescent densities of sourgrass growing with coffee young plants were maintained up to weed full flowering when physiological measurements were performed in the crop to evaluate photosynthetic coffee plant responses to increasing of weed competition. Experiments were arranged in a completely randomized design with seven replicates. The concentration of CO2 within the leaf, the leaf transpiration, the stomatal conductance, the CO2 assimilation rate, and the ratio Fv/Fm of coffee plants were not affected by increasing of sourgrass density. On the other hand, relative content of total chlorophyll was reduced by 13.9% in the density of 8 sourgrass plants. Gas exchange and fluorescence of chlorophyll of young coffee plants were not dependent on increasing of the intensity of competition while an opposite response occurred for chlorophyll content.

  18. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is blocked, ... E-mail: m.r.s.v@hotmail.com. of complex physiological ... of cells which protrude into the vessel lumen xylem whose shape is similar to a.

  19. Eucalypt plants are physiologically and metabolically affected by infection with Ceratocystis fimbriata.

    Science.gov (United States)

    da Silva, André Costa; de Oliveira Silva, Franklin Magnum; Milagre, Jocimar Caiafa; Omena-Garcia, Rebeca Patricia; Abreu, Mário Castro; Mafia, Reginaldo Gonçalves; Nunes-Nesi, Adriano; Alfenas, Acelino Couto

    2018-02-01

    Ceratocystis wilt, caused by Ceratocystis fimbriata, is currently one of the most important disease in eucalypt plantations. Plants infected by C. fimbriata have lower volumetric growth, lower pulp yields and reduced timber values. The physiological bases of infection induced by this pathogen in eucalypt plant are not known. Therefore, this study aims to assess the physiological and metabolic changes in eucalypt clones that are resistant and susceptible to C. fimbriata. Once, we evaluated in detail their leaf gas exchange, chlorophyll a fluorescence, water potential, metabolite profiling and growth-related parameters. When inoculated, the susceptible clone displayed reduced water potential, CO 2 assimilation rate, stomatal conductance, transpiration rate, photochemical quenching coefficient, electron transport rate, and root biomass. Inoculated resistant and susceptible clones both presented higher respiration rates than healthy plants. Many compounds of primary and secondary metabolism were significantly altered after fungal infection in both clones. These results suggest that, C. fimbriata interferes in the primary and secondary metabolism of plants that may be linked to the induction of defense mechanisms and that, due to water restrictions caused by the fungus in susceptible plants, there is a partial closure of the stomata to prevent water loss and a consequent reduction in photosynthesis and the transpiration rate, which in turn, leads to a decrease in the plant's growth-related. These results combined, allowed for a better understanding of the physiological and metabolic changes following the infectious process of C. fimbriata, which limit eucalypt plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  1. The central regulation of plant physiology by adenylates.

    Science.gov (United States)

    Geigenberger, Peter; Riewe, David; Fernie, Alisdair R

    2010-02-01

    There have been many recent developments concerning the metabolic, transport and signalling functions of adenylates in plants, suggesting new roles for these compounds as central regulators of plant physiology. For example, altering the expression levels of enzymes involved in the equilibration, salvaging, synthesis and transport of adenylates leads to perturbations in storage, growth and stress responses, implying a role for adenylates as important signals. Furthermore, sensing of the internal energy status involves SNF1-related kinases, which control the expression and phosphorylation of key metabolic enzymes. ATP also acts as an apoplastic signalling molecule to control cell growth and pathogen responses. These new results could shed light on the emerging question of whether energy homeostasis in plant cells differs from mechanisms found in microbes and mammals. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  3. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  4. Fatality of salt stress to plants: Morphological, physiological and ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-23

    Aug 23, 2010 ... are difficult to establish in crops since salt stress may occur as a catastrophic episode, ... as well as cellular levels through osmotic and ionic adjustments that result in reduced biomass ... plant physiology such as increased respiration rate, ion toxicity ... eventually death of leaf cells and tissues (Marschner,.

  5. Dominant role of plant physiology in trend and variability of gross primary productivity in North America

    Science.gov (United States)

    Zhou, Sha; Zhang, Yao; Ciais, Philippe; Xiao, Xiangming; Luo, Yiqi; Caylor, Kelly K.; Huang, Yuefei; Wang, Guangqian

    2017-02-01

    Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000-2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40-80°N), but negatively in mid-latitudes (25-40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change.

  6. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Science.gov (United States)

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.

  7. Physiological blockage in plants in response to postharvest stress ...

    African Journals Online (AJOL)

    Flowers have been designed primarily for cutting because of the diversity of shapes, colors and also durability. However, ornamental plants are used in floral arrangements in vases and have limited shelf-life. Thus, this study showed that one of the factors contributing to this limitation is the physiological blockage that occurs ...

  8. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology.

    Science.gov (United States)

    Falhof, Janus; Pedersen, Jesper Torbøl; Fuglsang, Anja Thoe; Palmgren, Michael

    2016-03-07

    The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. Physiological and genetic basis of plant tolerance to excess boron

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2008-01-01

    Full Text Available Boron (B deficit as well as excess may significantly limit the organic production in plants. In extreme cases they may kill the affected plants. Boron excess occurs primarily in arid and semiarid regions, in saline soils or in consequence to human action. Excessive boron concentrations retard plant growth and cause physiological and morphological changes (chlorosis and necrosis first of all in leaf tips and then in marginal or intercostal parts of the lamina. Physiological mechanisms of plant tolerance to boron excess have not been studied in sufficient detail. The predominant opinion holds that they are based on restricted uptake and accumulation of boron in the root and aboveground plant parts. Significant differences in boron excess tolerance have been observed not only between different crops but even between different genotypes of the same crop. This has enabled the breeding of crop genotypes and crops adapted to growing on soils rich in available boron and intensified the research on the inheritance of plant tolerance to high B concentration. Sources of tolerance to high B concentration have been found in many crops (wheat, mustard, pea, lentil, eucalypt. Using different molecular techniques based on PCR (RAPD, SRAP, plant parents and progenies have been analyzed in an attempt to map as precisely as possible the position of B-tolerant genes. Small grains have been studied in greatest detail for inheritance of B tolerance. B tolerance in wheat is controlled by at least four additive genes, Bo1, Bo2, Bo3 and Bo4. Consequently, there exists a broad range of tolerance levels. Studies of Arabidopsis have broadened our understanding of regulation mechanisms of B transport from roots to above ground parts, allowing more direct genetic manipulations.

  10. Physiological quality of soybean seeds under different yield environments and plant density

    Directory of Open Access Journals (Sweden)

    Felipe A. Baron

    Full Text Available ABSTRACT Yield potential of agricultural fields associated with plant spatial arrangement could determine the physiological quality of soybean (Glycine max L. seeds. Thus, this study aimed to evaluate the physiological quality of soybean seeds from different yield environments and plant densities. Experiments were carried out in Boa Vista das Missões-RS, Brazil, during the 2014/2015 growing season. Yield environments were delineated by overlapping yield maps from the 2008, 2009/2010 and 2011/2012 growing seasons. The experimental design was a randomized complete block in a 2 x 5 factorial arrangement with two yield environments (low and high and five plant densities, with four replicates. Two varieties were tested: Brasmax Ativa RR (10, 15, 20, 25 and 30 plants m-1 and Nidera 5909 RR (5, 10, 15, 20 and 25 plants m-1. After harvested, the seeds were analysed as following: first count index, germination, abnormal seedlings, dead seeds, electrical conductivity, accelerate aging test, root length, hypocotyl length and seedling length. The spatial variability of seed vigor in the production field could be reduced by adjusting plant density, but the adjustment should consider the variety. Harvest according to yield environment is a strategy to separate lots of seeds with higher vigor, originated from high-yield environments.

  11. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  12. Amplification of heat extremes by plant CO2 physiological forcing.

    Science.gov (United States)

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  13. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  14. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  15. Physiological responses of planting frozen and thawed Douglas-fir seedlings

    Science.gov (United States)

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2008-01-01

    We studied the short-term (7-day) physiological responses of planting thawed and frozen root plugs of Douglas-fir (Pseudotsuga menziesii) seedlings in 2 separate experiments under cool-moist and warm-dry growing conditions, respectively. Our results showed that shoot water potential, root hydraulic conductance, net photosynthesis (A), and...

  16. Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).

    Science.gov (United States)

    Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek

    1993-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.

  17. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  18. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  19. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  20. On the language and physiology of dormancy and quiescence in plants.

    Science.gov (United States)

    Considine, Michael J; Considine, John A

    2016-05-01

    The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being

  1. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants.

    Science.gov (United States)

    Kutschera, Ulrich

    2015-01-01

    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).

  2. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa.

    Science.gov (United States)

    Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W

    2005-12-01

    Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.

  4. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  5. Physiological integration affects growth form and competitive ability in clonal plants

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš

    2004-01-01

    Roč. 18, - (2004), s. 493-520 ISSN 0269-7653 R&D Projects: GA ČR(CZ) GA206/02/0953 Institutional research plan: CEZ:AV0Z6005908 Keywords : competitive ability * Physiological integration * clonal plants Subject RIV: EF - Botanics Impact factor: 3.215, year: 2004

  6. Is physiological performance a good predictor for fitness? Insights from an invasive plant species.

    Directory of Open Access Journals (Sweden)

    Marco A Molina-Montenegro

    Full Text Available Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i the maximum quantum yield is a good predictor for seed-output ii whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual's fitness in changing environments.

  7. The use of stable isotopes for studies on the physiology of plants

    International Nuclear Information System (INIS)

    Moyse, Alexis.

    1982-01-01

    The use of the stable isotopes 15 N, 18 O, 13 C for studies on the physiology of plants especially of plants grown under natural environment conditions is reviewed. Analysis of isotopic discrimination give estimates of the various patterns of carbon and nitrogen nutrition and of the rate of water circulation. The method can also be used for paleoclimatology and for the detection of frauds in food products [fr

  8. Potassium-modulated physiological performance of mango plants infected by Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Isaias Severino Cacique

    2017-08-01

    Full Text Available ABSTRACT Mango wilt, caused by the fungus Ceratocystis fimbriata, is an important disease affecting mango production. In view of the beneficial effects of potassium (K in other profitable crops and the lack of information about the effect of macronutrients on mango wilt development, the present study aimed to evaluate how mango plants supplied with K respond physiologically when infected by C. fimbriata. Mango plants (» 3 years old from cultivar Ubá were grown in plastic pots containing 58 mg of K·dm−3 (original K level based on the chemical analysis of the substrate or in plastic pots with substrate amended with a solution of 0.5 M potassium chloride (KCl to achieve the rate of 240 mg K·dm−3. Disease symptoms were more pronounced in inoculated plants grown at the lower K level. Substantial declines in stomatal conductance, in line with decreases in the internal-to-ambient CO2 concentration ratio and the absence of detectable changes in the chlorophyll a fluorescence parameters, suggest that the decrease in the net carbon assimilation rate is due, at least initially, to stomatal limitations. High concentrations of K and manganese were found in the stem tissues of inoculated plants and supplied with the highest K rate, most likely due to the involvement of these tissues in the local development of defense mechanisms. The results of this study suggest that the supply of K favored the physiological performance of mango plants and their resistance against C. fimbriata infection.

  9. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  10. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    Science.gov (United States)

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    Science.gov (United States)

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-05

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth. Copyright © 2013. Published by Elsevier B.V.

  12. Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions.

    Science.gov (United States)

    Turgeman, Tidhar; Ben Asher, Jiftach; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Kapulnik, Yoram; Sitrit, Yaron

    2011-10-01

    The host plant Helianthemum sessiliflorum was inoculated with the mycorrhizal desert truffle Terfezia boudieri Chatin, and the subsequent effects of the ectomycorrhizal relationship on host physiology were determined. Diurnal measurements revealed that mycorrhizal (M) plants had higher rates of photosynthesis (35%), transpiration (18%), and night respiration (49%) than non-mycorrhizal (NM) plants. Consequently, M plants exhibited higher biomass accumulation, higher shoot-to-root ratios, and improved water use efficiency compared to NM plants. Total chlorophyll content was higher in M plants, and the ratio between chlorophyll a to chlorophyll b was altered in M plants. The increase in chlorophyll b content was significantly higher than the increase in chlorophyll a content (2.58- and 1.52-fold, respectively) compared to control. Calculation of the photosynthetic activation energy indicated lower energy requirements for CO(2) assimilation in M plants than in NM plants (48.62 and 61.56 kJ mol(-1), respectively). Continuous measurements of CO(2) exchange and transpiration in M plants versus NM plants provided a complete picture of the daily physiological differences brought on by the ectomycorrhizal relationships. The enhanced competence of M plants to withstand the harsh environmental conditions of the desert is discussed in view of the mycorrhizal-derived alterations in host physiology. © Springer-Verlag 2011

  13. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    Science.gov (United States)

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  15. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  16. Physiological responses of Vetiver plant (Vetiver zizanioides to municipal waste leachate

    Directory of Open Access Journals (Sweden)

    Sasan Mohsenzadeh

    2016-06-01

    Full Text Available Vetiver plant is tolerant to acidity and temperature variations. Has rapid growth for biomass production and has high tolerance to organic and non-organic compounds in municipal waste leachate for example heavy metals. So this plant is good for landfill cultivation. In this study, physiological responses to municipal waste leachate were studied. Statistical design was a randomized complete block and each block treated with different concentrations of latex at levels of zero, 15, 30, 45 and 60 percent compared to the original latex waste. The leachate collected from the Shiraz landfill and brought into the greenhouse. The physiological characterization including leaf area, dry weight, chlorophyll, anthocyanin, proline, soluble sugars and total protein were measured. The result indicated that the dry weight, chlorophyll and anthocyanin decrease with increasing of latex concentration. The leaf area, leaf relative water, soluble sugars and total protein increased with increasing latex concentration. Proline concentration at 15 percent of leachate increased significantly compared to controls, whereas at higher concentrations decreased. According to the results, it is recommended that 45 percent of leachate in a landfill can be used to irrigate Vetiver. This is the maximum concentration of leachate that Vetiver plant can survive as green space. Primary filtration of leachate before using is recommended. If the aim is more growth or perfume application from root, less concentration of leachate is better.

  17. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  18. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  19. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Air pollutants and the cuticle: implications for plant physiology

    International Nuclear Information System (INIS)

    Riederer, M.; Jetter, R.; Markstaedter, C.; Schreiber, L.

    1994-01-01

    The physiologically most important function of the plant cuticle is to control the loss of water and of inorganic and organic constituents of plants via the surfaces of leaves and fruits. In a polluted environment, the cuticle may also affect the rates of uptake of extraneous chemicals. It will be shown how the essential transport properties of plant cuticles can be determined experimentally using intact leaves, isolated cuticles, and reconstituted cuticular waxes. The transport properties will be related to the physico-chemical properties of the permeants in order to achieve a general description of pollutant transport across the leaf/atmosphere interface and to assess the relative contributions of the cuticular and the stomatal pathways to the total flow rate. The correlation of the transport properties of cuticles with their chemical composition will be discussed and a model of the molecular structure of the transport-limiting barrier of the cuticle and of epicuticular waxes be presented. The effects of chemicals of anthropogenic and biogenic origin on cuticular permeability will be described quantitatively. (orig.)

  1. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  2. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  3. Physiological factors into plant uptake models for pollutant

    International Nuclear Information System (INIS)

    Goncharova, N.; Kalinkevich, E.; Pytyrskaya, V.; Lopareva, E.; Suvorov, D.

    2002-01-01

    The main principles of biological control of the intensity of pollutant flow into system soil-plant have been analysed. It demonstrated that functional state of plants is so far significant factor in determination of rate of pollutant turn on trophic chains as physical-chemical property of mineral elements Most biosphere and contamination assessment models are based on uniform soil conditions,since single coefficients are used to describe the transfer of contaminants to the plant. The main pathway of the functional control intensity of pollutant flow such as possibility of plant to increase mobility of mineral elements into soil and change of ion's exchange characteristics of plant tissues, which determine the degree of attraction and capacity of accumulation of non biogenic elements by a plant have been considered. It is known that there are two groups of factors which determine the level of pollutant accumulation by plant. The first group is connected with determination of the level of biological availability of pollutants for a plant in soil, the second group of factors determine attractive of the higher plants and capacity of radionuclides and heavy metals accumulation in biomass. At the same time in accordance with modern eco physiological data, different alive organisms can play active part in processes of the mineral elements migration. Metabolites of the coil microorganisms and especially root excretion of higher plants. Our investigations carried out earlier demonstrated that there is high correlation between the level of Cs, Cu, Zn and Co accumulation and cation exchange capacity of the intact plant tissues and on the other hand similar changes of these characteristics in condition of the experimental modification of radionuclide and heavy metals accumulation by different environmental factors. These data suggest that namely cation exchange capacity may be one of the main 'driving force' and physiological characteristics in absorption of non biogenic

  4. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  5. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  6. Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure

    Science.gov (United States)

    Zhou, W.

    2017-12-01

    In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc

  7. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  8. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    Science.gov (United States)

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.

  9. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    Science.gov (United States)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  10. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  11. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    Science.gov (United States)

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  14. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    Science.gov (United States)

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins. Copyright 2009 Elsevier GmbH. All rights reserved.

  15. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.

    Science.gov (United States)

    Uemura, Tomohiro

    2016-10-01

    Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Outline of research on plant physiological functions using Positron Emitting Tracer

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Application of Positron Emitting Tracer Imaging System (Pets) for the plant has been investigated under JAERI-Universities Joint Research Project. Five university groups are studying a dynamic image of plant transport or a static image of the result of tracer movement using 11 C (half-life 20 min), 13 N (10 min), 18 F (110 min), etc. The Pets consisted of two-dimensional block detectors (48 x 50 mm square) which were composed of a Bi 4 Ge 3 O 12 scintillator array coupled to a position sensitive photomultiplier tube. In the system, the plant samples are placed at the mid position between the two opposing detectors and annihilation γ-rays from the samples are detected in coincidence. The positron emitting tracer images are obtained by accumulating these signals. The spatial resolution was 2.4 mm and images with a good S/N ratio can be obtained in real time. Using TIARA AVF cyclotron, 13 NO 3 - , 13 NH 4 + , 18 F-water, 11 C-methionine, etc. were produced and supplied to the plants. The transport of these labeled compounds introduced into plants was followed dynamically by PETIS. The results show that the system is effective in observing the uptake and transport of nutrients in plants and is useful for the study of physiological functions of plants. (author)

  17. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  18. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    Science.gov (United States)

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  19. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Svensgaard, J.; Christensen, S.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5429-5440 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : External phenotype * genome–environment–management interaction * genome–phenome map * internal phenotype * phenomics * physiological traits * physiology * plant phenotyping * predictors Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  20. Physiological plant investigations for the purpose of growing smoke resistant conifers

    Energy Technology Data Exchange (ETDEWEB)

    Polster, H; Bortitz, S; Vogl, M

    1965-01-01

    Spruce and pine are the main commercial wood varieties used in East Germany. These are also the most sensitive to smoke. Usually replacement of the damaged trees is necessary. The Department of Smoke Research of the Institute for Plant Chemistry of the Dresden Institute of Technology has been able to develop conifers resistant to SO2. In order to select smoke resistant trees for breeding, the Institute for Forestry and Plant Physiology of the Institute of Forestry Breeding in Graupa, East Germany has developed a rapid selection test. It is based on subjecting a small branch to doses of SO2. A method of breeding smoke resistant conifers is given in detail. It takes approximately ten years to produce the seeds.

  1. Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica

    Directory of Open Access Journals (Sweden)

    N. Ahmed

    2009-09-01

    Full Text Available Sequential changes induced by the root-knot nematode Meloidogyne javanica (Treub Chitwood in mung bean (Vigna radiata (L. Wilczek cv. MN95 were studied. Physiological and biochemical changes were recorded 15, 30 and 45 days after nematode inoculation. The changes noted varied with the length of exposure to the nematode. Chlorophyll and carotenoid contents decreased in nematode-infected plants. Total phenols increased in the leaves compared with the controls for up to 30 days after inoculation. Protein content declined significantly at 30 days after exposure to the nematodes. Amylase activity was enhanced in both the leaves and the stems as compared with the controls. The results suggested that plants responded to the nematode by adopting biochemical strategies to withstand the adverse effects of infection.

  2. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    Science.gov (United States)

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  3. Beyond the climate envelope: using trait filtering models to predict biome boundaries from plant physiology.

    Science.gov (United States)

    Fisher, R.; Hoffmann, W. A.; Muszala, S.

    2014-12-01

    The introduction of second-generation dynamic vegetation models - which simulate the distribution of light resources between plant types along the vertical canopy profile, and therefore facilitate the representation of plant competition explicitly - is a large increase in the complexity and fidelity with which the terrestrial biosphere is abstracted into Earth System Models. In this new class of model, biome boundaries are predicted as the emergent properties of plant physiology, and are therefore sensitive to the high-dimensional parameterizations of plant functional traits. These new approaches offer the facility to quantitatively test ecophysiological hypotheses of plant distribution at large scales, a field which remains surprisingly under-developed. Here we describe experiments conducted with the Community Land Model Ecosystem Demography component, CLM(ED), in which we reduce the complexity of the problem by testing how individual plant functional trait changes to control the location of biome boundaries between functional types. Specifically, we investigate which physiological trade-offs determine the boundary between frequently burned savanna and forest biomes, and attempt to distinguish how each strategic life-history trade-off (carbon storage, bark investment, re-sprouting strategy) contributes towards the maintenance of sharp geographical gradients between fire adapted and typically inflammable closed canopy ecosystems. This study forms part of the planning for a model-inspired fire manipulation experiment at the cerrado-forest boundary in South-Eastern Brazil, and the results will be used to guide future data-collection and analysis strategies.

  4. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    Science.gov (United States)

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  6. Impact of a plant-based diet on behavioural and physiological traits in sea bass (Dicentrarchus labrax)

    OpenAIRE

    Benhaim, David; Begout, Marie-laure; Pean, Samuel; Manca, Michael; Prunet, Patrick; Chatain, Beatrice

    2013-01-01

    Replacing aquaculture feeds based on fisheries-derived resources with plant-based diets could be a relevant strategy to improve the sustainability of aquaculture. Recent studies on sea bass have shown that the total and early replacement of marine products by plant products would have a moderate effect on fish growth and body lipid content. Whether a plant-based diet impacts behavioural and physiological traits possibly linked to fish welfare, is not known, however. Here, we studied the effec...

  7. Planting spacing and NK fertilizing on physiological indexes and fruit production of papaya under semiarid climate

    Directory of Open Access Journals (Sweden)

    Eduardo Monteiro Santos

    2015-01-01

    Full Text Available ABSTRACT The nutritional requirements of papaya (Carica papaya L. increase continuously throughout the crop cycle, especially for potassium and nitrogen, which are the most required nutrients and act on plant vital functions such as photosynthetic activity, respiration, transpiration and stomatal regulation. An experiment was conducted from November 2010 to December 2012 to evaluate physiological indexes and fruit production of papaya cv. Caliman-01 as a function of planting spacing and NK fertilizing. The experimental design consisted of randomized blocks, with treatments distributed in a factorial arrangement (2 × 4 × 4, using 2 planting spacing [simple rows (3.8 × 2.0 m and double rows (3.8 × 2.0 × 1.8 m], 4 nitrogen doses (320, 400, 480 and 560 g of N per plant-1 and 4 potassium doses (380, 475, 570 and 665 g of K2O per plant-1 with 4 replications of 3 plants each. The following variables were evaluated: leaf area index (LAI, leaf chlorophyll index (a, b and total index, intercepted photosynthetically active radiation (Int.PAR, in µmol∙m-2∙s-1, efficiency use of photosynthetically active radiation (Ef.PAR and fruit yield. The fruit production and physiological characteristics of papaya cv. Caliman-01 depend on planting spacing. Under the soil, climate and plant conditions of this study, 665 g of K2O and 320 g of N per plant under double spacing could be recommended for the production of papaya cv. Caliman-01.

  8. A computer-assisted personalized approach in an undergraduate plant physiology class

    Science.gov (United States)

    Artus; Nadler

    1999-04-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed.

  9. Identification an characterization of QTL underlying whole plant physiology in Arabidopsis taliana: 13C, stomatal conduction and transpiration efficiency

    NARCIS (Netherlands)

    Juenger, T.E.; McKay, J.K.; Hausmann, N.; Keurentjes, J.J.B.; Sen, S.; Stowe, K.A.; Dawson, T.E.; Simms, E.L.; Richards, J.H.

    2005-01-01

    Water limitation is one of the most important factors limiting crop productivity world-wide and has likely been an important selective regime influencing the evolution of plant physiology. Understanding the genetic and physiological basis of drought adaptation is therefore important for improving

  10. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  11. How do plants manage to survive on toxic spoil-mining sites? Physiological and structural properties of plants on substrates with high As and Hg contents

    OpenAIRE

    Kovářová, Monika

    2010-01-01

    The heavy metals contamination of environment represents a worldwide problem lately. Heavy metals cause harmful effects not only to plants, but also to other organisms. Throught their acumulation in plant biomass, heavy metals enter a food chain and could negatively influence the human health. The impact of heavy metals on plants and their defence mechanisms against toxicity of heavy metals have been in focus of plant physiology and ecology research for decades. Importance of this topic arise...

  12. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    Science.gov (United States)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and

  13. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  14. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  15. MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES ON Schizolobium parahybaVAR .Amazonicum(HUBER EX DUCKE BARNEBY PLANTS INTOXICATED BY GLYPHOSATE

    Directory of Open Access Journals (Sweden)

    Kaléo Dias Pereira

    2017-06-01

    Full Text Available The objective of this study was to evaluate the morphological and physiological changes in paricá plants (Schizolobium parahyba var. amazonicum intoxicated by glyphosate. The experiment was conducted in a protected environment using paricá plants during their planting stage, which were intoxicated with increasing doses of glyphosate: 0 (control; 43.2; 86.2; 129.6 and 172.8 g.ha-1. At 7 and 21 days after the application of the herbicide, the photosynthesis, transpiration, stomatal conductance and leaf temperature were measured. The visual intoxication degree and the growth of the shoot and the root of the plants were evaluated 21 days after the application. Paricá shows symptoms of visual intoxication characterized by chlorosis/winding, evolving to necrosis/abscission of the youngest leaflets. The growth of the stem and the roots of the intoxicated plants is preserved; however, an expressive leaf loss occurs, and paricá may have adaptation mechanisms to tolerate the action of the herbicide molecule. The photosynthesis decrease promoted by an indirect action of glyphosate represents the main reduction on the growth of plants. The decrease on the stomatal conductance, which was the most sensitive physiological variable to glyphosate, resulted in lower transpiration rates, which, consequently, caused increases on the leaf temperature.

  16. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  17. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    Science.gov (United States)

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  18. CAUSES OF PHYSIOLOGICAL ABNORMALITIES IN TOMATO AND CUCUMBER PLANTS GROWN IN GREENHOUSES IN THE SOUTH OF RUSSIA

    Directory of Open Access Journals (Sweden)

    A. Yu. Barbaritskiy

    2017-01-01

    Full Text Available The physiological abnormalities of plants under protected conditions are one of the most common and economically dangerous phenomena for the grower. One of the frequent causes of this phenomenon in plastic houses is the damage of plants by herbicides; the symptoms of this are very similar to the damages of viral infections.

  19. The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology

    Directory of Open Access Journals (Sweden)

    Z. Hafizi

    2018-02-01

    Full Text Available In this paper, a study of the effect of ZnO nanoparticles on safflower growth and physiology was performed. Each of these elements plays a particular role in the plant life, the presence of these elements is necessary for plant’s life cycle and growth. Zinc deficiency causes the biggest problems in safflower’s production. Considering the importance of nanoparticles in today's world, this research investigated the effect of Zinc oxide nanoparticles on the concentration of guaiacol peroxidase, polypeptide oxidase, dehydrogenase and malondialdehyde in four plant sample groups in greenhouse and laboratory conditions. Results of showed that malondialdehyde enzyme increased with different treatments of various concentrations of Zinc oxide. The enzyme guaiacol oxidase increased at concentrations of 100 mg/L and polyphenol oxide at concentrations of 10 and 500 mg/L and dehydrogenase in 1000 mg/L and decreased in other treatments. In addition to showing the effect of nanoparticles in plants, these findings determine the beneficial concentrations of nanoparticles that have a positive effect on the level of enzymes in plants.

  20. A global database of sap flow measurements (SAPFLUXNET) to link plant and ecosystem physiology

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Flo, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Oren, Ram; Katul, Gabriel; Mahecha, Miguel; Steppe, Kathy; Martínez-Vilalta, Jordi

    2017-04-01

    Regional and global networks of ecosystem CO2 and water flux monitoring have dramatically increased our understanding of ecosystem functioning in the last 20 years. More recently, analyses of ecosystem-level fluxes have successfully incorporated data streams at coarser (remote sensing) and finer (plant traits) organisational scales. However, there are few data sources that capture the diel to seasonal dynamics of whole-plant physiology and that can provide a link between organism- and ecosystem-level function. Sap flow measured in plant stems reveals the temporal patterns in plant water transport, as mediated by stomatal regulation and hydraulic architecture. The widespread use of thermometric methods of sap flow measurement since the 1990s has resulted in numerous data sets for hundreds of species and sites worldwide, but these data have remained fragmentary and generally unavailable for syntheses of regional to global scope. We are compiling the first global database of sub-daily sap flow measurements in individual plants (SAPFLUXNET), aimed at unravelling the environmental and biotic drivers of plant transpiration regulation globally. I will present the SAPFLUXNET data infrastructure and workflow, which is built upon flexible, open-source computing tools within the R environment (dedicated R packages and classes, interactive documents and apps with Rmarkdown and Shiny). Data collection started in mid-2016, we have already incorporated > 50 datasets representing > 40 species and > 350 individual plants, globally distributed, and the number of contributed data sets is increasing rapidly. I will provide a general overview of the distribution of available data sets according to climate, measurement method, species, functional groups and plant size attributes. In parallel to the sap flow data compilation, we have also collated published results from calibrations of sap flow methods, to provide a first quantification on the variability associated with different sap

  1. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Intawongse, Marisa [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Dean, John R. [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)], E-mail: john.dean@unn.ac.uk

    2008-03-15

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables.

  2. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    International Nuclear Information System (INIS)

    Intawongse, Marisa; Dean, John R.

    2008-01-01

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables

  3. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  4. Extension of the irradiation system at TIARA for production of radioisotopes to be used in plant physiology

    International Nuclear Information System (INIS)

    Ishioka, N.S.; Watanabe, S.; Fujimaki, S.; Sakamoto, K.; Matsuhashi, S.

    2005-01-01

    A target irradiation system for radioisotope production at the TIARA AVF cyclotron facility has been improved for extending physiological studies of plants. Experiments using a position imaging technique require a variety of positron-emitting radioisotopes and their labelled compounds. Therefore, a compact revolver equipped with six target cambers for gas and liquid targets were newly constructed, in addition to the original target irradiation system consisting of two solid target chambers and one gas target chamber, placed on the movable table. The control system was also reconstructed with a local area network for communication between the control station beside the irradiation port and the hot laboratory. Use of this system enables us to produce routinely positron-emitting tracers for plant physiology. (author)

  5. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    Science.gov (United States)

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  6. A Computer-Assisted Personalized Approach in an Undergraduate Plant Physiology Class1

    Science.gov (United States)

    Artus, Nancy N.; Nadler, Kenneth D.

    1999-01-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed. PMID:10198076

  7. Effect of low dosage biochar amendment on plant physiology parameters of sunflowers

    Science.gov (United States)

    María De la Rosa, José; Paneque, Marina; Franco-Navarro, Juan D.; Colmenero-Flores, José Manuel; Knicker, Heike

    2017-04-01

    Four different biochars were used as organic ameliorants in a typical agricultural soil of the Mediterranean region a (Calcic Cambisol). This field study was performed with plants of sunflower (Helianthus annuus L.) at the experimental station "La Hampa", located in the Guadalquivir river valley (SW Spain). The soil was amended with doses equivalent to 1.5 and 15 t ha-1 of the four biochars in two independent plantations. In addition, un-amended plots were prepared for comparison purposes 1. This study showed that the amendment with 1.5 t biochar ha-1 did not modify significantly soil properties, or the agronomic productivity of sunflowers. However, in spite of this low dose of biochar, positive effects on plant physiology were observed. The efficiency of Photosystem-II (quantum yield (QYPSII)), is a stress marker, related to the water status of the plant, and is reduced under drought stress. The QYPSII values of the plants grown with 1.5 t biochar ha-1 were higher than in the control and ranged between 72 and 77%. Values between 70 and 80% correspond to non-stressed (well-watered) sunflower plants. Biochar reduced stomatal conductance (gs, leaf transpiration) in both treatments. Therefore, the dependence of agronomic productivity on biochar dose was not observed, since both doses resulted in similar gs reductions. In C3 plants, such as sunflower, an increase of leaf area (LA) is usually associated to a decrease of gs caused by a reduction of stomatal frequency and increases the water use efficiency and drought tolerance 2. However, here no clear correlation could be established between biochar-induced LA stimulation and gs response after application of biochar. Thus, gs reduction was evident but not a consequence of LA increase. We hypothesize that biochar addition to soils alters anatomical and/or physiological parameters of the plants that in turn reduces stomatal conductance and increases water use efficiency of sunflower plants. After the last rain, increasing

  8. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    Science.gov (United States)

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sixth workshop on seedling physiology and growth problems in oak plantings (abstracts); 1995 September 18-20; Tomahawk, WI.

    Science.gov (United States)

    Ronald M. Teclaw

    1996-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination ,and natural regeneration for oaks are described in 29 abstracts.

  10. Eighth workshop on seedling physiology and growth problems in oak plantings (abstracts). 2001 September 9-12; Hiwassee, GA.

    Science.gov (United States)

    S. Sung; P.P. Kormanik; W.J. Ostrosina; J.G. Isebrands

    2002-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 21 abstracts.

  11. Comparative effects of partial rootzone drying and deficit irrigation on growth and physiology of tomato plants

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2009-01-01

    Full Text Available The effects of partial rootzone drying (PRD, deficit irrigation (DI, and full irrigation (FI on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.

  12. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    Science.gov (United States)

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Impact of field dodder (Cuscuta campestris Yunk. on physiological and anatomical changes in untreated and herbicide-treated alfalfa plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2016-01-01

    Full Text Available The effects of field dodder on physiological processes and the anatomy of alfalfa plants were examined under controlled conditions. The experiment included the following variants: N - noninfested alfalfa plants (control; I - infested alfalfa plants (untreated; T - infested plants treated with imazethapyr. Imazethapyr application rate was 100 g a.i. ha-1. The following parameters were checked: physiological - pigment content (chlorophyll ɑ, chlorophyll b, total carotenoids; anatomical - stem parameters: thickness of epidermis and cortex, and diameter of stem and central cylinder; leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells in alfalfa plants. Pigment contents and anatomical parameters were measured: prior to herbicide treatment (0 assessment, then 7 (I assessment, 14 (II assessment, 21 (III assessment, 28 (IV assessment and 35 (V assessment days after application (DAA. Field dodder was found to affect the contents of chlorophyll ɑ, chlorophyll ɑ and carotenoids in untreated alfalfa plants, causing significant reductions in pigment content. Conversely, percent reduction in the treated plants decreased 22-5% for chlorophyll ɑ, 25-1%, for chlorophyll b, and 21-11% for carotenoids, while a stimulating effect of 1-6% was observed for the contents of chlorophyll b and carotenoids 35 DAA. Plants infested (untreated by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of alfalfa stems and leaves had significantly higher values in noninfested plants and plants treated with imazethapyr than in untreated plants.

  14. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae).

    Science.gov (United States)

    Gortari, Fermín; Guiamet, Juan José; Graciano, Corina

    2018-01-23

    Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Saka, H

    1978-01-01

    Experiments were made to determine the effect of photochemical oxidants on physiological activities of rice plants. Rice plants were fumigated with ozone at concentrations of 0.12-0.20 ppm for 2-3 hr to investigate acute injury and at 0.05 and 0.09 ppm for daily exposure from 3.0 leaf stage to assess the effect of ozone on growth. It was observed that malondialdehyde produced by disruption of the components of the membrane increased in the leaves exposed to ozone. Ozone reduced the RuBP-carboxylase activity in both young and old leaves 12-24 hr after fumigation. In the young leaves the activity of this enzyme recovered to some extent after 48 hr, but it did not show any recovery in the old leaves. On the other hand, ozone remarkably increased the peroxidase activity and slightly increased acid phosphatase in all leaves. Abnormally high ethylene evolution and oxygen uptake were detected in leaves soon after ozone fumigation. In general, high molecular protein and chlorophyll contents in the detached leaves decreased with incubation in dark, particularly in the old ones. These phenomena were more accelerated by ozone fumigation. Kinetin and benzimidazole showed significant effects on chlorophyll retention in ozone-exposed leaves. Reduction of plant growth and photosynthetic rate was recognized even in low concentration of ozone in daily exposure at 0.05 and 0.09 ppm. From these results it was postulated that ozone may cause the senescence of leaves in rice plants.

  16. INTERNATIONAL SCIENTIFIC CONFERENCE «PLANT PHYSIOLOGY AND GENETICS – SUCCESSES AND CHALLENGES», 24\\26 SEPTEMBER 2014, SOFIA, REPUBLIC OF BULGARIA

    OpenAIRE

    F. B. Musayev; E. G. Kozar

    2014-01-01

    24-26 September 2014 in the Republic of Bulgaria the International scientific and practical conference entitled «Plant Physiology and Genetics – Achievements and Challenges» was hold. The forum discussed the biotechnology and genetic approaches for environmental and sustainable agriculture; genetic resources and biodiversity; efficient use of plant nutrition and symbiotic interaction; regulation of plant growth and development; photosynthesis under stress conditions.

  17. EFFECT OF DROUGHT STRESS INDUCED BY MANNITOL ON PHYSIOLOGICAL PARAMETERS OF MAIZE (ZEA MAYS L. SEEDLINGS AND PLANTS

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2015-02-01

    Full Text Available Plants are exposed to various stress factors which might lead to structural damage and physiological function abnormalities. Drought is one of the environmental stress factors that reduce the productivity of plants. The aim of our study was to determine the influence of drought stress induced by mannitol (-0.5 and -1.5MPa on selected physiological processes in Z. mays L. In the first stage we studied the effect of mannitol on the germination. In the second stage the effect of mannitol on the growth of plants germinated on distilled water and watered with mannitol in growth phase were measured. Mannitol, which decreased the water content in a concentration-dependent manner, had an inhibitory effect on germination and growth of seedlings and adult plants. Electrolyte leakage of cell membranes of the Z. mays seedlings showed high disturbances in the functioning of the membrane structures in the osmotic drought conditions. Similar results were obtained for maize roots, shoots and leaves in both treatment studies. Chlorophyll content showed only significant differences in plants from treated during the growth phase. Drought stress caused a decrease in chlorophyll content by almost a half compared to the control plants. Measurements of chlorophyll fluorescence of plant leaves from the second stage of experiments showed changes in fluorescence activity parameters Fv/Fm, NPQ, Rfd, qP, ect.; gas exchange measurements also showed changes in activity in each of the two phases.

  18. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend

    2015-01-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive ph......Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non......-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype......, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming...

  19. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Carlos Duarte-Galvan

    2014-10-01

    Full Text Available Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  20. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    Science.gov (United States)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  1. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Großkinsky, D.K.; Syaifullah, S. J.; Roitsch, Thomas

    2017-01-01

    Roč. 99, č. 99 (2017), s. 1-20 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : integrated approaches * multi-omics * phenomics * plant development * plant–environment interactions * plant phenotyping * plant physiology * plant senescence * senescence programme * systems biology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 5.830, year: 2016

  2. Physiological responses of sweet potato (Ipomoea batatas L. plants due to different copper concentrations

    Directory of Open Access Journals (Sweden)

    Cristina Copstein Cuchiara

    2015-12-01

    Full Text Available At low concentrations, Cu is considered as an essential micronutrient for plants and as a constituent and activator of several enzymes. However, when in excess, Cu can negatively affect plant growth and metabolism. Therefore, the aim of this study was to evaluate physiological responses of sweet potato plants at different Cu concentrations by measuring morphological parameters, antioxidant metabolism, stomatal characteristics, and mineral profile. For this purpose, sweet potato plants were grown hydroponically in complete nutrient solution for six days. Then, the plants were transferred to solutions containing different Cu concentrations, 0.041 (control, 0.082, and 0.164 mM, and maintained for nine days. The main effect of increased Cu concentration was observed in the roots. The sweet potato plants grown in 0.082 mM Cu solution showed increased activity of antioxidant enzymes and no changes in growth parameters. However, at a concentration of 0.164 mM, Cu was transported from the roots to the shoots. This concentration altered morpho-anatomical characteristics and activated the antioxidant system because of the stress generated by excess Cu. On the basis of the results, it can be concluded that the sweet potato plants were able to tolerate Cu toxicity until 0.082 mM.

  3. Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L. by improving morphological, physiological and biochemical activity

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2018-03-01

    Full Text Available The experimental work presented in this study was carried out with the hypothesis that plant derived smoke enhanced the morphological, physiological and biochemical attributes of a cereal crop, wheat (Triticum aestivum L.. Furthermore, this study supported the hypothesis that plant derived smoke acts as vegetative growth promoter, inexpensive, rapid and most appropriate eco-friendly bio-fertilizer for sustainable agriculture. Plant derived smoke was generated by burning of plant material (leaf, straws etc in a specially designed furnace, and seeds were treated with this smoke for different time duration. Four level of plant derived smoke (1 h, 2 h, 3 h and 4 h along with control were tested on four wheat cultivars in CRD repeated pot experiment. The smoke-related treatments modified number of morphological, physiological and biochemical features of wheat. Compared with the control, aerosol smoke treatment of the seeds significantly improved root length (2.6%, shoot length (7.7%, RFW (0.04%, SFW (0.7%, SDW (0.1% and leaf area (63.9%. All the smoke-related treatments significantly promoted RWC (17.3%, water potential (1.5%, osmotic potential (1.4% and MSI (14.6% whereas a pronounced increase in chlorophyll a (24.9%, chlorophyll b (21.7% and total chlorophyll contents (15.5% were recorded in response to aerosol-smoke treatments. Plant derived smoke exposure applied for short time i.e. 1 h & 2 h induced significant results as compared to prolonged PDS exposure (3 h and 4 h. The best results were observed in Pak-13 and Glaxy-13 wheat cultivars. These findings indicated that the plant-derived smoke treatment has a great potential to improve morphological, physiological and biochemical features of wheat crop.

  4. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Daniel Doktor

    2014-12-01

    Full Text Available The machine learning method, random forest (RF, is applied in order to derive biophysical and structural vegetation parameters from hyperspectral signatures. Hyperspectral data are, among other things, characterized by their high dimensionality and autocorrelation. Common multivariate regression approaches, which usually include only a limited number of spectral indices as predictors, do not make full use of the available information. In contrast, machine learning methods, such as RF, are supposed to be better suited to extract information on vegetation status. First, vegetation parameters are extracted from hyperspectral signatures simulated with the radiative transfer model, PROSAIL. Second, the transferability of these results with respect to laboratory and field measurements is investigated. In situ observations of plant physiological parameters and corresponding spectra are gathered in the laboratory for summer barley (Hordeum vulgare. Field in situ measurements focus on winter crops over several growing seasons. Chlorophyll content, Leaf Area Index and phenological growth stages are derived from simulated and measured spectra. RF performs very robustly and with a very high accuracy on PROSAIL simulated data. Furthermore, it is almost unaffected by introduced noise and bias in the data. When applied to laboratory data, the prediction accuracy is still good (C\\(_{ab}\\: \\(R^2\\ = 0.94/ LAI: \\(R^2\\ = 0.80/BBCH (Growth stages of mono-and dicotyledonous plants : \\(R^2\\ = 0.91, but not as high as for simulated spectra. Transferability to field measurements is given with prediction levels as high as for laboratory data (C\\(_{ab}\\: \\(R^2\\ = 0.89/LAI: \\(R^2\\ = 0.89/BBCH: \\(R^2\\ = \\(\\sim\\0.8. Wavelengths for deriving plant physiological status based on simulated and measured hyperspectral signatures are mostly selected from appropriate spectral regions (both field and laboratory: 700–800 nm regressing on C\\(_{ab}\\ and 800–1300

  5. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  6. Physiological response of lovage (levisticum officinale, koch) plant to gamma radiation and organic fertilizers

    International Nuclear Information System (INIS)

    Taha, A.T.A.

    2009-01-01

    The main objective of this work is to study physiological response of lovage plant to gamma radiation and organic fertilizers.Two field experiments were conduct under conditions of newly reclaimed soil (sandy loam soil) during two successive seasons (2003/2004 and 2004/2005) in experimental farm , NRC,AEA Inshas. lovage fruits were irradiated before sowing with gamma rays at 0,20,40,60 and 80 Gy. Before planting farm yard manure (FYM) at rates of 0,20,30 and 40 m 3 /fed. Was applied to soil in combination with gamma doses in the first experiment, in the second one, chicken manure at 0,10,15 and 20 m 3 /fed. was added to soil before planting in combination with the same used gamma doses in first experiment. Growth of lovage plants was considerably stimulated by irradiating fruits before sowing with low gamma doses, in particularly at 60 Gy, which greatly increased plant height, number of branches/plant, stem thickness and dry matter yield of shoots. Similar trend was also observed with leaf chlorophyll content which increased due to low gamma doses . Low gamma doses markedly encouraged nutrients uptake by lovage plants which increased levels and total contents of N, P, K, Fe,Zn and Mn in plant shoots. Fruits yield, volatile oil % and oil yield and fruits index value were increased by low gamma doses particularly at 60 Gy.

  7. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  8. Cenotic and physiological control of the radionuclides migration into system soil-plant

    International Nuclear Information System (INIS)

    Kravets, A.P.

    1998-01-01

    Some biological - cenotic and physiological - factors which determine the availability of radionuclides for a plant and the general capacity for the accumulation of pollutants were investigated and analysed. Metabolites of soil microorganisms and especially root excretion of higher plants increase the rate of destruction of solid forms of pollution and enhance the leaching of radionuclides from the solid matrix. The following facts were demonstrated in the conditions of contamination heterogeneity of Chernobyl fallout: (i) During the period of vegetation the plants of different species of f. Poacea, 1 .5 to 2.7-fold increase in the chemical mobility and biological availability of radionuclides; (ii) Additional increase in the concentration of soil microorganisms (micromycetes) leads to enhanced contents of the mobile form of the pollutant in soil and increases the level of accumulation of the radionuclides by higher plants; (iii) Increase in the density of sowing (and competition, respectively) of the different species of the plants also leads to an enhanced availability of the radionuclides and 1 .7 to 2.4- fold increase in the level of accumulation of the radionuclides by the plants. Other aspect of formation of the level of plant pollution include the peculiarities of radionuclide absorption and accumulation by the plant biomass. The effects of a high density of sowing, high level of the watering and gamma irradiation on the changes in the level of radionuclide accumulation and, at the same time, the cation exchange capacity (CEC) of the plant biomass were investigated in the laboratory and in a greenhouse experiment. In parallel, increased CEC and radionuclide accumulation by a factor of 1.5 to 2.7 was demonstrated. These facts suggest that the biological factors are a powerful tool of control of the pollutants availability and accumulation and may be take into account under development of the modern agricultural technology for clear products formation

  9. Effects of Planting Date and Plant Density on Physiological Indices, Quantity and Quality Traits of Two Varieties of Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2016-07-01

    Full Text Available Introduction Marigold (Calendula officinalis L. is originated from North West Africa and Mediterranean area, is a medicinal plant used for several purposes. It is an annual herb or short-lived perennial from the Asteraceae family with yellow or orange flowers. The Marigold has been used as a traditional medicine and food dye, but is currently used as an anti-inflammatory and wound healer. It is grown for drug, obtained from the flowers. The flowers blossom during summer three or more times per year. The essential oil of yellow or orange petals of Calendula officinalis L. is one of the important yield components which is used for food and medicine. Moreover, the seed has an oil content of 5-20 %. Seed oil could be used as a binder in paints, coating and cosmetics. Growth, development and production of medicinal plants, as well as other plants are affected by genetic and agronomic factors. Planting date and plant density are two most important factors that can affect yield and yield components. Planting date affects the quantity and quality of secondary metabolites of medicinal plants. The optimum sowing date and plant density can improve the light and temperature absorption and other factors during the growing season. The positive effects of optimal planting date and plant density has been described by a number of researchers. The Plant population is dependent on the plant characters, growth period, time and method of cultivation. Also, the suitable sowing date has advantages for maximum production. Early sowing in the spring causes weakly establishment of plant and late planting date shortens growth period and simultaneous flowering period due to high temperature in summer. In this study, the effects of plant density and planting date on physiological indices, quantity and quality of two varieties of spare and compact marigold has been evaluated. Materials and Methods In order to determine the effects of planting date and plant density on

  10. Instrumentation enabling study of plant physiological response to elevated night temperature

    Directory of Open Access Journals (Sweden)

    Tarpley Lee

    2009-06-01

    Full Text Available Abstract Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base, which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors.

  11. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  12. Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status.

    Science.gov (United States)

    D'Hondt, Liesbet; Höfte, Monica; Van Bockstaele, Erik; Leus, Leen

    2011-10-01

    Flow cytometers are probably the most multipurpose laboratory devices available. They can analyse a vast and very diverse range of cell parameters. This technique has left its mark on cancer, human immunodeficiency virus and immunology research, and is indispensable in routine clinical diagnostics. Flow cytometry (FCM) is also a well-known tool for the detection and physiological status assessment of microorganisms in drinking water, marine environments, food and fermentation processes. However, flow cytometers are seldom used in plant pathology, despite FCM's major advantages as both a detection method and a research tool. Potential uses of FCM include the characterization of genome sizes of fungal and oomycete populations, multiplexed pathogen detection and the monitoring of the viability, culturability and gene expression of plant pathogens, and many others. This review provides an overview of the history, advantages and disadvantages of FCM, and focuses on the current applications and future possibilities of FCM in plant pathology. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  13. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  14. Seventh workshop on seedling physiology and growth problems in oak plantings (abstracts); 1998 September 27-29; South Lake Tahoe, CA.

    Science.gov (United States)

    D.D. McCreary; J.G. Isebrands

    1999-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 17 abstracts.

  15. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Paul

    Full Text Available Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response

  16. Effect of Planting Date on Physiological and MorphologicalCharacteristics of Four Canola Cultivars in Yasouj

    Directory of Open Access Journals (Sweden)

    M. H. Fallah Heki

    2012-08-01

    Full Text Available In order to study the physiological and morphological characteristics of canola cultivars at different planting dates, an experiment was carried out in 2008-2009 at the Agriculture Research Station of Yasouj. A factorial with Randomized Complete Block Design with four replications was conducted. Four planting dates (September 12, September 22, October 2 and October 12 and four cultivars (Zarfam, Okapi, Elite and SLM-046 were used in this study. Results showed that cultivars and planting dates had significant effects on more characteristics. In addition, interaction of planting date and cultivar was significant on plant height, height to lowest silique, number of branches, growth indices and grain yield. Zarfam and Elite cultivars had lower initial fluorescence (Fo and higher maximum fluorescence (Fm and photochemical capacity of photosystem II (Fv/Fm than Okapi and SLM-046 cultivars. Elite cultivar at September 12 planting date had the highest plant height (173 cm and height to lowest silique (87.5 cm and Okapi cultivar at October 12 planting date showed the lowest plant height (91 cm and height to lowest silique (43.7 cm. At September 12 planting date, Elite cultivar had the greatest leaf area index (5.21 and grain yield (5231 kg/ha. At other planting dates, Zarfam cultivar because of priority in leaf area index, crop growth rate and total dry matter have the greatest grain yield than other cultivars. In general, seems at September 12 planting date, Elite cultivar and for delayed sowing, Zarfam cultivar had better reaction than other cultivars.

  17. Martin Gibbs (1922-2006): Pioneer of (14)C research, sugar metabolism & photosynthesis; vigilant Editor-in-Chief of Plant Physiology; sage Educator; and humanistic Mentor.

    Science.gov (United States)

    Black, Clanton C

    2008-01-01

    The very personal touch of Professor Martin Gibbs as a worldwide advocate for photosynthesis and plant physiology was lost with his death in July 2006. Widely known for his engaging humorous personality and his humanitarian lifestyle, Martin Gibbs excelled as a strong international science diplomat; like a personal science family patriarch encouraging science and plant scientists around the world. Immediately after World War II he was a pioneer at the Brookhaven National Laboratory in the use of (14)C to elucidate carbon flow in metabolism and particularly carbon pathways in photosynthesis. His leadership on carbon metabolism and photosynthesis extended for four decades of working in collaboration with a host of students and colleagues. In 1962, he was selected as the Editor-in-Chief of Plant Physiology. That appointment initiated 3 decades of strong directional influences by Gibbs on plant research and photosynthesis. Plant Physiology became and remains a premier source of new knowledge about the vital and primary roles of plants in earth's environmental history and the energetics of our green-blue planet. His leadership and charismatic humanitarian character became the quintessence of excellence worldwide. Martin Gibbs was in every sense the personification of a model mentor not only for scientists but also shown in devotion to family. Here we pay tribute and honor to an exemplary humanistic mentor, Martin Gibbs.

  18. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  19. Phytotoxicity: An Overview of the Physiological Responses of Plants Exposed to Fungicides

    Directory of Open Access Journals (Sweden)

    Maria Celeste Dias

    2012-01-01

    Full Text Available In the last decades, the use of fungicides in agriculture for fungi diseases control has become crucial. Fungicide research has produced a diverse range of products with novel modes of action. However, the extensive use of these compounds in the agriculture system raises public concern because of the harmful potential of such substances in the environment and human health. Moreover, the phytotoxic effects of some fungicides are already recognized but little is known about the impact of these compounds on the photosynthetic apparatus. This paper presents a comprehensive overview of the literature considering different classes of fungicides and their effects on plant physiology, with particular emphasis on photosynthesis.

  20. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (N(ase)) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and N(ase) activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by N(ase) activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with N(ase) inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψ(s)). At the nodule level, drought had an inhibitory effect on N(ase) activity. This decrease in N(ase) activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation

  1. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  2. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    Science.gov (United States)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  3. Impact of plant growth promoting bacillus subtilis on growth and physiological parameters of bassia indica (indian bassia) grown udder salt stress

    International Nuclear Information System (INIS)

    Abeer, H.; Asma, A. H.; Allah, A.; Qarawi, A.; Shalawi, A.; Dilfuza, E.

    2015-01-01

    In this study, the role of a salt-tolerant plant growth-promoting bacterium (PGPR), Bacillus subtilis, in the alleviation of salinity stress during the growth of Indian bassia (Bassia indica (Wight) A.J. Scott), was studied under ccontrolled growth chamber conditions following seed inoculation. Physiological parameters such as neutral and phospholipids, fatty acid composition as well as photosynthetic pigments, were investigated. Salinity inhibited shoot and root length by 16 and 42 percentage, dry weight by 37 and 23 percentage respectively and negatively affected physiological parameters. Inoculation of unstressed and salt-stressed Indian bassia with B. subtilis significantly improved root and shoot growth, total lipid content, the phospholipid fraction, photosynthetic pigments (chlorophyll a and b and carotenoid contents) and also increased oleic (C 18:1 ), linoleic (C 18:2 ) and linolenic (C 18:3 ) acids in plant leaves compared to uninoculated plants. The salt-tolerant PGPR, B. subtilis could act synergistically to promote the growth and fitness of Indian bassia plants under salt stress by providing an additional supply of an auxin (IAA) and induce salt stress resistance by reducing stress ethylene levels. (author)

  4. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity.

    Science.gov (United States)

    Boyce, C Kevin; Lee, Jung-Eun

    2010-11-22

    Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that dominate modern vegetation possess transpiration capacities that are dramatically higher than any other plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angiosperm climate modification may have promoted diversification of the angiosperms themselves, as well as radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional potential for environmental modification may have contributed to divergent responses to similar climates and global perturbations, like mass extinctions, before and after angiosperm evolution.

  5. State of the interface between conservation and physiology: a bibliometric analysis

    Science.gov (United States)

    Lennox, Robert; Cooke, Steven J.

    2014-01-01

    Contemporary conservation science benefits from the perspectives of a variety of different disciplines, including a recent synergy with physiology, an interface known as ‘conservation physiology’. To evaluate the degree of interaction between conservation and animal/plant physiology, we conducted three bibliometric analyses. We first pursued the use of the term ‘conservation physiology’ since its first definition in 2006 to determine how frequently it has been used and in which publications. Secondly, we evaluated the occurrence of conservation terms in animal and plant physiology journals, physiological terms in conservation journals, and a combination of terms in ecology journals. Thirdly, we explored trends in a subset of conservation physiology articles published between 2006 and 2012. We identified a surge in the use of the term ‘conservation physiology’ in 2012, after only a slow increase in usage between 2006 and 2011. Conservation journals tend to have been significantly more active in publishing conservation physiology than animal physiology, plant physiology or ecology journals. However, we found evidence that ecology and animal physiology journals began to incorporate more conservation physiology after 2006, while conservation- and plant physiology-themed journals did not. Among 299 conservation physiology articles that we identified, vertebrate taxa have been over-represented in conservation physiology compared with their relative taxonomic abundance, invertebrate taxa have been under-represented, and plants have been represented in proportion to their relative taxonomic abundance; however, those findings are reasonably consistent with publication trends in conservation biology. Diffuse distribution of conservation physiology papers throughout the literature may have been a barrier to the growth of the subdiscipline when the interface was emerging. The introduction of the focused journal Conservation Physiology in 2013 may address that

  6. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China.

    Science.gov (United States)

    Zhuang, W W; Serpe, M; Zhang, Y M

    2015-11-01

    Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi-arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat-typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (F(v)/F(m)), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, F(v)/F(m) and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. New horizons for (p)ppGpp in bacterial and plant physiology.

    Science.gov (United States)

    Braeken, Kristien; Moris, Martine; Daniels, Ruth; Vanderleyden, Jos; Michiels, Jan

    2006-01-01

    A hyperphosphorylated guanosine nucleotide, (p)ppGpp, was initially identified as the effector molecule responsible for the stringent response in Escherichia coli. However, a rapidly growing number of reports proves that (p)ppGpp-mediated regulation is conserved in many bacteria and even in plants. It is now clear that (p)ppGpp acts as a global regulator during physiological adaptation of the organism to a plethora of environmental conditions. Adaptation is not only essential for surviving periods of stress and nutrient exhaustion but also for the interaction of bacteria with their eukaryotic host, as observed during pathogenesis and symbiosis, and for bacterial multicellular behaviour. Recently, there have been several new discoveries about the effects of (p)ppGpp levels, balanced by RelA-SpoT homologue proteins, in diverse organisms.

  8. Principles and applications of TAL effectors for plant physiology and metabolism.

    Science.gov (United States)

    Bogdanove, Adam J

    2014-06-01

    Recent advances in DNA targeting allow unprecedented control over gene function and expression. Targeting based on TAL effectors is arguably the most promising for systems biology and metabolic engineering. Multiple, orthogonal TAL-effector reagents of different types can be used in the same cell. Furthermore, variation in base preferences of the individual structural repeats that make up the TAL effector DNA recognition domain makes targeting stringency tunable. Realized applications range from genome editing to epigenome modification to targeted gene regulation to chromatin labeling and capture. The principles that govern TAL effector DNA recognition make TAL effectors well suited for applications relevant to plant physiology and metabolism. TAL effector targeting has merits that are distinct from those of the RNA-based DNA targeting CRISPR/Cas9 system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    Science.gov (United States)

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  10. Physiology of in vitro culture

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cañal

    2001-01-01

    Full Text Available The culture procedures described up to the eighties, did not made any mention to the environmental control of in vitro plant development. However, growth rate, development and many of the physiologic-morphologic features of the in vitro grown plants are influenced by the culture vessel. The increasing knowledge about the environmental control of culture vessels under sterile conditions, is helping to change micorpropagation procedures. The in vitro environment with lower rate ventilation, brings about low flow rates of matter and energy, with minimum variations of temperature, high relative humidity and large daily changes of the concentration of CO2 inside the culture vessel. The type of culture vessel (size, shape, fabric and closing system can influence the evolution of the atmosphere along the time of culture. Although submitted to different stresses factors plant can be grown in vitro, but plants can be faulty in their anatomy, morphology and physiology. As a consequence, these plants shown a phenotype unable to survive to ex vitro conditions. Different strategies can be used to control the atmosphere along the different phases of micropropagation, in heterotrophic, mixotrophic or autotrophic cultures. The election of the best strategy will be based on different factors as species, number of transplantes required, or quality-price relationship. enviromental control, tissue culture, micropropagation Keywords: in vitro enviromental, characteristic physiology,

  11. Physiological selection criteria in forage grasses

    International Nuclear Information System (INIS)

    Cooper, J.P.

    1975-01-01

    The plant breeder has to develop varieties that provide the most efficient conversion of environmental inputs and have sufficient resistance to environmental stress. The most important physiological features that determine crop production and for which the plant breeder will have to select are discussed. Tracer studies may be of help to the breeder at the investigational level but in the longer term may also provide direct screening techniques for certain of the important physiological characteristics. (author)

  12. Exploitation of physiological and genetic variability to enhance crop productivity

    International Nuclear Information System (INIS)

    Harper, J.E.; Schrader, L.E.; Howell, R.W.

    1985-01-01

    The American Society of Plant Physiologists recognizes the need to identify primary physiological limitations to crop productivity. This basic information is essential to facilitate and accelerate progress towards the goal of enhanced productivity on a global scale. Plant breeders currently select for desirable physiological traits intuitively by selecting for enhanced yield capability. Identification of specific physiological limitations by plant physiologists could potentially foster interdisciplinary research and accelerate progress in breeding for improved cultivars. The recent upsurge in research interest and funding in the area of biotechnology further exemplifies the importance of identification of specific physiological traits which may be amenable to manipulation at the molecular as well as the whole plant level. The theme of this symposium was to focus attention on current progress in identification of possible physiological limitations. The purpose of this publication is to document that progress and hopefully to extend the stimulating ideas to those who were unable to attend the symposium

  13. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.

    Science.gov (United States)

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2013-01-01

    Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.

  14. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  15. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities.

    Science.gov (United States)

    Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando

    2012-06-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species.

  16. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    Science.gov (United States)

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF GROWTH AND DEVELOPMENT OF PLANTS IN HIGH SALINITY

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-10-01

    Full Text Available The effect of increasing salinity to the morpho-metric parameters of Salix alba L., which dominated in the coastal areas on rivers of Steppe Dnieper, is investigated. We added Mg as salt MgSO4 * 3H2O in the range of concentration: 0.5, 1.0, 1.5, 2.0 and 2.5 g/l in a solution of willow cuttings. In the solution was added and plant growth regulator "Kornevin" the synthetic origin. The negative effect of salt at a concentration from 1.0 g/l to 2.5 g/l in the dynamics of growth and development was found. The correlation between the size and salinity in dynamics of growth and development of plant were demonstrated: in the growth of shoots (R = 0.83, 0.91 and 0.95, in the growth of roots (R = 0.92, 0.68 and 0.84 respectively depended from salt concentration. The length of the leaf blade was from 4% to 8%, from 7% to 43%, from 333% to 11% (R = 0,68, 0,93, 0,61, depending on the concentration of salt and during observing compared with control (distilled water. "Kornevin" and combined effect of salt increased the length of the leaf blade growth by 4-5, 2-4, 3-5 times, the roots by7 and 3-14 times, the shoots by 3-4, 6-7 and 5-7 times in the dynamics of growth compared with control (MgSO4, 2,5 g/l. The recommendations regarding for the advisability of using the plant growth regulator "Kornevin", as very effective plant growth preparation that promoted rooting and activated physiological processes of plant organism, expressed protective effect in conditions of excessive salinity, were provided. Key words: the morpho-metric index, the plant growth regulators, abiotic factors, salinity factor, the adaptation.

  18. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    Science.gov (United States)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  19. Future flood risk in the tropics as measured by changes in extreme runoff intensity is strongly influenced by plant-physiological responses to rising CO2

    Science.gov (United States)

    Kooperman, G. J.; Hoffman, F. M.; Koven, C.; Lindsay, K. T.; Swann, A. L. S.; Randerson, J. T.

    2017-12-01

    Climate change is expected to increase the frequency of intense flooding events, and thus the risk of flood-related mortality, infrastructure damage, and economic loss. Assessments of future flooding from global climate models based only on precipitation intensity and temperature neglect important processes that occur within the land-surface, particularly the impacts of plant-physiological responses to rising CO2. Higher CO2 reduces stomatal conductance, leading to less water loss through transpiration and higher soil moisture. For a given precipitation rate, higher soil moisture decreases the amount of rainwater that infiltrates the surface and increases runoff. Here we assess the relative impacts of plant-physiological and radiative-greenhouse effects on changes in extreme runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant-physiological effects contribute to only a small increase in precipitation intensity, but are a dominant driver of runoff intensification, contributing to one-half of the 99th percentile runoff intensity change and one-third of the 99.9th percentile change. Comprehensive assessments of future flooding risk need to account for the physiological as well as radiative impacts of CO2 in order to better inform flood prediction and mitigation practices.

  20. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

    Science.gov (United States)

    Guo, Yuqiong; Zhao, Shanshan; Zhu, Chen; Chang, Xiaojun; Yue, Chuan; Wang, Zhong; Lin, Yuling; Lai, Zhongxiong

    2017-11-21

    Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and

  1. Physiological responses in barley to applications of lanthanum

    International Nuclear Information System (INIS)

    Reddy, N.; Maheswaran, J.; Peverill, K.; Meehan, B.

    1998-01-01

    Full text: Chinese research and glasshouse investigations carried out in Victoria by the authors have shown that several plant species, when treated with Rare Earth Elements (REEs), retain greater amounts of moisture under water stressed conditions. The physiological adaptation of the plant to retain moisture in response to REE treatment however, has not been investigated. A glasshouse trial is currently in progress to study the physiological and agronomic responses of barley (cv. Schooner) grown in pots to application of lanthanum (0, 5 and 10 kg/ha), at a concentration of 0.05%, under well-watered (field capacity) and water-deficit (25 - 30% field capacity) conditions. Lanthanum was applied both directly to the soil and as a foliar spray. The physiological measurements include, photosynthetic rate, leaf water potential, osmotic potential, relative water content, stomatal conductance and water use efficiency. Measured agronomic parameters include plant height, tiller production, leaf area development, total grain weight, total biomass, root and shoot ratio and harvest index. Analysis of plant tissue for N, P, K, Ca, Mg, Zn and La to study the relationship between application of REE and nutrient uptake is also being carried out. The paper discusses physiological and agronomic changes in barley plants in response to treatment with lanthanum, under conditions of water stress

  2. Exposure to air pollution near a steel plant and effects on cardiovascular physiology: a randomized crossover study.

    Science.gov (United States)

    Liu, Ling; Kauri, Lisa Marie; Mahmud, Mamun; Weichenthal, Scott; Cakmak, Sabit; Shutt, Robin; You, Hongyu; Thomson, Errol; Vincent, Renaud; Kumarathasan, Premkumari; Broad, Gayle; Dales, Robert

    2014-03-01

    Iron and steel industry is an important source of air pollution emissions. Few studies have investigated cardiovascular effects of air pollutants emitted from steel plants. We examined the influence of outdoor air pollution in the vicinity of a steel plant on cardiovascular physiology in Sault Ste. Marie, Canada. Sixty-one healthy, non-smoking subjects (females/males=33/28, median age 22 years) spent 5 consecutive 8-hour days outdoors in a residential area neighbouring a steel plant, or on a college campus approximately 5 kilometres away from the plant, and then crossed over to the other site with a 9-day washout. Mid day, subjects underwent daily 30-minute moderate intensity exercise. Blood pressure (BP) and pulse rate were determined daily and post exercise at both sites. Flow-mediated vasodilation (FMD) was determined at the site near the plant. Air pollution was monitored at both sites. Mixed-effects regressions were run for statistical associations, adjusting for weather variables. Concentrations of ultrafine particles, sulphur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) were 50-100% higher at the site near the plant than at the college site, with minor differences in temperature, humidity, and concentrations of particulate matter ≤2.5 μm in size (PM2.5) and ozone (O3). Resting pulse rate [mean (95% confidence interval)] was moderately higher near the steel plant [+1.53 bpm (0.31, 2.78)] than at the college site, male subjects having the highest pulse rate elevation [+2.77 bpm (0.78, 4.76)]. Resting systolic and diastolic BP and pulse pressure, and post-exercise BP and pulse rate were not significantly different between two sites. Interquartile range concentrations of SO2 (2.9 ppb), NO2 (5.0 ppb) and CO (0.2 ppm) were associated with increased pulse rate [0.19 bpm (-0.00, 0.38), 0.86 bpm (0.03, 1.68), and 0.11 bpm (0.00, 0.22), respectively], ultrafine particles (10,256 count/cm(3)) associated with increased pulse pressure [0.85 mmHg (0

  3. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  4. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  5. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding.

    Science.gov (United States)

    Li, Z J; Fan, D Y; Chen, F Q; Yuan, Q Y; Chow, W S; Xie, Z Q

    2015-03-01

    Many flooding-tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding-induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Biophysics and cell physiology

    International Nuclear Information System (INIS)

    Mazur, P.

    1975-01-01

    Progress is reported on research activities in the fields of physiology and low-temperature biology of mammalian embryos; effects of sub-zero temperatures on eggs and embryos of sea urchins; survival of frozen-thawed human red cells; effects of radiation on physiology of Escherichia coli; transfer of triplet electronic energy in dinucleotides; effects of x radiation on DNA degradation; energy deposition by neutrons; photosynthesis; excision repair of uv-induced pyrimidine dimers in DNA of plant cells

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Sun, Youping [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Barrios, Ana C. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Niu, Genhua [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Margez, Juan P. Flores- [Autonomous University of Ciudad Juarez, Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México (Mexico); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States)

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0–500 mg/kg cerium oxide nanoparticles (nano-CeO{sub 2}) under greenhouse condition. After 52 days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO{sub 2} exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65–111% with increasing nano-CeO{sub 2} concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5–250 mg/kg nano-CeO{sub 2} led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25–28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250 mg/kg nano-CeO{sub 2}. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO{sub 2} exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. - Highlights: • Ce translocation to leaves was facilitated by higher organic matter (OM) in soil. • Lower soil OM increased leaf cover area in nano-CeO{sub 2} exposed plants. • Nano-CeO{sub 2} effects on metabolic processes were more

  8. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    Science.gov (United States)

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A history of the Federation of European Societies of Plant Physiology FESPP since its foundation in 1978--including notes on events preceding the foundation and following re-naming as the Federation of European Societies of Plant Biology (FESPB) in 2002.

    Science.gov (United States)

    Lichtenthaler, Hartmut

    2004-06-01

    After several years of close contacts and extensive discussion between various plant physiologists of different European countries, the Federation of European Societies of Plant Physiology (FESPP) was established in 1978 in Edinburgh. The aim of the FESPP was and remains to promote up-to-date plant physiology research in all European countries and to stimulate scientific cooperation and the exchange of scientists between the different member societies by organizing congresses and workshops as well as editing four (recently five) Federation-affiliated journals. The short History of FESPP presented here covers the preparatory years of the 1970s that led to its actual foundation in 1978, and then its further development up to and following the Federation's reconstitution in 2002 as the Federation of European Societies of Plant Biology (FESPB).

  10. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  11. Plants and men in space - A new field in plant physiology

    Science.gov (United States)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  12. Remote detection of physiological depression in crop plants with infrared thermal imagery

    International Nuclear Information System (INIS)

    Inoue, Y.

    1990-01-01

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis

  13. Remote detection of physiological depression in crop plants with infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y. [Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    1990-12-15

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis.

  14. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  15. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  16. Reproduction, physiology and biochemistry

    Science.gov (United States)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  17. Plant neighbor identity influences plant biochemistry and physiology related to defense

    Directory of Open Access Journals (Sweden)

    Callaway Ragan M

    2010-06-01

    Full Text Available Abstract Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa or heterospecific (Festuca idahoensis plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  18. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  19. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  20. Physiological responses of PEA (Pisum sativum cv. meteor) to irrigation salinity

    International Nuclear Information System (INIS)

    Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Azhar, N.; Shahzad, J.; Ubaidullah

    2008-01-01

    The effects of irrigation water or soil salinity on physiological aspects of pea (Pisum sativum cv.Meteor) were contrived. Ten weeks old pea plants were treated with NaCl at 0, 40, 90 and 140 mM in nutrient solution Plants were grown in controlled environment and harvested at each 3 days interval for decisiveness 0 physiological parameters. Photosynthetic rate, relative water content, stomatal conductance and chlorophyll contents reduced by increasing the NaCI concentration while CO/sub 2/ concentration and free proline content intensified. By experiment it was adumbrated that high salinity level along with prolonged accentuate duration is more drastic to pea plants physiology. Results also exhibited that pea plants could indulge 40 and 90 mM NaCl but are sensitive to 140 mM. (author)

  1. Morpho-physiological and productive biometry in semi-erect cultivars of the cowpea under different plant populations

    Directory of Open Access Journals (Sweden)

    Antônio Aécio de Carvalho Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate morpho-physiological and productive characteristics in four semi-erect cultivars of the cowpea under five plant populations. The experiment was conducted in the experimental area of Embrapa Meio-Norte in Teresina in the State of Piauí, Brazil (PI. The experimental design was of randomised complete blocks with four replications, in a 4 x 5 factorial scheme, for evaluating four cultivars (BRS Guariba, BRS Novaera, BRS Potengi and BRS Tumucumaque and five plant populations (105, 2x105, 3x105, 4x105 and 5x105 plants ha-1. There were significant differences between cultivars for primary branch length (PBL, number of lateral branches (NLB, 100-grain weight (HGW, and dry-grain yield (GY. The maximum PBL of 58.5 cm was obtained with 300 thousand plants ha-1, corresponding to an increase of 11.5% when compared to 100 thousand plants ha-1. However, there was a reduction of 91.2% in NLB when compared to the populations of 100 and 500 thousand plants ha-1. The increases of 188% obtained in the leaf area index (LAI in the range of 100 to 500 thousand plants ha-1 explain the linear increase in the crop growth rate (CGR as being due to the greater production of leaf area; also, the decreases seen in the net assimilation rate (NAR, especially in the range of 100 to 300 thousand plants ha-1, are explained as due to the consequent self-shading, which was intensified in the larger populations. LAI, light interception, and CGR in the cultivars increase in response to higher densities. HGW and GY are not significantly affected by the different populations.

  2. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    Science.gov (United States)

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Physiologically available cyanide (PAC) in manufactured gas plant waste and soil samples

    International Nuclear Information System (INIS)

    Magee, B.; Taft, A.; Ratliff, W.; Kelley, J.; Sullivan, J.; Pancorbo, O.

    1995-01-01

    Iron-complexed cyanide compounds, such as ferri-ferrocyanide (Prussian Blue), are wastes associated with former manufactured gas plant (MGP) facilities. When tested for total cyanide, these wastes often show a high total cyanide content. Because simple cyanide salts are acutely toxic, cyanide compounds can be the subject of concern. However, Prussian Blue and related species are known to have a low order of human and animal toxicity. Toxicology data on complexed cyanides will be presented. Another issue regarding Prussian Blue and related species is that the total cyanide method does not accurately represent the amount of free cyanide released from these cyanide species. The method involves boiling the sample in an acidic solution under vacuum to force the formation of HCN gas. Thus, Prussian Blue, which is known to be low in toxicity, cannot be properly evaluated with current methods. The Massachusetts Natural Gas Council initiated a program with the Massachusetts Department of Environmental Protection to develop a method that would define the amount of cyanide that is able to be converted into hydrogen cyanide under the pH conditions of the stomach. It is demonstrated that less than 1% of the cyanide present in Prussian Blue samples and soils from MGP sites can be converted to HCN under the conditions of the human stomach. The physiologically available cyanide method has been designed to be executed at a higher temperature for one hour. It is shown that physiologically available cyanide in MGP samples is < 5--15% of total cyanide

  4. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    DEFF Research Database (Denmark)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora

    2015-01-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been...... shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic...

  5. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  6. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants.

    Science.gov (United States)

    Großkinsky, Dominik K; Syaifullah, Syahnada Jaya; Roitsch, Thomas

    2018-02-12

    The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Mineral nutrition of plants: a short history of plant physiology.

    Science.gov (United States)

    Pennazio, Sergio

    2005-01-01

    The development of the knowledge on the mineral nutrition of plants begins between the 17th and 18th centuries when some European naturalists gave the first experimental evidences of what had been empirically known for about two millennia. The works of Hales and Ingenhousz were of absolute importance in relation to the transport of water and solutes, and assimilation of "fixed air" (carbon dioxide), respectively. The early chemistry introduced by Lavoisier benefited the first physiologists Senebier and De Saussure to reject the "theory of humus", which imposed the soil as the unique source of carbon. During the first half of the 19th century, Sprengel and Liebig investigated on the problems related to some indispensable mineral salts, while Boussingault and Ville attempted to prove the nitrogen fixation from air without giving any convincing evidence. Liebig was the pioneer of the agricultural chemistry: he epitomised the knowledge of that period by imposing the so-called "law of the minima", already acknowledged by Sprengel, and patronised the use of mineral fertilisers in Europe by devising several formulas of mineral manure. He, however, did not recognise the needs of external supplies of nitrogen salts for the crops, in open dispute with the English school of Lawes and Gilbert, who were instead convinced assertors of such needs. At the end of the 19th century Hellriegel showed that leguminous plants presenting peculiar nodules on their roots could really fix the gaseous nitrogen. From these nodules Beijerinck and Prazmowski isolated for the first time some bacteria which were recognised as the real agents fixing nitrogen. This discovery was of fundamental importance for plant nutrition, only second to the discovery of photosynthesis. Another basic contribution came from early research of Sachs on plants grown on aqueous solutions: these techniques allowed to impose the concept of "essential elements", which was fixed as a principle by Arnon and Stout in 1939

  8. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  9. Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus 'white prosperity'

    International Nuclear Information System (INIS)

    Sajjad, Y.; Jaskani, M. J.; Qasim, M.

    2014-01-01

    Gladiolus is very popular among ornamental bulbous plants mainly used as cut flower and greatly demanded in the world floral market. Production of inferior quality spikes is one of the major hurdles for their export. The research was conducted under Faisalabad conditions to evaluate the use of plant growth regulators in order to improve the vegetative, floral and physiological attributes. Gladiolus plants were sprayed thrice with different concentrations (0.1, 0.4, 0.7 and 1mM) of gibberellic acid, benzylaminopurine and salicylic acid at three leaf stage, five leaf stage and slipping stage. Foliar application of 1mM gibberellic acid increased the plant height (122.14cm), spike length (58.41cm), florets spike-1 (13.49), corm diameter (4.43cm), corm weight (25.34g) and total cormel weight (20.45g) compared to benzylaminopurine and salicylic acid. Gibberellic acid at 1mM concentration also increased the total chlorophyll content to 7.72mg/g, total carotenoids (1.61mg/g), total soluble sugars (3.68mg/g) followed by application of benzylaminopurine. Salicylic acid application at 1mM concentration decreased the number of days to flower (64.93) compared to 76.12 days in non treated plants. (author)

  10. The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances.

    Science.gov (United States)

    Wang, Wenqiang; Hao, Qunqun; Wang, Wenlong; Li, Qinxue; Wang, Wei

    2017-11-01

    Freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway. Two wheat (Triticum aestivum) near isogenic lines (NIL) named tafs (freezing sensitivity) and taft (freezing tolerance) were isolated in the laboratory and their various cytological and physiological characteristics under freezing conditions were studied. Proplastid, cell membrane, and mitochondrial ultrastructure were less damaged by freezing treatment in taft than tafs plants. Chlorophyll, ATP, and thylakoid membrane protein contents were significantly higher, but malondialdehyde content was significantly lower in taft than tafs plants under freezing condition. Antioxidant capacity, as indicated by reactive oxygen species accumulation and antioxidant enzyme activity, and the relative gene expression were significantly greater in taft than tafs plants. Soluble sugars and abscisic acid (ABA) contents were significantly higher in taft plants than in tafs plants under both normal and freezing conditions. The upregulated expression levels of certain freezing tolerance-related genes were greater in taft than tafs plants under freezing treatment. The addition of sodium tungstate, an ABA synthesis inhibitor, led to only partial freezing tolerance inhibition in taft plants and the down-regulated expression of some ABA-dependent genes. Thus, both ABA-dependent and ABA-independent signaling pathways are involved in the freezing tolerance of taft plants. At the same time, freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway.

  11. EFFECT OF USING SOME MEDICINAL PLANTS (ANISE, CHAMOMILE AND GINGER) ON PRODUCTIVE AND PHYSIOLOGICAL PERFORMANCE OF JAPANESE QUAIL

    International Nuclear Information System (INIS)

    ABU TALEB, A.M.; HAMODI, S.J.; EL AFIFI, SH.F.

    2008-01-01

    This experiment was conducted to evaluate the effects of adding medicinal plants to Japanese quail diet on their performance and some metabolic functions. Four hundred, one day old, unsexed Japanese quails were used in this study. Quails were divided equally into four groups of 100 birds each according to medicinal plant additives. Group one was control (without additives, and the other groups contained 0.3% from anise (group 2), chamomile (group 3) and ginger (group 4). The end of the experiment was terminated when birds were 6 weeks old. Body weight, feed intake, some organs weight and some blood parameters were measured.The results indicated that addition of medicinal plants (anise, chamomile and ginger) improved growth rate, carcass and the relative weights of spleen, ovary and testis. Also, significant increases were observed in RBC, WBC, Hb, PCV, total protein and globulin. There was reduction in cholesterol in treated groups as compared to the control.The present results confirmed the beneficial effects of dietary medicinal plants (anise, chamomile and ginger) to improve the health condition as well as the productive and physiological characteristics of quails

  12. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn.

    Science.gov (United States)

    Wang, Lin-Jiao; Sheng, Mao-Yin; Wen, Pei-Cai; Du, Jia-Ying

    2017-12-01

    Tartary buckwheat are very popular as an important functional food material and its cultivation is very widespread in our whole world, but there obviously lack works in the researches of genetic breeding for agricultural and medicinal utilization. The aim of this study is to obtain good germplasm resources for agricultural and medicinal use of tartary buckwheat (Fagopyrum tataricum) by inducing the tetraploid plants. Four cultivars of F. tataricum, that is, Qianwei 2#, Jinku 2#, Chuanqiao 1#, and Liuqiao 1# were selected to experiment. The tips of seedlings with two true leaves were treated by 0.25% (w/v) colchicine solution for 48, 72, and 96 h, respectively. The chromosome number of treated plants was determined by metaphase chromosome counting of root tip cells and PMCs (pollen mother cells) meiosis observation. Tetraploid induction successfully occurred in all three treatments with an efficiency ranging from 12.13 to 54.55%. The chromosome number of the diploid plants was 2n = 2x = 16, and that of the induced tetraploid plants was 2n = 4x = 32. The typical morphological and physiological qualities were compared between the control diploid and corresponding induced tetraploid plants. Results showed that the induced tetraploid plants had obviously larger leaves, flowers, and seeds. Moreover, the content of seed protein and flavonoid were also increased in the tetraploid plants. The pollen diameter and capsule size of diploid plants were significantly smaller than those of tetraploid plants. Fagopyrum tataricum can be effectively induced into tetraploids by colchicines. The tetraploid induction can produce valuable germplasm resources for breeding and is a practicable breeding way in F. tataricum.

  13. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions

    Directory of Open Access Journals (Sweden)

    Lars H. Wegner

    2017-03-01

    Full Text Available Current concepts of plant membrane transport are based on the assumption that water and solutes move across membranes via separate pathways. According to this view, coupling between the fluxes is more or less exclusively constituted via the osmotic force that solutes exert on water transport. This view is questioned here, and experimental evidence for a cotransport of water and solutes is reviewed. The overview starts with ion channels that provide pathways for both ion and water transport, as exemplified for maxi K+ channels from cytoplasmic droplets of Chara corallina. Aquaporins are usually considered to be selective for water (just allowing for slippage of some other small, neutral molecules. Recently, however, a “dual function” aquaporin has been characterized from Arabidopsis thaliana (AtPIP2.1 that translocates water and at the same time conducts cations, preferentially Na+. By analogy with mammalian physiology, other candidates for solute-water flux coupling are cation-chloride cotransporters of the CCC type, and transporters of sugars and amino acids. The last part is dedicated to possible physiological functions that could rely on solute-water cotransport. Among these are the generation of root pressure, refilling of embolized xylem vessels, fast turgor-driven movements of leaves, cell elongation (growth, osmoregulation and adjustment of buoyancy in marine algae. This review will hopefully initiate further research in the field.

  14. Modelling of salad plants growth and physiological status in vitamin space greenhouse during lighting regime optimization

    Science.gov (United States)

    Konovalova, Irina; Berkovich, Yuliy A.; Smolyanina, Svetlana; Erokhin, Alexei; Yakovleva, Olga; Lapach, Sergij; Radchenko, Stanislav; Znamenskii, Artem; Tarakanov, Ivan

    2016-07-01

    The efficiency of the photoautotrophic element as part of bio-engineering life-support systems is determined substantially by lighting regime. The artificial light regime optimization complexity results from the wide range of plant physiological functions controlled by light: trophic, informative, biosynthetical, etc. An average photosynthetic photon flux density (PPFD), light spectral composition and pulsed light effects on the crop growth and plant physiological status were studied in the multivariate experiment, including 16 independent experiments in 3 replicates. Chinese cabbage plants (Brassica chinensis L.), cultivar Vesnianka, were grown during 24 days in a climatic chamber under white and red light-emitting diodes (LEDs): photoperiod 24 h, PPFD from 260 to 500 µM/(m ^{2}*s), red light share in the spectrum varying from 33% to 73%, pulsed (pulse period from 30 to 501 µs) and non-pulsed lighting. The regressions of plant photosynthetic and biochemical indexes as well as the crop specific productivity in response to the selected parameters of lighting regime were calculated. Developed models of crop net photosynthesis and dark respiration revealed the most intense gas exchange area corresponding to PPFD level 450 - 500 µM/(m ^{2}*s) with red light share in the spectrum about 60% and the pulse length 30 µs with a pulse period from 300 to 400 µs. Shoot dry weight increased monotonically in response to the increasing PPFD and changed depending on the pulse period under stabilized PPFD level. An increase in ascorbic acid content in the shoot biomass was revealed when increasing red light share in spectrum from 33% to 73%. The lighting regime optimization criterion (Q) was designed for the vitamin space greenhouse as the maximum of a crop yield square on its ascorbic acid concentration, divided by the light energy consumption. The regression model of optimization criterion was constructed based on the experimental data. The analysis of the model made it

  15. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára

    2012-03-01

    Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Plant physiological ecology and the global changes Ecofisiologia vegetal e as mudanças globais

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Alves Delfino Barbosa

    2012-06-01

    Full Text Available The global changes are marked by alteration on the normal patterns of important biochemical and biophysical processes of the Earth. However, the real effects as well as the feedbacks of the global changes over vegetation are still unclear. Part of this uncertainty can be attributed to the inattention of stakeholders and scientists towards vegetation and its complex interrelations with the environment, which drive plant physiological processes in different space-time scales. Notwithstanding, some key subjects of the global changes could be better elucidated with a more plant physiological ecology approach. We discuss some issues related to this topic, going through some limitations of approaching vegetation as a static component of the biosphere as the other sub-systems of the Earth-system change. With this perspective, this review is an initial reflection towards the assessment of the role and place of vegetation structure and function in the global changes context. We reviewed the Earth-system and global changes terminology; attempted to illustrate key plant physiological ecology researches themes in the global changes context; consider approaching plants as complex systems in order to adequately quantify systems characteristics as sensibility, homeostasis, and vulnerability. Moreover, we propose insights that would allow vegetation studies and scaling procedures in the context of the Earth-system. We hope this review will assist researchers on their strategy to identify, understand and anticipate the potential effects of global changes over the most vulnerable vegetation processes from the leaf to the global levels.As mudanças globais englobam importantes alterações nos padrões normais de processos bioquímicos e biofísicos da Terra. Os reais efeitos e retroalimentações das mudanças globais sobre a vegetação ainda são incertos. Parte das incertezas pode ser atribuída à falta de atenção de cientistas e políticos para a vegeta

  17. Plant Physiology: Out in the Midday Sun, Plants Keep Their Cool.

    Science.gov (United States)

    Ezer, Daphne; Wigge, Philip A

    2017-01-09

    Plants use context-dependent information to calibrate growth responses to temperature signals. A new study shows that plants modulate their sensitivity to temperature depending on whether or not they are in direct sunlight. This enables them to make adaptive decisions in a complex natural environment. Copyright © 2017. Published by Elsevier Ltd.

  18. Cell physiology of plants growing in cold environments.

    Science.gov (United States)

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  19. Germination, growth and physiological responses of Senegalia ...

    African Journals Online (AJOL)

    For plants growth and physiological responses, seedlings were individually cultivated in plastic bags (25×12 cm) containing non-sterile soil and watered with four salt solutions (0, 86, 171 and 257 mM NaCl). Four months after the plants' cultivation, the results showed that for all species, the salinity reduced significantly the ...

  20. The role of microRNA399 and sucrose in physiological responses to phosphate deficiency in Arabidopsis thalina plant

    Directory of Open Access Journals (Sweden)

    Farzaneh Mohammadsaleh

    2015-03-01

    Full Text Available microRNAs (miRNAs are noncoding small RNAs that generally function as posttranscriptional negative regulators. The miRNAs play a direct role in plant responses to many types of environmental stresses. For example miR399 had a role in response to Pi deficiency. The aim of this study was to investigate the role of miR399 and sucrose in some physiological responses of Arabidopsis thaliana plants to phosphate deficiency. Therefore, miR399-overexpressing transgenic and wild type Arabidopsis plants were used. The plant seeds were cultured on the Suc+Pi+ (S+P+, Suc-Pi+ (S-P+, Suc+Pi- (S+P- and Suc-Pi- (S-P- media. Pi+ and Pi- refer to 1.2 mM and 10 µM Pi, respectively and Suc+ or Suc- are media culture with 1% sucrose or without. The results showed that sucrose and miR399 had a dramatic effect on root architecture so that primary root length and its branches on S-P+ medium were significantly reduced in over expressed as compared with wild type plants. The highest anthocyanin and starch accumulation was achieved in S+P- media in both plant types. However, miR399 over expression was resulted in significant rise in anthocyanin accumulation on S-P- medium in transgenic relative to wild type plants. In addition, miR399 was resulted in significant rise in free phosphorous level in all types' media. compared to wild type. These results were probably due to the role of sucrose and miR399 in signalling pathway during phosphate starvation in Arabidopsis plant.

  1. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens...... and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  2. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  3. Research with radiation and radioisotopes to better understand plant physiology and agricultural consequences of radioactive contamination from the Fukushima Daiichi nuclear accident.

    Science.gov (United States)

    Nakanishi, Tomoko M

    2017-01-01

    Research carried out by me and my group over the last almost four decades are summarized here. The main emphasis of my work was and continues to be on plant physiology using radiation and radioisotopes. Plants live on water and inorganic elements. In the case of water, we developed neutron imaging methods and produced 15 O-labeled water (half-life 2 min) and applied them to understand water circulation pattern in the plant. In the case of elements, we developed neutron activation analysis methods to analyze a large number of plant tissues to follow element specific distribution. Then, we developed real-time imaging system using conventional radioisotopes for the macroscopic and microscopic observation of element movement. After the accident in Fukushima Daiichi nuclear power plant, we, the academic staff of Graduate School, have been studying agricultural effects of radioactive fallout; the main results are summarized in two books published by Springer.

  4. Research with radiation and radioisotopes to better understand plant physiology and agricultural consequences of radioactive contamination from the Fukushima Daiichi nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, T.M.

    2017-01-01

    Research carried out by me and my group over the last almost four decades are summarized here. The main emphasis of my work was and continues to be on plant physiology using radiation and radioisotopes. Plants live on water and inorganic elements. In the case of water, we developed neutron imaging methods and produced 15 O-labeled water (half-life 2 min) and applied them to understand water circulation pattern in the plant. In the case of elements, we developed neutron activation analysis methods to analyze a large number of plant tissues to follow element specific distribution. Then, we developed real-time imaging system using conventional radioisotopes for the macroscopic and microscopic observation of element movement. After the accident in Fukushima Daiichi nuclear power plant, we, the academic staff of Graduate School, have been studying agricultural effects of radioactive fallout; the main results are summarized in two books published by Springer. (author)

  5. Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations.

    Science.gov (United States)

    Pereira, E M; Silva, F M; Val, B H P; Pizolato Neto, A; Mauro, A O; Martins, C C; Unêda-Trevisoli, S H

    2017-04-13

    The objective of this study was to evaluate the relationship between agronomic traits and physiological traits of seeds in segregating soybean populations by canonical correlation analysis. Seven populations and two commercial cultivars in three generations were used: F 3 plants and F 4 seeds; F 4 plants and F 5 seeds, and F 4 seeds and plants. The following agronomic traits (group I) were evaluated: number of days to maturity, plant height at maturity, insertion height of first pod, number of pods, grain yield, and oil content. The physiological quality of seeds (group II) was evaluated using germination, accelerated aging, emergence, and emergence rate index tests. The results showed that agronomic traits and physiological traits of seeds are not independent. Intergroup associations were established by the first canonical pair for the generation of F 3 plants and F 4 seeds, especially between more productive plants with a larger pod number and high oil content and seeds with a high germination percentage and emergence rate. For the generation of F 4 plants and F 5 seeds, the first canonical pair indicated an association between reduced maturity cycle, seeds with a high emergence percentage and a high percentage of normal seedlings after accelerated aging. According to the second canonical pair, more productive and taller plants were associated with seed vigor. For the generation of F 4 seeds and plants, the associations established by the first canonical pair occurred between seed vigor and more productive plants with high oil content and reduced maturity cycle, and those established by the second canonical pair between seeds of high physiological quality and tall plants.

  6. Climatic chamber for plant physiology: a new project concept

    International Nuclear Information System (INIS)

    Materassi, A.; Fasano, G.; Arca, A.

    2005-01-01

    The two climatic chambers proposed here were designed and built for both general environmental physiology and specific studies on the effect of ultraviolet radiation on plants. The two chambers differ only for the fact that one of them, in addition to solar spectrum lamps, also has lamps which emit UV-B radiation. The environmental parameters taken into consideration are: luminous and UV-B radiation, air temperature and humidity, ozone and carbon dioxide concentration and air movement. Radiation can be continuously regulated, thus permitting simulation of twilight increasing and decreasing at the beginning and end of the photoperiod. Temperature cycles can be imposed between 5 and 40 deg C, while, for relative humidity, values can be imposed between 30% and 80%. Concentration of O3 can be maintained at values much lower than 0.1 ppm, the maximum value compatible with biological activity; CO2 concentration can be brought up to 3,000 ppm. Air movement inside the chambers is assured by ventilators and aspirators mounted on the devices which carry out regulation of the other environmental parameters. The controls of the various quantities are performed using medium-low cost commercial devices, while high level software manages them. In this way, good quality control of the environmental parameters is obtained with a much lower construction cost compared to other climatic chambers. Moreover, the use of commercial actuators permits easier and more immediate maintenance. Functionality tests, carried out both in transient and in steady state, have demonstrated a complete correspondence between project specifications and obtained results [it

  7. Physiological responses of Vallisneria spiraslis L. induced by ...

    African Journals Online (AJOL)

    A two-flume experiment with submerged plant Vallisneria spiraslis L. was conducted to investigate the effects of different hydraulic conditions on physiological responses when exposed to water polluted with copper (Cu) and nitrogen (N). Plants were divided into two groups and grown for 120 h in hydrodynamic and ...

  8. Influence of ambient and enhanced ultraviolet-B radiation on the plant growth and physiological properties in two contrasting populations of Hippophae rhamnoides

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, Y.; He, H.

    2008-01-01

    Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from low and high altitude regions were employed to investigate the effects of prevailing and enhanced ultraviolet-B (UV-B) radiation on plant growth and physiological properties under a UVB-enhanced/exclusion system. The experimental design included three UV-B regimes, including excluded (-UVB), near-ambient (NA) and enhanced UV-B (+UVB) radiation. Compared with the control (-UVB), NA caused the formation of smaller but thicker plant leaves in both sea buckthorn populations, paralleled with significant increments of carotenoids and UV-absorbing compounds as well as improved water economy. NA also induced more biomass partition from shoot to root, but CO2 assimilation rate (A), photosynthetic area and biomass accumulation were unaffected. The low-altitude population seemed sensitive to +uvB, as indicated by the decreases in total biomass, A and ascorbic acid content (Asa, an antioxidant) compared with NA. However, little +UVB effect occurred on the high-altitude population, and we suggest that the higher tolerance of this population could be associated with its specific morphological and physiological characteristics, such as small but thick leaves and high-level of Asa content, as well as its greater physiological modification in response to NA, e.g., increases in protective compounds (carotenoids and UV-absorbing compounds) and improvement in water economy, in comparison to the low-altitude population, which form an effective adaptation strategy to enhanced UV-B stress

  9. Genotypic variation in growth and physiological responses of ...

    African Journals Online (AJOL)

    Beyaz Fasulye, Boncuk Sırık, Kökez, Oturak and Sırık) was investigated in terms of morphological and physiological. Plants were grown in a plant growth chamber at 26/18°C (day/night) temperature with RH 70% and 450 m-2 s-1 light intensity.

  10. Physiological Assessment of Water Stress in Potato Using Spectral Information.

    Science.gov (United States)

    Romero, Angela P; Alarcón, Andrés; Valbuena, Raúl I; Galeano, Carlos H

    2017-01-01

    Water stress in potato ( Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H 2 Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs.

  11. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  12. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants.

    Science.gov (United States)

    Tiwari, Supriya

    2017-06-01

    Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O 3 ), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O 3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O 3 , and technical O 3 -induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O 3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.

  13. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  14. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  15. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Directory of Open Access Journals (Sweden)

    Lei Fu

    Full Text Available Differences in copper (Cu absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type and Elsholtzia haichowensis (Cu-enrichment type, were investigated in the present study. The results indicated the following: (1 After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2 An analysis of the endogenous abscisic acid (ABA variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3 The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4 The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  16. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea

    Directory of Open Access Journals (Sweden)

    Young Kee Lee

    2013-12-01

    Full Text Available Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang and tomato (cv. Seogwang seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR. All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27% and biovar 4 (73%. Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR, the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

  17. Effect of Planting Date and Biological and Chemical Fertilizers on Phenology and Physiological Indices of Peanuts

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2017-06-01

    Full Text Available Introduction Peanut (Arachis hypogaea L. is an annual herbaceous plant in Fabaceae which grown in tropical to temperate regions worldwide for extracting its seed oil and nut consumption. Select the optimum planting date is one of the most important agricultural techniques that comply with the seed yield is maximized . For instance, delay planting date can reduce the number of fertile nodes and the number of pods per plant. The delay in planting date reduces total dry matter (TDM, leaf area index (LAI, crop growth rate (CGR and yield in bean (Phaseolus vulgaris L.. Daneshian et al., (2008 reported that the delay in planting date reduced sunflower (Helianthus annuus yield due to high temperatures in early growth which shortened flowering time and reduced solar radiation. On the other hand, due to increase importance of environmental issues has been attending biofertilizers to replace chemical fertilizers. Biofertilizers has formed by beneficial bacteria and fungi that each of them are produced for a specific purpose, such as nitrogen fixation, release of phosphate, potassium and iron ions of insoluble compound. The use of nitrogen fertilizer with slow-releasing ability stimulated shoot growth in soybean (Glycine max and be created more LAI in the reproductive process, particularly during grain filling stage and finally increased seed yield . Therefore, this study was conducted in order to evaluate the interaction of biological and chemical fertilizers in the purpose of achieving sustainable agriculture with emphasis of the effects of various planting dates on physiological parameters and growth of peanut in Hamadan. Materials and Methods In order to investigate the effects of planting date on important physiological indices of peanuts (Arachis hypogaea L. under the influence of biological and chemical fertilizers. A field experiment was conducted in the research farm of Bu-Ali Sina University, Hamedan during 2013 growing season. This study was

  18. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    Science.gov (United States)

    Littlejohn, George R; Mansfield, Jessica C; Christmas, Jacqueline T; Witterick, Eleanor; Fricker, Mark D; Grant, Murray R; Smirnoff, Nicholas; Everson, Richard M; Moger, Julian; Love, John

    2014-01-01

    Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the "negative space" within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  19. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    Directory of Open Access Journals (Sweden)

    George R Littlejohn

    2014-04-01

    Full Text Available Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximise the information gained from advances in fluorescent protein labelling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC, perfluorodecalin (PFD enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the perfluorocarbons PFD, and perfluoroperhydrophenanthrene (PP11 for in vivo plant leaf imaging using 4 advanced modes of microscopy: laser scanning confocal microscopy (LSCM, Two-photon fluorescence (TPF microscopy, second harmonic generation (SHG microscopy and stimulated Raman scattering (SRS microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image perfluorocarbons directly in the mesophyll and thereby easily delimit the negative space within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  20. Dewpoint - unstudied factor in ecology, physiology and plant introduction

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey

    2015-12-01

    Study of the mechanism of the condensation of atmospheric moisture on the surface of the plant and allow for modification of plant breeding with pronounced effect and reduce the temperature dependence on the least insolation. Such plants could be beneficial in reducing costs for irrigation of crops, and in the fight against desertification. The study of the mechanism of the phenomenon, allow for modification and selection of plants with the most pronounced effect of lowering the temperature and the lowest dependent on insolation. The plants, which are more efficient moisture capacitors can bring huge benefits in reducing costs for irrigation of crops, and in the fight against desertification.

  1. Intelligent Growth Automaton of Virtual Plant Based on Physiological Engine

    Science.gov (United States)

    Zhu, Qingsheng; Guo, Mingwei; Qu, Hongchun; Deng, Qingqing

    In this paper, a novel intelligent growth automaton of virtual plant is proposed. Initially, this intelligent growth automaton analyzes the branching pattern which is controlled by genes and then builds plant; moreover, it stores the information of plant growth, provides the interface between virtual plant and environment, and controls the growth and development of plant on the basis of environment and the function of plant organs. This intelligent growth automaton can simulate that the plant growth is controlled by genetic information system, and the information of environment and the function of plant organs. The experimental results show that the intelligent growth automaton can simulate the growth of plant conveniently and vividly.

  2. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  3. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  4. The influence of low frequency magnetic field upon cultivable plant physiology

    International Nuclear Information System (INIS)

    Rochalska, M.

    2008-01-01

    The 16 Hz frequency and 5 mT magnetic flux density as well as alternating magnetic field influence the field germination physiological yield-forming features and the yield of sugar have been investigated. The profitable influence of the investigated factor at physiological yield-forming features, causing an increase in sugar beet root and leaf yield, was shown. The beneficial influence on the yield is especially clear in unfavourable weather conditions. (author)

  5. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of Faba bean plant

    International Nuclear Information System (INIS)

    Abdelhamid, Magdi T; Sadak, Mervat Sh; Schmidhalter, Urs; El Saady, Abdel Kareem M.

    2013-01-01

    solutes concentrations in seeds of salinity treated plants. Nicotinamide not only neutralized the effect of salinity stress but resulted in a significant improvement in physiological and biochemical parameters as well as the concentrations of soluble sugars, proline, amino acids, and total N and other mineral contents.

  6. Growth and physiological responses of some Capsicum frutescens varieties to copper stress

    Science.gov (United States)

    Jadid, Nurul; Maziyah, Rizka; Nurcahyani, Desy Dwi; Mubarokah, Nilna Rizqiyah

    2017-06-01

    Copper (Cu) is an essential micronutrient participating in various physiological processes. However, excessive uptake of this micronutrient could potentially affect plant growth and development as well as plant productivity. In this present work, growth and physiological responses of some Capsicum frustescens varieties to Cu stress were determined. Three C. frutescens varieties used in this work were var. Bara, CF 291, and Genie. In addition, these varieties were treated with different concentration of Cu (0, 30, 70, and 120 ppm). The growth and physiological responses measured in this work included plant height, root length, malondialdehyde (MDA), and chlorophyll. The result showed that all varieties tested relatively displayed plant growth reduction including plant height and root length. Likewise, an increase of MDA level, a major bioindicator for oxidative damage was also found in all varieties following exposure to elevated Cu concentration. Finally, the chlorophyll content was also affected indicated by a decreased amount of chlorophyll, especially in var. CF291. The overall results demonstrated that elevated Cu concentration might decrease C. frutescens productivity where among the three varieties tested, var CF 291 seemed to be the most sensitive varieties to Cu stress.

  7. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    Directory of Open Access Journals (Sweden)

    Magdalena Opalińska

    2017-11-01

    Full Text Available Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4 and Pam18-2 and known (Tim17-2 substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  8. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  9. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  10. Growth, physiology and flowering of chrysanthemum var. Punch as ...

    African Journals Online (AJOL)

    Growth retardants have been proven to prevent excessive stem elongation and reduce internode length in plants by inhibiting the effect of cell division and enlargement of cell in plants. This study was aimed to evaluate the effect of concentrations of daminozide and maleic hydrazide on growth, physiology and flowering of ...

  11. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  12. Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order

    Science.gov (United States)

    Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.

    2017-12-01

    River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This

  13. ROS and RNS in plant physiology: an overview.

    Science.gov (United States)

    Del Río, Luis A

    2015-05-01

    The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine

  14. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  15. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    Science.gov (United States)

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  16. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  17. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    Science.gov (United States)

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  18. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants.

    Science.gov (United States)

    Wang, Huanhua; Kou, Xiaoming; Pei, Zhiguo; Xiao, John Q; Shan, Xiaoquan; Xing, Baoshan

    2011-03-01

    To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe(3)O(4)) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe(3)O(4) NPs often induced more oxidative stress than Fe(3)O(4) bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe(3)O(4) NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l(-1) Fe(3)O(4) NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe(3)O(4) NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe(3)O(4) NPs was not significantly increased compared to that in the control shoots.

  19. Physiological and psychological effects of gardening activity in older adults.

    Science.gov (United States)

    Hassan, Ahmad; Qibing, Chen; Tao, Jiang

    2018-04-06

    Gardening has long been one of most enjoyable pastimes among older adults. Whether gardening activities contribute to the well-being of older adults is a major question. Therefore, the aim of the present study was to clarify the psychophysiological relaxing effects of gardening activities on older adults living in modern institutional care. The study participants were 40 older women aged 79.5 ± 8.09 years (mean ± SD). A cross-over study design was used to investigate the physiological and psychological responses to environments with and without plants. Physiological evaluation was carried out using blood pressure and electroencephalography, and psychological evaluation was carried out using the State-Trait Anxiety Inventory and Semantic Differential method. Blood pressure was significantly lower, and changes in brainwaves were observed. Psychological responses showed that participants were more "comfortable and relaxed" after the plant task than after the control task. In addition, total anxiety levels were significantly lower after carrying out the plant task than after the control task. Our research suggests that gardening activities might enhance physiological and psychological relaxation in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  20. Diagnosing plant problems

    Science.gov (United States)

    Cheryl A. Smith

    2008-01-01

    Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...

  1. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  2. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  3. Physiological response of selected eragrostis species to water ...

    African Journals Online (AJOL)

    Physiological response of selected eragrostis species to water-deficit stress. ... performing crop variety of Eragrostis tef under this stress, the responses of two varieties, ... Comparative study of closely related plant species might be a better ...

  4. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  5. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.

    Science.gov (United States)

    Sosan, Arifa; Svistunenko, Dimitri; Straltsova, Darya; Tsiurkina, Katsiaryna; Smolich, Igor; Lawson, Tracy; Subramaniam, Sunitha; Golovko, Vladimir; Anderson, David; Sokolik, Anatoliy; Colbeck, Ian; Demidchik, Vadim

    2016-01-01

    Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  7. Evaluation of physiological screening techniques for drought ...

    African Journals Online (AJOL)

    This paper summarizes the results of a project aimed to evaluate the use of physiological traits (such as canopy temperature and chlorophyll content) in determining drought tolerance of durum wheat genotypes under a variety of environmental conditions. Six durum wheat genotypes were planted in rainfed and ...

  8. Application of real-time PCR to postharvest physiology – DNA isolation

    Science.gov (United States)

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  9. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  10. The induction mutation effects of "6"0Co gamma radiation on physiological growth of tomato

    International Nuclear Information System (INIS)

    Gusti Ngurah Sutapa; I Gde Antha Kasmawan

    2016-01-01

    Almost all types of cuisine in Indonesia are using tomatoes as the base material of manufacture. The nutritional value contained in tomatoes is also quite high, because there is a number of vitamin content required by the human body. In addition, the tomatoes in plants featured national horticultural commodity and priority on a number of provinces in Indonesia. So many benefits of tomatoes indicates that the productivity of tomatoes should be improved. One improvement in terms of quality can be done by means of mutation induction with gamma radiation of Co-60. Induction of mutations are genetic changes caused by human effort, one of them is by using radioactive materials. Gamma rays of Co-60 from the IRPASENA facility was exposed to tomato seeds at doses of 50, 100, 150, 200 and 250 Gy. And then measurements were conducted on the physiological growth of leaf width, plant height, number of fruit and wet weight of tomatoes from week 1 until harvest. The results showed a growth curve of tomato is in accordance with sigmoidal plant physiological growth curve. Optimal physiological growth of tomato plants was obtained at dose of gamma radiation of 100 Gy. At this optimal dose physiological growth of tomato plants is the best (superior) than in doses below and above 100 Gy and control. (author)

  11. Air and the origin of the experimental plant physiology.

    Science.gov (United States)

    Pennazio, Sergio

    2005-01-01

    It is well known that oxygen and carbon dioxide are two chemicals which enter the plant metabolism as nutrients. The bases of this nowadays obvious statement were placed in the 18th century by means of the works of ingenious naturalists such as Robert Boyle, Stephen Hales, Joseph Priestley, Jam Ingenhousz, Lazzaro Spallanzani and Theodore De Saussure. Till the end of the 17th century, the atmospheric air was considered as an ineffable spirit, the function of which was of physical nature. Boyle was the first naturalist to admit the possibility that respiration were an exchange of vapours occurring in the blood. Stephen Hales realised that air could be fixed by plants under the influence of solar light. Priestley showed that plants could regenerate the bad air making it breathable. Ingenhousz demonstrated that the green parts of plants performed the complete purification of air only under the influence of the light. Spallanzani discovered that plants respire and guessed that the good air (oxygen) originated from the fixed air (carbon dioxide). Finally, Theodore De Saussure showed that plants were able to adsorb carbon dioxide and to release oxygen in a proportional air. All these discoveries benefited of the results coming from investigations of scholars of the so-called "pneumatic chemistry" (Boyle himself, George Ernst Stahl, Joseph Black, Priestley himself, and many more others. But among all the eminent scientists above mentioned stands out the genius of Antoine Laurent Lavoisier, who revolutionised the chemistry of the 18th century ferrying it towards the modern chemistry.

  12. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  13. Aseptic Plant Culture System (APCS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research, and in vegetative propagation of many plant species. The development...

  14. Effect of polyethylene coated calcium carbide on physiology, photosynthesis, growth and yield of sweet pepper

    International Nuclear Information System (INIS)

    Ahmed, W.; Yaseen, M.; Arshad, M.; Shahid, M.

    2014-01-01

    Polyethylene coated calcium carbide (PCC) is a potent and continuous slowly releasing source of acetylene and ethylene. It potentially improves plant growth by affecting physiology of plant. A pot study was conducted to investigate comparative effects of different rates of PCC on growth and yield attributes of sweet pepper. PCC performed better when applied with soil applied fertilizers. Results revealed that hormonal properties of calcium carbide significantly influenced physiological nutrient use efficiency and vegetative growth by affecting photosynthetic and physiological parameters of sweet pepper. Application of 20 mg PCC kg/sup -1/ soil with soil applied recommended dose of NPK fertilizers significantly improved the net photosynthetic rate by 32%, stomatal conductance by 11%, transpiration rate by 14%, carboxylation efficiency by 47%, physiological water use efficiency by 13%, physiological nitrogen use efficiency by 29% over the control treatment. This improvement in physiological attributes resulted in increase in leaf area by 20%, leaf area index by 78%, total plant dry weight by 35%, flower and fruits by 29% and fruit yield by 24% compared to the treatment of alone recommended dose of NPK fertilizers. Present study suggests that application of PCC particularly at the rate of 20mg PCC kg/sup -1/ soil plus recommended dose of NPK fertilizers improved about 25% sweet pepper production compared to its production in the alone recommended fertilizer treatment. (author)

  15. Aseptic Plant Culture System (APCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aseptic plant culture plays a significant role in biotechnology and plant physiology research and in vegetative propagation of many plant species. The development of...

  16. Physiological roles of plastid terminal oxidase in plant stress

    Indian Academy of Sciences (India)

    The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper ...

  17. New challenges in plant aquaporin biotechnology.

    Science.gov (United States)

    Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2014-03-01

    Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The physiological effect of cobalt on watermelon cultivation

    International Nuclear Information System (INIS)

    Yao Naihua; Jin Yafang; Sun Yaochen; Huang Yiming

    1993-01-01

    Cobalt has essential physiological action on both animals and plants. For the latter it can raise plant's nitrogen-fixing ability and saccharine content. Spray of cobalt mixed with other nutritive elements can improve the germinatit of seeds and the yield of fruit. For specifying the nutritive function of cobalt upon watermelon, isotope 60 Co was mixed into a complex leaf nutritive aqua and the regularity of transferring and absorbing cobalt in the watermelon's body was investigated

  19. Effect of terminal drought stress on morpho-physiological traits of wheat genotypes

    International Nuclear Information System (INIS)

    Baloch, M.J.; Chandio, I.A.

    2016-01-01

    Development of wheat varieties with low moisture requirements and their ability to withstand moisture stress may cope-up well with the on-coming peril of drought conditions. Ten wheat genotypes including two new strains, PBGST-3, Hero, Bhittai, Marvi, Inqlab, Sarsabz, Abadgar, Kiran, Khirman and PBGST-4 were sown in split plot design with factorial arrangement in four replications at Experimental Field, Department of Plant Breeding and Genetics, Sindh Agricutlure University, Pakistan during 2012-13. The results revealed that water stress caused significant reductions in all morpho-physiological traits. The genotypes differed significantly for all the yield and physiological traits. The interaction of treatments * genotypes were also significant for all the traits except plant height, productive tillers/plant, grains/spike and harvest index, were non-significant which indicated that cultivars responded variably over the stress treatments suggesting that breeders can select the promising genotypes for both stress and non-stress environments. Among the genotypes evaluated Bhittai, Kiran-95, PBGST-3 and Sarsabz showed good performance as minimum reductions occurred under terminal stress conditions for all the traits studied. Hence, above mentioned genotypes were considered as drought tolerant group. The high positive correlations of physiological traits like chlorophyll content and relative water content with almost all yield traits indicated that these physiological traits could serve as reliable criteria for breeding drought tolerance in wheat. The negative correlations of electrolyte leakage with several important yield traits indicated that though this physiological trait has adverse effect on yield attributes, yet it could reliably be used to distinguish between drought tolerant and susceptible wheat genotypes. (author)

  20. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  1. The Effect of Drought Stress and Plant Density on Biochemical and Physiological Characteristics of Two Garlic (Allium sativum L. Ecotypes

    Directory of Open Access Journals (Sweden)

    Sh Akbari

    2017-03-01

    Full Text Available Introduction Drought stress is the most important growth limiting factor for crop production. Sugar accumulation under drought stress strengthens and stabilizes cell membranes and maintains the water absorption and turgid property. Under stress conditions, proline will also maintain the turgor pressure and decreased the damages caused to plant membrane. Although proline concentrations may have undesirable effects on plant growth, because of deflecting photosynthetic resources to the processes that are not involved in plant growth. Chloroplasts and its pigments are also affected by drought stress. Density is one of the factors that has a significant impact on plant growth. Garlic is one of the edible plants which has generated considerable interest throughout human history because of its pharmaceutical properties. This study aimed to determine the effects of drought stress and plant density on some biochemical and physiological treats of two garlic ecotypes and determining the more resistant ecotype. Materials and Methods The study was carried out in 2011-2012 in a farm land at the south east of Semnan city. The experimental layout was a split-plot factorial with a randomized complete block design in three replications. The treatments were comprised of three factors: irrigation regimes (60%, 80% and 100% of estimated crop evapotranspiration (ETC that were assigned as the main plot and the factorial combination of 3 levels of planting density (30, 40 and 50 plants. m-2 and two ecotypes (Tabas and Toroud made up the sub-plots. The water requirement was calculated based on FAO-56 crop water requirements instruction. FAO-56 Penman-Monteith equation was used to calculate evapotranspiration. To calculate the content of soluble sugar, proline and leaves pigment, the samples were collected in a random way from the youngest fully expended leaves one month before the final harvest. Relative water content was estimated by measuring dry weight, fresh weight

  2. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    Science.gov (United States)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  3. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  4. Recognition of Orobanche cumana Below-Ground Parasitism Through Physiological and Hyper Spectral Measurements in Sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Cochavi, Amnon; Rapaport, Tal; Gendler, Tania; Karnieli, Arnon; Eizenberg, Hanan; Rachmilevitch, Shimon; Ephrath, Jhonathan E

    2017-01-01

    Broomrape ( Orobanche and Phelipanche spp.) parasitism is a severe problem in many crops worldwide, including in the Mediterranean basin. Most of the damage occurs during the sub-soil developmental stage of the parasite, by the time the parasite emerges from the ground, damage to the crop has already been done. One feasible method for sensing early, below-ground parasitism is through physiological measurements, which provide preliminary indications of slight changes in plant vitality and productivity. However, a complete physiological field survey is slow, costly and requires skilled manpower. In recent decades, visible to-shortwave infrared (VIS-SWIR) hyperspectral tools have exhibited great potential for faster, cheaper, simpler and non-destructive tracking of physiological changes. The advantage of VIS-SWIR is even greater when narrow-band signatures are analyzed with an advanced statistical technique, like a partial least squares regression (PLS-R). The technique can pinpoint the most physiologically sensitive wavebands across an entire spectrum, even in the presence of high levels of noise and collinearity. The current study evaluated a method for early detection of Orobanche cumana parasitism in sunflower that combines plant physiology, hyperspectral readings and PLS-R. Seeds of susceptible and resistant O. cumana sunflower varieties were planted in infested (15 mg kg -1 seeds) and non-infested soil. The plants were examined weekly to detect any physiological or structural changes; the examinations were accompanied by hyperspectral readings. During the early stage of the parasitism, significant differences between infected and non-infected sunflower plants were found in the reflectance of near and shortwave infrared areas. Physiological measurements revealed no differences between treatments until O. cumana inflorescences emerged. However, levels of several macro- and microelements tended to decrease during the early stage of O. cumana parasitism. Analysis of

  5. Recognition of Orobanche cumana Below-Ground Parasitism Through Physiological and Hyper Spectral Measurements in Sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Amnon Cochavi

    2017-06-01

    Full Text Available Broomrape (Orobanche and Phelipanche spp. parasitism is a severe problem in many crops worldwide, including in the Mediterranean basin. Most of the damage occurs during the sub-soil developmental stage of the parasite, by the time the parasite emerges from the ground, damage to the crop has already been done. One feasible method for sensing early, below-ground parasitism is through physiological measurements, which provide preliminary indications of slight changes in plant vitality and productivity. However, a complete physiological field survey is slow, costly and requires skilled manpower. In recent decades, visible to-shortwave infrared (VIS-SWIR hyperspectral tools have exhibited great potential for faster, cheaper, simpler and non-destructive tracking of physiological changes. The advantage of VIS-SWIR is even greater when narrow-band signatures are analyzed with an advanced statistical technique, like a partial least squares regression (PLS-R. The technique can pinpoint the most physiologically sensitive wavebands across an entire spectrum, even in the presence of high levels of noise and collinearity. The current study evaluated a method for early detection of Orobanche cumana parasitism in sunflower that combines plant physiology, hyperspectral readings and PLS-R. Seeds of susceptible and resistant O. cumana sunflower varieties were planted in infested (15 mg kg-1 seeds and non-infested soil. The plants were examined weekly to detect any physiological or structural changes; the examinations were accompanied by hyperspectral readings. During the early stage of the parasitism, significant differences between infected and non-infected sunflower plants were found in the reflectance of near and shortwave infrared areas. Physiological measurements revealed no differences between treatments until O. cumana inflorescences emerged. However, levels of several macro- and microelements tended to decrease during the early stage of O. cumana

  6. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  7. Fundaments of plant cybernetics.

    Science.gov (United States)

    Zucconi, F

    2001-01-01

    A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.

  8. PHYSIOLOGICAL AND MEDICAL EFFECTS OF PLANT FLAVONOID QUERCETIN

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2013-02-01

    Full Text Available Flavonoid compounds in vegetable-based diets bring a significant contribution to the role of fruits and vegetables as health-promoting foods. This review summarizes the available data concerning physiological and therapeutical effect of plan flavonoid quercetin. Quercetin has a number of beneficial influence on health because of their antioxidant, anti-inflammatory, anti-proliferative, anti-carcinogenic and anti-diabetes properties. Effects of quercetin have been explained by its interference with cellular enzymes, receptors, transporters and signal transduction systems. Despite the available data reviewed here, the targets, effects, absorption, metabolism and areas of practical application of quercetin are still poorly understood, therefore further studies in this areas are required.

  9. The effects of different nickel concentrations on some morpho-physiological characteristics of parsley (Petroselinum crispum

    Directory of Open Access Journals (Sweden)

    mitra khatib

    2009-06-01

    Full Text Available Nickel as a heavy metal is considered a fatal and toxic element for humans, animals and plants. However, some plants are known as hyper accumulator for nickel and sometimes seem to be useful for plant growth. Thus, investigation on the effect of nickel on plants' growth is an issue of importance. In this paper, we have studied the effect of different nickel concentrations on parsley growth and morph-physiological characteristics and its effect on absorption of some macro elements in this plant. Seeds of parsley were germinated in germinator and seedlings were transferred to hydroponics culture. The seedlings were grown in Hogland solution with different nickel concentrations (in form of nickel nitrate of: 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 4 ppm. A completely randomized design with 8 treatments and 7 replications per treatment was used. Twelve weeks after treatments, morph-physiological characteristics including SPAD number, plant biomass, length of shoot and root, leaf area, leaf number and stomatal resistance were measured. The amount of absorbed nickel in plant foliages and roots of different treatments were also measured. The results revealed that the application of different nickel concentrations were decreased SPAD number, plant biomass, leaf area and leaf number, but the stomatal resistance were increased. Increase of nickel concentration resulted increasing Ni concentrations of plant foliages and roots. Nickel with 0.75 ppm concentration or higher imposed a toxic effect on parsley as general wilting and significant reduction in most morph-physiological characteristics. Keywords: Hydroponics culture, parsley, Petroselinum crispum, Nickel.

  10. Plant growth regulators and ascorbic acid effects on physiological quality of wheat seedlings obtained from deteriorated seeds

    International Nuclear Information System (INIS)

    Moori, S.; Eisv, H.R.

    2017-01-01

    This study attempted to examine the effect of seed priming using plant growth regulators and vitamin C on the physiological traits of non-aged and aged seeds of wheat and their obtained seedlings. Accelerated aging (AA) method (40 degree C, RH=100% for 72h) was used for aging seeds. The seeds were pre-treated by gibberellin (GA), salicylic acid (SA), brassinosteroid (BR), and ascorbic acid (AS). Some seed traits such as germination and electric conductivity (EC) and seedling traits such as malondialdehyde (MDA) content, activity of some antioxidant enzymes, soluble protein content (SP), soluble sugar (SS), and proline were measured seven days after germination. The results showed that accelerated aging of seeds reduces the germination percentage and speed, increases soluble sugar, and reduces soluble protein, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) in the seedling. Pre-treatment of the aged seed by GA had the maximum positive impact on seed germination and seedling growth. Priming improved germination indices, quality of seedling, and seedling resistance against the oxidative stress caused by AA. It also improved cell membrane integrity and thus reduced seeds’ EC. Priming increased the activity of CAT, POD and SOD enzymes in both aged and non-aged seeds. When the deteriorated seeds were primed, proline and SS contents of the seedling increased significantly, but SP and MDA decreased. In general, pre-treatment of the non-aged and aged seeds by gibberellin improved the physiological quality of the seed and seedling. (author)

  11. Salt-Stress effects on crop plants: Role of proline, glycinebetaine and calcium at whole-plant and cellular levels

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Gorham, J.; Siddiqui, S.Z.; Jamil, M.; Arshad, M.

    2002-01-01

    Salinity affects the physiological and biochemical processes of the plants in a variety of ways. In this manuscript, variability in plant, with respect to salinity-tolerance and morphological adaptations in plants for salinity-tolerance, have been discussed. Salinity effects on growth of plants, cell membranes, proteins, sugars, nucleic acids, starch, cell sap, transpiration, stomatal conductance, pollen viability, Co/sub 2/ assimilation, chlorophyll, photosynthesis and enzymes have been reviewed. Proline and glycinebetaine accumulation, localisation in the cell and their physiological role under salt-stress has been presented. Cellular mechanism of salt-tolerance and role of calcium in salt-stress have been reviewed. The possible approaches to deal with all types of stresses have been suggested. (author)

  12. Field Guide to Plant Model Systems

    OpenAIRE

    Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.

    2016-01-01

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photo...

  13. Dormancy in Plant Seeds

    NARCIS (Netherlands)

    Hilhorst, H.W.M.; Finch-Savage, W.E.; Buitink, J.; Bolingue, W.; Leubner-Metzger, G.

    2010-01-01

    Seed dormancy has been studied intensely over the past decades and, at present, knowledge of this plant trait is at the forefront of plant biology. The main model species is Arabidopsis thaliana, an annual weed, possessing nondeep physiological dormancy. This overview presents the state-of-the-art

  14. Physiological and molecular implications of plant polyamine metabolism during biotic interactions

    Directory of Open Access Journals (Sweden)

    Juan Francisco Jiménez Bremont

    2014-03-01

    Full Text Available During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrated the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.

  15. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  16. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  17. Growth, physiology and yield responses of Amaranthus cruentus ...

    African Journals Online (AJOL)

    Amaranthus cruentus, Corchorus olitorius and Vigna unguiculata are traditional leafy vegetables with potential to improve nutritional security of vulnerable people. The promotion of these crops is partly hindered by the lack of agronomic information. The effect of plant spacing on growth, physiology and yield of these three ...

  18. Water use, productivity and interactions among desert plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  19. Possible application of labelled compounds in plant physiology, biochemistry and protection

    International Nuclear Information System (INIS)

    Hanker, I.

    1981-01-01

    Compounds labelled with 14 C, 32 P, 35 S, 54 Mn, 45 Ca, 65 Zn and 86 Rb were used for the study of side effects of insecticides, fungicides, herbicides and other substances used for the treatment of crop plants, of the effects of some plant diseases on biochemical processes in plants, and of the reasons of plant resistance to diseases, i.e., of factors responsible for this resistance. (author)

  20. Cis- and trans-zeatin differentially modulate plant immunity

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Edelsbrunner, K.; Pfeifhofer, H.; van der Graaff, E.; Roitsch, Thomas

    2013-01-01

    Roč. 8, č. 7 (2013), "e24798.1"-"e24798.4" ISSN 1559-2324 Institutional support: RVO:67179843 Keywords : Pseudomonas syringae * cytokinin * phytohormone * plant defense * plant immunity * plant pathogen interaction * plant resistance * tobacco * zeatin Subject RIV: ED - Physiology

  1. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  2. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  3. Possible application of labelled compounds in plant physiology, biochemistry and protection

    Energy Technology Data Exchange (ETDEWEB)

    Hanker, I. (Vyzkumne Ustavy Rostlinne Vyroby, Prague (Czechoslovakia). Ustav Ochrany Rostlin)

    1981-06-01

    Compounds labelled with /sup 14/C, /sup 32/P, /sup 35/S, /sup 54/Mn, /sup 45/Ca, /sup 65/Zn and /sup 86/Rb were used for the study of side effects of insecticides, fungicides, herbicides and other substances used for the treatment of crop plants, of the effects of some plant diseases on biochemical processes in plants, and of the reasons of plant resistance to diseases, i.e., of factors responsible for this resistance.

  4. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  5. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    Science.gov (United States)

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  7. Assessment of plant biomass and nitrogen nutrition with plant height in early-to mid-season corn.

    Science.gov (United States)

    Yin, Xinhua; Hayes, Robert M; McClure, M Angela; Savoy, Hubert J

    2012-10-01

    The physiological basis for using non-destructive high-resolution measurements of plant height through plant height sensing to guide variable-rate nitrogen (N) applications on corn (Zea mays L.) during early (six-leaf growth stage, V6) to mid (V12) season is largely unknown. This study was conducted to assess the relationships of plant biomass and leaf N with plant height in early- to mid-season corn under six different N rate treatments. Corn plant biomass was significantly and positively related to plant height under an exponential model when both were measured at V6. This relationship explained 62-78% of the variations in corn biomass production. Leaf N concentration was, in general, significantly and positively related to plant height when both were measured at V6, V8, V10 and V12. This relationship became stronger as the growing season progressed from V6 to V12. The relationship of leaf N with plant height in early- to mid-season corn was affected by initial soil N fertility and abnormal weather conditions. The relationship of leaf N concentration with plant height may provide a physiological basis for using plant height sensing to guide variable-rate N applications on corn. Copyright © 2012 Society of Chemical Industry.

  8. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  9. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these

  10. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Ignacio I.; Espadas-Gil, Francisco; Talavera-May, Carlos; Fuentes, Gabriela; Santamaría, Jorge M., E-mail: jorgesm@cicy.mx

    2014-10-15

    Highlights: • We document the capacity of an aquatic fern to hyper-accumulate Ni. • Effects of high Ni concentrations uptake on plant performance is documented. • High concentration of Ni in tissues damage photosynthesis. • Damage is related to carboxylation mechanisms than to electron transfer efficiency. • S. minima is a good candidate for remediation of water bodies contaminated with Ni. - Abstract: An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g{sup −1} (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12 h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 μM Ni (1.5 mg g{sup −1} internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent.

  11. Study of Plant Growth Promoting Rhizobacteria (PGPR and Drought on Physiological Traits and Ultimate Yield of Cultivars of Oilseed Rape (Brassica spp. L.

    Directory of Open Access Journals (Sweden)

    pooya arvin

    2018-02-01

    Full Text Available Introduction Oilseed rape (Brassica spp L. is one of the valuable oilseed crops which has been attracting attention in recent years. Iran is located in a semi-arid region, and water shortage has caused problems, namely providing drinking water as much as water supply for crop production. Not only does Plant Growth Promoting Rhizobacteria (PGPR make plant growth stimulating hormones like Auxin and Gibberellin but also can ease stress conditions by producing ABA. Consequently, considering the current water shortage crisis in Iran, we took three main criteria into account: the roles of PGPRs in increasing resistance to abiotic stress, relief of drought effects, and the importance of cultivation of oilseed rape. The present research has been compiled to study drought and some Plant Growth Promoting Rhizobacteria (PGPR on Physiological Traits and Ultimate Yield of Cultivars of Oilseed Rape. Materials and Methods The current study was done on the basis of two simultaneous experiments (under stress and non-stress experiments during 2010- 2011 growing season at Agriculture and Natural Resources Research Station of Torogh, Mashhad is situated in East-North of Iran (36° N, 59° E, 1003 ASL . Two research sites (under stress and no-stress fields were selected beside each other. This region has a semi-arid climate (annual rainfall 286 mm. The experimental design was factorial based on randomized completely block design with three replications in each experiment. The first treatment was Plant Growth Promoting Rizobactria, including B0: no inoculation (control, B1: co-inoculation (Pseudomonas flourescens 169+P. putida 108, B2: inoculation with P. flourescens 169 and B3: inoculation with P. putida 108. Second treatment was cultivar, including Hayola401 and Hayola330 cultivars belong to Brassica napus, Parkland and Goldrush cultivars belong to B. rapa and BP18 and landrace cultivars belong to B.juncea .Greenness index, plant height, relative water content

  12. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  13. Plant Science View on Biohybrid Development

    Directory of Open Access Journals (Sweden)

    Tomasz Skrzypczak

    2017-08-01

    Full Text Available Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot–plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant–robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant–robot biohybrids.

  14. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  16. Student reasoning while investigating plant material

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2008-11-01

    Full Text Available In this project, 10-12 year old students in three classes, investigated plant material to learn more about plants and photosynthesis. The research study was conducted to reveal the students’ scientific reasoning during their work. The eleven different tasks helped students investigate plant anatomy, plant physiology, and the gases involved in photosynthesis and respiration. The study was carried out in three ordinary classrooms. The collected data consisted of audio-taped discussions, students’ notebooks, and field notes. Students’ discussions and written work, during the different plant tasks, were analysed to see how the students’ learning and understanding processes developed. The analysis is descriptive and uses categories from a modified general typology of student’s epistemological reasoning. The study shows students’ level of interest in doing the tasks, their struggle with new words and concepts, and how they develop their knowledge about plant physiology. The study confirms thatstudents, in this age group, develop understanding and show an interest in complicated processes in natural science, e.g. photosynthesis.

  17. water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (trachyspermum ammi l.)

    International Nuclear Information System (INIS)

    Azhar, N.; Hussain, B.; Abbasi, K.Y.

    2011-01-01

    Biotic and abiotic stresses exert a considerable influence on the production of several secondary metabolites in plants; water stress is one of the most important abiotic stress factors. This study was carried out to elucidate the effect of drought stress on growth, physiology and secondary metabolite production in desi ajwain (Trachyspermum ammi L.). Plants were grown in pots and three drought levels (100%, 80% and 60%) of field capacity were created. The experiment was laid out in complete randomized design (CRD) with three replicates. Data on growth, physiological and biochemical parameters were recorded and analyzed statistically. Physiological parameters like transpiration rate and stomatal conductance decreased concentration increased. The photosynthetic rate showed significantly with increasing water stress levels, but internal CO/sub 2/ non-significant reduction from 100% field capacity to 80% field capacity but increased at 60% field capacity. Growth parameters including plant height, herb fresh and dry weights were reduced significantly with increasing stress levels, while total phenolic contents and chlorophyll contents increased under water stress conditions. These results suggest that cultivation of medicinal plants like desi ajwain under drought stress could enhance the production of secondary metabolites. (author)

  18. Biofertilizer: a novel formulation for improving wheat growth, physiology and yield

    International Nuclear Information System (INIS)

    Hassan, T.; Bano, A.

    2016-01-01

    Bacillus cereus and Pseudomonas moraviensis strains were inoculated singly as well as in consortium with two different carriers i.e., maize straws and sugarcane husk in the formulation of biofertilizer. Plant growth promoting rhizobacteria (PGPR) strains used in biofertilizer were phosphate solubilizer and exhibited strong antifungal activities. Both PGPR used in formulation was maintained 15-16.5 * 10/sup 8/ cfu g-1 in carrier material after 40d. The field experiment was conducted at Quaid-e-Azam University Islamabad on wheat for two consecutive years (2011-2012) simultaneously in pots and field. Plants sampling for growth and physiological parameters was made after 57d of sowing and at maturity for yield parameters. Single inoculation of Pseudomonas moraviensis and Bacillus cereus with maize straw and sugarcane husk increased plant height and fresh weight by 18-30% and protein, proline, sugar contents and antioxidant activities by 25-40%. There were 20% increases in spike length, seeds/spike and seed weight in single inoculation. Co-inoculation of PGPR further increased plant growth, physiology and yield by 10-15% over single inoculation with carriers. PGPR consortium with sugarcane husk and maize straw (biofertilizer formulation) increased 20-30% plant growth chlorophyll, sugar, protein contents, antioxidants activities and yield parameters. It is inferred that carrier based biofertilzer effectively increased growth, maintained osmotic balance and enhanced the activities of antioxidant enzymes and yield parameters. (author)

  19. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    Science.gov (United States)

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability.

    Science.gov (United States)

    Maietti, Annalisa; Tedeschi, Paola; Stagno, Caterina; Bordiga, Matteo; Travaglia, Fabiano; Locatelli, Monica; Arlorio, Marco; Brandolini, Vincenzo

    2012-06-01

    Two morphologically different cultivars of Italian melons (Baggio and Giusto) were characterized considering samples harvested in different times, at the beginning (BPP) and at the end of the physiological plant production period (EPP). Proximate composition, protein, minerals, pH, phenolic content, antioxidant capacity, ascorbic acid, carotenoids, condensed tannins, and flavonoids were measured, showing a significant decrease in EPP samples (phenolics, antioxidant capacity, condensed tannins, and flavonoids); ascorbic acid decreased in Giusto cv, carotenoids in Baggio cv. Mineral content increased in either the cultivars (EPP samples). Year-to-year difference was significantly highlighted; the plant growing cycle significantly affected the chemotype. Despite these effects, the Principal Component Analysis (PCA) permitted the discrimination of Baggio from Giusto cv, and the discrimination of BPP from EPP samples as well. © 2012 Institute of Food Technologists®

  1. Plant physiology at the institute for philosophy in Brno in Mendel’s teacher F. Diebl textbook from 1835

    Directory of Open Access Journals (Sweden)

    Jiří Šebánek

    2012-01-01

    Full Text Available Gregor Mendel attended lectures of F. Diebl, professor of natural history and agricultural science at the Institute of Philosophy in Brno. Diebl published his lectures in a textbook “Abhandlungen über die allgemeine und besondere Naturgeschichte, Brünn 1835.” From the textbook the level of scientific knowledge in plant biology is obvious, with which the later founder of a new field of biology – genetics got acquainted. Diebl considered germination to be a specific method of fermentation transforming seed starch into a sugary matter which nourishes the germinating plant. In the physiology of nutrition he distinguished nutrition from the soil via roots from nutrition from the air via leaves. The former is based primarily on the humus theory of A. Thaer (1809 because not until 5 years after the publication of Diebl’s textbook J. Liebig initiated the mineral theory. Diebl’s presentation of photosynthesis was based on information available at that time about the release of oxygen by green plants under conditions of light and the uptake of CO2, but he had no knowledge about the passage of CO2 into the leaves through stomata. Remarkable is Diebl’s discovery that respiration increases during flowering. Electricity is considered to be a force significantly supporting the life processes of plants. Diebl also noticed the difference between diurnal and night evaporation of water from the leaves. In his textbook growth is connected with nutrition only, as it was the entire 19th century. Stem thickening from the cambium is described very simply. Bud and root regeneration is given the term reproduction which today is commonly used in relation to sexual reproduction. Diebl considered nyctinastic movements (bending or unbending of the leaves and closing of the flowers at night to be “sleep”. He described fertilisation in a primitive way, because it was not until 1848 that the first exact description came out.

  2. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  3. Surface Acoustic Waves to Drive Plant Transpiration.

    Science.gov (United States)

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  4. Optofluidics of plants

    Directory of Open Access Journals (Sweden)

    Demetri Psaltis

    2016-05-01

    Full Text Available Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.

  5. Agroecology: Implications for plant response to climate change

    Science.gov (United States)

    Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...

  6. Simulation of Plant Physiological Process Using Fuzzy Variables

    Science.gov (United States)

    Daniel L. Schmoldt

    1991-01-01

    Qualitative modelling can help us understand and project effects of multiple stresses on trees. It is not practical to collect and correlate empirical data for all combinations of plant/environments and human/climate stresses, especially for mature trees in natural settings. Therefore, a mechanistic model was developed to describe ecophysiological processes. This model...

  7. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    International Nuclear Information System (INIS)

    Lydon, J.

    1986-01-01

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. Δ 9 -Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO 2 assimilation rates from 26 to 32 0 C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of Δ 9 -THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of Δ 9 -THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but Δ 9 -THC and cannabichromene did not

  8. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    Energy Technology Data Exchange (ETDEWEB)

    Lydon, J.

    1986-01-01

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilation rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.

  9. Plant eco-physiological responses to multiple environmental and climate changes

    DEFF Research Database (Denmark)

    Albert, Kristian Rost

    2009-01-01

    arctic plants in both short and long term (Paper V, VII, VIII); 9) Ambient UV-B decreased net photosynthesis via effects on PSII performance in combination with effects on Calvin Cycle (Paper V, VII); 10) Current UV-B level is a important factor affecting high arctic plants, particularly in years......The current global changes of temperature, precipitation, atmospheric CO2 and UV-B radiation impact in concert ecosystems and processes in an unpredictable way. Therefore multifactor experimentation is needed to unravel the variability in strength of these drivers, whether the factors act...... additively or synergistically and to establish cause-effect relations between ecosystem processes. This thesis deals with heath plant responses to global change factors (the CLIMAITE project). In a Danish temperate heath ecosystem elevated CO2, experimental summer drought, and passive nighttime warming...

  10. Physiological interpretation of a hyperspectral time series in a citrus orchard

    NARCIS (Netherlands)

    Stuckens, J.; Dzikiti, S.; Verstraeten, W.W.; Verreynne, J.S.; Swennen, R.; Coppin, P.

    2011-01-01

    Hyperspectral remote sensing for monitoring horticultural production systems requires the understanding of how plant physiology, canopy structure, management and solar elevation affect the retrieved canopy reflectance during different stages of the phenological cycle. Hence, the objective of this

  11. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  12. Recent developments in plant science involving use of gamma-ray imaging technology

    International Nuclear Information System (INIS)

    Kawachi, Naoki

    2014-01-01

    Gamma-ray imaging technologies based on the use of radiotracers enable us to clearly determine the physiological function of an organ not only during pre-clinical and clinical studies but also in the field of plant science. Serial time-course images can be used to indicate the changing spatial distribution of a radiotracer within a living plant system and to describe the dynamics and kinetics of a substance in an intact plant. Gamma-rays almost completely penetrate a plant body, and the image data obtained using them can potentially be used to quantitatively analyze physiological function parameters. This paper briefly reviews recent progress in the field of plant science to explore the use of positron emission tomography, a gamma camera, and the positron-emitting tracer imaging system, which is one of the most advanced gamma-ray imaging systems available for studying plant physiology, for solving problems in the field of environment and agriculture. (author)

  13. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  14. Some Physiological Adaptations to Drought in Xerohalophytic Plants Inhabiting Two Oases in Western Desert of Egypt

    International Nuclear Information System (INIS)

    Rayan, A M; Farghali, K A

    2007-01-01

    Under natural drought, some physiological parameters were measured in some wild species inhabiting the western desert of Egypt. Seasonal changes of nitrogen metabolites and Na/K ratio were detected in the investigated species. Effect of seasons, species, and their interaction played an important role on total free amino acids, soluble proteins and Na/K ratio at two oases (Dakhla and Kharga). Species diversity showed more effective variable in regulating such metabolites at Kharga oasis. Plants responded to their environment in two ways, either by increasing their water binding molecules or by preventing the formation of amino acids into proteins. Some of the halophytic and xerophytic species may adjust osmotically to stress by the contribution of nitrogen metabolites. On the other hand, Zygophyllum coccineum, the succulent plant, may adapt to environmental conditions through the accumulation of free amino acids. Correlation analysis between Na+/K+ ratio with free amino acids, soluble proteins and water content in Tamarix aphylla, Salsola imbricata, Balanites aegyptiaca, Trichodesma africanum, and Z. coccineum (Kharga) indicated changes in ionic fraction or accumulating soluble organic compounds which were osmotically active and contribute to osmotic adjustment. Correlations were found between chlorophyll content, ionic and nitrogen metabolites. In Acacia nilotica, Suaeda monoica and Z. coccineum at Dakhla oasis, changes in soluble proteins or ionic ratio could be caused by chlorophyll response to stress, while S. imbricata and T. aphylla may control cellular protein contents. On the other hand, the sharing of both free amino acids and ionic fraction may play an important role of osmoregulation in S. imbricata, Citrullus colocynthis and Z. coccineum at Kharga oasis. (author)

  15. Behaviour of transuranic radionuclides in soils, plants and soil-plant system

    International Nuclear Information System (INIS)

    Vyas, B.N.; Mistry, K.B.

    1996-01-01

    The present paper reviews the investigations undertaken to elucidate the physicochemical, edaphic and physiological aspects of the behaviour of long-lived transuranic radionuclides 239 Pu and 241 Am in typical Indian soils and soil-plant systems. 23 refs

  16. Feasibility study on mental healthcare using indoor plants for office workers

    Science.gov (United States)

    Kubota, Tsuyoshi; Matsumoto, Hiroshi; Genjo, Kaori; Nakano, Takaoki

    2017-10-01

    In recent years, it has become a problem that office workers' stresses affect their intellectual productivity. As one of strategies mitigating the stress while working, many studies on the effect of indoor plants introduced into the office have been conducted. The psychological and physiological effects of indoor plants have been expected to mitigate the office workers' stresses. Also, the effects of green amenities such as improvement of productivity, control of the indoor thermal environment, relaxation and recovery of visual fatigue, and improvement of air quality have been expected. In this study, a field investigation on the green amenity effects of indoor plants on office workers' psychological and physiological responses in an actual office was conducted and discussed. This paper describes the measurement results of the physical environment and workers' psychological and physiological responses under the condition with shelves installed with indoor plants in an office room. It was suggested that indoor plants such as mint, basil and begonia, and a combination of red and green plants were effective for mitigating worker's stresses.

  17. IMPACT OF CLIMATE CHANGE ON PLANTS, FRUITS AND GRAINS

    Directory of Open Access Journals (Sweden)

    CRISTHYAN ALEXANDRE CARCIA DE CARVALHO

    2014-01-01

    Full Text Available Over the past few years, the increased use of fossil fuels as well as the unsustainable use of land, through the reduction of native forests has increased the greenhouse gas emissions, contributing defini- tively to the rise in temperature on earth. In this scenario, two environmental factors, directly related to the physiology of crop production, are constantly being changed. The first change is the increase in the partial pres- sure of carbon dioxide (CO2, which directly affects photosynthetic efficiency and the associated metabolic processes. The other change is the temperature increase which affects all the physiological and metabolic proc- esses mediated by enzymes, especially photosynthesis and respiration. Therefore, this review aims to discuss the main effects caused by increased CO2 pressure and the temperature rise in the physiology, productivity and post-harvest quality of plants with photosynthetic metabolism C3, C4 and CAM. Based on physiological evi- dence, the increased atmospheric CO2 concentration will benefit net photosynthesis, stomatal conductance and the transpiration of C3 plants, however in hot, dry and saline environments, the C4 and CAM species present an advantage by having low photorespiration. Studies show controversial conclusions about the productivity of C3 and C4 plants, and the quality of their fruits or grains under different CO2 concentrations or high tempera- tures. Thus, there is a need for more testing with C3 and C4 plants, besides of more researches with CAM plants, in view of the low number of experiments carried out in this type of plants.

  18. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): physiological basis and effects of maternal family and environment.

    Science.gov (United States)

    Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z

    2008-11-01

    Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.

  19. Plant eco-physiological responses to multiple environmental and climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Rost Albert, K.

    2009-03-15

    The current global changes of temperature, precipitation, atmospheric CO{sub 2} and UV-B radiation impact in concert ecosystems and processes in an unpredictable way. Therefore multifactor experimentation is needed to unravel the variability in strength of these drivers, whether the factors act additively or synergistically and to establish cause-effect relations between ecosystem processes. This thesis deals with heath plant responses to global change factors (the CLIMAITE project). In a Danish temperate heath ecosystem elevated CO{sub 2}, experimental summer drought, and passive nighttime warming was applied in all combinations (based on the scenario for Denmark anno 2075) and the responses after one year of treatment were investigated through a growing season in Hairgrass (Deschampsia flexousa) and Heather (Calluna vulgaris). In a high arctic heath ecosystem situated in NE-Greenland UV-B exclusion experiments were conducted on Salix arctica and Vaccinium uliginosum during six years. Responses of photosynthesis performance were characterized on the leaf scale by means of leaf gas-exchange (A/Ci curves), chlorophyll-a fluorescence, leaf nitrogen, carbon and delta13C and secondary compounds. The main findings were 1) The different growth strategies of the evergreen Calluna versus the opportunistic bi-phasic Deschampsia affects the photosynthesis response to drought and autumn warming; 2) Elevated CO{sub 2} and warming synergistically increase photosynthesis in spring and autumn; 3) Summer drought decreased photosynthesis in both species, but where Calluna maintained photosynthetic metabolism then major proportion of grass leaves wilted down; 4) Elevated CO{sub 2} did not decrease stomatal conductance, but the treatments affected soil water content positively, pointing to the complex water relations when plants of contrasting growth strategy co-occur; 5) Water availability affected the magnitude of photosynthesis to a higher degree than warming and elevated CO{sub 2

  20. Field Guide to Plant Model Systems.

    Science.gov (United States)

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  2. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  3. Leaf d15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    Directory of Open Access Journals (Sweden)

    Idoia eAriz

    2015-08-01

    Full Text Available The natural 15N/14N isotope composition (δ15N of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L. plants were subjected to distinct conditions of [CO2] (400 versus 700 mol mol-1, temperature (ambient versus ambient + 4ºC and water availability (fully watered versus water deficiency - WD. As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP contents detected at 700 mol mol-1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g. photosynthesis, TSP, N demand and water transpiration to environmental conditions.

  4. Genotypic Differences in Growth and Physiological Responses to Transplanting and Direct Seeding Cultivation in Rice

    Directory of Open Access Journals (Sweden)

    Song Chen

    2009-06-01

    Full Text Available The field experiments were conducted to investigate the growth and physiological responses of six super hybrid rice combinations to two planting methods, transplanting (TP and direct seeding (DS during 2006–2007 and 2007–2008. The 1000-grain weight and number of tillers per plant at the early growth stage, the maximum quantum yield of PSII (Fv/Fm and transpiration rate (Tr were higher in DS plants than in TP ones, whereas the grain yield, number of panicles per square meter, seed setting rate, net photosynthetic rate (Pn and stomatal conductance were lower in DS plants. However, little difference was detected in number of grains per panicle, stem (shoot and leaf weight between the combinations in the two planting methods. The responses of plant growth and physiological traits to planting method differed greatly among the six combinations. In both planting methods, Chouyou 58 and Yongyou 6 had the highest and lowest panicle biomass and Pn, respectively. The higher yield of Chunyou 58 was associated with more numbers of panicles per square meter and grains per panicle in both planting methods. The results indicate that lower grain yield in DS relative to TP is attributed to more excessive tillers at the early stage, lower leaf biomass and photosynthetic rate at the late stage.

  5. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  7. Physiological Response of Plants Grown on Porous Ceramic Tubes

    Science.gov (United States)

    Tsao, David; Okos, Martin

    1997-01-01

    This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.

  8. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  10. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  11. Digestibility of nutrients and aspects of the digestive physiology of ...

    African Journals Online (AJOL)

    The greater cane rat, Thryonomys swinderianus, utilizes high fibrous plant material and is an important meat source in West Africa. An insight in its digestive physiology will enhance our understanding of its feeding habits. Digestibility coefficients of the food were determined during two seasons before the animals were ...

  12. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Science.gov (United States)

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  13. Effect of Humic Acid and Organic Manure Tea on Plant Physiology and Fruit Characteristics of Pepino

    Directory of Open Access Journals (Sweden)

    Jamal Javanmardi

    2017-02-01

    Full Text Available Introduction Pepino (SolanummuricatumAit., a Solanaceous vegetable fruit has been recently introduced to Iran markets. Organic farming is currently the fastest growing agricultural sector worldwide. Although several investigations are available on chemical fertilization of pepino, the knowledge of organic fertilization ismostly lacking. Therefore, at the beginning of introducing pepino plant to Iranian farmers it worth to evaluate the impact of organic fertilization on the productivity, profitability, acceptability and sustainability of farming systemsto this plant. High chemical fertilization of pepinoincreases the vegetative growth over the generative and fruit production. The aim of this investigation was to introduce the possibility of organic production of pepino. Materials and Methods.A two-year experiment was carried out to assess the possibility of organic production of pepino using organic fertilizers. Humistar® organic fertilizer (containing 8.6% humic acid at 50 L/ha and sheep or cow manure teas at 1:10 and 1:5 ratios were used for production of pepino cv. Kanseola to evaluate their effects on the physiology of reproductive stage and some fruit quality characteristics. The experiments were arranged as factorial in a randomized complete block design comprised of 3 replications, each of which 10 plants. Mother plants were obtained from Mashhad Ferdowsi University and incubated in a greenhouse (mean temperature of 25 °C and 60-70% relative humidity for 1 month to proliferate. Cuttings with 2-3 leaves at the top, 3-5 healthy buds and 20 cm length were rooted for 14 days in a rooting media, ( 1:1:2 of field soil, composted leaf and perlite, respectively. Plants were transplanted into the field in 100 × 75 cm spacing after the danger of frost was over. Treatments consisted of two levels of 1:5 and 1:10 (w:w cow or sheep manure teas in combination with two levels of Humistar® organic fertilizer as 0 and 50L/ha levels. Control plants

  14. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  15. THE TONOPLAST TRANSPORT SYSTEMS OF PLANT VACUOLES AND THEIR POTENTIAL APPLICATION IN BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    S. V. Isayenkov

    2013-06-01

    Full Text Available The pivotal role of plant vacuoles in plant survival was discussed in the review. Particularly, the providing of cellular turgor, accumulation of inorganic osmolytes and nutrients are the primary tasks of these cellular organelles. The main mechanisms of tonoplast transport systems were described. The known transport pathways of minerals, heavy metals, vitamins and other organic compounds were classified and outlined. The main systems of membrane vacuolar transport were reviewed. The outline of the physiological functions and features of vacuolar membrane transport proteins were performed. The physiological role of transport of minerals, nutrients and other compounds into vacuoles were discussed. This article reviews the main types of plant vacuoles and their functional role in plant cell. Current state and progress in vacuolar transport research was outlined. The examples of application for rinciples and mechanisms of vacuolar membrane transport in plant biotechnology were iven. The perspectives and approaches in plant and food biotechnology concerning transport and physiology of vacuoles are discussed.

  16. New handbook for standardised measurement of plant functional traits worldwide.

    NARCIS (Netherlands)

    Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; Urcelay, C.; Veneklaas, E.J.; Reich, P.B.; Poorter, L.; Wright, I.J.; Ray, P.; Enrico, L.; Pausas, J.G.; de Vos, A.C.; Buchmann, N.; Funes, G.; Quetier, F.; Hodgson, J.G.; Thompson, K.; Morgan, H.D.; ter Steege, H.; van der Heijden, M.G.A.; Sack, L.; Blonder, B.; Poschlod, P.; Vaieretti, M.V.; Conti, G.; Staver, A.C.; Aquino, S.; Cornelissen, J.H.C.

    2013-01-01

    Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait

  17. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids.

    Science.gov (United States)

    Pereira, Allan Silva; de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario

    2017-01-01

    Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong

  18. Physiological response of carnation to radiation and some other factors

    International Nuclear Information System (INIS)

    Abdel - Baky, M.M.

    1986-01-01

    This study was carried out to investigate the physiological response of carnation plant (Dianthus caryophyllus c v. William sim) to gamma rays irradiation and some other factors namely: gibberellic acid and alar (B - 9 or daminozide) as growth regulators and potassium and boron as nutrients. The obtained results would be summarized

  19. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  20. Physiological response and productivity of safflower lines under water deficit and rehydration.

    Science.gov (United States)

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  1. Physiological response and productivity of safflower lines under water deficit and rehydration

    Directory of Open Access Journals (Sweden)

    FERNANDA P.A.P. BORTOLHEIRO

    2017-12-01

    Full Text Available ABSTRACT Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L., a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  2. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    Science.gov (United States)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability

  3. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  4. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  5. Agronomic and physiological impacts of irrigation frequency on green basil (Ocimum basilicum L.)

    OpenAIRE

    Gao, Peng; Dodd, Ian

    2015-01-01

    Water scarcity is a major factor restricting agricultural production and irrigation globally, with sustainable agricultural development calling for less irrigation water use and more production per unit of water applied. Improved understanding of plant physiological responses to water stress, and the effect of irrigation frequency on plant biomass production and quality, may help to optimize irrigation scheduling. Glasshouse-grown basil (Ocimum basilicum L.) received three different irrigatio...

  6. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of γ-ray. (author)

  7. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of {gamma}-ray. (author)

  8. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of γ-ray

  9. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of {gamma}-ray.

  10. Peer Assisted Learning Strategy for Improving Students’ Physiologic Literacy

    Science.gov (United States)

    Diana, S.

    2017-09-01

    Research about the implementation of the Peer Assisted Learning (PAL) strategy in Plant Physiology lecture has carried out, in which it aims to improve students’ physiologic literacy. The PAL strategy began with a briefing by the lecturers to the students tutor about pretest questions, followed by the interaction between student tutors with their peers to discuss response problems, terminated by answering responsiveness questions individually. This study used a quasi-experimental method, one - group pre-test post-test design. This design includes a group of students observed in the pre-test phase (tests carried out before PAL treatment) which is then followed by treatment with PAL and ends with post-test. The other students group (control) was given the pre-test and post-test only. The results showed that the PAL strategy can increase student’s physiologic literacy significantly. One of the weaknesses of students’ physiologic literacy is that they have not been able to read the graph. The faculties are encouraged to begin introducing and teaching material using a variety of strategies with scientific literacy aspects, for example teaching research-based material. All students respond positively to the PAL strategy.

  11. Effect of fertilization on the physiological maturation of sesame seeds

    Directory of Open Access Journals (Sweden)

    Erivan Isídio Ferreira

    2017-06-01

    Full Text Available Fertilization and harvest time may influence the formation and maturation processes, as well as the physiological quality of seeds. This study aimed at evaluating the effect of fertilization on the physiological maturation of sesame seeds. The following variables were evaluated: fruit color, dry mass and water content of fruits and seeds, germination, first germination count, germination speed, emergence and emergence speed. No significant fertilization effect was observed on fruit maturation for water content or dry mass. However, there was significance for these variables in the seeds. The harvest time had a significant effect on water content and dry mass of fruits and seeds. For the variables that evaluated the seed viability and vigor, both the fertilization and harvest time influenced the physiological maturation. The physiological maturity of the sesame seeds, whose plants were grown with and without fertilization, was reached between 52 and 54 days after anthesis, when the fruits were classified as yellow-greenish 7.5 Y 8/6 and yellow to yellow-red 10.R 4/6.

  12. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  13. Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses

    OpenAIRE

    Josefa Hernández-Ruiz; Marino B. Arnao

    2018-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, while salicylic acid was the name given to the active ingredient of willow in 1838. From a physiological point of view, these two molecules present in plants have never been compared, even though they have a great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways that share a common precursor and both play a relevant role in the physiology of plants, especially in aspects r...

  14. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is ... blockage due to microbial growth and blockage caused by formation of .... HQS) and chlorine, are used to assess its actions in the microorganisms ...

  15. Effects of rhizobia and plant growth promoting bacteria inoculation ...

    African Journals Online (AJOL)

    Plant growth promoting rhizobacteria (PGPR) stimulate plant growth by producing phytohormone which enhances the growth and physiological activities of the host plant. Recently, legume bacteria (Rhizobium spp.) have been considered as a PGPR for legume as well as non-legumes and have the potential for growth ...

  16. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    Science.gov (United States)

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  17. The Critical Role of Potassium in Plant Stress Response

    Directory of Open Access Journals (Sweden)

    Min Wang

    2013-04-01

    Full Text Available Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.

  18. Induced mutations - a tool in plant research

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings include 34 papers and 18 brief descriptions of poster presentations in the following areas as they are affected by induced mutations: advancement of genetics, plant evolution, plant physiology, plant parasites, plant symbioses, in vitro culture, gene ecology and plant breeding. Only a relatively small number of papers are of direct nuclear interest essentially in view of the mutations being induced by ionizing radiations. The papers of nuclear interest have been entered as separate and individual items of input

  19. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    Science.gov (United States)

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  20. AgroKnowledgeBase (AKB) for plant diseases: Poppy plant use case

    OpenAIRE

    Terhorst, Andew; Morshed, Ahsan

    2013-01-01

    World’s economy drives on crop production. Currently, most of the countries are facing food shortage in each year. Farmers are trying to increase their productivity but they need specific information so that they can take right decision in the right time. One of particular challenge facing farmers is plant disease, which can be defined as deviation from normal physiological functioning that harmful to a plant. In this paper, we proposed a knowledge based prototype called AKB that help farmer...

  1. Annual Plant Reviews

    DEFF Research Database (Denmark)

    , three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...... are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...... analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight...

  2. Criteria of choice in the planning of a solar radiation lamp arrangement, in climatic chambers for plant physiology studies

    International Nuclear Information System (INIS)

    Materassi, A.; Fasano, G.; Vincenzi, M. De

    2006-01-01

    This technical note is an integration of the previous study: Climatic chambers for plant physiology: a new project concept. This note gives details regarding the planning of the lamp arrangement and demonstrates how mixing, in appropriate quantities, the radiative range of various types of lamps can give apparently contrasting results: to maximize radiation in maximum absorption range of chlorophylls and carotenoids; to minimize heat emission in the climatic chamber. With nine daylight fluorescent tubes, four sunlight metallic halide spotlights and nine red-blue fluorescent tubes, for a total of 562 W mE-2 (electric), mounted on the ceiling of a 2 m high chamber with a 4 square m surface area, on the chamber floor about 130 W mE-2 total solar radiation equivalent was obtained. This means a power emitted, in the bands of chlorophylls and carotenoids absorption, from a total solar radiation (black body of 5,500 K) of about 130 W mE-2. This radiation is sufficient to grow a large number of plant species. In the lamp arrangement there are seven other light fixtures, for fluorescent tubes, defined as auxiliary because tubes can be inserted which either integrate active radiation on the photoreceptors or produce particular spectral ranges. In the above cited work, fluorescent tubes producing in the ultraviolet B range were mounted in these auxiliary fixtures. Less thermal energy emitted in the climatic chamber means that it is possible to use a less powerful conditioning system and, thus, have lower costs of set-up and management. The efficiency of the lighting system is demonstrated by the fact that during 15 days of experimentation on 18-month-old, potted poplar plants (Populus alba), symptoms of insufficient light were not detected [it

  3. Functional plant types drive plant interactions in a Mediterranean mountain range

    Directory of Open Access Journals (Sweden)

    Petr eMacek

    2016-05-01

    Full Text Available Shrubs have both positive (facilitation and negative (competition effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional groups on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat.Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions.There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  4. Plants for Sustainable Improvement of Indoor Air Quality

    NARCIS (Netherlands)

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; Visser, de Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-01-01

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation.

  5. Morphological and physiological features of the species Asimina triloba (L. dunal, introduced as an ornamental plant in Baia Mare (Maramureş county, Romania

    Directory of Open Access Journals (Sweden)

    Beatrice SZILAGYI

    2011-11-01

    Full Text Available Tree species Asimina triloba (L. Dunal, is native to North America. In the area of origin is cultivated, both as food species because the edible fruit, and as ornamental species. Ornamental value derives both from decorative flowers, that open in early spring, and because habitus species. The species is demanding from slightly acidic soils (pH 5.5 to 7.0 and well drained. Seedlings are susceptible to heatstroke and need areas of the sun, but since the second year, vegetate well in bright light conditions [27]. Optimum climate is temperate to subtropical one. The species exhibits unique quality traits for a temperate fruit that are similar to other fruit in the Annonaceae family, including cherimoya (Annona cherimola Mill., sugar apple or sweetsop, (A. squamosa L., soursop (A. muricata L., custard apple (A. reticulata L., and atemoya (A. squamosa X A. cherimola, all of which are tropical [2].This study follows the behavior of the species, in particular conditions of the Baia Mare and its surroundings. In this area a fewindividuals were introduced, in order to diversigy the range of species of ornamental plants. In Baia Mare, topoclimate is specifically depression, sheltered by mountains, more atenuated as temperature and winds, than in surrounding areas. As a result ofclimatic conditions, chestnut Castanea sativa, grows in good conditions in Baia Mare. Instead, the area is heavily polluted,especially at ground level. Pollution by heavy metals is a historical being generated by the mining industry.The introduction and use of a new plant species into a new area involves: 1. easy to obtain seed; 2.- maintaining the crown shape habitus and and leaf shape and size, respectively; 3 – determination of optimal physiological parameters. Therefore have been performed, the following experimental determinations: 1. - germination of seed obtained in the particular conditions of the Baia Mare; 2. - some morphomtric characteristics of leaves, in the juveniles

  6. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology

    International Nuclear Information System (INIS)

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-01-01

    Background: Studying the physiologic effects of components of fine particulate mass (PM 2.5 ) could contribute to a better understanding of the nature of toxicity of air pollution. Objectives: We examined the relation between acute changes in cardiovascular and respiratory function, and PM 2.5 -associated-metals. Methods: Using generalized linear mixed models, daily changes in ambient PM 2.5 -associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Results: Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1–3 beats per minute, increases of 1–3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Conclusion: Metals contained in PM 2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. - Highlights: • We measured daily lung function, heart rate and blood pressure in 61 subjects. • Study sites were adjacent to a steel plant and on a college campus. • PM 2.5 -associated metal concentrations were measured daily at each site. • On days of higher metal concentrations, physiologic variables slightly deteriorated. • Some metal components may contribute to the toxicity of PM 2.5 . - Several PM 2.5 metals were associated with acute changes in cardiovascular or respiratory physiology. Given the evidence of source specificity, our study provides novel information

  7. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  8. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome.

    Science.gov (United States)

    Colla, Giuseppe; Hoagland, Lori; Ruzzi, Maurizio; Cardarelli, Mariateresa; Bonini, Paolo; Canaguier, Renaud; Rouphael, Youssef

    2017-01-01

    Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture's impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions.

  9. Plant Physiology: FERONIA Defends the Cell Walls against Corrosion.

    Science.gov (United States)

    Verger, Stéphane; Hamant, Olivier

    2018-03-05

    A new study uncovers the role of wall sensing and remodeling in the plant response to salt stress, identifying the FERONIA receptor kinase as a key player in that process, likely through direct sensing of cell wall pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Plant Physiology: Unveiling the Dark Side of Phloem Translocation.

    Science.gov (United States)

    Truernit, Elisabeth

    2017-05-08

    Sugars and other macromolecules arrive in heterotrophic plant tissues through the phloem, a long-distance transport system. Owing to a recent study, we now have a better understanding of how these molecules exit the phloem at their final destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions

    Directory of Open Access Journals (Sweden)

    Emanuelle Ferreira Melo

    2014-02-01

    Full Text Available Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlings subjected to four treatments: Daily irrigated, non-irrigated, re-irrigated 24 hours and re-irrigated 48 hours after different stress periods. Non-irrigation promoted a reduction in leaf water potential being accented from the ninth day of evaluation onwards. Re-irrigation promoted a partial recovery of the plant water potential. Non-irrigated plants showed an increase in stomatal resistance and reduction of transpiration and nitrate reductase activity. In the roots, there was a decrease in nitrate reductase activity under water stress. Leaf anatomical modifications were significant only for the adaxial surface epidermis and palisade parenchyma thickness, this latter characteristic being higher in control plants. Stomatal density and polar and equatorial diameter ratios showed the highest values in plants under water stress. In the roots, differences only in the cortex thickness being bigger in the non-irrigated treatment could be observed. Therefore, Siriema coffee plants under water stress show physiological, biochemical and anatomical modifications that contribute to the tolerance of this genotype to these conditions.

  12. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action.

    Science.gov (United States)

    Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa

    2017-07-01

    The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha -1 . The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y II , and F v /F m ) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  14. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation.

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  15. Salt and genotype impact on plant physiology and root proteome variations in tomato.

    Science.gov (United States)

    Manaa, Arafet; Ben Ahmed, Hela; Valot, Benoît; Bouchet, Jean-Paul; Aschi-Smiti, Samira; Causse, Mathilde; Faurobert, Mireille

    2011-05-01

    To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.

  16. Expression of streptavidin gene in bacteria and plants

    International Nuclear Information System (INIS)

    Guan, Xueni; Wurtele, E.S.; Nikolau, B.J.

    1990-01-01

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot

  17. Differentiation of Staphylococcus aureus from freshly slaughtered poultry and strains 'endemic' to processing plants by biochemical and physiological tests.

    Science.gov (United States)

    Mead, G C; Norris, A P; Bratchell, N

    1989-02-01

    A comparison was made of 27 'endemic' strains of Staphylococcus aureus and 35 strains from freshly slaughtered birds, isolated at five commercial slaughterhouses processing chickens or turkeys. Of 112 biochemical and physiological tests used, 74 gave results which differed among the strains. Cluster analysis revealed several distinct groupings which were influenced by strain type, processing plant and bird origin; these included a single group at the 72% level of similarity containing most of the 'endemic' strains. In comparison with strains from freshly slaughtered birds, a higher proportion of 'endemic' strains produced fibrinolysin, alpha-glucosidase and urease and were beta-haemolytic on sheep-blood agar. The 'endemic' type also showed a greater tendency to coagulate human but not bovine plasma, and to produce mucoid growth and clumping. The last two properties, relevant to colonization of processing equipment, were less evident in heart infusion broth than in richer media or process water collected during defeathering of the birds.

  18. Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol Physiological characteristics and growth of coffee plants grown under shade of pigeonpea and unshaded

    Directory of Open Access Journals (Sweden)

    Heverly Morais

    2003-10-01

    Full Text Available O conhecimento dos efeitos do sombreamento sobre a fisiologia de cafeeiros é importante para se determinar níveis ótimos de radiação e temperatura, bem como para subsidiar estudos sobre o crescimento de plantas sombreadas, a fim de determinar a arquitetura ideal do cafeeiro que maximize a captura da radiação solar disponível em ambientes sombreados. O objetivo deste trabalho foi avaliar características fisiológicas e de crescimento de cafeeiros (Coffea arabica L. cultivados sob sombreamento denso com guandu (Cajanus cajan (L. Millsp. e a pleno sol. O baixo nível de radiação incidente sobre os cafeeiros sombreados com guandu resultou em decréscimos na taxa fotossintética e na transpiração, maior altura de planta, folhas maiores e com menor quantidade de matéria seca. Esses resultados indicam que o excesso de sombra afeta drasticamente a fisiologia e morfologia de C. arabica.The characterization of shade effects on the physiology of coffee is important to determine optimum levels of radiation and temperature, as well as to subsidize studies on growth of shaded plants aiming at determining the ideal coffee plant architecture that maximizes the capture of the available solar radiation in shaded environments. The objective of this work was to evaluate physiological and growth characteristics of coffee (Coffea arabica L. shaded with pigeonpea (Cajanus cajan (L. Millsp. and under full sun. The low level of incident radiation on the coffee shaded with pigeonpea caused decreases in the photosynthetic rate and transpiration, increased plant height and leaf size, but diminished leaf dry matter. These results indicate that the excess of shade drastically affects the physiology and morphology of C. arabica.

  19. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    Science.gov (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  20. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  1. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  2. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  3. Silicon application to the soil on soybean yield and seed physiological quality

    Directory of Open Access Journals (Sweden)

    Sandro de Oliveira

    2015-10-01

    Full Text Available Use of quality seeds, balanced plant nutrition and the adoption of adequate cultivation techniques are critical to the success of the soybean crop. Use of silicon (Si is a clean technology from an environmental point of view, which can confer several benefits to the plants as stimulate growth and plant production, improve tolerance of plants to attack by insects and diseases, reduce perspiration and increase the photosynthetic rate and protect against abiotic stresses. The goal was to evaluate the effect of soil Si application derived from rice husk ash on the agronomic characteristics, productivity and physiological quality of soybean cultivars seeds. The experiment was conducted in pots of 18 L filled with soil, under a randomized block design with four replications. The soybean cultivars were BMX Turbo RR and NA 5909 RR, grown under five doses of silicon (0, 1, 2, 3, and 4 t ha-1. Agronomic traits and seed yield were evaluated (total number of pods on branches, total number of seeds on the branches, the total number of pods on the main stem, total number of seeds on the main stem, total number of pods per plant, total number of seeds per plant, seed weight per plant and seed weight of 1000. Physiological seed quality was evaluated by germination and vigor tests (first count of germination, cold test, accelerated aging, shoot length and root. The soil application of silicon is beneficial for the soybean crop, improving the main agronomic characteristics (total number of pods on branches, total number of seeds in the branches, total number of pods per plant, weight of seeds per plant and increasing seed yield per plant in soybean cultivar BMX Turbo RR. The mass of a thousand seeds is positively influenced by the dose of 1.67 t ha-1 for the cultivar BMX Turbo RR and up to a dose of 2.32 t ha-1 for the cultivar NA 5909 RR. Cultivar BMX Turbo RR seed vigor is increased with the use of silicon in the soil.

  4. The role of physiological active substances implant adaptation to stress

    International Nuclear Information System (INIS)

    Voronina, L.; Morachevskaya, E.

    2009-01-01

    It is known, that brassinosteroids are capable in small quantities (10 - 12-10 - 7M) to optimize physiology-biochemical processes in plants in stressful conditions. the aim of this study was to investigate the role of anti stress and protective properties of phyto hormone 24-epibrassinolide (24-epiBS). in view of its functional features and biological activity. (Author)

  5. Magnetic resonance imaging of plants: plant water status and drought stress response

    NARCIS (Netherlands)

    Weerd-Meulenkamp, van der L.

    2002-01-01

    This Thesis presents an approach for the study of plant water balance during drought stress, using a combination of in vivo NMR experiments and computer simulations. The ultimate aim is the interpretation of the NMR parameters in terms of physiologically relevant characteristics, such as

  6. Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence.

    Science.gov (United States)

    LoPresti, Eric F

    2016-11-01

    Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air- (or water-) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within-plant localization of defences. © 2015 Cambridge Philosophical Society.

  7. Inulin containing plants, alternative resources. Biochemical and plant physiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Beck, R.H.F.; Praznik, W.

    1986-11-01

    First the appearance and the physico-chemical properties of inulin are discussed and the classical and modern methods of the determination of inulin are compared. For the determination of the distribution and composition of inulin a HPLC- and a GPC-method are presented. Using these methods different carbohydrate distribution patterns are got by analyzing different inulin containing plants. The utilization of inulins for industrial production is narrowly connected with their molecular weight distribution. Thus inulin is split by invertase only very slowly whereas the inulooligosaccharides are split relative quickly. For the production of fructose long-chain inulins are advantageous because only little of the cristallization inhibitor glucose is got after hydrolysis. For fermentation short-chain oligosaccharides, that are easily fermentated by microorganisms, are favourable. As an example for high molecular weight inulins dahlia and chicory inulin are named. Jerusalem artichoke inulin however is composed of a high portion of low molecular weight oligosaccharides that is suited for the production of alcohol, especially when harvested at a late date (late autumn or spring).

  8. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses.

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-27

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  9. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-01

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  10. Physiological and photosynthesis response of popcorn inbred seedings to waterlogging stress

    International Nuclear Information System (INIS)

    Zhu, M.; Wang, J.; Li, F.; Shi, Z.

    2015-01-01

    Waterlogging is one of the most severe global problems, which affects crop growth and yield worldwide, especially in the low-lying rainfed areas, and irrigated and heavy rainfall environment. Our objective was to study the physiological and photosynthetic characteristics of two popcorn genotypes under waterlogging conditions. The experiment was carried out in pots with two contrasting inbred lines differing in waterlogging tolerance: Q5 (tolerant) and Q10 (sensitive). Leaf gas exchange, oxidative stress, and chlorophyll (Chl) fluorescence were measured at 0, 2, 4, and 6d in the control and waterlogged plants. A decrease in net photosynthesis, stomatal conductance, and transpiration was observed in both genotypes. The waterlogging-sensitive plants showed reduced chlorophyll fluorescence, chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (P /subN/ ) for waterlogged plants were similar in both genotypes. The different physiological and photosynthetic response in the two popcorn inbred lines might be responsible for higher tolerance of Q5 than Q10. These results suggest that Q5 popcorn inbred lines are a source of genetic diversity for important traits such as P /subN/ and WUE. (author)

  11. Manipulating the physiological quality of in vitro plantlets and transplants of potato

    NARCIS (Netherlands)

    Mehari, T.

    2000-01-01

    In vitro techniques have been introduced in potato seed production systems in recent years. This research project aimed at studying the morphological and physiological changes in plants and crops in the last three phases of a seed production system that included an

  12. The Use of Grafting to Study Systemic Signaling in Plants.

    Science.gov (United States)

    Tsutsui, Hiroki; Notaguchi, Michitaka

    2017-08-01

    Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  14. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  15. Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress

    Directory of Open Access Journals (Sweden)

    Dhriti Kapoor

    2014-01-01

    Full Text Available Plants of Brassica juncea L. var. RLC-1 were exposed for 30 days to different concentrations (0, 0.2, 0.4, and 0.6 mM of cadmium (Cd to analyze the Cd uptake, H2O2 content, hormonal profiling, level of photosynthetic pigments (chlorophyll, carotenoid, and flavonoid, gaseous exchange parameters (photosynthetic rate, vapour pressure deficit, intercellular CO2 concentration, and intrinsic mesophyll rate, antioxidative enzymes (superoxide dismutase, polyphenol oxidase, glutathione-S transferase, and glutathione peroxidase, antioxidant assays (DPPH, ABTS, and total phenolic content, and polyphenols. Results of the present study revealed the increased H2O2 content and Cd uptake with increasing metal doses. UPLC analysis of plants showed the presence of various polyphenols. Gaseous exchange measurements were done by infrared gas analyzer (IRGA, which was negatively affected by metal treatment. In addition, LC/MS study showed the variation in the expression of plant hormones. Level of photosynthetic pigments and activities of antioxidative enzymes were altered significantly in response to metal treatment. In conclusion, the antioxidative defence system of plants got activated due to heavy metal stress, which protects the plants by scavenging free radicals.

  16. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  17. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  18. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    Science.gov (United States)

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  19. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  20. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  1. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  2. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  3. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action

    Directory of Open Access Journals (Sweden)

    Akiko Hashiguchi

    2017-12-01

    Full Text Available Herbal medicine is a clinical practice of utilizing medicinal plant derivatives for therapeutic purposes. It has an enduring history worldwide and plays a significant role in the fight against various diseases. Herbal drug combinations often exhibit synergistic therapeutic action compared with single-constituent dosage, and can also enhance the cytotoxicity induced by chemotherapeutic drugs. To explore the mechanism underlying the pharmacological action of herbs, proteomic approaches have been applied to the physiology of medicinal plants and its effects on animals. This review article focuses on the existing proteomics-based medicinal plant research and discusses the following topics: (i plant metabolic pathways that synthesize an array of bioactive compounds; (ii pharmacological action of plants tested using in vivo and in vitro studies; and (iii the application of proteomic approaches to indigenous plants with scarce sequence information. The accumulation of proteomic information in a biological or medicinal context may help in formulating the effective use of medicinal plants.

  4. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  5. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  6. Prognosis of physiological disorders in physic nut to N, P, and K deficiency during initial growth.

    Science.gov (United States)

    Santos, Elcio Ferreira; Macedo, Fernando Giovannetti; Zanchim, Bruno José; Lima, Giuseppina Pace Pereira; Lavres, José

    2017-06-01

    The description of physiological disorders in physic nut plants deficient in nitrogen (N), phosphorus (P) and potassium (K) may help to predict nutritional imbalances before the appearance of visual symptoms and to guide strategies for early nutrient supply. The aim of this study was to evaluate the growth of physic nuts (Jatropha curcas L.) during initial development by analyzing the gas exchange parameters, nutrient uptake and use efficiency, as well as the nitrate reductase and acid phosphatase activities and polyamine content. Plants were grown in a complete nutrient solution and solutions from which N, P or K was omitted. The nitrate reductase activity, phosphatase acid activity, polyamine content and gas exchange parameters from leaves of N, P and K-deficient plants indicates earlier imbalances before the appearance of visual symptoms. Nutrient deficiencies resulted in reduced plant growth, although P- and K-deficient plants retained normal net photosynthesis (A), stomatal conductance (g s ) and instantaneous carboxylation efficiency (k) during the first evaluation periods, as modulated by the P and K use efficiencies. Increased phosphatase acid activity in P-deficient plants may also contribute to the P use efficiency and to A and gs during the first evaluations. Early physiological and biochemical evaluations of N-, P- and K-starved plants may rely on reliable, useful methods to predict early nutritional imbalances. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  8. Nickel-accumulating plant from Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C; Brooks, R R

    1972-01-01

    A small shrub Hybanthus floribundus (Lindl.) F. Muell. Violaceae growing in Western Australia accumulates nickel and cobalt to a very high degree. Values of up to 23% nickel in leaf ash may represent the highest relative accumulation of a metal on record. The high accumulation of nickel poses interesting problems in plant physiology and plant biochemistry. 9 references, 2 figures, 1 table.

  9. Plant sphingolipids: decoding the enigma of the Sphinx.

    Science.gov (United States)

    Pata, Mickael O; Hannun, Yusuf A; Ng, Carl K-Y

    2010-02-01

    Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, which has led to a new field of research called 'sphingolipidomics'. There are at least 500 (and perhaps thousands of) different molecular species of sphingolipids in cells, and in Arabidopsis alone it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long-chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way in which sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology.

  10. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  11. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  12. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  13. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  14. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Water temperature can affect many physiological processes during plant growth and development. Temperatures below or above optimum levels may influence plant metabolic activities positively or negatively. This may include accumulation of different metabolites such as phenolic compounds, reactive oxygen species ...

  15. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    Science.gov (United States)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  16. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  17. Plant adaptation to temperature and photoperiod

    Directory of Open Access Journals (Sweden)

    O. JUNTTILA

    2008-12-01

    Full Text Available Plants respond to environmental conditions both by adaptation and by acclimation. The ability of the plants to grow, reproduce and survive under changing climatic conditions depends on the efficiency of adaptation and acclimation. The adaptation of developmental processes in plants to temperature and photoperiod is briefly reviewed. In annual plants this adaptation is related to growth capacity and to the timing of reproduction. In perennial plants growing under northern conditions, adaptation of the annual growth cycle to the local climatic cycle is of primary importance. Examples of the role of photothermal conditions in regulation of these phenological processes are given and discussed. The genetic and physiological bases for climatic adaptation in plants are briefly examined.;

  18. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles.

    Science.gov (United States)

    Correia, Barbara; Pintó-Marijuan, Marta; Neves, Lucinda; Brossa, Ricard; Dias, Maria Celeste; Costa, Armando; Castro, Bruno B; Araújo, Clara; Santos, Conceição; Chaves, Maria Manuela; Pinto, Glória

    2014-04-01

    Eucalyptus plantations are among the most productive forest stands in Portugal and Spain, being mostly used for pulp production and, more recently, as an energy crop. However, the region's Mediterranean climate, with characteristic severe summer drought, negatively affects eucalypt growth and increases mortality. Although the physiological response to water shortage is well characterized for this species, evidence about the plants' recovery ability remains scarce. In order to assess the physiological and biochemical response of Eucalyptus globulus during the recovery phase, two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18 and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Drought reduced height, biomass, water potential, NPQ and gas exchange in both genotypes. Contrarily, the levels of pigments, chlorophyll fluorescence parameters (F(v) /F(m) and (φPSII)), MDA and ABA increased. During recovery, the physiological and biochemical profile of stressed plants showed a similar trend: they experienced reversion of altered traits (MDA, ABA, E, g(s), pigments), while other parameters did not recover ((φPSII), NPQ). Furthermore, an overcompensation of CO(2) assimilation was achieved 1 week after rehydration, which was accompanied by greater growth and re-establishment of oxidative balance. Both genotypes were tolerant to the tested conditions, although clonal differences were found. AL-10 was more productive and showed a more rapid and dynamic response to rehydration (namely in carotenoid content, (φPSII) and NPQ) compared to clone AL-18. © 2013 Scandinavian Plant Physiology Society.

  19. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    Science.gov (United States)

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  20. Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors.

    Directory of Open Access Journals (Sweden)

    Veria Y Alvarado

    Full Text Available Zebra complex (ZC disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs, an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc. The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin and tuber storage proteins (e.g., patatins, indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants.

  1. Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Science.gov (United States)

    Alvarado, Veria Y.; Odokonyero, Denis; Duncan, Olivia; Mirkov, T. Erik; Scholthof, Herman B.

    2012-01-01

    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants. PMID:22615987

  2. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    International Nuclear Information System (INIS)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S.; Yamaguchi, M.

    2009-01-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  3. A monitoring system of radioactive tracers in hydroponic solution for research on plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Suzui, N.; Kawachi, N.; Ishioka, N.; Fujimaki, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2009-07-01

    The mechanism of nutrient uptake in plants has received considerable attention in the field of plant science. Here we describe the development of a new monitoring system of radioactive tracers in hydroponic solution, which enables the noninvasive measurement of radioactive tracer uptake by an intact plant. In addition, we incorporated a weighing instrument into this system in order to simultaneously monitor water uptake by the same plant. For an evaluation of this monitoring system, we conducted a tracer experiment with a rice plant and a positron-emitting radioactive tracer, and successfully obtained continuous data for the amounts of radioactive tracer and water taken up by the intact plant over 36 h. (authors)

  4. Physiological response of soybean and wheat to gamma radiation and gibberellin

    International Nuclear Information System (INIS)

    Maghraby, G. M.

    1997-01-01

    The main objective of this work is to study and evaluate physiological effects of gamma radiation and/or GA 3 on plant growth, nutritional status of plants, yield and some quality of seeds of soybean and wheat. Two field experiments were conducted under the condition of clay loam soil at kaliobia governorate during 1993 and 1994 and 1992/1993 and 1993/1994 for soybean and wheat, respectively. Growth of soybean and wheat plants was considerably stimulated by irradiation seeds before sowing with low gamma doses and/or concentration of Ga 3. Maximum growth of both plants was obtained by the combined treatment of 2 0 Gy x 25 ppm GA 3 and 1 0 Gy x 100 ppm GA 3 for soybean and wheat, respectively. On the contrary high gamma doses and/or high rates of GA 3 depressed growth of both plants. Low gamma doses and/or GA 3 at low concentration greatly encouraged nutrients uptake by soybean and wheat plants, i.e., N, Fe, Mn and Zn which seemed to be positively related to plant growth. Whereas, high doses and/or high concentrations of GA 3 reduced these nutrients in plant. 53 tabs., 5 figs., 91 refs

  5. Implications of stratospheric ozone depletion upon plant production

    International Nuclear Information System (INIS)

    Teramura, A.H.

    1990-01-01

    An increase in the amount of UV-B radiation reaching the earth's surface is identified as the major factor of concern to result from stratospheric ozone depletion. UV radiation is believed to have wide ranging effects on plant physiology and biochemistry. In screening studies of > 300 species and cultivars, > 50% have shown sensitivity to UV radiation. The most sensitive plant families appear to be Leguminosae, Cucurbitaceae and Cruciferae. The need for a better understanding of the effects of UV radiation on crop plant physiology and particularly of the repair and protective mechanisms developed by some species is stressed. This paper was presented at a colloquium on Implications of global climate changes on horticultural cropping practices and production in developing countries held at the 86th Annual Meeting of the American Society for Horticultural Science at Tulsa, Oklahoma, on 2 Aug. 1989

  6. Physiological and ionic changes in dwarf coconut seedlings irrigated with saline water

    Science.gov (United States)

    The use of salt-tolerant plants is an important alternative to cope with the problem of salinity in semi-arid regions. The dwarf coconut palm (Cocos nucifera L.) has emerged as a salt-tolerant crop once established. However, little is known about the physiological mechanisms that may contribute to t...

  7. Thidiazuron: A multi-dimensional plant growth regulator | Guo ...

    African Journals Online (AJOL)

    Thidiazuron (TDZ) has gained a considerable attention during past decades due to its efficient role in plant cell and tissue culture. Wide array of physiological responses were observed in response to TDZapplication in different plant species. TDZ has shown both auxin and cytokinin like effects, although, chemically, it is ...

  8. Manipulation of plant ethylene balance by soil microbiota: a holobiont perspective to stress tolerance

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein

    2018-01-01

    Plants continuously adjust their physiology and phenotype to stressors. Plant hormones and modulators mediate the adaptation of the plant to changing environmental conditions by allocating resources precisely between growth and stress tolerance. Plant responses to stressors are typically studied

  9. Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest

    Science.gov (United States)

    Gagen, M.; Finsinger, W.; McCarroll, D.; Wagner, F.

    2009-04-01

    The Boreal forests contains 33% of the earth's forest cover and are located at the latitude where most of the estimated global warming is predicted to occur. Warming as a consequence of rising carbon dioxide will affect evapotranspiration within the biome, with significant consequences given that water vapour is an important greenhouse gas. However, there is also a physiological forcing associated with the effects of rising carbon dioxide on plants. Higher atmospheric carbon dioxide will reduce evapotraspiration because tree stomata tend to close under elevated carbon dioxide. The warming associated with reduced evapotranspiration is known as carbon dioxide physiological forcing and it is not well constrained. Here we suggest that future predictions of evapotranspiration flux within the Boreal forest zone might be more accurately gauged by taking account of palaeo evidence of changing plant water use efficiency and stomatal density in the two most important Boreal plant species: Pinus sylvestris and Betula nana. Stable carbon isotope ratios in tree ring cellulose and stomatal density measurements, from preserved leaves falling on the forest floor, hold a record of the plant physiological changes associated with adjustment to rising carbon dioxide. We present evidence that, rather than plants simply closing their stomatal apertures under recent elevated carbon dioxide, over the last 150 years reduced evapotranspiration in the northern Boreal forest has been associated with a powerful plastic response including reductions in stomatal conductance via changes in stomatal density and pore length. Furthermore we present evidence that trees may be reaching the limits of their ability to respond plastically to rising carbon dioxide by increasing their water use efficiency.

  10. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions.

    Science.gov (United States)

    Aragón, C; Carvalho, L; González, J; Escalona, M; Amancio, S

    2012-04-01

    Many plant species grown under in vitro controlled conditions can be used as models for the study of physiological processes. Adult pineapple can display CAM physiology while in vitro it functions as a C3 plant. Ex vitro Ananas comosus has plastic morphology and physiology, both easy to modify from C3 to CAM by changing the environmental conditions. The yield of survival for a rentable propagation protocol of pineapple is closely related with the C3/CAM shift and the associated physiological characteristics. In the present work, ex vitro pineapple plants were divided in two sets and subjected to C3 and CAM-inducing environmental conditions, determined by light intensity and relative humidity, respectively, 40 μmol m(-2) s(-1)/85% and 260 μmol m(-2) s(-1)/50%. The results demonstrated that the stress imposed by the environmental conditions switched pineapple plants from C3 to CAM behavior. Comparing to CAM induced, C3-induced pineapple plants showed substandard growth parameters and morphological leaf characteristics but a better rooting process and a higher ABA production, a phenotype closer to adult plants, which are expected to produce fruits in a normal production cycle. We conclude that the upholding of these characteristics is conditioned by low light intensity plus high relative humidity, especially during the first 8 weeks of ex vitro growth. It is expected that the better understanding of pineapple acclimatization will contribute to the design of a protocol to apply as a rentable tool in the pineapple agronomic industry. © Springer-Verlag 2011

  11. Selective intake of potassium from K-bearing silicate minerals by sunflower and upland rice inferred from Eu anomaly. Implication for weathering as a direct consequence of plant physiology

    International Nuclear Information System (INIS)

    Akagi, Tasuku; Saito, Sakura; Watanabe, Shin-ichi; Sugiyama, Megumi; Ae, Noriharu

    2006-01-01

    Two crops (sunflower and upland rice) cultivated using three K-bearing minerals and KCl by Sugiyama and Ae (2000) were analyzed for rare earth elements (REEs). The two crops had been reported by them to general more available silica in soil (especially in the case of sunflower) and absorbed silica in plants (especially in the case of upland rice) than that available originally in soil. The K-bearing minerals included biotite, muscovite, and K-feldspar. The REE patterns of individual crop specimens exhibited different extents of Eu anomaly; upland rice exhibited more varying extent of Eu anomaly than sunflower. It is inferred that REEs released from the K-bearing minerals had a longer contact with soil in the case of sunflower than in the case of upland rice. By the scrutiny of the extent of the Eu anomaly, it was found that upland rice took in K and REEs from all the K-bearing minerals, including hardly-soluble feldspar. Eu anomaly can be a good proxy of sources of inorganic nutrients in plants as well as of the directness of absorption of the nutrients. When the present results are viewed from a different angle, they endorse that plant-induced weathering is equivalent to physiological action of plants. (author)

  12. A retrospective of an unconventionally trained plant pathologist: plant diseases to molecular plant pathology.

    Science.gov (United States)

    Ouchi, Seiji

    2006-01-01

    Plant pathology evolved from its mycology-oriented origins into a science dealing with biochemical mechanisms of diseases, along with enhanced crop production through disease control. This retrospective describes first my personal experience from my introduction to plant pathology, to the establishment of the concept of accessibility as a model pertaining to genetically defined basic compatibility induced by pathogens. I then refer to the development of molecular plant pathology from physiological and biochemical plant pathology fostered by the growth in recombinant technology in the second half of the past century. This progress was best reflected by the U.S.-Japan Seminar Series held at 4-5-year intervals from 1966 to 2003 and documented by publications in major journals of our discipline. These seminars emphasized that progress in science has always been supported by the invention of novel techniques and that knowledge integrated from modern genomics and subsequent proteomics should contribute to the progress of basic life sciences and, more importantly, to the elaboration of rational measures for disease control.

  13. Hypersensitive cell death in plants : its mechanisms and role in plant defense against pathogens

    NARCIS (Netherlands)

    Iakimova, E.T.; Michalczuk, L.; Woltering, E.J.

    2005-01-01

    This review is a recent update in the understanding of the hypersensitive response (HR) of plants with special consideration to the physiological and biochemical determinants in different model systems. Hypersensitive response is reviewed as a form of programmed cell death (PCD) representing one of

  14. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  15. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  16. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  17. Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    Science.gov (United States)

    Faizal, Ahmad; Geelen, Danny

    2015-09-01

    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage.

  18. Glycinebetaine-induced modulation in some biochemical and physiological attributes of okra under salt

    International Nuclear Information System (INIS)

    Saeed, H.M.; Mirza, J.I.

    2016-01-01

    Role of glycinebetaine (GB) in okra (Abelmoschus esculentus L. Moench) cv. Subz-pari plants grown under salinity stress was investigated under field conditions. The crop was planted under varying levels (0, 200 and 400 mg NaCl per kg of soil) of salinity stress. Foliar application of 75 mM GB was employed at two phases i.e. after 30 and 60 days of sowing. Imposition of salinity stress significantly increased leaf GB and proline contents but significantly reduced leaf chlorophyll content and physiological characteristics such as rate of photosynthesis (Pn), rate of transpiration (E), stomatal conductance (gs) and leaf relative water content (LRWC). Exogenous application of GB significantly increased GB content but decreased proline content of leaves and improved various gas exchange characteristics/physiological parameters. The present results thus indicated that foliar application of GB (75 mM) can modulate various biochemical and gas exchange parameters of okra, grown under salt stress. (author)

  19. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    Science.gov (United States)

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  20. A multiple-compartment model for biokinetics studies in plants

    International Nuclear Information System (INIS)

    Garcia, Fermin; Pietrobron, Flavio; Fonseca, Agnes M.F.; Mol, Anderson W.; Rodriguez, Oscar; Guzman, Fernando

    2001-01-01

    In the present work is used the system of linear equations based in the general Assimakopoulos's GMCM model , for the development of a new method that will determine the flow's parameters and transfer coefficients in plants. The need of mathematical models to quantify the penetration of a trace substance in animals and plants, has often been stressed in the literature. Usually, in radiological environment studies, it is used the mean value of contaminant concentrations on whole or edible part plant body, without taking in account vegetable physiology regularities. In this work concepts and mathematical formulation of a Vegetable Multi-compartment Model (VMCM), taking into account the plant's physiology regularities is presented. The model based in general ideas of the GMCM , and statistical Square Minimum Method STATFLUX is proposed to use in inverse sense: the experimental time dependence of concentration in each compartment, should be input, and the parameters should be determined from this data in a statistical approach. The case of Uranium metabolism is discussed. (author)

  1. Lead tolerance of Populus nigra in symbiosis with arbuscular mycorrhizal fungi in relation to physiological parameters

    International Nuclear Information System (INIS)

    Salehi, A.; Tabari, M.; Mohammadi Goltapeh, E.; Shirvani, A.

    2016-01-01

    With the aim to examine lead tolerance of Populus nigra (clone 62/154) in symbiosis witharbuscular mycorrhizal fungi, a greenhouse experiment was carried out in a factorial randomized complete scheme with two factors 1) fungal inoculation in 4 levels (control, inoculation with Glomus mosseae, inoculation with G. intraradices and inoculation with G. mosseae+G. intraradices) and 2) lead in 4 levels (0, 100, 500 and 1000 mg kg-1 soil). Mycorrhizal colonization and physiological parameters of plants were measured at the end of growth season. Results showed that at all Pb levels, the percentage of root mycorrhizal colonization in fungal treatments was significantly higher than that in control treatment (without fungal inoculation), however without significant differences between 3 fungal treatments. Pb treatments had no significant effect on root mycorrhizal colonization of P. nigra plants. Also, photosynthesis, stomatal conductance, transpiration, intercellular CO2 concentration and water use efficiency of P. nigra plants had no significant inhibitory effects versus the control found under Pb and fungal treatments or their interaction.The results of present study demonstrated that fungal treatments had no significant effects on physiological parameters and Pb tolerance of P. nigraplants. While, in relation to mycorrhizal colonization and physiological parameters, P. nigra clone 62/154 showeda good tolerance to Pb stress. So, in further investigations of phytoremediation of lead-contaminated soils, this clone can be considered as a proposed species.

  2. Nitric Oxide: A Multitasked Signaling Gas in Plants

    KAUST Repository

    Domingos, Patricia

    2014-12-01

    Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca2+ pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell–cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.

  3. Debranching improves morpho-physiological characters, fruit quality and yield of tomato

    International Nuclear Information System (INIS)

    Mondal, M.M.A.; Razzaque, A.H.M.

    2016-01-01

    Farmers are commercially cultivated tomato with different levels of shoot pruning but this production practice has not been defined clearly. The experiment was conducted under sub-tropical condition to assess the effect of different levels of debranching on morpho-physiological, reproductive and yield contributing characters in determinate tomato cultivar cv. Binatomato-5. The debranching levels were: i) control, ii) only main stem (MS), iii) MS with 2 branches, iv) MS with 3 branches and v) MS with 4 branches. Based on recommended spacing (50 cm * 50 cm), the higher fruit yield plant-1 as well as fruit yield per hectare were observed in more branch bearing plants of the treatment control (MS with 5-6 branches), MS with 3 branches and MS with 4 branches due to production of higher number of fruits plant-1 with being the highest in MS with 3 branches due to increase fruit size. The lowest fruit yield per plant as well as per hectare was observed in uniculm plants due to lower number of fruits per plant. This study suggests that plants that have MS with three branches may be recommended for commercial cultivation of tomato under sub-tropical condition. (author)

  4. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil

    International Nuclear Information System (INIS)

    Vivas, A.; Barea, J.M.; Azcon, R.

    2005-01-01

    The interaction between two autochthonous microorganisms (Brevibacillus brevis and Glomus mosseae) isolated from Cd amended soil increased plant growth, arbuscular mycorrhizal (AM) colonization and physiological characteristics of the AM infection (measured as SDH or ALP activities). The enhanced plant Cd tolerance after coinoculation with native microorganisms seemed to be a consequence of increased P and K acquisition and, simultaneously, of decreased concentration of Cd, Cr, Mn, Cu, Mo, Fe and Ni in plant tissue. Autochthonous microbial strains were more efficient for nutrient uptake, to immobilize metals and decrease their translocation to the shoot than reference G. mosseae (with or without bacteria). Indole acetic acid produced by B. brevis may be related to its ability for improving root growth, nodule production and AM fungal intra and extraradical development. Dehydrogenase, phosphatase and β-glucosidase activities, indicative of microbial metabolism and soil fertility, were maximized by the coinoculation of autochthonous microorganisms in cadmium polluted conditions. As a consequence, the use of native microorganisms may result very efficient in bioremediation. - Endemic isolates of bacteria and fungi were effective in bioremediation

  5. Mathematical Modeling Approaches in Plant Metabolomics.

    Science.gov (United States)

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  6. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    Science.gov (United States)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  7. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    Science.gov (United States)

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  8. SALINITY AND ITS EFFECTS ON THE PHYSIOLOGICAL RESPONSE OF BEAN (PHASEOLUS VULGARIS L.

    Directory of Open Access Journals (Sweden)

    Miroslava Kaymakanova

    2009-06-01

    Full Text Available The effect of salt stress оn the physiological reaction in young bean plants was studied. The plants were grown in pots as hydroponic cultures in half-strength Hoagland nutrient solution under controlled conditions in a climatic room. The plants were treated for 7 days with NaCl and Na2SO4 (concentration 100 mM, starting at the appearance of the fi rst trifoliate leaf unfolded. The salts were added to the nutrient solution. It was established that the equimolar concentrations of both salt types caused stress in the young bean plants, which found expression in the suppression of growth, photosynthesis activity and caused changes in stomata status (conductivity, number and size. The transpiration and the cell water potential in salt-treated plants were reduced. The MDA level in root and shoot, and the proline content was increased.

  9. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  10. Approaches to translational plant science

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Christensen, Brian; Thorup-Kristensen, Kristian

    2015-01-01

    is lessened. In our opinion, implementation of translational plant science is a necessity in order to solve the agricultural challenges of producing food and materials in the future. We suggest an approach to translational plant science forcing scientists to think beyond their own area and to consider higher......Translational science deals with the dilemma between basic research and the practical application of scientific results. In translational plant science, focus is on the relationship between agricultural crop production and basic science in various research fields, but primarily in the basic plant...... science. Scientific and technological developments have allowed great progress in our understanding of plant genetics and molecular physiology, with potentials for improving agricultural production. However, this development has led to a separation of the laboratory-based research from the crop production...

  11. Physiological performance of the soybean crosses in salinity stress

    Science.gov (United States)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  12. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  13. Regulation and physiological role of silicon in alleviating drought stress of mango.

    Science.gov (United States)

    Helaly, Mohamed Naser; El-Hoseiny, Hanan; El-Sheery, Nabil Ibrahim; Rastogi, Anshu; Kalaji, Hazem M

    2017-09-01

    Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K 2 SiO 3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Effects of Drought Stress and Rewatering on some Morphological and Physiological Properties of Three Grapevine Cultivars

    Directory of Open Access Journals (Sweden)

    Mehdi Aran

    2017-12-01

    Full Text Available Introduction: Most plants have developed morphological and physiological mechanisms which allow them to cope with drought stress. Almost all the studies conducted on grapevines (Vitisvinifera L. responses to drought conditions have focused on physiological responses such as stomatal reactions, photosynthesis and osmotic adjustment, and biochemical responses like carbohydrates and proline. According to these studies, physiological and biochemical responses of grapevines to water stress are quite variable. This variability could be related to cultivar, time of the year, previous water stress level, intensity of stress, and environmental conditions. Osmotic adjustment in terms of compatible solutes accumulation has been considered as an important physiological adaptation for plant to resist drought, which facilitates the extraction of water from dry soils and maintenance of cell turgor, gas exchange and growth in very dry environments. Acting as compatible solutes as well as antioxidants, a significant rise in proline amount was observed in grapevine leaves under water stress conditions, suggesting that this amino acid has a protective role against the formation of excessive reactive oxygen species (ROS. Plants, in order to overcome oxidative stress, have developed enzymatic and non-enzymatic antioxidant defense mechanisms against scavenge ROS. Materials and Methods: This research was conducted to assess the effect of different levels of irrigation on some characteristics of three cultivars of grapevine (Yaghooti, Bidanesefid and Askari, as a factorial based on a randomized complete block design in two years with four replications. The experiment started in June 21, 2014 and 2015. Water treatments were applied in four levels including: control plant (100% FC, moderate stress (60% FC, severe stress (30% FC and rewatering treatment after severe stress treatment. Increase height, leaf number, stem diameter, leaf fresh and dry weight, stem dry weight

  15. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...... specific carbonylated proteins have been identified. Protein carbonylation appears to accumulate at all stages of seed development and germination investigated to date. In some cases, such as seed aging, it is probably simply an accumulation of oxidative damage. However, in other cases protein...

  16. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.

    Directory of Open Access Journals (Sweden)

    Christine Zawaski

    Full Text Available Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba showing that gibberellin (GA catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid and reductions in electrolyte leakage (EL. Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.

  17. New handbook for standardised measurement of plant functional traits worldwide

    OpenAIRE

    Pérez-Harguindeguy N Díaz S Garnier E Lavorel S Poorter H Jaureguiberry P Bret-Harte MS Cor

    2013-01-01

    Plant functional traits are the features (morphological physiological phenological) that represent ecological strategies and determine how plants respond to environmental factors affect other trophic levels and influence ecosystem properties. Variation in plant functional traits and trait syndromes has proven useful for tackling many important ecological questions at a range of scales giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of r...

  18. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  19. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  20. Laser microbeams for the manipulation of plant cells and subcellular structures

    International Nuclear Information System (INIS)

    Hoffmann, F.

    1996-01-01

    Laser microsurgery has been used in plants to study physiological, cell biological and genetical questions for over 10 years. More recently, the optical trap became available as an additional tool. Specific areas of research include membrane physiology, motility, transformation and protoplast fusion. Compared to the data reported in animal systems, the contributions of laser microbeam manipulations in plant biology are rather limited. However, with increased awareness of the enormous potential of the technology and better accessibility to less expensive and more user-friendly equipment, the next decade should be more productive. (author)

  1. Poplar physiology and short-term biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, P.; Lannoye, R. (Universite Libre de Bruxelles (Belgium). Lab. de Physiologie Vegetale)

    1990-01-01

    This program comprised the establishment, on biochemical and physiological basis, of specific screening tests for the rapid evaluation of poplar adaptation to environmental conditions. The resistance of chloroplasts to several major environmental stresses affecting biomass production (light, heat, cold and water stress) has been assessed in leaves of five poplar (Populus sp.) clones by in vivo chlorophyll fluorescence and oxygen production measurements. These two chloroplastic activities are correlated to the photosynthetic activity of the plant and respond immediately to any changes affecting the organization and the functioning of the photosynthetic apparatus, including regulatory mechanisms. Test clones were grown as cuttings in a .80 {times} .80m planting pattern. In addition, some plants were grown hydroponically in containers under a plastic roof in controlled conditions to test their behavior toward hydric (drought), light (shadow and overlight) and temperature (cold and warm) stresses. A specific data capture system has been developed to analyze clone resistance to environmental stresses. The results indicated considerable genetic variation in tolerance of poplar clones toward environmental stresses. The application of the in vivo fluorescence method and of the photoacoustic method appears to be an easy and rapid method to estimate the reaction of poplar clones against some stresses and thus for detecting plant species adapted to environmental stresses. 59 refs., 27 figs., 5 tabs.

  2. Student Misconceptions about Plants ? A First Step in Building a Teaching Resource?

    OpenAIRE

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available ...

  3. Detection of plant adaptation responses to saline environment in rhizosphere using microwave sensing

    International Nuclear Information System (INIS)

    Shimomachi, T.; Kobashikawa, C.; Tanigawa, H.; Omoda, E.

    2008-01-01

    The physiological adaptation responses in plants to environmental stress, such as water stress and salt stress induce changes in physicochemical conditions of the plant, since formation of osmotic-regulatory substances can be formed during the environmental adaptation responses. Strong electrolytes, amino acids, proteins and saccharides are well-known as osmoregulatory substances. Since these substances are ionic conductors and their molecules are electrically dipolar, it can be considered that these substances cause changes in the dielectric properties of the plant, which can be detected by microwave sensing. The dielectric properties (0.3 to 3GHz), water content and water potential of plant leaves which reflect the physiological condition of the plant under salt stress were measured and analyzed. Experimental results showed the potential of the microwave sensing as a method for monitoring adaptation responses in plants under saline environment and that suggested the saline environment in rhizosphere can be detected noninvasively and quantitatively by the microwave sensing which detects the changes in complex dielectric properties of the plant

  4. Application of positron emitters to studies on plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, N S; Matsuoka, H [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sekine, T [and others

    1998-10-01

    A newly developed positron emitting tracer imaging system enables us to study dynamically the physiological function of plants, although this system covers, at present, a limited area in a plant. Production of the positron emitters {sup 11}C, {sup 13}N, {sup 18}F and {sup 48}V for this application, using an AVF cyclotron, is described. (author)

  5. Effects of plant hormones and 20-hydroxyecdysone on tomato ...

    African Journals Online (AJOL)

    20-hydroxyecdysone (20E) is the major phytoecdysteroid of about 6% of plants. Its role in plant physiology has not been fully elucidated. In this work we studied the effects of 20E application on some morphological and biochemical parameters of tomato, Lycopersicum esculentum, seed during germination and seedling ...

  6. Tenth workshop on seedling physiology and growth problems in oak plantings

    Science.gov (United States)

    Brian Roy Lockhart; Emile S. Gardiner; Daniel C. Dey

    2008-01-01

    Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 15 abstracts.

  7. The plant as metaorganism and research on next-generation systemic pesticides - Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Zisis Vryzas

    2016-12-01

    Full Text Available Systemic pesticides (SP are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic and trans-membane transport of systemic pesticides in accordance with the intercommunication dictated by plant-microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism and action of systemic pesticides are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides.

  8. Size, physiological quality, and green seed occurrence influenced by seeding rate in soybeans

    Directory of Open Access Journals (Sweden)

    André Sampaio Ferreira

    2017-05-01

    Full Text Available The seeding rate influences the intraspecific competition, which might affect the development and quality of seeds in soybean. However, the impact of seeding rate on the physical and physiological qualities of soybean seeds needs to be better elucidated. This study aimed to evaluate the effects of soybean plant density on the seed size as well as the effects of the interaction between the plant density and seed size on the seed mass, green seed occurence, and physiological seed quality. The experiments were carried out in the growing seasons of the years 2013/14 and 2014/15 in a Latossolo Vermelho distroférrico, under a randomized complete block design, using the NK 7059 RR cultivar with six replications. Four plant densities (150, 300, 440, and 560 thousand viable seeds ha–1 were evaluated. After the classification of seeds into four sizes, using a set of sieves, a 4 ×4 factorial scheme was used for the statistical analysis of the four plant densities and four seed sizes. The seed samples were evaluated for the seed mass, green seed percentage, germination, and vigor. Under thermal and water stress during seed development, an increase in the seeding rate led to a reduction in the green seed occurrence and an increase in the seed size and mass. However, in the absence of thermal and water stress, the seed size and mass were not altered by the seeding rate and, there was no occurrence of green seeds.

  9. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  10. Plants' responses to drought and shade environments

    African Journals Online (AJOL)

    전병기

    factors affect plants' growth, morphology, physiology and biochemistry. Many research works .... Hardwood and Conifer tree species n central Wisconsin: Influence of light regime and .... Ecotypic variation in response to light spectra in Scots ...

  11. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    Science.gov (United States)

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance

  12. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants

    Directory of Open Access Journals (Sweden)

    Sheshshayee M. Sreeman

    2018-04-01

    Full Text Available Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a “trait based” crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would

  13. An evaluation of the physiological activity of 9-amine-9-fluorenephosphonic acid derivatives

    Directory of Open Access Journals (Sweden)

    Henryk Skrabka

    2013-12-01

    Full Text Available The physiological activity of eleven 9-amine-9-fluorenephosphonic acid derivatives, synthesized at the Wrocław Polytechnic, was examined. The test plant was Spirodela oligorrhiza. The effect of these compounds on the increase of the dry matter of this plant was tested in eight-day experiments. The activity of the compounds was varied. The most toxic were nos. 2, 4, 9, 8, 5 and 6 which were lethal in low concentrations. Somewhat less toxic were nos. 7, 10 and 11; nos. 1 and 3 were the least toxic.

  14. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fulda, S; Mikkat, S; Stegmann, H; Horn, R

    2011-07-01

    An easy and manageable in vitro screening system for drought tolerance of sunflower seedlings based on MS media supplemented with polyethylene glycol 6000 was evaluated. Morphological and physiological parameters were compared between control (-0.05 MPa) and drought-stressed (-0.6 MPa) seedlings of Helianthus annuus L. cv. Peredovick. There was a significant growth deficit in drought-stressed plants compared to control plants in terms of hypocotyl length, and shoot and root fresh mass. Shoot growth was more restricted than root growth, resulting in an increased root/shoot ratio of drought-stressed plants. Accumulation of osmolytes such as inositol (65-fold), glucose (58-fold), proline (55-fold), fructose (11-fold) and sucrose (eightfold), in leaves of drought-stressed plants could be demonstrated by gas-liquid chromatography. Soluble protein patterns of leaves were analysed with two-dimensional gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry. A set of 46 protein spots allowed identification of 19 marker proteins. Quantitative changes in protein expression of drought-stressed versus control plants were detected. In leaves of drought-stressed sunflower seedlings six proteins were significantly up-regulated more than twofold: a putative caffeoyl-CoA 3-O-methyltransferase (4.5-fold), a fructokinase 3 (3.3-fold), a vegetative storage protein (2.5-fold), a glycine-rich RNA binding protein (2.2-fold), a CuZn-superoxide dismutase (2.1-fold) and an unknown low molecular weight protein (2.3-fold). These proteins represent general stress proteins induced under drought conditions or proteins contributing to basic carbon metabolism. The up-regulated proteins are interesting candidates for further physiological and molecular investigations regarding drought tolerance in sunflower. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Air Pollution tolerance indices (apti) of some plants around Otorogun ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The study examined the air pollution tolerance indices (APTI) of six plant species around. Otorogun gas plant in Ughelli-South Local Government Area of Delta State. Four physiological and biochemical parameters, which are leaf relative water content (RWC), Ascorbic acid content (AA), total leaf chlorophyll ...

  17. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  18. Physiological and phenotypic variations between columnar and standard apple (Malus x domestica Borkh.) trees

    DEFF Research Database (Denmark)

    Talwara, Susheela

    Columnar apple trees have very determined growth habit, short internodes, nearly absent branching and can be planted densely in the orchards to obtain higher yields. Such tree architecture provides a possibility for automation and mechanization in agriculture and hence lowering the labour cost wh...... the variations between columnar and standard apple trees. This knowledge provides a better insight on the production abilities of the columnar apple trees which may be useful for future crop improvement strategies.......Columnar apple trees have very determined growth habit, short internodes, nearly absent branching and can be planted densely in the orchards to obtain higher yields. Such tree architecture provides a possibility for automation and mechanization in agriculture and hence lowering the labour cost...... on the physiological and phenotypic characteristics of the columnar apple trees were made by comparing them with the standard traditionally grown non-columnar apple trees. Data from the leaves morphological and anatomical studies and from various physiological investigations have been assembled to compare...

  19. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2017-05-01

    Full Text Available Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time.Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems.Availability: Virtual Plant Tissue is available as open source (EUPL license on Bitbucket (https://bitbucket.org/vptissue/vptissue. The project has a website https://vptissue.bitbucket.io.

  20. Production of positron emitters of metallic elements to study plant uptake and distribution

    International Nuclear Information System (INIS)

    Watanabe, S.; Ishioka, N.S.; Sekine, T.; Osa, A.; Koizumi, M.; Kiyomiya, S.; Nakanishi, H.; Mori, S.

    2001-01-01

    The metallic positron emitters 52 Mn, 52 Fe and 62 Zn, the elements of which are essential nutrients for plants as well as for animals, have been produced for a new tracer method in plant physiology. The tracer method utilizes the detection of annihilation γ-rays, like PET in nuclear medicine, to obtain two-dimensional images on a plant as well as to obtain radioactivity counts at specified points in a plant; this method allows us to observe the tracer movement in a living plant without touching the test plant. The previously reported methods of radiochemical separation of these metallic positron emitters from targets were partly modified from the view of their use in plant physiology. Radionuclidic impurities remaining in the final solutions were examined by γ-ray spectrometry, and their influences on the above-mentioned measurements are discussed. From the experiments on a barley plant, the speeds of 52 Mn 2+ ion and 52 Fe 3+ - mugineic-acid complex have been obtained for the first time to be 0.2 cm/min and 1.0 cm/min, respectively. (orig.)